
Cautious Actor-Critic

Appendix A. Appendix

In this appendix we provide missing proofs and implementation details. Specifically, we
present Theorem 1 for CAC convergenc in Section A.1, Proposition 4 for calculating CAC
actor gradient expression in Section A.2 and implementation details in Section A.3.

A.1. Proof for the CAC convergence

We prove the convergence of CAC using policy iteration style argument. Similar proofs
have also been used in (Haarnoja et al., 2018, Theorem 4). The following lemmas establish
the convergence of the policy evaluation and policy improvement of CAC, respectively.

Lemma 5 (CAC Policy Evaluation) Given the current policy π and a baseline policy
π̃, the policy evaluation step of CAC is formulated as:

Qπk+1
← R(s, a) + γ (PEπ[Qπk(s, a)] + Iππ̃ (s)) , (14)

Consider an initial Q value Q0 : S × A → R with |A| < ∞. With the repeated application
of Eq. (14), the sequence Qk converges to the following entropy-regularized Q-value Qππ̃ as
k →∞.

Qππ̃(s, a) := Ed
π

[∞∑
t=0

γt
(
rt + Iππ̃ (st+1)

)∣∣s0 = s, a0 = a

]
. (15)

Proof Define the entropy augmented reward as Rππ̃(s, a) , R(s, a)+Iππ̃ (s) and rewrite the
update rule as:

Qπk+1
← Rππ̃(s, a) + γPEπ[Qπk(s, a)]. (16)

With the assumption |A| <∞ for bounded reward, we can apply the standard convergence
results for policy evaluation (Sutton and Barto, 2018).

Lemma 6 (CAC Policy Improvement) Given the current policy π, a baseline policy π̃
and the updated policy πnew. CAC has the following policy update:

πnew = (1− ζ)π + ζπ̂,

where π̂(a | s) =
π̃α(a | s) exp (βQππ̃(s, a))

Z(s)
,

(17)

with ζ ∈ [0, 1]. Then, Qπnewπ̃ (s, a) ≥ Qππ̃(s, a) for all (s, a) ∈ S ×A with |A| <∞.

Proof Consider a function f : ζ → R with ζ ∈ [0, 1]:

f(ζ) = Ea∼πnew [Qππ̃(s, a)] + Iπnew
π̃ (s) . (18)

Zhu Kitamura Matsubara

From the definition of π̂= arg max
π

Ea∼π [Qππ̃(s, a)]+Iππ̃ (s), f(ζ) takes the maximum value

when ζ = 1. The first and the second derivative of f(ζ) w.r.t. ζ are:

f
′
(ζ) =

∑
a

(π̂(a|s)− π(a|s)) (Qππ̃(s, a) + τ log π̃(a|s)

−(σ + τ) log((1− ζ)π(a|s) + ζπ̂(a|s)) .
(19)

f
′′
(ζ) = −(σ + τ)

∑
a

(π̂(a|s)− π(a|s))2

(1− ζ)π(a|s) + ζπ̂(a|s)
≤ 0. (20)

Thus, the function f is concave in ζ ∈ [0, 1]. Since f(ζ) takes the maximum value with
ζ = 1, f(ζ) is monotonically increasing in ζ and f(0) ≤ f(ζ).

Therefore, the following inequality about the entropy-regularized V-value V π
π̃ (s) holds:

V π
π̃ (s) =Ea∼π [Qππ̃(s, a)] + Iππ̃ (s)

≤Ea∼πnew [Qππ̃(s, a)] + Iπnew
π̃ (s) .

(21)

By repeatedly applying Eq. (21), we obtain the following inequalities:

Qππ̃(s, a) = R(s, a) + γP [Qππ̃(s, a) + Iππ̃ (s)]

≤ R(s, a) + γP
[
Eπnew [Qππ̃(s, a)] + Iπnew

π̃ (s)
]

...

≤ Qπnew
π̃ (s, a).

(22)

Convergence to Qπnew
π̃ follows from Lemma 5.

Combining the policy evaluation and policy improvement, we are now ready to prove
Theorem 1.

Theorem 1 Repeated application of CAC Eq. (3) on any initial policy π will make it

converges to the entropy regularized optimal policy π∗(a|s) =
exp(1

κ
Q∗(s,a))∫

a∈A exp(1
κ
Q∗(s,a))

.

Proof According to Lemma 5 and Lemma 6, the entropy-regularized Q-value at k-th up-
date satisfies Qπkπk−1

(s, a) ≥ Q
πk−1
πk−1(s, a). Given bounded reward, Qπkπk is also bounded from

above and the sequence converges to a unique π∗. Note that when reaching the optimum
the KL regularization term becomes 0. Hence, using the same iterative argument as in
the proof of Lemma 6, we get Qπ

∗
π∗(s, a) > Qππ(s, a) for all (s, a) ∈ S × A and any π. By

Ziebart (2010); Haarnoja et al. (2018), the optimal policy is entropy-regularized and hence

has the softmax form π∗(a|s) =
exp(1

κ
Q∗(s,a))∫

a∈A exp(1
κ
Q∗(s,a))

(recall from Eq. (3) that κ is the weight

coefficient of entropy). The convergence of general interpolated policy to the optimal policy
follows the argument of Scherrer and Geist (2014).

Cautious Actor-Critic

A.2. Proof for the CAC gradient

In this subsection we derive the gradient expression for CAC. For the ease of reading we
rephrase the proposition here:

Proposition 4 Let the actor network be parametrized by weights φ and critic by θ.
Define GQφ̄,θ as the greedy policy with respect to the CAC critic. The subscript φ̄ comes
from the baseline policy introduced by KL divergence. Then the gradient of the actor update
can be expressed as:

∇φE
s∼B
a∼πφ

[
Dφ

φ̄
− β

1 + X
Qθ(s, a)

]
,

where Dφ

φ̄
= log πφ (a | s)− α+ X

1 + X
log πφ̄(a; s)

X =
1− ζ
ζ
·

πφ̄(a | s)
GQφ̄,θ(a | s)

.

(23)

Proof Using the reparameterization trick a = fφ(ε; st) with ε a noise vector (Haarnoja
et al., 2018), the gradient of Eq. (8c) can be expressed as:

∇̂φJπ(φ)=∇φ log πφ (a | s) +∇a log πφ (a | s)∇φfφ (ε; st)

−∇a log
(
(1− ζ)πφ̄(a | s) + ζGQφ̄,θ (a | s)

)
∇φfφ (ε; st) .

(24)

We expand the term∇alog
(
(1− ζ)πφ̄(a | s) + ζGQφ̄,θ (a | s)

)
by using that∇xi log (

∑
i expxi)

= expxi∑
j expxj

.

Let exp (C1(a)) = (1 − ζ)πφ̄(a | s) and exp (C2(a)) = ζGπφ̄Qθ (a | s). We have the
following transformation:

∇a log
(
(1− ζ)πφ̄(a | s) + ζGQφ̄,θ (a | s)

)
=∇a log (exp (C1(a)) + exp (C2(a)))

=

(
D ∂
∂aπφ̄(a | s) + α ∂

∂aπφ̄(a | s) + β ∂
∂aQθ(s, a)

)
1 +D

,

where D = exp (C1(a)− C2(a)).

(25)

After replacing D with X and inserting Eq. (25) into Eq. (24), we obtain Eq. (10).

A.3. Implementation details

This section presents implementation details of CAC with deep networks. Pseudo-code is
provided in Algorithm 1.

On-policy replay buffer To make the algorithm off-policy, we approximate the on-policy
samples with on-policy replay buffer BK which stores K recent samples where K is smaller
than the size of the main replay buffer B.

Zhu Kitamura Matsubara

Advantage estimation While it is possible to simply use the entropy-regularized ad-
vantage function AI(s, a)=QI(s, a)−VI(s) for computing ζ, we are interested in studying
the guidance of ζ when no entropy is involved since it might provide a more informative
gradient improving direction. This corresponds to the case of (Kakade and Langford, 2002;
Pirotta et al., 2013). To this end, we train another Q-network Qω by solving:

ω ← arg minEB
[
(Qω (s, a)− y)2

]
,

where y = r + γ
(
Ea∼πφ(·|s′) [Qω̄(s′, a)

])
,

(26)

where ω̄ is the target network. Then we approximate the advantage as Aπ(s, a) =
Qω(s, a) − Eπφ [Qω(s, a)]. While the advantage estimation is expected to be further im-
proved with the recent generalized advantage estimation, we found that the above simple
implementation is sufficient to stabilize the learning.

Target smoothing For the target Q-networks Qθ̄ and Qω̄, we update the parameters
using the moving average (Haarnoja et al., 2018):

θ̄ ← νθ̄ θ + (1− νθ̄)θ̄,
ω̄ ← νω̄ ω + (1− νω̄)ω̄,

(27)

where νθ̄ and νω̄ are the target smoothing coefficients. In the mixing step, we use the
previous policy πφ̄ rather than the current policy πφ to stabilize the training:

EB
[
DKL

(
πφ‖(1− ζ)πφ̄ + ζπ̂

)]
.

Thus, the target policy πφ̄ corresponds to the monotonically improved policy in the CPI
algorithm that is not updated when performance oscillation happens. To reflect this fact,
we update the weight of the target policy network as:

φ̄← ζνφ̄ θ + (1− ζνφ̄)φ̄, (28)

where νφ̄ is the target smoothing coefficient.

Normalization factor estimation Since CAC algorithm requires the density of the
reference policy π̂(a | s) = πα

φ̄
(a | s) exp (βQθ(s, a))(Z(s))−1, we need to estimate the nor-

malization factor Z(s).
A simple approach to estimate Z(s) is by Monte-Carlo sampling with some distribution

q that is easier to sample from:

Z(s) = Eq
[
πφ̄(a | s)α exp (βQθ(s, a))

q(a | s)

]
. (29)

The closer q(· | s) and the reference policy π̂(· | s) are, the better the accuracy of the Z(s)
approximation.

Theorem 2 indicates that by choosing the current policy π as the proposal distribution,
we can control the closeness of the two distributions and the accuracy of the MC approxi-
mation via changing the entropy regularization weighting coefficients. We empirically study
the effectiveness of entropy regularization against the closeness and the accuracy when ζ ≤ 1

Cautious Actor-Critic

Figure 3: Left: The learning curves of CAC with different parameters on pendulum. Mid-
dle: The maximum KL divergence over all the states. Right: The maximum
error of log-scaled Z(s) approximation over all the states.

Algorithm 1 Cautious Actor-Critic

1: Initialize parameter vectors θ, φ, θ̄, φ̄, ω, ω̄
2: Initialize variable Ã and ÃMaxDiff

3: for each iteration do
4: Collect transitions by πθ and add them to B and BK
5: for each gradient step do
6: Update θ with one step of SGD using Eq. (8b)
7: Update ω with one step of SGD using Eq. (26)
8: Update Ã and ÃMaxDiff using Eq. (12)
9: Update φ with one step of SGD using Eq. (8c)

10: Update ζ using Eq. (11)
11: θ̄ ← νθ̄θ + (1− νθ̄)θ̄
12: ω̄ ← νω̄ω + (1− νθ̄)ω̄
13: φ̄← ζνφ̄φ+ (1− ζνφ̄)φ̄
14: end for
15: end for

We use the pendulum environment from Fu et al. (2019) where the dynamics are dis-
cretized so that we can compute the oracle values such as the KL divergence between the
current and the reference policy. The hyperparameters used in the experiment is listed in
Section A.4. Figure 3 shows how the learning behavior of CAC changes when the interpola-
tion coefficient ζ and KL regularization weight τ vary: When KL regularization is present,
the approximation quality of Z(s) is improved significantly.

A.4. Hyperparameters

This section lists the hyperparameters used in the comparative evaluation Section 5.1.

Zhu Kitamura Matsubara

Table 2: Hyperparameters of off-policy algorithms in mujoco tasks

Parameter Value

Shared

optimizer Adam

learning rate 10−3

discount factor (γ) 0.99

replay buffer size (B) 106

number of hidden layers 2

number of hidden units per layer 256

number of samples per minibatch 100

activations ReLU

TD3

Stddev for Gaussian noise 0.1

Stddev for target smoothing noise 0.2

policy delay 2

SAC

entropy coefficient (κ) 0.2

θ̄ smoothing coefficient 0.995

CAC

entropy coefficient (κ) 0.2

KL coefficient (τ) 0.1

θ̄ smoothing coefficient (νθ̄) 0.995

ω̄ smoothing coefficient (νω̄) 0.995

φ̄ smoothing coefficient (νφ̄) 0.9999

νA 0.01

νAMaxDiff 0.001

size of BK 1000

if-else update c = M

Cautious Actor-Critic

Table 3: Hyperparameters of PPO in mujoco tasks

Parameter Value

PPO

optimizer Adam

value function learning rate 10−3

policy learning rate 3× 10−4

discount factor (γ) 0.99

number of hidden layers 2

number of hidden units per layer 256

number of samples per minibatch 100

activations ReLU

Number of samples per update 80

Policy objective clipping coefficient 0.2

Table 4: Hyperparameters of CAC in pendulum task

Parameter Value

CAC

optimizer Adam

learning rate 10−3

discount factor (γ) 0.99

replay buffer size (B) 106

number of hidden layers 2

number of hidden units per layer 256

number of samples per minibatch 32

activations ReLU

entropy coefficient (κ) 0.2

θ̄ smoothing coefficient 0.995

φ̄ smoothing coefficient 0.995

size of BK 1000

if-else update c = M

	Appendix
	Proof for the CAC convergence
	Proof for the CAC gradient
	Implementation details
	Hyperparameters

