CavuTIoUs ACTOR-CRITIC

Appendix A. Appendix

In this appendix we provide missing proofs and implementation details. Specifically, we
present Theorem 1 for CAC convergenc in Section A.1, Proposition 4 for calculating CAC
actor gradient expression in Section A.2 and implementation details in Section A.3.

A.1. Proof for the CAC convergence

We prove the convergence of CAC using policy iteration style argument. Similar proofs
have also been used in (Haarnoja et al., 2018, Theorem 4). The following lemmas establish
the convergence of the policy evaluation and policy improvement of CAC, respectively.

Lemma 5 (CAC Policy Evaluation) Given the current policy m and a baseline policy
7, the policy evaluation step of CAC is formulated as:

Qmir < R(s,a) + 7 (PET[Qr, (s, 0)] + 7 (s)) , (14)

Consider an initial @ value Qp : S x A — R with |A| < co. With the repeated application
of Eq. (14), the sequence Qi converges to the following entropy-reqularized Q-value Q% as
k — oo.

Q%(s,a) :=E¥ Z’yt(n + 7z (st+1))|so =s,a0=a . (15)
=0

Proof Define the entropy augmented reward as RZ(s, a) = R(s,a) +ZZ(s) and rewrite the
update rule as:

Qmisr < RE(s,0) + YPET[Qn, (s, a)]. (16)

With the assumption | A| < oo for bounded reward, we can apply the standard convergence
results for policy evaluation (Sutton and Barto, 2018). |

Lemma 6 (CAC Policy Improvement) Given the current policy m, a baseline policy 7
and the updated policy Tpew. CAC has the following policy update:

Tnew — (1 - C)ﬂ + Cﬁa

7(a | s) exp (BQZ(s; a)) (17)
Z(s) ’

where 7(a|s) =
with ¢ € [0,1]. Then, QX" (s,a) > QZ(s,a) for all (s,a) € S x A with |A| < co.
Proof Consider a function f: ¢ — R with ¢ € [0, 1]:

F(Q) = B [QF(s, a)] + I (s).- (18)

7ZHU KITAMURA MATSUBARA

From the definition of 77 =argmax E*~" [QZ(s,a)|+Z% (s), f(¢) takes the maximum value
™

when ¢ = 1. The first and the second derivative of f({) w.r.t. ¢ are:

a (19)
—(o 4 7)log((1 = ¢)7(als) + (7(als)).

1—Q)m(als) + ¢(als) —

Thus, the function f is concave in ¢ € [0, 1]. Since f(¢) takes the maximum value with
¢ =1, f(¢) is monotonically increasing in ¢ and f(0) < f(¢).
Therefore, the following inequality about the entropy-regularized V-value V7 (s) holds:

N 2
FO=-(+n3 s e <° (20)

Vi (s) =E*"T[Q%(s,a)] + I7 (s)

21
<Eer (Q3(5,)] + T3 (s).)
By repeatedly applying Eq. (21), we obtain the following inequalities:
Q7(s,a) = R(s,a) + 7P [Q7(s, a) + I (s)]
< R(s,a) + P [E™[Q7(s, a)] + I (s)]
(22)
< Qe (s, a).
Convergence to Q" follows from Lemma 5. |

Combining the policy evaluation and policy improvement, we are now ready to prove
Theorem 1.
Theorem 1 Repeated application of CAC Eq. (3) on any initial policy m will make it
1 yx*
converges to the entropy reqularized optimal policy 7*(als) = exp(Q" (5.0))

 Jacaexe(5Q7(s0)
Proof According to Lemma 5 and Lemma 6, the entropy-regularized Q-value at k-th up-
date satisfies Q7% (s,a) > Qi1 (s,a). Given bounded reward, QT* is also bounded from
above and the sequence converges to a unique 7*. Note that when reaching the optimum
the KL regularization term becomes 0. Hence, using the same iterative argument as in
the proof of Lemma 6, we get Q™. (s,a) > QT (s,a) for all (s,a) € S x A and any 7. By
Ziebart (2010); Haarnoja et al. (2018), the optimal policy is entropy-regularized and hence
exp(£Q*(s,a))
Jacaep(5Q* (s
coefficient of entropy). The convergence of general interpolated policy to the optimal policy
follows the argument of Scherrer and Geist (2014). [|

has the softmax form 7*(a|s) = D) (recall from Eq. (3) that x is the weight

CavuTIoUs ACTOR-CRITIC

A.2. Proof for the CAC gradient

In this subsection we derive the gradient expression for CAC. For the ease of reading we
rephrase the proposition here:

Proposition 4 Let the actor network be parametrized by weights ¢ and critic by 6.
Define GQgz ¢ as the greedy policy with respect to the CAC critic. The subscript ¢ comes
from the baseline policy introduced by KL divergence. Then the gradient of the actor update
can be expressed as:

s~B @ 5
Ee~me | DO - 2
V(b é 1+XQ9(87(1) ;
where D? = log g (al]s)— atdt log 75 (a; s) (23)
¢ 1+ & oA

1-¢ mlals)
¢ ng's,e(a |s)

X =

Proof Using the reparameterization trick a = f4(€; s¢) with € a noise vector (Haarnoja
et al., 2018), the gradient of Eq. (8c) can be expressed as:

Vedu($)=Vglogms (a|s) + Valogms (a|s) Vfs (e st)
— Valog (1=)mgla| s)+¢GQgq (a | 5) VS (€:se).
We expand the term V,log ((1 — Omgla|s)+CGQg4 (a| s)) by using that V,log (3, exp z;)
exp T;
T2 expay’
Let pexp (Ci(a)) = (1 = O)mgla | s) and exp(Ca(a)) = (Gr;Qo(a|s). We have the

following transformation:
Valog (1= Qmglals) +¢GQg (a| s))
=V, log (exp (C1(a)) + exp (Ca(a)))
(Daiﬂdg(a | s) + a%ﬂdg(a | s) + B%Q@(s, a)) (25)

1+D ’
where D = exp (C}(a) — Ca(a)).

(24)

After replacing D with X and inserting Eq. (25) into Eq. (24), we obtain Eq. (10).

A.3. Implementation details

This section presents implementation details of CAC with deep networks. Pseudo-code is
provided in Algorithm 1.

On-policy replay buffer To make the algorithm off-policy, we approximate the on-policy
samples with on-policy replay buffer Bx which stores K recent samples where K is smaller
than the size of the main replay buffer B5.

7ZHU KITAMURA MATSUBARA

Advantage estimation While it is possible to simply use the entropy-regularized ad-
vantage function Az(s,a)=Qz(s,a)—Vz(s) for computing ¢, we are interested in studying
the guidance of { when no entropy is involved since it might provide a more informative
gradient improving direction. This corresponds to the case of (Kakade and Langford, 2002;
Pirotta et al., 2013). To this end, we train another Q-network @, by solving:

w + arg min B8 [(Qw (s,a) — yﬂ ,

(26)
where y =1+ (EaN%("s/) [Qa (s, a)]))

where @ is the target network. Then we approximate the advantage as A™(s,a) =
Qu(s,a) — E™[Qu(s,a)]. While the advantage estimation is expected to be further im-
proved with the recent generalized advantage estimation, we found that the above simple
implementation is sufficient to stabilize the learning.

Target smoothing For the target Q-networks Q)5 and)y, we update the parameters
using the moving average (Haarnoja et al., 2018):
0 vg6+ (1 — I/g)g,

27
GJFVQW‘F(l—VQ)a), ()

where 15 and vy are the target smoothing coefficients. In the mixing step, we use the
previous policy ms rather than the current policy 7y to stabilize the training:

EB [DKL (7T<Z>H(1 — C)TF& + Cﬁ')] .

Thus, the target policy g corresponds to the monotonically improved policy in the CPI
algorithm that is not updated when performance oscillation happens. To reflect this fact,
we update the weight of the target policy network as:

¢ Crg b+ (1 —Crg)d, (28)
where v is the target smoothing coefficient.

Normalization factor estimation Since CAC algorithm requires the density of the
reference policy 7(a | s) = Wg(a | 8)exp (BQy(s,a))(Z(s))~1, we need to estimate the nor-
malization factor Z(s).

A simple approach to estimate Z(s) is by Monte-Carlo sampling with some distribution
g that is easier to sample from:

m5(a | s)* exp (BQg(s, a))
q(a | s)

Z(s) = B4 (29)
The closer ¢(- | s) and the reference policy (- | s) are, the better the accuracy of the Z(s)
approximation.

Theorem 2 indicates that by choosing the current policy 7 as the proposal distribution,
we can control the closeness of the two distributions and the accuracy of the MC approxi-
mation via changing the entropy regularization weighting coefficients. We empirically study
the effectiveness of entropy regularization against the closeness and the accuracy when ¢ <1

CavuTIoUs ACTOR-CRITIC

= (C, T) = (0.6, 0.0) = (¢, 1)y =(1.0,0.5) =— (T, T)=(0.6,0.5) =— (T, 7T)=(1.0,0.0)

Average Return

Steps led Steps led Steps led

Figure 3: Left: The learning curves of CAC with different parameters on pendulum. Mid-
dle: The maximum KL divergence over all the states. Right: The maximum
error of log-scaled Z(s) approximation over all the states.

Algorithm 1 Cautious Actor-Critic

1: Initialize parameter vectors 6, ¢, 0, ¢, w, @

2. Initialize variable A and AMaxDiff

3: for each iteration do

4: Collect transitions by 7y and add them to B and Bx

5. for each gradient step do

6: Update 6 with one step of SGD using Eq. (8b)
T: Update w with one step of SGD using Eq. (26)
8:
9

Update A and AM>PI ysing Bq. (12)
: Update ¢ with one step of SGD using Eq. (8¢)
10: Update ¢ using Eq. (11)

11: 0 < vgh + (1 — vp)0
12: w4 Vpw + (1 — vg)w

13: ¢ Cuzd+ (1 —Cuz)o
14: end for
15: end for

We use the pendulum environment from Fu et al. (2019) where the dynamics are dis-
cretized so that we can compute the oracle values such as the KL divergence between the
current and the reference policy. The hyperparameters used in the experiment is listed in
Section A.4. Figure 3 shows how the learning behavior of CAC changes when the interpola-
tion coefficient ¢ and KL regularization weight 7 vary: When KL regularization is present,
the approximation quality of Z(s) is improved significantly.

A.4. Hyperparameters

This section lists the hyperparameters used in the comparative evaluation Section 5.1.

7ZHU KITAMURA MATSUBARA

Table 2: Hyperparameters of off-policy algorithms in mujoco tasks

Parameter Value
Shared
optimizer Adam
learning rate 1073
discount factor (vy) 0.99
replay buffer size (B) 10°
number of hidden layers 2

number of hidden units per layer | 256
number of samples per minibatch | 100

activations ReLU
TD3
Stddev for Gaussian noise 0.1

Stddev for target smoothing noise | 0.2

policy delay 2
SAC

entropy coefficient (k) 0.2

6 smoothing coefficient 0.995
CAC

entropy coefficient (k) 0.2

KL coefficient (1) 0.1

6 smoothing coefficient () 0.995

w smoothing coefficient (vg) 0.995

¢ smoothing coefficient (vs) 0.9999

VA 0.01

V AMaxDiff 0.001

size of By 1000

if-else update c=M

CavuTIoUs ACTOR-CRITIC

Table 3: Hyperparameters of PPO in mujoco tasks

Parameter Value

PPO
optimizer Adam
value function learning rate 1073
policy learning rate 3x 1074
discount factor (vy) 0.99
number of hidden layers 2
number of hidden units per layer 256
number of samples per minibatch 100
activations ReLU
Number of samples per update 80
Policy objective clipping coefficient | 0.2

Table 4: Hyperparameters of CAC in pendulum task

Parameter Value
CAC
optimizer Adam
learning rate 1073
discount factor (v) 0.99
replay buffer size (B) 10°
number of hidden layers 2

number of hidden units per layer | 256
number of samples per minibatch | 32

activations ReLU
entropy coefficient (k) 0.2

6 smoothing coefficient 0.995
¢ smoothing coefficient 0.995
size of By 1000

if-else update c=M

	Appendix
	Proof for the CAC convergence
	Proof for the CAC gradient
	Implementation details
	Hyperparameters

