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Abstract

Colorectal cancer (CRC) is among the top
three most common cancers worldwide, and
around 30-50% of patients who have undergone
curative-intent surgery will eventually develop
recurrence. FEarly and accurate detection of
cancer recurrence is essential to improve the
health outcomes of patients. In our study, we
propose an explainable multi-view deep neural
network capable of extracting and integrating
features from heterogeneous healthcare records.
Our model takes in inputs from multiple views
and comprises: 1) two subnetworks adapted to
extract high quality features from time-series
and tabular data views, and 2) a network that
combines the two outputs and predicts CRC re-
currence. Our model achieves an AUROC score
of 0.95, and precision, sensitivity and specificity
scores of 0.84, 0.82 and 0.96 respectively, out-
performing all-known published results based
on the commonly-used CEA prognostic marker,
as well as that of most commercially available
diagnostic assays. We explain our model’s deci-
sion by highlighting important features within
both data views that contribute to the outcome,
using SHAP with a novel workaround that al-
leviates assumptions on feature independence.
Through our work, we hope to contribute to the
adoption of AI in healthcare by creating accu-
rate and interpretable models, leading to better
post-operative management of CRC patients.

Keywords: multi-view modelling, explainabil-
ity, prognostication, colorectal cancer

1. Introduction

Colorectal cancer (CRC) represents a major health
risk in modern society, and a key concern is the pos-
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sibility of cancer recurrence. Although surgery is po-
tentially curative, the risk of post-operative recur-
rence is high, with approximately 30-50% of patients
who undergo the procedure eventually developing re-
current disease (Young et al., 2014). Nonetheless,
an early diagnosis of recurrence is of significant clin-
ical interest, as depending on the extent of disease,
treatment could still be potentially curative, or at
least prolong survival and improve quality-of-life (Is-
rael and Kuten, 2007; Adam and Vinet, 2004). Car-
cinoembryonic antigen (CEA), a blood-based tumour
marker, has been recommended as a cost-effective
means for early recurrence detection (Locker et al.,
2006; Castells et al., 1998; Graham et al., 1998). How-
ever, several systematic studies have questioned its
prognostic value due to limited sensitivity and speci-
ficity, also its effect on reducing patient mortality re-
mains to be proven (Sgrensen et al., 2016; Shinkins
et al., 2017). Furthermore, improving the diagnostic
performance of CEA through measures such as in-
creasing follow-up duration and intensity, or supple-
menting with other monitoring procedures, adds on
to the healthcare burden and potentially increases
costs of care. As such, there is significant clinical
value in developing a more sensitive tool for accurate
detection of CRC recurrence.

While machine learning models have been applied
to the task (see Section 2.1), to the best of our knowl-
edge, there is little attempt to develop CRC prognos-
tication models that are both highly accurate and
explainable. In our study, we propose to use state-of-
the-art machine learning techniques to prognosticate
and explain potential factors contributing to CRC re-
currence. Our contributions are three-fold:

1. We utilise a multi-view deep neural network, Hy-
brid Transformer for Multi-view Data (HTMV), that
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uses known prognostic factors, including CEA mea-
surements, to predict and explain CRC recurrence.
Our model is capable of automatically extracting and
integrating features from heterogeneous healthcare
records. It performs significantly better than the
CEA marker alone and achieves a 51.7% increase in
AUROC over ColoPrint, one of the most commonly
used diagnostic assays in the market (see Section 2.1).
2. We generate Shapley additive explanations
(SHAP) for post-hoc explanation and visualizations
of factors that contribute to our model’s prediction.
To our knowledge, we are among the first to focus
on model explanation for the task of recurrence
prediction using multi-view networks.

3. Lastly, we also describe our approach towards alle-
viating SHAP’s feature independence assumption on
time-series datasets. We propose a workaround of the
feature independence assumption in two steps: 1) we
show how to automatically segment time-series into
approximately independent regions, and 2) we utilize
the partition masking utility within SHAP to impose
constraints on the permutation of features that are
highly correlated within each region.

2. Related Work

2.1. Prognostication models in CRC research

Work in this area have traditionally been based on
statistical approaches to identify reliable prognostic
factors, which could then be used to stratify patients
into risk groups for more tailored post-operative
surveillance. For example, the commercial assays
ColoPrint (Kopetz et al., 2015) and OncoDefender-
CRC (Lenehan et al., 2012) utilised a small panel
of genomic and clinicopathological variables for risk
prediction and stratification. We note that the re-
ported AUROC scores on a validation cohort were
rather modest (ColoPrint: 0.626, OncoDefender-
CRC: 0.55), as would be expected of models that
utilise a limited number of prognostic factors.
Machine learning (ML) has emerged as a popu-
lar alternative to traditional modelling, with several
studies leveraging on standard ML algorithms for the
prediction task (Ting et al., 2020; Achilonu et al.,
2021). Recent trends towards ever more complex
modelling have also encouraged the use of deep learn-
ing (DL) techniques, and many studies in this domain
used convolutional neural networks to extract mor-
phological features from histopathological images to
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predict survival and recurrence (Skrede et al., 2020;
Geessink et al., 2019; Jiang et al., 2020).

A significant issue associated with the use of DL
techniques is the lack of interpretability. Despite
its importance, studies that propose models that are
both interpretable and accurate are limited and pre-
liminary, for example Ho et al. (2021) described a
highly accurate but uninterpretable model for prog-
nosticating recurrence. In another example, Wul-
czyn et al. (2021) proposed an interpretable DL-based
prognostic model where feature importance scores
were obtained by fitting regression models on ex-
tracted morphological features. We note that in us-
ing regression models for explanation, there was an
assumption of feature independence and the existence
of a linear relationship between features and scores,
which is not necessarily true and may have affected
the accuracy of the explanation.

2.2. Multi-view modelling

Several studies have demonstrated benefits to con-
sidering data from multiple data sources, such as po-
tential improvements in performance and generalisa-
tion capabilities (Sun et al., 2019; Zhao et al., 2017).
Nonetheless, multi-view modelling is challenging as
decisions have to be made on how to best integrate
the data, thus work is this domain is rather limited.

The challenges of multi-view modelling has been
explored in some recent works, notably for static
datasets that do not encode the notion of time. For
example, Chaudhary et al. (2018) predicted survival
in liver cancer by integrating multi-omics datasets us-
ing an autoencoder. Our work differs from theirs in
that they do not consider the time dimension in the
data integration problem, while we use temporal data
as one of the data views. One of the closest works
to ours is that by Chowdhury et al. (2019), where
they created a multi-view attention-based architec-
ture capable of integrating electronic health records
data encompassing different views to learn a unified
patient representation. Our work is similar in that
we also utilise attention-based mechanisms to learn
feature representations, but unlike their work we also
explore how to imbue explainability into our model.

2.3. Explanations for multi-view modelling

The explainable AT literature is rife with methods to
explain any model architecture in different ways (Sel-
varaju et al., 2017; Sundararajan et al., 2017; Fukui
et al., 2019). However many of them are developed for



PROGNOSTICATING COLORECTAL CANCER RECURRENCE USING AN INTERPRETABLE DEEP MULTI-VIEW NETWORK

specific datasets and have certain architectural con-
straints. For example, Grad-CAM (Selvaraju et al.,
2017) is contingent on the convolutional layers in a
CNN. For multi-view modelling we seek an explana-
tion method that has less architectural constraints, as
different components of the network may utilise dif-
ferent data structures. Perhaps unsurprisingly, there
is limited ongoing work in explanations for complex
multi-view networks.

There are two lines of work that are closest to
our problem. The first is that of explanations for
time-series, as a significant component of our network
hinges on time-series modelling. Methods for time-
series-based explanations are limited, out of which
visualisation of attention weights is commonly used.
(Vinayavekhin et al., 2018; Xu et al., 2018). Nonethe-
less, there is research showing that weights derived
from attention do not provide meaningful explana-
tions (Jain and Wallace, 2019). In the second line
of work, model-agnostic methods such as SHAP and
LIME do not consider the model architecture and
represent possible solutions to our problem (Lund-
berg and Lee, 2017; Ribeiro et al., 2016). However
they assume feature independence, therefore employ-
ing these methods naively on time-series data can re-
sult in inaccurate explanations (Aas et al., 2021). In
our work, we propose a method to alleviate the fea-
ture independence assumption in SHAP, and outline
our approach in utilising SHAP to generate explana-
tions from multi-view networks.

3. Dataset and pre-processing

3.1. Study cohort

Our study was performed using medical data ob-
tained from a cohort of 882 patients diagnosed with
Stage 1-3 CRC, with no evidence of metastatic dis-
ease. All patients were referred to a local hospital
for post-operative follow-up, following surgical resec-
tion of the primary tumour. Informed consent was
obtained from all patients prior to study enrollment,
and institutional ethics approval was obtained for this
study.

3.2. Dataset description

The dataset consisted of the following information
collected for each patient: a) tabular data on 65 clin-
ical variables that are potentially prognostic for re-
currence, such as demographics, tumour character-
istics, molecular profiling results and treatment pa-

99

rameters, and b) laboratory measurement data on
post-operative CEA levels, collected at multiple time-
points between date of surgery and date of recurrence
or most recent follow-up, whichever was earlier. The
median length of follow-up was 40 months at a fre-
quency of between 1 to 3 months on average. The me-
dian data points per patient was 14. We de-identified
all patients by assigning each patient a unique serial
number upon study entry, and we removed all per-
sonal identifiers prior to data analysis.

3.3. Pre-processing steps

Dataset pre-processing for both tabular and time-
series data was performed in the following manner:

Cleaning and de-duplication We removed errors
attributed to misspellings, letter case, extra white
space and semantically similar categories.

Imputation of missing data For tabular data,
we identified whether data is likely to be Missing-
Not-At-Random (MNAR) through domain knowl-
edge. We did not attempt to impute MNAR data
but rather, we created a new category ‘not_available’
to denote MNAR data. All other missing tabular
data was imputed with multiple rounds of MICE (van
Buuren and Groothuis-Oudshoorn, 2011). For time-
series data, we imputed missing data using linear in-
terpolation.

Feature engineering We mined information from
unstructured text fields and added them to our tab-
ular dataset via rule-based text extraction.

Time-series resampling This step was conducted
only for DL architectures including HTMV. We resam-
pled the data monthly to create evenly-spaced inter-
vals, then zero-padded it to the maximum length of
the time-series.

Data transformations We normalized all numer-
ical values via logarithmic transformation to remove
skewness, followed by min-max scaling. We trans-
formed all categorical data using one-hot encoding.

Our final dataset had 548 features, split into train-
ing, validation and test datasets in the ratio 6:2:2.
Our dataset was imbalanced, with the Recurrence
class taking up only 23% of the dataset. As such,
we performed stratified split to ensure that all classes
were proportionately represented.
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Figure 1: Schematic representation of HTMV

4. Proposed model

We design a DL-based architecture that processes and
integrates data from time-series and tabular data.
Since a significant part of the model is based on
the Transformer backbone first proposed by Vaswani
et al. (2017), we refer to it as the Hybrid Transformer
for Multi-view Data (HTMV). A high-level overview of
HTMV is shown in Figure 1. Our model comprises a
two meta-layer architecture:

1. The first meta-layer is composed of two sub-
networks, where each network is adapted to ex-
tract high-quality features from each data view. We
trained a Transformer-based model to model the
time-series data, while we utilized an MLP for tabu-
lar data modelling.

2. The second meta-layer is an overall network that
combines outputs from individual views and learns in-
tegrative feature representations to perform the pre-
diction task.

4.1. Time-series modelling using modified
Transformer architecture

Originally developed for natural language process-
ing, the Transformer architecture captures long-term
dependencies in text data, using dot-product self-
attention mechanisms that highlight important pair-
wise relationships between words (Vaswani et al.,
2017). While canonical self-attention has been shown
to work well on sequential text, we hypothesized that
naively extending the attention mechanism to time-
series may impact the Transformer’s performance,
as the influence of long-range dependencies in time-
series data is likely to be less significant as com-
pared to the impact of the direct neighbours sur-
rounding each point. Furthermore, canonical self-
attention performs point-wise matching of query-key
values and, while useful for learning long-range de-
pendencies, may result in our model becoming less
sensitive to the local context.

As such, we explored the following modifications to
our Transformer implementation on time-series data.
The rest of the model architecture follows that de-
scribed by Vaswani et al. (2017).

Convolutional self-attention (ConvSA) When
learning the attention matrices, instead of creating
query, key and value vectors out of Dense layers, we
employ 1D-CNNs that convolve across the temporal
dimension. This forces the query, key and value vec-
tors to incorporate local context information in the
resultant attention calculations, rather than simply
timepoint-specific multiplication. We employ causal
convolutions to preserve the autoregressive property,
with settings of kernel size 3 and stride 1.

Localised attention (LA) We applied a local
mask in the decoder that masks out future timesteps
and also additionally limits the amount of backward
attention, thereby restricting the decoder to only fo-
cus on short-term patterns.

We have shown in a previous study that there is an
overall beneficial effect to performing both modifica-
tions, with a 3 percentage-point increase in AUROC
as compared to the unmodified version (Ho et al.,
2021).

4.2. Tabular data modelling and feature
integration

We extract tabular features using a single hidden
layer MLP with 50 hidden nodes, dropout rate set
to 0.3 (Srivastava et al., 2014), ReLU activation and
He uniform weight initialization (He et al., 2015).
We combine features from all subnetworks in the
following manner: we obtain fixed-vector represen-
tations of features from the last activation layer of
each subnetwork (prior to the sigmoid layer), and
perform a direct concatenation. We then perform a
linear transformation on the integrated signals using
a feed-forward network, and subsequently feed them
through a sigmoidal function for the final classifica-
tion.

4.3. Training framework

We create our networks with Tensorflow (Abadi et al.,
2015); each was trained on the task of predicting re-
currence with the training objective of minimizing
binary crossentropy loss. We use RMSProp to op-
timise weights for the Transformer subnetwork and
Adam for the MLP (Kingma and Ba, 2017). Both
utilised learning rate decay that started from le-4
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and decayed at a factor of 0.1 when validation loss
failed to improve after 8 epochs. Each model was
trained for at least 100 epochs, halting training early
when no improvement was observed on the validation
loss after 20 epochs.

5. Performance comparisons
5.1. Model evaluation

All developed models were tuned for best hyperpa-
rameters on the validation dataset and evaluated on
the test dataset. We obtained generalisation per-
formance by first training 20 separate models for
each model architecture. Each model was evaluated
through 6 bootstrap samples of the test dataset, each
sample set to 100 patients with replacement. We then
computed sample statistics over all 120 samples and
reported the average for the following performance
metrics: Precision, Recall (or sensitivity), Balanced
Accuracy, Specificity, Area Under Receiver Operating
Characteristic (AUROC), and Area under Precision-
Recall Curve (AUPRC).

5.2. Baseline models

We designed two categories of baseline models: 1)
Shallow ML models that utilise pre-extracted features
from time-series data, and 2) Deep temporal networks
that employed networks commonly used to analyse
time-series data, such as Long Short-Term Memory
(LSTM) network and Temporal Convolutional net-
work (TCN). Architectural details of these models
are described in Appendix B.

5.3. Results

Table 1 shows the results of comparing model perfor-
mance between HTMV against baseline models. HTMV
demonstrated the best overall performance, topping
the scores in terms of AUROC, AUPRC and Bal-
anced Accuracy. HTMV also exhibited a good trade-
off between Recall and Specificity at 0.82 and 0.96
respectively, a highly desirable trait when develop-
ing models for clinical purposes. This was unlike
the other neural network architectures which tended
to prioritise one metric over the other. In particu-
lar, LSTM-mlp did not attain a good balance between
Recall and Specificity, with the former topping the
charts at 0.85 but the other achieving the lowest score
among all models at 0.77. We attribute this to the
weighted loss training approach where LSTM-mlp was

penalised too little for predicting the majority class
wrongly. We also note that using the same imbal-
anced datasets, HTMV was able to learn both classes
well and that we did not need to additionally cater
for an imbalanced learning setup in this model.

6. Explaining HTMV
6.1. Overview

We employed Shapley Additive Explanations (SHAP)
as an explanation framework to understand the pre-
dictions of our black-box neural network. While the
Kernel SHAP algorithm is shown to be a computa-
tionally efficient approximation to Shapley values on
machine learning datasets (Lundberg and Lee, 2017),
it assumes that the features are independent, which
may result in inaccurate explanations should this as-
sumption not be met. This concern has also been
echoed by other studies such as Aas et al. (2021), in
which they showed that Kernel SHAP gives less ac-
curate approximations to the true Shapley value on
several simulated datasets.

It is evident that our datasets, consisting of both
time-series and structured tabular data, does not
meet the rigid assumptions of feature independence.
In time-series data, adjacent time-points are intrinsi-
cally dependent on previous observations, while real-
world structured clinical data is known to consist of
numerous dependencies due to complex feature in-
teractions. Despite the possibility of obtaining inac-
curate explanations, we note that many studies on
real-world datasets still proceeded with direct appli-
cation of SHAP on their use cases (see Saluja et al.
(2021) for time-series data and Seki et al. (2021) for
tabular data).

It is with such concerns that we are motivated to
propose the following workaround that alleviates the
feature independence assumption when using SHAP:

o Time-series segmentation: We perform automatic
segmentation of each time-series into loosely indepen-
dent regions, using a genetic algorithm approach.

e Partition masking with SHAP: Within each region,
we enforce structure based on the correlation of the
model inputs, by employing SHAP with partition
masking. This forces strongly correlated features to
be permuted together, preventing the breaking of fea-
ture dependencies and therefore generation of unre-
alistic model inputs.
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Table 1: Model comparisons between HTMV (our model) with 2 categories of baselines.

average of 120 runs (standard deviation).

Results are reported as

Models Precision Recall Specificity Balanced AUROC AUPRC
Accuracy
Baselines: Shallow ML
LR 0.62 (0.084) 0.71 (0.111) 0.89 (0.038) 0.80 (0.057) 0.90 (0.049) 0.81 (0.084)
SVM 0.73 (0.058) 0.73 (0.147) 0.93 (0.015) 0.83 (0.073) 0.91 (0.055) 0.82 (0.093)
GB 0.72 (0.081) 0.70 (0.119) 0.93 (0.026) 0.82 (0.062) 0.89 (0.069) 0.79 (0.095)
RF 0.53 (0.106) 0.83 (0.106) 0.81 (0.032) 0.82 (0.054) 0.89 (0.064) 0.77 (0.080)
MLP 0.77 (0.109) 0.69 (0.121) 0.94 (0.109) 0.82 (0.063) 0.87 (0.067) 0.79 (0.095)
Baselines: Deep temporal networks
LSTM-mlp  0.50 (0.053) 0.85 (0.099) 0.77 (0.056) 0.81 (0.050) 0.88 (0.058) 0.72 (0.124)
TCN-mlp  0.86 (0.088) 0.80 (0.096) 0.97 (0.023)  0.88 (0.056) 0.92 (0.053) 0.83 (0.107)
HTMV 0.84 (0.091) 0.82 (0.093) 0.96 (0.025) 0.89 (0.057) 0.95 (0.046) 0.88 (0.086)

6.2. Time-series segmentation

We referenced Nikolaou et al. (2015)’s approach to
create a genetic algorithm (GA), described in Algo-
rithm 1, that learns the set of optimal cutpoints for
time-series segmentation.

Algorithm 1: Time-series segmentation

Input: A single time-series X
Output: chromosome (chr) z; with highest fitness
fite,
Initialisation;
1. Randomly segment X to create population pool
Peurr of N chr with m segments. Each chr z is
represented as an array of cutpoints {¢1...,tm—1};

2. Set iteration counter count = 0;

while count < maz number of iterations do
for i=1,2,..., N/} do

. Select two chr with highest fit,, from pcurr.
. Apply crossover on pair to generate child

1
2
3. Apply mutation on child at rate p
4

end

1. Select remaining chr from pcu,-» based on highest
fitz,, adding to ppew to make up N.

2. Compute fity, = S(z;) for z; in prew.
3. Let Pcurr = Pnew-

4. Increment count by 1.

end

. Add parents and child to new pop pool prew-

The fitness function S(-) is defined as follows. Let
m be the number of segments, t;_1 and t; be the
index of the first and last data point in m, y; be
the time-series values within each segment, and ;s
be the average value of the segment. We first calcu-
late the following 6 features for each segment: vari-
ance, skewness, kurtosis, slope of linear regres-
sion, mean-squared error, and autocorrelation
coefficient. We include formulae details within Ap-
pendix A.

We then performed k-means clustering on all seg-
ments within each chromosome on the 6 features.
Our objective was to obtain a clustering that min-
imizes the sum of squared error (SSE) between the
individual segments and their corresponding cluster
centroid. Intuitively, a lower SSE is due to the for-
mation of more compact clusters, i.e. segments that
are similar on the basis of the 6 features cluster to-
gether, while segments that are different cluster far
away. Hence, the GA is encouraged to learn the num-
ber and location of cutpoints that produces similar
segments within each group, while keeping segments
across different groups as dissimilar as possible.

Based on experimentation, we set the number of
clusters K = m/2. To avoid generating clusters each
with only a single segment (as SSE would be 0), we
thus define our fitness as: S = m/SSE.

6.3. Partition masking with SHAP

We employ the partition masking functionality within
SHAP such that strongly correlated features are
masked together. Therefore, we represent all features
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in a partition tree structure, where leaf nodes are in-
dividual features and nodes that are most closely re-
lated have the fewest links in between. We create one
partition tree for each dataset. For time-series data,
we represent individual time-points within each seg-
ment at the lowest level of treeA, and the segments at
the next level. For tabular data, we consider one-hot
encoded categories as analogous to the independent
segments within the time-series, and thus represent
individual features (e.g. RaceA, RaceB) at the low-
est level of treeB, and parent categories (e.g. Race)
at the next level.

For our analysis, we permute features together
based on correlation within each segment. We also
note that this approach can be extended to also con-
sider correlations across segments, represented by
scores such as mutual information. Finally, since
SHAP with partition masking was designed to only
handle a single dataset with a single partition tree, we
combine the two trees at the top level and feed this
merged version into SHAP to output explanations.

7. SHAP visualisations

In this section, we use the obtained SHAP values to
provide individual explanations for both tabular and
time-series datasets. We also analyse SHAP values in
aggregate to elucidate associations between our fea-
tures and the recurrence outcome.

7.1. Individualised explanations

We obtain individualised explanation plots that are
highly interpretable and offer insights into the deci-
sion process of our model. Figure 2 shows the im-
portance scores of the top 10 most influential tabular
features output for each patient, and outlines the de-
cision path taken by the model in arriving at a pre-
diction of recurrence or non-recurrence. We note that
the explanations are generally aligned with some of
the known prognostic factors that contribute to re-
currence - for example genetic factors feature in the
explanations, as well as tumour stage, location and
the type of surgery performed.

We also note that the explanations have flagged
out the MNAR data in some genetic testing features
(KRAS, BRAF and MSI-status). Missing data in
these features imputed as ‘not_available’ were high-
lighted in the explanation as important factors. We
can therefore infer that it is the ”missingness” that
is important and not the actual variable. That is,

0.2 0.4 0.6 0.8 1.0

Chemotherapy cycles
Tumour location (rectosigmoid)
Surgery (anterior resection)
MSI status (mss)
(8)
(iia)
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Chemotherapy cycles 2
Cancer stage
Surgery type

KRAS mutation (not_available)

IHC staining (y)
BRAF mutation (not_available)
0.2 0.4 0.6 0.8 1.0

Model output value

(a) Explanation for a prediction of non-recurrence
0.2 0.4 0.6 0.8 1.0

Hospital (malaysia)

MSI status (not_available)
KRAS mutation (wt)
BRAF mutation (wt)
Tumour location (sigmoid)
Surgery (anterior résection)
| (null)

(n2)

Surgery type
TNM staging (N)
Chemotherapy (not_available)

Cancer stage (iii)

0.2 0.4 0.6 0.8 1.0
Model output value

(b) Explanation for a prediction of recurrence

Figure 2: Decision plot showing how model arrived at
its decision using tabular features. X-axis: model output
(left: towards no recurrence, right: towards recurrence).
Y-axis: Top-10 features in descending importance.

the true explanation variable for the recurrence out-
come may not necessarily be the genetic test itself,
but rather, the reasons that underlie the decision
on whether or not to perform the test. We discuss
MNAR data and its ramifications in Section 8.

We also output temporal explanations for the CEA
measurement data in Figure 3. For a recurrence pre-
diction (Figure 3(b)), we infer that the model consid-
ered the last 6 months of data as most informative
in the recurrence prediction, and also that the risk
increased with each consecutive month. This is un-
derstandable as the model had correctly picked up a
trend between rising CEA levels and recurrence, and
it lends assurance that the model makes use of rea-
sonable features when performing the prediction. We
also note that the model has learnt beyond simple
associations between increasing CEA and recurrence
risk: in Figure 3(a) the model disregards fluctuations
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Figure 3: Normalised CEA values over time with SHAP values overlaid as coloured dots. Red/Blue signifies decision
inclination towards recurrence/no recurrence while size of dots reflect decision magnitude.

and small rising trends, giving greater weight to a
prediction of non-recurrence.

7.2. Understanding global associations

To elucidate potential associations between features
and the recurrence outcome, we output SHAP global
explanations in the form of dependency plots (Fig-
ure 4). We present and discuss the factors that
we pre-identified as important in individual patients
(Section 7.1), since factors important at an individ-
ual level are also likely to be important globally. We
note that the complex interactions between factors
may not be fully captured by our dataset.

Figure 4(a) shows that a primary tumour that orig-
inated from the descending colon and sigmoid was
more associated with recurrence, and conversely one
that originates within the rectosigmoid and rectum
was less associated, irregardless of stage. This points
to a possible difference in post-operative recurrence
risk depending on anatomical location. Rectal can-
cer is known to differ from cancer originating from
the sigmoid region in terms of genetics and biologi-
cal characteristics (Wang et al., 2020; Frattini et al.,
2004), thus it is not surprising that our study has elu-
cidated a potential link between the tumour location
and recurrence. Nonetheless, we note that our study

is not powered to determine whether the difference is
due to inherent biological variation between the two
cancer types, or to differences in patient management.

Figure 4(b) highlights that a mutated (‘mt’) KRAS
gene is more likely to be associated with recurrence,
a finding that is supported by numerous studies (Ke-
meny et al., 2014; Margonis et al., 2016). Interest-
ingly, our results seem to suggest that KRAS typ-
ing is usually only performed for tumours at higher
stages, which could explain the observation that a
‘not_available’ status is commonly linked to a lower
risk of recurrence. On the other hand MSI status did
not appear to be confounded by stage (Figure 4(c)).

In Figure 4(d), an interesting observation was that
post-surgical patients who were not followed-up with
chemotherapy treatment (‘not given’) had tumours
that tended to be of a lower stage, yet also a higher
tendency towards recurrence. It is tempting to apply
a causal interpretation in this context, to deduce that
a low stage tumour could be a possible reason for the
decision to not provide chemotherapy, and such an
act could have resulted in a higher risk of recurrence.
Nevertheless we concede that the true situation was
likely to consist of a more complex interplay of fac-
tors giving rise to the situation we observe, and that
it is dangerous to come to conclusions without full
understanding of the clinical context.
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Figure 4: Dependency plots for selected clinical vari-
ables versus tumour stage. Data points are SHAP values
for individual patients (left axis) with information on tu-
mour stage represented along a red-blue colour spectrum
(right axis), for each category of the investigated clinical
variable (bottom axis). SHAP values above/below 0 sig-
nify push towards recurrence/no recurrence, while value
size is reflective of decision magnitude.

8. Reflections

Clinical implications: Our study demonstrates
that longitudinal CEA readings combined with rou-
tinely collected clinical information is sufficient to
strongly predict recurrence in CRC patients, using a
multi-view deep learning framework. Our model HTMV
achieves sensitivity, specificity and AUROC scores of
0.82, 0.96 and 0.95 respectively, exceeding the re-
ported performance of both CEA-alone in the clinic
(sensitivity ~0.5, specificity ~0.8), as well as that
of several commercial diagnostic assays (AUROC of
ColoPrint: 0.63, OncoDefender: 0.55). While the re-
sults are not directly comparable due to the absence
of a standardised benchmarking dataset, the strong
performance of our model is still heartening.

We have also utilised the SHAP framework to pro-
vide individualised and global explanations for the
behaviour of our model, while accounting for the

assumption of feature independence. Our explana-
tions have highlighted possible associations between
selected clinical features and the recurrence outcome,
and pointed out potential biases in the dataset due to
MNAR data. On the overall, our explanation mod-
ule has achieved the objective of offering insights into
the decision process of our model, and we hope that
it has enhanced the trustworthiness of our algorithm.

Through our study conclusions, we hope to have
contributed towards the development of clinically in-
telligible models in the healthcare space, without sac-
rificing on the performance and quality of the models.

MNAR data in healthcare: The explanations
have highlighted that MNAR data were important
features utilised by our model. There are two reasons
why this is problematic: 1) The medical justification
for not performing or reporting clinical test results
is unrecorded in our training data, making further
analyses to elucidate the true explanation variable
difficult, and 2) MNAR data within the feature could
introduce systematic biases in our training dataset,
which may have an adverse impact on the perfor-
mance of our model when applied in an alternative
setting. For example, in a new situation where it was
mandatory for all patients to be genetically tested,
the model would be unable to leverage on the ”miss-
ingness” status to make a prediction. We do not deny
that due to the existence of such biases, our model’s
generalisation performance in the wild may be im-
pacted. Nonetheless we would like to point out that
this is a very common problem in real-world datasets,
and we argue for the use of explanation modules such
as ours to highlight where the problem area lies.

Next steps: We now identify several avenue for fu-
ture studies. (i) Ours is a predictive model based on
retrospective patient data; its generalisation perfor-
mance is contingent on how accurate and represen-
tative the training data is. Prospective performance
on data in the wild is a natural next step. (ii) As we
have explained, it is difficult to make convincing ar-
guments for variable associations without first solving
the problem of MNAR data; this also has impact on
how our model generalises. We intend to work with
clinician stakeholders and data stewards to determine
how to limit missing data and improve dataset qual-
ity. (iii) Lastly, it will increase clinical relevance if
our model can proactively forecast recurrence early,
say months before onset, and we intend to do so as
part of our future work.
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Appendix A. Formulae of 6 extracted
features for time-series
clustering

We calculate the following 3 features that are indica-
tive of the homogeneity of points within the segment:

Variance , which measures variability from the

mean:
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Skewness , which refers to the degree of asymme-
try from a typical gaussian distribution:
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where S5 is the standard deviation of the segment.

Kurtosis , which measures the extent to which the
tails of our distribution differs from a gaussian distri-
bution:
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The next two features measure the linearity of the
segment, namely:

Slope of linear regression over all points within
the segment:
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where the numerator is the covariance between the
indexes t and time-series values y for each segment,

and the denominator is the standard deviation of the
segment.

B =

Mean-squared error of a fitted linear curve to the
segment:

t
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where ¢ are the predicted values of y from a least-
squares fit.
Lastly we calculated:

Autocorrelation coefficient , which measures
the degree of correlation between the segment itself
when shifted by some time-delay k:
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Appendix B. Architectural details of
baseline models

B.1. Shallow ML

We used the Python package tsfresh (Christ et al.,
2018) to extract relevant and meaningful features
from time-series data. We selected only features that
were statistically significant after accounting for mul-
tiple hypothesis testing. The processed features were
concatenated with tabular data and fed into the mod-
els as a single dataset.

We implemented off-the-shelf ML classifiers using
scikit-learn (Pedregosa et al., 2011). Parameters were
selected through extensive grid-search on the valida-
tion dataset. We investigated 5 models and report
the best parameters:

e Logistic regression (LR), C=0.1 and 12 penalty
e Support vector machine (SVM) radial basis func-
tion (RBF) kernel, C=1, gamma="scale”

e Gradient boosted tree (GB) learning rate=0.2,
max depth=2, max features=285, min samples at leaf
node=8, num estimators=45

e Random forest (RF) criterion="entropy’, max
depth=4, max features=150, num estimators=46

e Multi-layer perceptron (MLP) with two dense
layers (70 and 10 nodes), relu activation, dropout (0.3
and 0.15), optimizer=Adadelta

To handle class-imbalanced data, we utilized a
weighted loss function, setting weights to the inverse
of the corresponding class support.

B.2. Deep temporal networks

We created and trained neural network architectures
in a similar approach described in Section 4, except
that we replaced the Transformer subnetwork with
the following networks also commonly used to analyse
temporal datasets.

Long Short-Term Memory We employed a bi-
layer LSTM (Hochreiter and Schmidhuber, 1997)
network with hidden layer size 8, tanh activation,
dropout and recurrent dropout rate set to 0.2, and
initial learning rate set to le-3. We utilised weighted
cross-entropy loss to coerce the model to learn the
minority class better on an imbalanced dataset.

Temporal Convolutional Network Referencing
architecture first described by Lea et al. (2017), we
employed 1D-CNNs that apply convolutions across
the temporal domain. We stacked 6 convolu-
tional blocks, each consisting of alternating 1D-

convolutional and dropout layer, with residual con-
nection between inputs and outputs. We employed
causal padding to train model on early inputs. Other
model specifications are: dilation rate 2, filter size
2, hidden layer size 60, relu activations for all layers
except for classification, He uniform weight initialisa-
tion, and dropout rate 0.1.

Similar to HTMV, we combine each of these subnet-
works with an MLP trained to extract features from
tabular data, to generate two models that we refer to
as LSTM-mlp and TCN-mlp respectively. The training
methodology follows that described in Section 4.3.
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