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Abstract

The increase in availability of longitudinal elec-
tronic health record (EHR) data is leading to
improved understanding of diseases and dis-
covery of novel phenotypes. The majority of
clustering algorithms focus only on patient tra-
jectories, yet patients with similar trajectories
may have different outcomes. Finding sub-
groups of patients with different trajectories
and outcomes can guide future drug develop-
ment and improve recruitment to clinical trials.
We develop a recurrent neural network autoen-
coder to cluster EHR data using reconstruc-
tion, outcome, and clustering losses which can
be weighted to find different types of patient
clusters. We show our model is able to discover
known clusters from both data biases and out-
come differences, outperforming baseline mod-
els. We demonstrate the model performance on
29,229 diabetes patients, showing it finds clus-
ters of patients with both different trajectories
and different outcomes which can be utilized to
aid clinical decision making.

Keywords: Patient Stratification, Recur-
rent Neural Network, Autoencoder, Electronic
Health Records, Clustering

1. Introduction

Chronic diseases like diabetes or heart failure may
progress very differently across patients (Spratt et al.,
2017; Lewis et al., 2017) but the reasons for differen-
tial progression are not yet well understood. Between
patient differences have been linked — among other
factors — to the underlying pathology or to differen-
tial response to treatment (Sarrfa-Santamera et al.,
2020; Hedman et al., 2020).
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Over the last decade, the spread of EHRs has en-
abled the collection of unprecedented longitudinal pa-
tient information (Shickel et al., 2018). Early work
using this rich data to investigate heterogeneous dis-
ease progression mostly employed unsupervised clus-
tering to find patient subgroups in the data that share
a similar medical history (Miotto et al., 2016; Bay-
tas et al., 2017; Madiraju et al., 2018; Landi et al.,
2020). However, EHR data are primarily designed
for clinical care and are not usually collected with
research in mind. Identified clusters may therefore
be driven by spurious associations such as patient
drop out, selective recording, modifications of the IT
infrastructure, or administrative differences between
healthcare providers (de Jong et al., 2019; Ehrenstein
et al., 2019).

In an attempt to address these issues, new methods
have been developed that focus on relevant patient
outcomes to guide the clustering of patient trajec-
tories (Zhang et al., 2019; Lee and van der Schaar,
2020; Lee et al., 2020), e.g., by including occurrence
of complications or time to death. In this so-called
predictive clustering, a low-dimensional latent repre-
sentation of the data is created that retains only infor-
mation predictive of future clinical events. Patients
are grouped according to their similarity in this la-
tent space. While this approach ensures clusters that
differ in the risk of experiencing the outcome, they
are unable to distinguish between distinct trajecto-
ries that lead to similar risks.

Retaining trajectories, however, can be paramount
to clinical interpretation. For example, although pa-
tients with acute heart failure may have short-term
mortality risks that are very similar to patients hos-
pitalised with sepsis, the mechanisms that cause the
high risk are quite different and a model should be
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able to distinguish between them. In this work, we
therefore propose a novel semi-supervised architec-
ture that combines both approaches — predictive and
unsupervised — to guide clustering towards outcomes
of interest while enforcing similarity on the input
scale. By doing so, we ensure that patients with very
different trajectories are not lumped into a common
cluster but remain in separate groups that facilitate
clinical interpretation. Changing the weights of the
unsupervised and predictive optimisation functions,
the algorithm can be adjusted to prioritise one or the
other. We refer to this approach as longitudinal pa-
tient stratification by clinical outcomes (LPS-CO).

We apply our method to right-censored clinical
data — which is ubiquitous in EHR data — and show
how it can lead to novel insights. Our main contri-
butions can be summarised as follows:

e Introduction of a flexible semi-supervised patient
stratification approach which identifies clusters
of patients which share a similar medical history
as well as clinical outcomes through parallel op-
timisation of an unsupervised and predictive loss
function.

e Introduction of a Cox proportional hazards loss
function to consider right-censored outcomes as
predictive targets such as time to death or re-
hospitalisation.

We validate our proposed method on a synthetic
dataset with known clusters as well as on a diabetes
cohort extracted from a longitudinal EHR dataset
consisting of approximately half a million patients.
Comparisons to other baseline methods indicate how
our approach can balance between unsupervised and
predictive clustering and discover novel patient clus-
ters.

2. Related Work

Initial work in patient phenotyping mostly applied
clustering to cross-sectional data. Patient phenotyp-
ing using k-means has been used early for example
in diabetes (Hammer et al., 2003) and heart fail-
ure (Ather et al., 2009). Other commonly applied
methods include hierarchical clustering (Moore et al.,
2010; Burgel et al., 2010) and self-organising maps
(Ather et al., 2009). Recently, these have been par-
tially superseded by methods based on autoencoders,
which provide an elegant way to deal with increas-
ingly high-dimensional medical data. Notably, Xie

et al. (2016) proposed a deep embedded clustering
(DEC) algorithm that uses an autoencoder with a
self-supervised loss function to jointly learn the low-
dimensional representation and cluster assignments.
This approach has been used in Carr et al. (2020)
and Castela Forte et al. (2021), among others, and
provides the basis for our proposed approach.

With the advent of EHRs and increasing availabil-
ity of longitudinal patient data, unsupervised meth-
ods have also been used for phenotyping of sequential
medical data. Proposed models include generalisa-
tions of classical methods (see for example Mullin
et al. (2021)) as well as deep learning-based algo-
rithms to longitudinal data. In the latter case, re-
current autoencoders (Zhang et al., 2018; de Jong
et al., 2019) or convolutions (Zhu et al., 2016) have
been used to embed the time series.

When evaluating the groups identified during clus-
tering via the above methods, patients are often com-
pared based on the risk of experiencing clinically rel-
evant outcomes. For example, Castela Forte et al.
(2021) show that among intensive care patients, clus-
ter membership was associated with risk of death.
The analysis is entirely post-hoc, however, and differ-
ences in risk did not directly influence the earlier clus-
ter assignments. Recent works have aimed to incor-
porate information of outcomes into the discovery of
clusters. Zhang et al. (2019) used a recurrent neural
network (RNN) to predict markers of progression in
Parkinson’s disease and then employed dynamic time
warping (Berndt and Clifford, 1994) and t-distributed
Stochastic Neighbor Embedding (t-SNE) (van der
Maaten and Hinton, 2008) to cluster patients based
on the hidden states of the RNN. Lee and van der
Schaar (2020) proposed an actor-critic approach for
temporal predictive clustering (AC-TPC) in which
an RNN-based encoder/predictor network is trained
jointly with the cluster embeddings. This was ex-
tended in Lee et al. (2020) to incorporate time-to-
event outcomes via a novel loss function based on a
Weibull-shaped parametric hazard.

In our work, we have adapted a RNN autoencoder
through the addition of a clustering loss (Xie et al.,
2016) and an outcome loss (Bello et al., 2019) and
propose flexible balancing of these losses, thereby al-
lowing researchers to control the degree to which clin-
ical outcomes should drive the clustering. This dif-
fers from Zhang et al. (2019); Lee and van der Schaar
(2020); Lee et al. (2020) who focus on outcomes with-
out retaining trajectory information in the clusters.
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3. Methods

This section describes the methods and models used
to obtain patient representations from patient trajec-
tories and the clustering methods applied.

Let D = {X,V}_, define the patient data, where
X is a set of covariate vectors, ) is a set of clini-
cal outcomes, and N is the total number of patients
included in the data. D may describe each patient
n’s observations at a single point of time {x" Y "1 or
longitudinally over a period of time {x}, y/*}7" . Sim-
ilarly, ) may contain continuous outcomes y" € R,
binary outcomes y" € {0,1}, or time-to-event out-
comes y" = {s™, "} with s™ € RT being the patient’s
follow-up time and ¢ € {0, 1} being an indicator of
whether the patient experienced the outcome of in-
terest (1) or was censored (0). Going forward and
without loss of generality, we omit the time subscript
t for simplicity and assume time-to-event data.

Following Xie et al. (2016), we aim to cluster X into
K clusters, each of which is represented by a centroid
vector A\, for k = 1,..., K. In order to deal with the
challenges posed by high dimensionality frequently
observed in EHR data, clustering is not performed
in the input space but in a latent embedding space
created by a learned, non-linear function fy : X — Z.

We combined three losses with corresponding
weights to give the overall loss function,

L =w.L, +wyLy +wcLe, (1)

where L, represents a reconstruction loss, L, an out-
come loss, and L. a clustering loss (Figure 1). w,
represents the weight for each loss. The network ar-
chitecture and losses are described in detail in the
following sections.

3.1. Patient Embedding

In our proposed method, we first train an autoen-
coder network and obtain a fixed-size latent embed-
ding vector z" for each patient n in D (Hinton and
Salakhutdinov, 2006). In it’s simplest form, the au-
toencoder consists of a fully-connected encoder net-
work fo : RP — R?" and a fully-connected decoder
network g : RP " 3 RP , where D is the dimension of
the input space and D’ is the dimension of the latent
space, with D’ < D. The autoencoder is trained in
an unsupervised manner to maximise the information
about x retained in z = fp(x) (Vincent et al., 2010).
This is achieved by minimising a reconstruction loss
L.(x,x'), where x' = gy:(z) is reconstructed from the

Clustering
Loss

Figure 1: Schematic diagram of proposed method
consisting of an autoencoder network (en-
coder and decoder), a predictor layer, and
a cluster assignment layer.

latent embedding. In the case of mixed continuous
and binary input, L, can be defined as

Lr(x7 X/) = Leont + Wy * Liin

N
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(2)
(3)
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Lbin = {szn lOg X bzn)

— (1= xji,) log(1 = x50} (4)

where Equation 3 is the mean squared error of all con-
tinuous inputs X.on¢, Equation 4 is the binary cross
entropy of all binary inputs xp;,, and w is a weight
to balance the relative contributions of each loss.

3.1.1. ALTERNATIVE AUTOENCODERS

The above autoencoder can be extended to sequential
patient data A} by replacing the fully-connected en-
coder and decoder networks with a RNN. The term
RNN may in this case represent any recurrent net-
work architecture such as long short-term memory
(Hochreiter and Schmidhuber, 1997) or gated recur-
rent unit (GRU) (Cho et al., 2014). The RNN re-
ceives time windows x} and transforms them into a
single fixed-sized embedding vector z™ per patient.
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Additionally, the simple autoencoder described
earlier may be replaced by any number of alternative
architectures. For example, we found it beneficial
in our experiments to use a variational autoencoder
(VAE) instead (Kingma and Welling, 2014). In this
case, the network learns a probabilistic rather than
deterministic patient embedding (commonly param-
eterised as the means p and variances o2 of a D’
dimensional multivariate Gaussian distribution with
diagonal covariance structure) which in our experi-
ments lead to a smoother, more continuous embed-
ding space. Using a VAE and changes L, to

1 N
o= D loanlo )

D/
1
LS (1 toglod) — i - o)
d’'=1

Equation 2 may be seen as a special weighted case of
log pe(x|z) where all input dimensions are modelled
as independently Gaussian (with fixed unit variance)
or Bernoulli.

3.1.2. PRE-TRAINING OF THE AUTOENCODER

As cohorts of interest often consist of much smaller
numbers of patients than the total available (e.g.,
only patients with incident of diabetes), a pre-
training step is applied to learn patient embeddings
from all available data. This aims to learn a bet-
ter representation between the wide range of diag-
noses, procedures, medications, and laboratory mea-
surements through time before updating the learned
patient embeddings on just the cohort of interest.

3.2. Patient Outcomes

During pre-training, the autoencoder learns a lower-
dimensional representation z™ in an unsupervised
manner. We propose to include a shallow fully-
connected layer h, that relates z" to the risk of ex-
periencing the outcome y”, estimating a scalar risk
score " = hy(z™).

The outcome is then included during training via
the additional loss function L,. Depending on the
nature of the prediction task, L, may be chosen as
the mean squared error (regression) or binary cross-
entropy (classification). For the case of right-censored
time-to-event outcomes, we propose to use a loss

based on the partial likelihood of the Cox propor-
tional hazards model (Bello et al., 2019), which is
defined as

r™ —log Z exp(rj)

JER(s™)

1 N
n=1

where ¢ describes whether an outcome was observed
for the patient (¢ = 1) or if the patient was cen-
sored (¢™ = 0) and R(s™) represents the set of pa-
tients still at risk after time s™, i.e., R(s") ={i | i €
{1,...,N},s* > s"}.

3.3. Patient Clustering

Once a patient embedding has been learned (with or
without considering the outcome), standard cluster-
ing methods may be applied (see for example Zhang
et al. (2019)). Alternatively, cluster assignments may
be learned simultaneously with the patient embed-
dings, which allows them to influence the learned em-
beddings via back propagation and optimise them for
clustering. Following Xie et al. (2016), we introduce
a clustering layer that learns the position of K clus-
ter centroids A, € RP". The probability ¢;' of patient
embedding z"™ belonging to cluster k£ can then be cal-
culated via an appropriate kernel, e.g., the density of
a Student’s t distribution:

P ¢ e
n—
S (L[| = Aw[2) =2

Cluster assignments are then iteratively refined Xie
et al. (2016). Since true cluster labels are unknown,
we instead use self-training via an auxilliary target
distribution pj that emphasise each patient’s high
confidence clusters

(7)

S (g2 i

where fi = Zgzl gy is used to normalise cluster fre-
quencies (Xie et al., 2016). By penalising large differ-
ences between ¢ and p}, the network is incentivized
to pull patient embeddings towards a single (closest)
centroid. The corresponding clustering loss L. is de-
fined as

(8)

P =
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where KL(P || @) indicates the Kullback-Leibler
(KL) divergence between distributions P and Q. See
Xie et al. (2016) for a more detailed discussion.

3.4. Evaluation Metrics
3.4.1. CLUSTER SIMILARITY

The adjusted Rand index (ARI) is used to measure
the similarity between two sets of data clusters. The
Rand index is defined as,

RI —E(RI) a+b
maz(RD) —B(RD) e BI= o)
(10)
and E(RI) is the expected RI of random assignments
for two sets of clusters C' and K, where a represents
the number of pairs of elements in the same cluster
in C and K, and b represents the number of pairs of
elements in different clusters in C' and K.

ARI =

3.4.2. KM CURVES AND LoG RANK TEST

Kaplan-Meier (KM) curves are used to evaluate the
time-to-event within each of the discovered clusters
(Kaplan and Meier, 1958). It measures the fraction
of patients who have not experienced the event of
interest by a specified time. We used log rank tests to
formally compare clusters for differences in outcome
risk (Harrington and Fleming, 1982). Larger values
of the test statistic therefore indicate more separated
curves. Note, however, that the test statistic may be
driven by a large difference of only a single cluster
and therefore needn’t indicating separation between
all clusters.

4. Data

We evaluated our model on two datasets: a syn-
thetic EHR dataset with known clusters and a real
world EHR dataset of diabetes patients from which
the model is used to derive clinical insights.

4.1. Synthetic Data

We demonstrate the idealised behaviour of our pro-
posed model within synthetic data with a known data
structure. We simulated three types of clusters: un-
supervised clusters, outcome clusters, and combined
clusters. Unsupervised clusters, share similarities in
the input space but were not associated with the out-
come. These clusters are susceptible to data bias

(e.g., similarities in patient trajectories due to local
hospital guidance) and therefore might be of less sci-
entific interest. Outcome clusters share the same risk
of developing the event of interest but have no asso-
ciated feature combinations. Combined clusters, on
the other hand, represent groups of patients which
share feature combinations in the input space that
are associated with a higher or lower risk of devel-
oping the event of interest (e.g., a combination of
factors that increase the risk of death). We hypoth-
esise that these clusters are more clinically relevant
and and their identification is the goal of this study.

The synthetic dataset is generated for P = 60,000
patients with the details of synthetic data generation
shown in Appendix A.

4.2. Real World Data

Data was collected by the Oxford University Hos-
pitals NHS Foundation Trust between August 2014
and March 2020 as part of routine care. The lon-
gitudinal secondary care EHR includes demographic
information (i.e. sex, age), admission information
(start/end dates, discharge method/destination, ad-
mission types - e.g. in-patient, outpatient, emer-
gency department), ICD-10 coded diagnoses, OPCS-
4 coded procedures, medications as British National
Formulary (BNF) codes (prescribed both during vis-
its and take-home), and laboratory measurements
(e.g. blood and urine tests). Diagnosis codes could
either appear in the data as a primary (indicating
the primary reason for the hospital admission) or
secondary diagnosis (further present comorbidities).
While the majority of these are binary or categorical
features, laboratory values are continuous.

Data from 493,470 patients was available for pre-
train the RNN autoencoder for the initial patient
trajectory embedding. Sequential data is created for
all patients by grouping features in to time windows
or bins. Note, even though time was not explicitly
treated as a covariate, windows with no data were
not removed from the sequence such that model can
estimate the time difference between irregular sam-
pled observations. FEach trajectory of a patient n
was divided into non overlapping time windows z}
of 90 days, with ¢ being the time index. As the data
spanned more than five years, this resulted in up to
tmaz = 22 windows per patient. Whereby features
with a occurrence of < 1% were removed.

Features were extracted per time window if data
was present. The binary features (primary and sec-
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ondary diagnosis, procedures and medication codes)
were included using multi-hot encoding. Laboratory
values within a time window z; were encoded using
6 features: min, max, mean, median absolute devia-
tion (MAD) as well as the last value within the time
window and number of occurrences per time window.
The laboratory values were normalised using rank
normalization (Qiu et al., 2013), where values for a
given laboratory measurement were ranked accord-
ing to all values in the cohort and then the ranks
were normalized to the range [0, 1]. Missing binary
features within a window are filled with zeros, miss-
ing continuous features are filled with —0.1, a value
outside of the possible range of the normalised values.
Time windows with no data were filled with an empty
vector consisting in zeros for the binary features, and
—0.1 for the continuous features. To reduce the im-
pact of missing data points or empty time windows,
these values were masked in the reconstruction loss
while training the VAE.

After filtering, the total number of different fea-
tures can be broken down into this feature type cat-
egories: 286 primary diagnosis codes, 351 secondary
diagnosis codes, 175 procedure codes, 122 medication
types and 55 laboratory values. A summary of the
full cohort feature types and average lengths of tra-
jectories are shown in Table 1.

4.2.1. DIABETES COHORT

A cohort of 29,299 diabetes patients were selected
from the full cohort to test the model on a specific
cohort. Patients were included in the cohort if they
had at least one primary or secondary diagnoses of
diabetes, their first diagnosis of diabetes is used as
an index date. Unlike the full cohort, where the tra-
jectories are unaligned. The diabetes patient trajec-
tories are aligned at the window containing the index
event, ensuring all patients have the same number of
windows (including empty windows) and the index
event occurs in the same window in each patient. We
investigate as a clinical outcome the risk of future
cardiovascular events, of which diabetes is a risk fac-
tor. Time-to-event labels were defined as the time
from index date of first diabetes diagnosis to the first
occurrence of stroke, myocardial infarction, or other
bleeding event. A summary of the average number of
feature types and windows with data for the diabetes
cohort is shown in Table 1, with a detailed feature
summary in the Appendix E.

‘ Diabetes Cohort ‘ Full Cohort
# of patients \ 29,229 \ 493,470

Data Windows # 272,390 2,543,106
Data Windows Avg. per Patient 9.3 5.2

Primary ICD-10 # Unique 286 286
Primary ICD-10 Avg. per Window 0.29 0.17
Primary ICD-10 Frac. of Windows 0.23 0.14
Secondary ICD-10 # Unique 351 351
Secondary ICD-10 Avg. per Window 1.9 0.8
Secondary ICD-10 Frac. of Windows 0.28 0.19
OPCS-4 # Unique 175 175
OPCS-4 Avg. per Window 0.82 0.57
OPCS-4 Frac. of Windows 0.30 0.24
Medications # Unique 122 122
Medications Avg. per Window 3.0 1.6
Medications Frac. of Windows 0.24 0.21
Lab Measurements # Unique 55 55
Lab Measurements Avg. per Window 16.1 13.9
Lab Measurements Frac. of Windows 0.89 0.85

Table 1: Statistical description of the cohorts and
trajectories used. # refers to the number
of patients or unique features of the differ-
ent data types present. The Avg. per Win-
dow, refers to the average number of fea-
tures from a given type present in a win-
dow with data. Frac. of Windows refers
to the fraction of windows with data that
contains at least one of the corresponding
feature type.

5. Results

5.1. Experiment Setup

The baseline methods include principal component
analysis (PCA) with k-means clustering as an unsu-
pervised baseline, which takes the first five principal
components then applies k-means clustering.

Random survival forests (RSFs) are used as a su-
pervised clustering baseline, to find clusters of pa-
tients who share similar time to events. A single tree
of depth four is trained on 75% of features, resulting
in 16 possible risk scores (one at each leaf node). This
is repeated ten times with random subsets of features,
resulting in each patient having ten risk scores. K-
means clustering is then applied to the risk scores to
obtain the final supervised clusters.

The initial RNN autoencoder model, trained on the
full cohort of 493,479 patients, was trained for 350
epochs with a batch size of 4,096 and a learning rate
of 2 x 1073 using gradient descent with an Adam
optimiser. A weight decay of 1 x 107% is used for
regularisation, and dropout used between the GRU
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layers (p = 0.1). The output dimension of the fully
connected encoder layers was 256, with the hidden
state of the GRU having dimensions of 256. The pro-
posed LPS-CO model, trained on the diabetes cohort
of 29,299 patients, was trained for 25 epochs with a
batch size of 256 with the other parameters remain-
ing the same. Hyperparamters are selected to ensure
losses are converging, although no formal optimisa-
tion was applied. All models were built using Py-
Torch. The model architecture is described in more
detail in Appendix B.

Three versions of the proposed LPS-CO model are
used with different loss weights (Equation 1) for re-
construction loss, w;,, and outcome loss, w,: no out-
come loss (w, = 0.5, w, = 0), no reconstruction loss
(wr = 0, wy = 1), and both reconstruction and out-
come loss (w, = 0.05, w, = 1), these weights are
chosen to ensure the losses are of similar magnitudes
when combined, they have not been optimised and
are left to the user depending on model requirements.
In all models the KL divergence loss weight, wy;, is
set to 1 x 107® and the clustering loss weight is set
to 0.25.

5.2. Synthetic Data Results

To validate the proposed model and evaluate the
combination of reconstruction and outcome loss, the
model was applied to the synthetic dataset. The
three versions of the LPS-CO model with different
loss weights were trained on the synthetic data. In
addition to the proposed model, PCA k-means was
trained as a baseline unsupervised clustering model,
a random survival forest was trained as a baseline su-
pervised clustering model, and an AC-TCP model
proposed by Lee and van der Schaar (2020) was
trained as a state-of-the-art comparison. All mod-
els were trained two times, once to find three clusters
and once to find six clusters.

Table 2 shows the ARI scores comparing the dis-
covered clusters of each models to the true labels of
the unsupervised, outcome, and combined clusters of
the synthetic data. PCA k-means and LPS-CO with
no outcome loss were able to perfectly find the unsu-
pervised clusters when k£ = 3 (ARI = 1), and could
not find the outcomes clusters for k = 3 or combined
clusters for £ = 6 well. The random survival forest,
AC-TCP, and LPS-CO with no reconstruction loss
accurately found the outcomes clusters for k£ = 3.
The discovered clusters for & = 6 shared some sim-

ilarities with the true combined clusters with ARI
scores of 0.50, 0.50, and 0.49 respectively.

The LPS-CO using combined reconstruction loss
and outcome loss obtained the highest ARI score for
the combined clusters for K = 6. The ARI score of
0.78 was higher than that of both the reconstruction
clusters (0.02) and the outcomes clusters (0.69) indi-
cating the model is able to ignore the large data bi-
ases in the data whilst focusing on the less prominent
patterns in the input space associated with different
outcomes.

k=3 k=6
Unsup. Outcome Combined | Unsup. Outcome Combined

PCA k-means 1.00 0.00 0.00 0.69 0.08 0.13
RSF 0.00 0.96 0.55 0.02 0.71 0.50
AC-TCP 0.00 1.00 0.57 0.02 0.84 0.50
LPS-CO

(wy = 0.5, wy = 0) 1.00 0.00 0.00 0.76 0.04 0.10
LPS-CO

(wr =0, wy =1) 0.00 1.00 0.57 0.00 0.77 0.49
LPS-CO

(wy = 0.05, wy, =1) 0.00 1.00 0.57 0.02 0.69 0.78

Table 2: Adjusted Rand index scores for baseline and
proposed LPS-CO models on synthetic lab-
oratory measure data with known unsuper-
vised, outcome, and combined clusters.

5.3. Diabetes Dataset Results

The model is also validated on real world data with
the cohort of diabetes patients and using the time to
first cardiac event as the outcome. An initial patient
embedding is trained on the full dataset of 493,470
patients using only the reconstruction loss before fur-
ther training of the proposed clustering model on the
diabetes cohort. Three versions of the model were
trained on the diabetes cohort: without outcome loss,
without reconstruction loss, and with combined re-
construction and outcome loss. The models were
trained multiple times to find clusters from k& = 2
to k = 7 resulting in 18 different scenarios. Models
were trained five times on 80% of the data within
each scenario and the results averaged to determine
the robustness of the models.

Training without outcome loss, the models have
no information about the time to cardiac event out-
come, thus the clusters can only be driven by the
patient trajectories up to the event of first diabetes
diagnosis. Similarly, training without reconstruction
loss, the models try and cluster patients who have
differing outcomes and not similar trajectories. As
we want to find patients who share similar trajecto-
ries and have different outcomes, ideally the model
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Clusters Recon.-Combined Outcome-Combined Recon.-Outcome
2 0.07 £0.08 0.18 £0.11 0.06 + 0.09
3 0.31 £0.22 0.30 £0.23 0.134+0.16
4 0.10 £ 0.02 0.21 £0.11 0.07 +0.05
5 0.15 +0.02 0.22+0.13 0.07 +0.03
6 0.14 +0.07 0.24 +0.16 0.09 +0.05
7 0.14 £ 0.05 0.27 £0.07 0.07 +0.02

Table 3: Adjusted Rand index scores between pairs
of LPS-CO clusters from different loss
weights, showing similarities between the
discovered clusters for each k.

with combined losses shares information with both
the clusters driven by the trajectories and the clus-
ters driven by outcomes.

Table 3 shows the mean and standard deviation
of ARI scores comparing clusters found using recon-
struction loss with combined loss, outcome loss with
combined loss, and reconstruction loss with outcome
loss. The ARI scores between the reconstruction
and outcome loss clusters are low (a maximum of
0.13 £ 0.16 for k£ = 3), indicating little similarity be-
tween the discovered clusters. This is as expected
due to the differing focuses on trajectories and out-
comes. The ARI scores between the combined clus-
ters and both the reconstruction and outcome clus-
ters are higher in all cases, showing the combined
loss model is learning from both trajectories and out-
comes. The ARI scores between combined loss clus-
ters and outcome loss clusters are generally higher
than the scores between combined loss clusters and
reconstruction loss clusters, suggesting the combined
losses focus more on the outcomes.

LPS-CO LPS-CO LPS-CO
Clusters  (w, =0.5, w, =0) (w, =0, w,=1) (w, =0.05, w, =1)
2 345+ 171 950 & 793 825 + 514
3 766 £ 112 7483 £ 2691 5366 £ 2520
4 1169 + 217 7779 £4773 4029 £ 4732
5 1900 + 343 6637 £ 3846 2657 £+ 884
6 1190 &£ 151 5958 £ 2129 7527 £ 3036
7 1961 + 447 10770 + 2367 8575 £ 1955

Table 4: Log rank test statistic between reconstruc-
tion (w, = 0.5, w, = 0), outcome (w, = 0,
w, = 1), and combined (w, = 0.05, w, =
1) loss clusters, showing separation of out-
comes between the discovered clusters for
each k.

Figure 2 (a) and (c) show the KM curves for the
clusters found using the reconstruction loss only, com-
bined loss, and outcome loss only models for k£ = 3.

The curves estimate the time to first cardiac event
for the patients in each cluster. We see that for re-
construction loss only in Figure 2 (a) the curves are
less separable, with the curves for the outcome loss
only in Figure 2 (c¢) most separable. Using combined
losses in Figure 2 the separation of the KM curves
are between the two other models. This is quantified
in Table 4 where the mean and standard deviation of
the multivariate log rank test statistic can be seen for
k =2 to k = 7 for each model. In all cases, the test
statistic is highest for the outcome loss only model,
indicating the highly differing KM curves, and low-
est for the reconstruction loss only, indicating similar
KM curves in each cluster. Again, the combined loss
model is intermediate, showing it is combining both
outcome and trajectory information.

Clusters Comb. 1 Comb. 2 Comb. 3 Comb. 4 Comb. 5
Recon. 1 0.04 0.29 0.40 0.15 0.12
Recon. 2 0.01 0.13 0.42 0.10 0.34
Recon. 3 0.39 0.01 0.02 0.56 0.02
Outcome 1 0.01 0.15 0.32 0.40 0.13
Outcome 2 0.37 0.03 0.21 0.27 0.12
Outcome 3 0.00 0.43 0.07 0.10 0.40

Table 5: The fraction of patients from each cluster
of the combined loss model (k=5) in each
cluster of the reconstruction loss only and
outcome loss only models (k=3).

We also investigate how patients in clusters found
from trajectories (reconstruction loss only) and out-
comes (outcome loss only) for small numbers of clus-
ters (k = 3) split and are distributed through higher
number of clusters (k = 5) using a combined loss
model. Table 5 shows the distributions of patients
from each of the clusters for £ = 3 within the clusters
for the combined loss model using k = 5.

Two cases on how clusters of patients are split go-
ing from k£ = 3 to k = 5 are highlighted. Patients in
cluster 2 using reconstruction loss only k£ = 3, are pri-
marily assigned to clusters 3 (42%) and 5 (54%) from
the combined loss model (k = 5). From Figure 2 (b)
we can see clusters 3 and 5 have different outcomes,
yet we know the patients share similar trajectories
as they are assigned to the same clusters in the re-
construction only model (k = 3). This indicates the
combined loss model is able to find clusters of patients
with similar trajectories, but different outcomes.

For the second case, patients in cluster 2 of the out-
come loss only model (k = 3) are mainly distributed
between clusters 1 (37%), 3 (21%), and 4 (27%) of the

227



LONGITUDINAL PATIENT STRATIFICATION WITH CLINICAL OUTCOMES

o
IS

—— Cluster 1: 672/7040
Cluster 2: 438/9515
—— Cluster 3: 294/12674

e

©
w

o
N

o
=

o
o

Proportion of sample with first CEP

—— Cluster 1: 188/5316

Cluster 2: 470/3403
—— Cluster 3: 169/7099
—— Cluster 4: 130/9084
—— Cluster 5: 447/4327

7

— Cluster 1: 231/12533
Cluster 2: 438/14204
—— Cluster 3: 735/2492

0 500 1000

Days

(a)

1500 0 500

1000
Days

(b)

1500 0 500 1000

Days

(c)

1500

Figure 2: Kaplan-Meier curves for (a) Reconstruction loss clusters (k = 3, w, = 0.5, w, = 0), (b) combined
loss clusters (k = 5, w, = 0.05, w, = 1), and (c¢) Outcome loss clusters (k = 3, w, =0, w, = 1).
For the values (X/Y), X shows the number of patients in the cluster who have a cardiac outcome,
and Y shows the total patients in the cluster. Arrows indicate examples of how patients in clusters
from the reconstruction loss and outcome loss move to new clusters in the combined loss model.

combined loss model (k = 5). From Figure 2 (b), we
see clusters 1, 3, and 4 share similar outcomes (as in
cluster 2 in Figure 2 (¢)), therefore must have differ-
ing trajectories to be separate clusters. This further
indicates that the combined loss model separates pa-
tients both on trajectory and outcome.

6. Discussion

We have developed a novel RNN autoencoder model
to cluster patient trajectories from EHR data using
a combination of losses. We combine the more stan-
dard reconstruction loss with a time-to-event loss to
discover clusters of patients with both different tra-
jectories and outcomes and evaluated it on a synthetic
and real world dataset.

Our evaluation using synthetic data showed that
our approach was able to find clusters based on the
trajectories and outcomes (Table 2) by adjusting the
weight parameters w, and w, of the loss functions.
However, one limitation is that it is unclear how these
weights should be determined when working with real
EHR data with unknown underlying clusters.

Future work needs to investigate how these param-
eters can be optimised for a specific application. For
instance, our approach can be used to identify pa-
tient cohorts which are more suited for a clinical trial
(e.g. having a higher likelihood of a clinical outcome
which can reduce the trial duration). In such a sce-
nario, further criteria such as number of features to
define a cluster (number of inclusion/exclusion crite-
ria) and clinical interpretability could be included.

Another challenge is that time is not directly con-
sidered in the model. The temporal resolution of
our approach was 90 days (size of a single time win-
dow). The optimal temporal granularity depends on
the specific clinical question and will influence the
cluster outcome. Approaches such as Baytas et al.
(2017) which integrate time directly should be inves-
tigated further.
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Appendix A. Generating Synthetic
Data

When generating the synthetic clusters, we chose the
variance of unsupervised clusters such that it was
larger than that of combined clusters. This ensured
that they were favoured by purely unsupervised clus-
tering methods (e.g., PCA k-means or DEC), whereas
semi and supervised methods (e.g., RSF, AC-TCP)
are expected to find the simulated outcome clusters.
However, the latter disregard different patient tra-
jectories in the input space that lead to similar out-
comes. In order to show that — depending on the
weighting of the loss functions — our proposed model
can also recover the specific trajectories that lead to
outcomes, we further split the outcome clusters into
subgroups that shared the same outcome distribution
but a different covariate distribution.

The synthetic data is generated with the following
steps:

e The number of noise clusters, K,oise = 3,
is specified along with the number of syn-
thetic features which contribute to these clus-
ters, Npoise = 200. Features are sampled from
isotropic Gaussian distributions with standard
deviation Csy = 3 and with cluster centroids
generated at random within a bounding box,
(centremin = —10, centre, g, = —10). The gen-
erated features are continuous and represent syn-
thetic laboratory measures. In order to gen-
erate synthetic binary features (eg. diagno-
sis codes), synthetic continuous features can be
passed through a min max scaler and rounded to
ZEero or one.

e The number of outcome clusters, Koytcome = 3,
is specified along with minimum and maximum
time to events (TTEnin = 10, TTE 4w =
10,000). The time to events are generated by
sampling from exponential distributions with the
scale of the distribution for each cluster one
of the values log-spaced between TTFE,,;, and
TTE qa: with Koutcome steps. Censoring of
events is sampled randomly from a uniform dis-
tribution (p = 0.5), with all time to events over
a maximum threshold (2,000) set to this max
value and censored.

e The number of combined clusters, K .ompined =
6, is set to twice the value of Koutcome and
the number of synthetic features which corre-
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Figure 3: Principal component plots of the data bias and combined features and the Kaplan-Meier curves

of the three known cluster groups.

late with outcomes, Nyyicome = 200, is speci-
fied. Each outcome cluster is randomly split in
half to create the combined cluster labels. Fea-
tures corresponding to the combined clusters are
generated using the same method as the fea-
ture bias cluster, with smaller distances between
the cluster centroids (Csq = 5, (centrem, =
—5, centrémas = —5).

Figure 3 shows the different synthetic clusters and
outcomes (as Kaplan-Meier curves). Figure 3(a)
shows the first two principal components of PCA ap-
plied to the noise features, with the colours repre-
senting the known cluster labels. Figures 3(b) and
3(c) show the first two principal components of PCA
applied to the clinical features, with the colours repre-
senting the known outcome cluster labels and clinical
cluster labels respectively. Figures 3(d), 3(e), and
3(f) show the Kaplan-Meier curves for the outcomes
of the known noise clusters, outcome clusters, and
clinical clusters respectively.

Appendix B. Experiment architecture

Figure 4 shows a schematic diagram of the RNN au-
toencoder used to create the patient trajectory em-
bedding in (a), using a reconstruction loss and KL
divergence loss for a variational RNN autoencoder.
Section (b) shows the addition clustering loss and
outcome loss incorporated into the LPS-CO model
to find clusters of patients who have differences in
both trajectories and outcomes.

Our proposed model, a variational RNN autoen-
coder, is illustrated in Figure 4 (a). The encoder
consists of a feature embedding layer which trans-
forms the features of time window x; into a 256 fixed-
sized embedded vector using two fully connected layer
with ReLU activation function. Each time window is
then passed into a two layer bidirectional GRU us-
ing a dropout of 0.1 between the layers. The last
hidden layer output has a dimension of 256x4 ten-
sor (two directions times two layers). This tensor is
aggregated into a 256 vector using a fully connected
layer with a ReLU activation function. The aggre-
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Figure 4: Schematic diagram of the RNN autoencoder. (a) shows the standard RNN autoencoder to obtain
patient embeddings from trajectories. (b) shows the addition layers and loss functions to update
the embedding and obtain cluster assignments.

gated vector is then feed to two separated fully con-
nect layers producing two 256 vectors, representing
the means and the log variances of the normal dis-
tributions from which the patient embedding, 7, is
sampled using the re-parameterization trick Kingma
and Welling (2014).

The decoder aims to predict the trajectory se-
quence in reverse order and uses teacher forcing dur-
ing training. Therefore, the Z vector is feed as the
initial hidden state of the decoder. Each time window
from the input x; + 1 is feed into the same two layer
fully connected layer and transformed into a 256 vec-
tor. Each window is then passed to a unidirectional

Appendix C. Baseline Methods:
Diabetes Dataset

Table 6 shows the test statistics of the log rank test
between the KM curves from the clusters obtained
from the baseline methods (PCA k-means and Ran-
dom Survival Forests). The Kaplan-Meier curves us-
ing the baseline methods for ¥ = 3 and k = 5 are
shown in Figure 5, which correspond to the results
shown in Figure 2 which use LPS-CO.

GRU layer followed by two fully connected layers with
ReLU activation that reconstruct the previous time

window x.

Clusters PCA k-means RSF

2 870 £ 3 1290 £ 52
3 1205 £ 4 1553 £ 77
4 1358 + 2 1564 + 67
5 1357+ 1 1608 £ 52
6 1415+ 5 1544 + 35
7 1431 + 2 1578 + 27

Table 6: Log rank test statistic between reconstruc-
tion PCA k-means and RSF clusters, show-
ing separation of outcomes between the dis-
covered clusters for each k.
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Figure 5: Kaplan-Meier curves for the clusters of the baseline unsupervised and supervised methods.

Appendix D. Additional Cluster
Comparison Metrics

Additional clustering metrics can be used to compare
the similarity of the clusters discovered using a purely
unsupervised, supervised, or combined loss version of
LPS-CO. Table 7 shows the normalised mutual infor-
mation scores between the models for different num-
bers of clusters, showing the same trend as Table 3.

Clusters Recon.-Combined Outcome-Combined — Recon.-Outcome
2 0.05 £ 0.06 0.16 £0.09 0.06 £+ 0.09
3 0.26 £0.18 0.29 £0.17 0.11+£0.13
4 0.12 +0.02 0.24 +0.09 0.08 £0.05
5 0.21 £0.03 0.26 £0.10 0.10 £ 0.05
6 0.18 £0.08 0.29 £0.12 0.13 +0.06
7 0.20 £+ 0.05 0.35 £ 0.07 0.11 +£0.02

Table 7: Normalised mutual information scores be-
tween pairs of LPS-CO clusters from dif-
ferent loss weights, showing similarities be-
tween the discovered clusters for each k.

Appendix E. Data Summary

Table 8 shows a summary of demographic informa-
tion for the diabetes cohort, including the distribu-
tions of gender, ethnicity, and age across the 29, 229
patients.

Table 9 shows the distribution (10th, 50th, 90th
percentiles) of the most commonly occurring labora-
tory values for the diabetes cohort patients. The ta-
ble is ordered by the total number of patients who
have at least one measurement of the laboratory
measure across their trajectory (summarised by the
Counts per Patient column).

Tables 10 and 11 summarise the most occurring 20
primary and secondary diagnoses codes respectively.
The tables are ordered by the total number of pa-
tients in the diabetes cohort who have at least one
recorded diagnosis of the code across their trajec-
tory. Similarly, Table 12 shows the most occurring
procedure codes appearing in the diabetes cohort pa-
tients, and Table 13 shows to most occurring medi-
cation codes.
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LONGITUDINAL PATIENT STRATIFICATION WITH CLINICAL OUTCOMES

Gender
Male Female Unknown
16,824 12,403 2
Ethnicity
White British  Not Stated Other
20,271 5,256 3,702
Age
10th 50th 90th
46.84 69.04 84.82

Table 8: Summary of demographic information of the
diabetes cohort. Counts of gender, ethnic-
ity, and percentiles of age are shown.
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LONGITUDINAL PATIENT STRATIFICATION WITH CLINICAL OUTCOMES

Counts per Patient Percentile
Laboratory Measurement Name (Total=29,229) 10th 50th 90th
Blood Creatinine (umol/1) 26,769 54.00 78.00 142.00
Blood Sodium (mmol/1) 26,746 134.50 138.75 141.75
Blood Potassium (mmol/1) 26,740 3.70 4.10 4.70
Blood Estimated Glomerular Filtration Rate eGFR (ml/min/1.73m2) 26,669 38.00 78.00  90.00
Blood White Blood Cells WBC (10e9/1) 26,196 5.62 8.10 11.81
Blood Haemoglobin (g/dl) 26,195 10.28  13.00  15.20
Blood Mean Corpuscular Haemoglobin Concentration MCHC (g/1) 26,193 311.00 327.00 342.00
Blood Mean Corpuscular Volume MCV (fl) 26,193 82.95 89.80  96.70
Blood Mean Corpuscular Haemoglobin MCH (pg) 26,193 26.60  29.50  31.90
Blood Red Blood Cell RBC Count (10e12/1) 26,193 3.54 4.44 5.18
Blood Haematocrit HCT (1/1) 26,193 0.32 0.40 0.46
Blood Platelets (10e9/1) 26,188 170.00 251.00 361.00
Blood Albumin (g/1) 24,998 29.00  37.00  42.00
Alkaline Phosphatase ALP (iu/1) 24,956 57.00 88.50 187.50
Blood Bilirubin (umol/1) 24,880 500 9.00  17.00
Alanine Aminotransferase ALT (iu/1) 24,879 12.00  21.00  45.00
Blood Urea (mmol/1) 23,702 3.75 6.00 12.80
Blood Mean Platelet Volume MPV (fl) 22,331 9.50 10.60  12.00
Blood C Reactive Protein CRP (mg/1) 20,866 1.10 10.45  100.00
Blood HDL Cholesterol (mmol/1) 18,661 0.80 1.10 1.65
Blood Total Cholesterol (mmol/1) 18,661 3.10 4.15 5.75
Blood Cholesterol HDL Ratio (ratio) 18,656 2.50 3.65 5.50
Blood Glucose (mmol/1) 16,917 5.50 8.20 14.65
Thyroid Stimulating Hormone TSH (mu/1) 16,198 0.68 1.67 3.60
Blood International Normalised Ratio INR (ratio) 15,098 1.00 1.05 2.20
Urine Creatinine (mmol/24h) 14,716 3.41 7.45 14.70
Blood Triglycerides (mmol/1) 14,096 0.84 1.57 3.14
Urine Albumin (mg/1) 13,768 0.01 0.01 0.12
Blood LDL Cholesterol (mmol/1) 13,525 1.30 2.15 3.50
Urine Albumin Creatinine Ratio (mg/mmol) 11,557 0.60 2.00 20.90
Blood B12 (pg/ml) 9,146 202.25 354.00 751.00
Blood Ferritin (ug/1) 8,906 17.80  88.91 413.23
Blood Folate (ug/1) 8,044 3.20 6.40 14.30
Blood Iron (umol/1) 7,448 5.00 11.10  19.31
Blood Transferrin (g/1) 7,448 1.81 2.58 3.36
Blood Transferrin Saturation (Blood Troponin I (ng/1) 6,126 20.00  40.00 897.25
Blood Erythrocyte Sedimentation Rate ESR (mm/h) 4,538 2.00 14.00  53.00
Blood Vitamin D VitD (nmol/1) 3,554 18.00  41.00  79.07
Blood Gamma Glutamyl Transferase GGT (iu/1) 3,427 18.00  47.25  262.25
Blood Thyroxine T4 (pmol/1) 3,278 11.08 14.10  18.90

Table 9: Values of most frequent laboratories values. The counts correspond to the number of patients that
have at least one measurement along its trajectory. The percentiles presented correspond to the
distribution of the median values of each patient along its trajectory.
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LONGITUDINAL PATIENT STRATIFICATION WITH CLINICAL OUTCOMES

Counts per Patient

Primary Diagnoses (Total=29,229)
H26.9 Cataract, unspecified 1,595
125.1 Atherosclerotic heart disease 1,449
R07.4 Chest pain, unspecified 1,286
N39.0 Urinary tract infection, site not specified 712
K63.5 Polyp of colon 710
J18.9 Pneumonia, unspecified 573
N18.5 Chronic kidney disease, stage 5 558
J18.1 Lobar pneumonia, unspecified 554
D63.8 Anaemia in other chronic diseases classified elsewhere 505
D50.9 Iron deficiency anaemia, unspecified 450
J22 Unspecified acute lower respiratory infection 426
703.5 Observation for other suspected cardiovascular diseases 415
G47.3 Sleep apnoea 412
H25.1 Senile nuclear cataract 403
A09.9 Gastroenteritis and colitis of unspecified origin 383
H36.0 Diabetic retinopathy 382
N17.9 Acute renal failure, unspecified 367
121.4 Acute subendocardial myocardial infarction 359
R06.0 Dyspnoea 356
C44.3 Skin of other and unspecified parts of face 347

Table 10: Counts primary diagnosis codes which occur at least once in the trajectory of patients in the
diabetes cohort.

Counts per Patient
Secondary Diagnoses (Total=29,229)
E11.9 Non-insulin-dependent diabetes mellitus: Without complications 24,425
110 Essential (primary) hypertension 17,190
792.2 Personal history of long-term (current) use of other medicaments 6,969
125.9 Chronic ischaemic heart disease, unspecified 3,267
792.1 Personal history of long-term (current) use of anticoagulants 3,196
786.7 Personal history of diseases of the circulatory system 2,995
E78.0 Pure hypercholesterolaemia 2,980
125.1 Atherosclerotic heart disease 2,951
7.86.4 Personal history of psychoactive substance abuse 2,892
J45.9 Asthma, unspecified 2,887
F17.1 Harmful use 2,881
125.2 Old myocardial infarction 2,702
7.88.0 Personal history of allergy to penicillin 2,531
E10.9 Insulin-dependent diabetes mellitus: Without complications 2,008
148 Atrial fibrillation and flutter 1,930
F32.9 Depressive episode, unspecified 1,915
148.9 Atrial fibrillation and atrial flutter, unspecified 1,898
N17.9 Acute renal failure, unspecified 1,881
J44.9 Chronic obstructive pulmonary disease, unspecified 1,843
E03.9 Hypothyroidism, unspecified 1,826

Table 11: Counts secondary diagnosis codes which occur at least once in the trajectory of patients in the
diabetes cohort.
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Counts per Patient
Procedures (Total=29,229)
Y98.1 Radiology of one body area (or j 20 minutes) 5,471
794.2 Right sided operation 5,083
794.3 Left sided operation 4,860
Y53.4 Approach to organ under fluoroscopic control 3,421
U20.1 Transthoracic echocardiography 3,335
Y97.3 Radiology with post contrast 2,917
U21.2 Computed tomography NEC 2,853
U05.1 Computed tomography of head 2,776
794.1 Bilateral operation 2,106
G45.1 Fibreoptic endoscopic examination of upper gastrointestinal tract 1,985
792.6 Abdomen NEC 1,815
727.4 Duodenum 1,798
016.1 Pelvis NEC 1,788
C75.1 Insertion of prosthetic replacement for lens NEC 1,779
(C87.3 Tomography evaluation of retina 1,777
C71.2 Phacoemulsification of lens 1,766
Y98.2 Radiology of two body areas 1,620
Y53.2 Approach to organ under ultrasonic control 1,555
U10.6 Myocardial perfusion scan 1,353
728.6 Sigmoid colon 1,068
Table 12: Counts procedure codes which occur at least once in the trajectory of patients in the diabetes
cohort.
Counts per Patient

Medications (Total=29,229)

Analgesics (INP) 14,451

Anticoagulants And Protamine (INP) 12,385

Analgesics (TTA) 11,718

Antibacterial Drugs (INP) 11,686

Drugs Used In Diabetes (TTA) 11,558

Lipid-Regulating Drugs (TTA) 10,928

Drugs Used In Diabetes (INP) 10,708

Hypertension and Heart Failure (TTA) 9,938

Lipid-Regulating Drugs (INP) 8,666

Antisecretory Drugs+Mucosal Protectants (TTA) 8,563

Antisecretory Drugs+Mucosal Protectants (INP) 8,047

Hypertension and Heart Failure (INP) 7,610

Antiplatelet Drugs (T'TA) 7,022

Antibacterial Drugs (TTA) 6,791

Acute Diarrhoea (INP) 6,688

Antiplatelet Drugs (INP) 6,362

Acute Diarrhoea (TTA) 6,124

Drugs Used In Nausea And Vertigo (INP) 5,999

Beta-Adrenoceptor Blocking Drugs (TTA) 5,885

Diuretics (TTA) 5,586

Table 13: Counts medication codes which occur at least once in the trajectory of patients in the diabetes
cohort.
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