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Abstract

For decades, A.I. has been able to produce impressive results on hard problems, such
as games playing in synthetic environments, but have had difficulty in interfacing with
the natural world. Recently machine learning has enabled A.Il. to interface more robustly
with the real world. Statistical methods for speech understanding opened the door to
voice-based systems and more recently deep-learning has revolutionized computer vision to
the extent that wild speculation now predicts artificial superintelligence surpassing human
intelligence, but we are a few major breakthroughs short of that being achieved. We know
what some of these breakthroughs need to be. We need to replace supervised learning
with unsupervised learning and we need to take on topics like motivation, attention, and
emotions. In this article, we describe an architecture that touches on some of these issues
drawing inspiration from neuroscience. We describe three aspects of the architecture in this
article that address learning through fear and reward and address the focus of attention.
These three systems are intimately linked in mammalian brains. We believe that this
work represents an attempt to bridge the gap between high order reasoning and base-level
support for motivation and learning in robots.

1. Keywords:
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2. Introduction

As autonomous robots leave their laboratories to work in the real world a new set of needs
will become evident. In this paper we describe research on a new formulation of a robot
software architecture that draws from nature and provides a framework for integrating
perception and actuation, where learning, motivation, and attention play key roles.

Recently, A.I. algorithms have been used to demonstrate impressive results of machine
learning (LeCun et al., 2015). Deep Blue beat Garry Kasparov at chess AlphaGo beat the
world’s best GO player (Silver, 2017); and NASA’s ExoMiner has found exo-planets. Many
talk about A.I. being able to soon exceed human competence in all domains, but there are
some important competence areas that have yet to be mastered.

An autonomous robot today, given sufficient world data can plan a path and conduct a
simple mission if all goes well, but expanding it’s capabilities to handle the unexpected is
not trivial. How should we architect an autonomous robot to deal with an environment that
is both passively and actively hostile? How can we build robots that learn from experience
in order to be better able to survive in our world?
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Robots have made significant progress over the last decade especially when working
within a tightly scripted scenario. Robots are not, however, generally aware of what is
happening around them outside of their narrowly focused task.

Certain problems have already become recognized as limiting the advance of A.l. and
robotics in their course towards superintelligence. Unsupervised learning has already
been identified as a major missing capability. A related issue is memory. Robots do not
build a memory of what they have done outside of their task needs.

Ask your robot what it did yesterday or what it did well and what it did badly. Ask
it what it is going to do to improve its performance. The robot is not likely to give good
answers to those questions.

The point here, of course, is not that we have not programmed our robots to respond
to such questions, it is that we have not seen fit to endow robots with a memory of what
they have done, nor to evaluate their accomplishments, even though learning to improve by
trial and error. Doing so would lead to more robust robots.

A Boston Dynamics robot can avoid a fall after being kicked by a person, but it doesn’t
remember being kicked one minute later, nor does it learn to avoid the kick, and certainly
not kick back! The kicker, on the other hand, will learn that their attempts to down the
robot failed and will learn to kick differently in order to succeed. The kicker and the kickee
ought to learn together to ever improve the effectiveness of their kick and their avoidance
of the kick much as a GAN does.

A rat will learn to be afraid of situations that cause pain and will attempt to avoid
such dangerous situations and will become angry and fight back if cornered. Today’s robots
do none of those things and will eventually attract abusive humans when humans learn
that they do nothing to protect themselves. A robot charged with delivering mail will soon
encounter an aggressive dog or school children that would be afraid of the dog and will
enjoy harassing a friendly delivery robot.

Even if we decide that robots should not be aggressive, they should surely use their
intelligence to avoid situations of danger. They should certainly remember what they have
done recently and learned from the experience. If we really want robots to help the elderly
and children, they need to understand their world, make sense of what they see and be
proactive in helping. Reinforcement learning will eventually learn to not let grandma fall
down the stairs, but how many grandmas need to die before that is learned? The fear
circuit learns to identify precursors to a potentially catastrophic event and learn to reach
to it. Episodic memory is essential for this kind of learning, and can dramatically improve
learning for catastrophic cases.

The push to advance the truly hard problems has left a vacuum at the bottom. To
achieve superintelligence, we need to fill the holes that we have left along the way. Here are
a few more examples: Generalized Intelligence that can apply what has been learned in
one domain to a new one. Social Intelligence that should be able to socialize with other
robots and humans in order to work together as teams. Imitation Intelligence that can
watch someone sliding on a frozen pond, wish to try it itself, imagine doing it itself, try
it and fall, want to practice until it can do what the others did, or decide that it is too
dangerous and not try again.
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2.1. What’s Missing?

In summary, here is a shortlist of competencies that a super intelligent robot might have:
Memory of what has been done and an ability to describe it; a desire to learn and improve
itself, in general; the ability to generalize from one domain to another; the ability to work
well in teams; the ability to recognize danger and avoid it, and the ability to learn from the
world in a totally unsupervised way.

As humans, we value people who work well in teams - baseball intelligence. We value
people who invent new solutions to old problems - creative intelligence, and people who
demonstrate common sense. Robots who exhibit these kinds of intelligence will be valued.

The previous two paragraphs enumerate some challenges that are only lacking in our
motivation to solve them.

Almost everything mentioned above has been demonstrated in some limited sense, and
perhaps any of these skills could be learned in specific circumstances and some would argue
that if we just enumerated all of the cases and trained up those competencies, we would
have succeeded.

The position taken in this article is that to achieve the goals of superintelligence we
need generalized and generalizable capabilities that involve comprehension and learning.

Luckily, we have examples of these capabilities in humans and animals. Biology provides
solutions that enable animals to survive in a hostile world and while that system is poorly
understood today, it provides enough clues to guide an architecture for robotic software
that enables better separation of concerns than current architectures and which would ease
the problem of scaling up robot performance to handle our complex world.

The approach, described in this article, is biologically inspired and attempts to fill some
of the holes while retaining what we have thus far achieved, which is to say, frame an
architecture that is inclusive of planners and existing robotic algorithms like SLAM (Thrun
and Leonard, 2008) while filling holes that prevent today’s robots from being successful as
fully autonomous agents that share our world. However hard we try to foresee dangers in
our training of robots in laboratory situations, the world has so much complexity that it
is hopeless to try to limit learning to the lab. Learning has to continue after the robot
is released into the world. We need to architect robots and their learning systems to be
continuous, in the real world and exposed to novelty, as part of what it does, every day
while performing useful activities.

3. Overview of the article

To address some of the gaps alluded to above, we have developed an architecture for Con-
tinuous Affective Robot Learning (CARL) and have used it in an initial project where a
robot assists a human operator in a repair operation. The robot must understand the video
stream as it observed the repair operation. This involves separating the important objects
in the scene from the distracters (attention) and to make sense of the sequence of operations
performed by the human (sense-making). The robot can describe what is happening and
why, using natural language. It can explain what the human should do next, or lead the
human back to the correct path if he makes a mistake. The robot can also change its posi-
tion in order to get a better view of the repair operation, such as when the human occludes
the scene. While the robot application had a very limited and practical purpose, it served
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as the first use case of the CARL architecture. A video of an early demonstration of the
system can be found at (Robertson, 2018).

In section 4 we give a sketch of the neuroscience that underlies the CARL architecture.
We have taken some liberties in detail in order to provide a clear vision of the inspiration
that we have taken in developing the architecture. In section 5 we give an overview of the
architecture touching on the key aspects that bridge the gap between biology and robotic
architecture. Finally, in section 6 we give an overview of key aspects of the architecture
and future directions.

Rather than try to enumerate all the details of the architecture in this article, we limit
ourselves, here, to the biological inspiration for the part of the problem that concerns robot
safety, learning, and the model for attention.

We use the term “emotion” and “sentiment” in the sense used by (Damésio, 1994).
An emotion is a physical response to a situation that is measurable externally, such as by
observing muscle contractions involved in facial expressions, or by chemicals released into
the bloodstream. A sentiment is a mental state that results from observing that the body is
executing an emotional reaction. The sentiments form the basis for higher-level reasoning
based on a perception of self. This higher-level reasoning will be discussed in a separate
article.

4. Neuroscience Overview

For an animal, including a human, and we argue also for robots, when danger presents
itself, reacting quickly is essential. Such a situation calls for immediate action, it calls for
perception capabilities to be directed at understanding the apparent danger, it may call for
problem-solving capabilities, or planning, to be directed as dealing with the emergency, and
it represents learning opportunities.

A great deal of what we do as animals and humans that passes as intelligent, can
be characterized as learning automatic responses and playing them back when they are
appropriate. Reasoning about an intelligent response is necessary too, but we argue that
such reasoning should be integrated within a system that is at its core primarily automatic,
and learned.

This neuroscience overview follows the basic structure of the CARL architecture. It is
not intended to be exhaustive, but rather to motivate the architectural design. We are pri-
marily interested in providing base support for non-supervised learning for which we begin
with fear-driven learning in subsection 4.1 followed by reward-driven learning in subsection
4.2. The architecture operates in a perceive-act cycle which mirrors, in essence, the bio-
logical cycle which is described in subsection 4.3. The world is cluttered with distractions
but to successfully execute useful tasks, a robot must pay attention to what is important
while ignoring distracters. Typically today, any notion of attention is hardwired in ad-hoc
mechanisms. In our architecture, we wished to expose attention as an architectural feature.
The biological inspirations for this are described in subsection 4.4. The last subsection 4.5
describes emotions, which are key to non-supervised learning.
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4.1. The Fear Circuit

Fear is a great motivator, that is essential in animals for survival and which is implicated
in learning and attention. The “fear” circuit, principally centered around the amygdala,
provides specialized learning for threat recognition and automated “emotional” responses
to the threat. The emotional responses take the form of muscle sequences that may, for
example, show fear on the face, the release of hormones to prepare for the danger, a focus of
attention on the threat, and a preliminary response to the threat until higher-level reasoning
can provide additional guidance. Figure 1 (left) shows a simplified sketch of the fear circuit
(Faucher and Tappolet, 2002).

Threat

Stimulus LL-

[
Mabilize Memory
metabolic Consolidation
resources

Fear Responses

Fear Circuit | Reward Circuit

Figure 1: Fear Circuit (left) Reward Circuit (right)

This circuit also guides the learning of new fears in response to exposure to threats and
indeed by watching others being exposed to threats. Since exposure to threats can be fatal,
it is important to be able to learn about threats by watching others as well as from first
hand experience.

When a previously learned threat is detected, such as a spider, a pre-learned fear re-
sponse causes attention to be given to the threat. This can involve (1) a facial expres-
sion of fear, (2) a freeze response to the potential threat, (3) a saccade to the threat in
order to gather more information, and the release of hormones, such as adrenalin into
the bloodstream to prepare to respond to the threat. The freeze response is part of the
freeze/flight /fight mechanism. The initial freeze allows for an assessment of the level of
danger to be made while preparing to deal with the threat; perhaps the spider is not dan-
gerous. Higher-level reasoning, in the pre-frontal cortex, allows us to better respond to the
situation including overriding the fear response in the case that the response is not called
for. The released hormones control heart rate, blood pressure, respiration, and digestion
and generally prepare the body to react with a huge expenditure of energy, either for flight
or for fight. The sensation of the bodily changes in turn is recognized as the sentiment of
fear by the cortex which in turn focuses attention away from other mental activities.

While certain fears may be innate, such as the fear of spiders and snakes, other fears are
learned by the experience of traumatic events. A dog that approaches, growling, showing
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its teeth, and proceeds to bite is an example of such a traumatic event. The pain of the
bite, in addition to triggering the fear response, triggers a learning event. The short period
of time preceding the bite can be examined to extract the salient observations leading up
to the pain: the approaching animal, the signs of aggression - the visible teeth and the
growling sound. These details along with the context are learned and will serve as a trigger
for the automatic fear response in the future.

Learning to respond to danger is important in order to survive in a hostile world. The
fear circuit is thus old in evolutionary terms, but it represents an important form of learning
of automated responses and of focusing attention. Dealing with a threat is a high-priority
activity that may demand full attention.

4.2. The Reward Circuit

Other learned automated responses dealing with survival when not in imminent danger are
dealt with by the reward circuit which is similarly old in evolutionary terms and like the
fear circuit, described above, involves the recognition of situations in which a pre-learned re-
sponse would likely yield a reward in the current context. Like the fear response, the reward
circuit is built around an emotional response. Figure 1 (right) shows a simplified sketch of
the reward circuit (Day and Carelli, 2007; Holmes and Fam, 2013). A key component of
the circuit is the neurotransmitter dopamine. Dopamine is a neurotransmitter delivered to
neurons involved in taking action. Releasing dopamine increases the likelihood of an action
being taken. It can be thought of as an enthusiasm to act and the sentiment that results
from this is pleasure. In the context be being hungry, the availability of food makes various
actions candidates for obtaining a reward for satiating the hunger. The act of heading
towards the candy machine, or pushing on a lever to release food in a laboratory rat experi-
ment, is a candidate action for obtaining the reward. The release of dopamine increases the
likelihood of such an action being taken because the neurons involved in taking the action
which are already primed to fire based on their relevance to the context are pushed over
the threshold by the presence of dopamine. The sensation of pleasure, therefore, allows the
reward to be taken in advance of the successful completion of the reward-yielding activity
instead of at the completion of the task. If the task is completed and the reward is not
obtained, disappointment ensues. As with the pain response, the key here is that between
a need and its satisfaction there are actions taken that were key to the successful result, or
ultimate disappointment. Scanning over the memory of the period allows for the key actions
to be learned as automated responses. In the future, the context of feeling hungry in the
presence of a candy machine will trigger the automated response of using the machine to
obtain candy. This phenomenon has been very well explored over the decades (Wikipedia,
2013) but for our purposes, what is interesting is the way in which this mechanism provides
a mechanism for automated learning. Sequences of actions that lead to a reward can learn,
over a sequence of trials, to learn to apportion the reward over the steps in the sequence to
enable the selection and replay of action sequences (Keiflin and Janak, 2015). This applies
equally well to sequences that were arrived at by trial and error, by accident, or planned.
The form of learning about sequences of actions resembles Temporal Difference Learning
(TD Learning) (Sutton, 1988; Schultz et al., 1997).
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Of similar interest are the ways in which the learning mechanism can be short circuited.
It is not simply by trial and error that we learn successful responses. We can also learn
by watching others. A person who watches a colleague use the candy machine and obtain
candy, can imagine the context of being hungry and satiating that desire by using the
candy machine. This learning-by-example (Galef, 1998; Byrne and Russon, 1998; Mataric
and Pomplun, 1998; Weber et al., 2000) seeds a learning strategy that will ultimately be
tried firsthand. It should be noted that this imitative learning is not yet implemented in
the CARL architecture, nor is story based-learning.

A very human extension of this concept is the use of stories to achieve similar learning,
both of dangers and of opportunities. Telling a story establishes a context in the mind that
resembles a genuine situation. We are able to put ourselves in the position of a character
in the story who finds himself in a situation and acts and achieves a successful conclusion
or suffers a disappointment. Since the earliest cave drawings for a hunt (Violatti, 2015)
to football play diagrams (Moberg, 2004) to fables (Schuster, 2014) to plays and operas
(Chong, 2006) the use of language and drawings have allowed transfer learning.

The above-described learning approaches driven by fear and reward can account for a
lot of learning as we know it. When higher level reasoning about planning solutions is part
of the story and reward allows automatization of successful strategies, we can anticipate
learning that approaches human competence without supervision. So far only rather simple
learning has been demonstrated, and the imitative and story-based learning are yet to be
realized, but we believe that this kind of approach will permit robots to learn in a way
similar to the way that we do.

It was Turing (Turing, 1950) who suggested that we should make A.I. learn the way we
do:

Instead of trying to produce a program to simulate the adult mind, why not
rather try to produce one which simulates the child’s? If this were then subject
to an appropriate course of education one would obtain the adult brain. Presum-
ably, the child-brain is something like a notebook as one buys from the stationers.
Rather little mechanism, and lots of blank sheets. (Turing)

4.3. The Perception Action Cycle

The perception-action cycle is a repeating two-stage cycle of sensory input and responses
to those inputs. In biological brains the frequency is determined by the time required to
process the incoming sensory input and its sampling is mediated and propagated by alpha
waves (Klimesch et al., 2011; Klimesch, 2012). The brain’s alpha wave, which is inhibitory,
holds off sensory interpretations during the perceived phase cycle and then when the alpha
cycle dips, the sensory interpretations are sampled which triggers the act phase which is
subsequently propagated across the brain as a traveling wave. This implementation in the
brain is fascinating, but of little importance to a robot architecture where the frequency
might be driven by the speed of the processing or the speed of the sensors, such as the frame
rate of the camera. There is nothing to be gained by mimicking this kind of synchronization
in computers — there are easier ways. It does, however show a cycle of perceiving, deciding
if to act and if so how, and then act.
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The first stage involves the collection and processing of the sensor data. The processing
that can be done in one cycle may be limited, requiring multiple cycles for detailed analysis.
In addition, in the case of foveated vision, further analysis of a scene may involve eye
movements. For the safety of an animal, the speed of certain activities is essential, the
recognition of a predator, for example. There is a dual visual pathway that permits fast
fear response in humans, but here again, as with many aspects of natural intelligence, it is
not clear that such dual pathways offer benefits in a robot architecture.

The second stage may involve performing an automated response, simply updating the
current state, nothing at all, or continuing the pre-established goal-directed activity. The
cycle also provides for many unsupervised learning activities. Of particular interest are
those that relate to the learning of high-speed automated responses that have at their
heart, the survival of the organism, in animals, and hopefully in robots too. These systems
correspond to “fear” and “reward”, described above, is implemented by the fear circuit
involving the Amygdala and the reward circuit involving the Accumbens nucleus. Other
types of automatic and continuous learning are supported by this cycle which are touched
upon below.

4.4. Attention

At each perceive-act cycle, there is sensory information from the body as well as from the
outside world. The majority of this information does not require attention unless something
has changed and even then, we may be better off ignoring them. The system of attention
controls what is acted upon and what is ignored (Mangun, 2012; Vossel et al., 2014). Or
alternatively, how easily the system is distracted.

The OPS5 system (Martin, 1985) had two modes of conflict resolution (Newell, 1992),
named LEX and MEA for lexicographic and means-end-analysis. These corresponded to
“easily distracted” and “undistractable”. The programmer could choose between one of
another which gave rise to two different styles of programming. In reality, a continuum
between focus of attention and easily distracted is necessary, and the setpoint should change
based on circumstances. Different sensory modalities can have different levels of impact on
attention, and in natural systems, the emotional state of the animal also has an effect on
attention.

Focusing on performing an action to the point of not paying attention to something that
may be important, may leave the organism vulnerable. Allowing the focus of attention on
some action to be distracted by anything makes it difficult to get anything done. Allowing
rapid interruptions enough to rule out the need to interrupt the work being done, allows
for a compromise. The level of interruption allowable can be mediated by the urgency of
what is being done. Anxiety can allow interruptions to interfere with progress, and if the
anxiety is warranted the interruptions will have a positive result. Anxiety can be higher if
we are in an unfamiliar context.

The ability to modulate focus of attention according to responses to outside stimuli is a
very valuable capability. This helps explain the importance of having an architecture with
an explicit attention model, and the need for a mechanism, like emotions, to modulate that
capability in order to balance goals-directed behavior with self-protection.
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4.5. Emotions, Sentiments and Learning

Emotions are physical responses to observations that serve to respond to current and future
actions that affect the well-being of the organism. Some of these physical manifestations
are measurable by visible muscular responses such as facial muscles. Other responses in
biological systems include chemical responses that ultimately change mental states, such as
the release of adrenaline or dopamine. These in turn affect learning, the focus of attention,
and the representations of sentiments that are available as observations that give rise to
consciousness of mental state.

An emotion is the embodiment of an automated physical response. The emotion gives
rise to an immediate response that may be overridden by higher-level reasoning. The ob-
servation of chemical changes in the blood and signature muscular responses, such as facial
muscular responses provide supervision for learning, and consciousness of sentiments that
can drive reflection on the mental state that can lead to reasoned responses. In this way,
learned automatic responses can be triggered rapidly in order to respond to the urgency of
the situation, while a slower more reasoned response can follow by using higher-level reason-
ing to override automatic learned responses. An imminent collision must be responded to
quickly, but as soon as the collision urgency has been dealt with, a more reasoned trajectory
is required. The observation of a potential predator demands an immediate response, such
as freezing, followed by an evaluation of the true danger perhaps by overriding the freeze
response or perhaps by adopting a fight or flight response.

If a possible aggressor is observed, it is a good strategy to consider the threat real
initially, but then to evaluate the level of threat in order to either ignore it or provide a
response proportional to the actual threat. A peripheral movement may indicate a threat,
but further analysis of the object in question may suggest that it is benign, allowing us to
continue with what we were doing.

Other emotions allow attention to be directed toward relevant concerns. In general,
an emotion is directed towards an object or objects of a certain type and actions relevant
to those objects and the emotion, for example: Arousal: Focus attention on object(s) of
desire; Hunger: Focus attention on food; Thirst: Focus attention on drink: Loneliness:
Focus attention on companionship; Disorientation: Focus on orientation; Some of these
examples are not appropriate for robots, but maintaining acceptable power levels for the
tasks ahead is important as is spatial awareness.

4.6. Anxiety

In general, a threat results in a representation of the threat: where and what the threat
is, its trajectory, the danger that it poses, and so on, but sometimes the threat cannot
be immediately resolved. Imagine that an unexpected sound is heard whose origin cannot
immediately be localized and whose cause can equally not be identified. We want to increase
our sensitivity to the type of sensory observation in question and to all types of potential
dangers in general. We refer to this as anxiety. If I am in a context where I am usually safe,
such as at home, and I hear some sounds that indicate the presence of a person or animal
that T am not expecting, I will become anxious. I will become more sensitive to similar
noises, and my attention will be divided between what I was doing and the heightened
awareness of strange noises. The level of anxiety may diminish over time if no further
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sounds are heard, or may grow if, contrariwise, more strange sounds are heard. At some
point, the level of anxiety may become sufficient to make me abandon what I was doing
in order to go in search of the suspicious sounds. Anxiety then is an increased sensitivity
without a specific object of attention. It is a response that permits increased distractibility.

5. The CARL Architecture

The CARL architecture began as an experiment in memory-based learning, in which simple
robots learned, by experimentation, simple sequences of actuation to maneuver a maze
(Robertson, 2008; Robertson and Laddaga, 2009a). The robots would explore in learning
mode and the sequences of movements that achieved simple maneuvering goals would be
learned for later reuse when asked to navigate the maze to get to a target. By reusing the
saved action sequences, the robots could get to the goal without hitting obstacles along the
way. The CARL architecture adds in the use of reward and pain as a way of generalizing the
means whereby obstacle avoidance and useful action sequences could be learned. CARL also
brings the ability to integrate a generalized planner that can plan over the learned action
sequences, and a model of attention that supports culprit identification for the learned fear
response, and TD learning of action sequences that mimics the ways that these capabilities
are implemented in mammalian brains.

The cognitive architectures ACT-R (Fu and Anderson, 2004) and SOAR (Laird et al.,
2012), have working memory, episodic memory and long-term memory of action sequences.
Both ACT-R and SOAR come from a product system background, where procedural knowl-
edge is represented as symbolic production rules. SOAR and ACT-R both came from the
belief that production rules, being fragments of procedural capability, could be learned,
eventually, and that in the meantime programs could be written by hand - showing that
the production system approach is expressive enough to solve interesting problems.

SOAR and ACT-R while having different characteristics, are both goal-directed and
depend upon specific hand-generated goals.

The PolyScheme architecture (Kurup et al., 2011) draws inspiration from Minsky’s “So-
ciety of Mind” (Minsky, 1988) where the premise is that there are a number of basic mech-
anisms that form the basis of cognition and that by building support for that small handful
of representational underpinnings and providing a mechanism whereby they can interact,
we would have an architecture capable of solving a wide range of problems and not just the
ones chosen by its designers.

What is lacking in these architectures are the notions of motivation, attention, and self-
motivated learning. Obviously, in ACT-R, for example, is it possible to build in the notion
of motivation, it is not a core concept.

In SOAR and ACT-R, for example, if there are some rules that are activated (whose
preconditions are met), there is something to do. The only question is which rule to select.

The CARL architecture also has working, episodic and long term memories but differs
from SOAR and ACT-R in significant ways.

In CARL we have chosen to not make the learned action sequences explicit in symbolic
form so as to discourage the idea that CARL is a programming language. CARL comes from
the other direction, that by learning rules from experimentation with only very basic drives
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and motivations, we may be able to demonstrate the emergence of interesting behavior and,
one day, intelligent behavior.

Not having a fixed syntax for procedures makes it easier to extend the representation.
Our goal was never to handwrite procedures, but rather to learn them. Thanks to archi-
tectures, such as those described above, we don’t need to prove that complex problems can
be solved with these kinds of architectures. Instead, we want to explore learned emergent
behaviors that are not programmed in by hand.

CARL has the simple built-in goals to avoid danger and to maintain health. We can give
rewards to aid in simulating experiments with animals. Through numerous parameters that
control levels of motivation and activation, we car experiment to find parameter settings
that best allow interesting behaviors to emerge. Unlike ACT-R and SOAR, in CARL, it is
not a given that there is always something to do, or a problem to be solved. If a charger
is nearby the charge action will be available and it will have learned to associate it with a
charge reward. It will not necessarily result in the robot charging or doing anything else. if
the charge level is high, for example, the motivation may not be high enough for the robot
to take the effort to get a charge. There may be nothing that the robot is motivated to
do and it will rest dormant until its battery becomes low enough to make getting a charge
motivating.

Part of our learning involves a clustering algorithm (Robertson and Georgeon, 2020)
that operates in continuous real-time but which requires a slow cleanup process. For this,
a sleep cycle is provided. Tiredness raises the bar for the level of motivation necessary in
order to act.

Anything that a robot does expends energy and potentially puts it in danger. For CARL
doing nothing is the norm. Where CARL differs the most from its predecessors is that it
has mechanisms for motivation, attention, and simple emotions.

CARL Architecture

Real world including the robot body

Figure 2: CARL Architecture Diagram

The CARL architecture is shown in Figure 2. The red arrows depict the affective
pathways.
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Sensors have their own specific modules for interpreting the data from the sensors in
order to contribute to an integrated perceptual model. Similarly, trackers provide specialized
tracking of the sensed entities from one perception cycle to another. T'wo outputs are derived
from the perceptual model: Updates to the working memory, and pain and desire detection.

“Pain” covers all emergency situations that, for a robot, may include exceeding certain
parameters of accelerometers that might indicate free fall or joint angles being outside of
desirable limits. For a robot, being knocked over is a likely form of emergency situation,
resulting from an encounter with an aggressive or careless child or animal.

“Desire” concerns all non-emergency goals both low level, such as that the battery level
remains above 15%, and high-level goals, such as “(go-to location-x)”. When the battery is
close to the cut off level, getting a charge will be rewarded according to the amount of the
charge obtained, so as the battery level runs low, the available reward will be higher and at
some point, the “desire” to recharge the battery will overwhelm the attention being given
to the foreground task.

5.1. Episodic Memory

Episodic memory is key to driving unsupervised learning from both emergency situations
and from rewarded situations. In both cases, the pain or reward refers to something that
occurred in the recent past. The “Episodes” database contains a parameter-adjustable
history of the last “n” perception cycles with links back to the raw perceptual data. These
episodic entries are used to 1. extract images of the culprit which may be used to learn a
fear response to the cause of the emergency, and 2. extract the sequence of actions leading
to a reward. An extracted sequence of images of an approaching aggressor can be used to
automatically train a CNN recognizer for the aggressor that will be used later as a trigger for
a learned fear response. The extracted sequence of actions leading to rewards are stored in
the “Learned Actions” memory where the reward assignment and its use in action selection
is learned using TD learning.

5.2. Learning fear from dangerous situations

When an emergency situation occurs, the robot has several things that it must do, not
necessarily sequentially in this order: 1. recover from the emergency, 2. defend against the
cause, and 3. learn the cause in order to avoid a recurrence. The activity that caused the
problem necessarily occurred in the recent past. The episodic memory exists to allow the
recent past to be searched in order to learn from the situation. There are a lot of situations
that a robot can encounter that lead it into a dangerous situation, some involve encounters
with active external agents, others involve the real world and the physical nature of the
robot itself. Each time the robot finds itself in such a situation, it represents a learning
opportunity to reduce the chances of future reoccurrences.

A battery that has discharged to a dangerous level has undoubtedly dropped below the
desired threshold and has failed to be recharged in time to avoid a critical situation. The
culprit is the robot itself and the problem is failing to attend to the low battery situation
early enough. By searching back through the Episodes, the point at which the search for
power was initiated can be found. It was not soon enough. The planner can be invoked
to determine how much battery is used in finding a charge, and a fear of running out of
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power can be established at the minimum level that would obtain a charge before hitting the
desired minimum battery level. Establishing the fear will invoke a fear reaction whenever
the battery level approaches that point. The fear response will divert attention to the
battery and the process of getting a charge will be given priority over the current task
ensuring that the robot will seek a charge before getting to a point where it would drop
below the desired minimum. Recovery in this case is to plan a route to a charger within
the remaining battery power, or to stabilize the robot for a safe shutdown.

If the robot watches an angry dog approach and subsequently attack, and assuming that
the dog was correctly identified as the culprit, images of the charging dog can be extracted
from the episodes database, that proceeded the attack thereby building a training set for
learning the fear response. Furthermore, if the learning includes other modalities, such as
sound and facial expression, like the showing of teeth, and tail position, the robot can learn
to recognize an aggressive dog approaching to attack.

The immediate result of an emotional response provides supervision for the learning
of responses depending on the outcome. A successful outcome generates a reward that
will reinforce the learning of the successful response, whereas a failure of the automatic
response may lead to the future selection of a competing learned response. All of these
learned responses are learned within the contert existing at the time that the emotion is
evoked. Thus different learned responses can be learned for different contexts.

Context learning is therefore an important part of what is learned. Context is learned
continuously and automatically in CARL through two coupled mechanisms, one involving
deep learning (LeCun et al., 2015) and the other involving clustering (7). Context learning
is a crucial capability of CARL.

“Fear Learning” starts from the “Pain Detection” and entails the determination of the
probable culprit in order to extract training data from the episodic memory in the time
period leading up to the emergency. From this, learned fear responses are established for
rapid detection of possible dangers. The learned fears are checked for continuously, from
the integrated perceptual model, and when detected, attention is forcibly directed to the
danger, and a learned or innate danger action is triggered.

5.2.1. DIAGNOSING THE CULPRIT

Diagnosing the cause for an effect is essential for learning, especially to avoid dangerous
situations. It is a difficult problem because the approach in TD()) learns too slowly for
something that could cause death. Natural systems often incorrectly identify causes, but
having an irrational fear of something is generally better than not having fear of something
that could kill you.

The CARL architecture offers a low-level simple algorithm for cause identification based
on temporal and physical proximity, which may be overridden by higher-level understanding.
Diagnosis of the cause serves two purposes, the possibility of an immediate physical response,
and the learning of a danger. In both cases, higher-level control can override the original
diagnosis.

The nature of the sustained pain or wound can guide the diagnosis. Objects close to
the pain are more likely to be the cause than ones more distant. The simultaneous emission
of a frightening sound by the object, such as a growl, or snarl, increases the likelihood of
the object being the culprit. Animate objects are more likely to inflict pain than inanimate
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objects. Objects that are known to be dangerous are more likely to be the culprit than
those that are known to be safe. Unknown objects fall between these two known cases.
The diagnosis uses a Bayesian approach with defaults for unknown objects that are either
animate or inanimate.

The approach is to use initially seeded probabilities, that are considered to be innately
encoded and which can be updated by learning over the life of the robot for probabilities of
being potential causes of pain. These include animate versus inanimate objects and distance
from the point of pain. Finally, higher-level reasoning can override the low-level diagnosis.
If a dog is beside you when you are shot in the leg by a sniper on a rooftop out of sight, the
dog may be the first candidate for the cause of pain, but higher-level reasoning can override
that diagnosis. This notion of overriding base level reasoning by the prefrontal cortex, in
biological brains, is well established. The initial impulse may be to kick the dog, but before
that can happen, and certainly before the dog is learned as an object of fear, higher-level
reasoning about being shot can prevent harm coming to the dog as well as learning an
unnecessary aversion to the dog. Higher-level reasoning will be addressed in a follow-up
article.

5.3. Learning Reward

A sequence of actions can be considered a finite-state Markov Decision Process (MDP)
and in order to attribute the reward and hence learn the expected reward of selecting the
sequence we estimate the state value function under a policy m. Let w”™ denote the state
value function of the MDP with states (s;)¢en, rewards (r;)ien and discount rate v under
the policy .

This can be computed incrementally using the TD(\) algorithm:

If w is a vector of weights for the states of the model, the learning achieved after each
sequence of actions, Awy is an increment to w applied at time ¢.

t
Aw; = a(Pry1 — P) > ANTFV,Py (1)
k=1

5.4. Perceive Act Cycle

In the CARL architecture, the processing of the observations is performed in two stages
corresponding to the alpha cycle: identify, and classify. The identifying step involves trying
to identify the cause of the event. It might identify the approaching object as a family pet
dog, or as an unknown dog. The sound and motion of a metronome may together identify
the source of these two synchronized events as an operating metronome.

The classifying step assigns a level of importance to all identified events. This importance
level is a first estimate of whether the robot should act upon the event or simply note it
(in working memory). This continuous scale of importance can be loosely described as (1)
“safe”, the event can probably be ignored. (2) “dangerous”, the event should be allowed to
distract the current activity, and (3) “uncertain”, it may be advisable to pay attention to
the event in case it turns out to be dangerous.

The Action Selection and Execution module determines what actions take place during
the “Act” part of the perceive/act cycle. During the perceive part of the cycle, the sensors
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are sampled and the working memory is updated to indicate what has been identified after
the noise has been removed and after trackers have integrated the current data into the
prior knowledge. For example, the video input runs an object classifier CNN over the latest
video frame, it matches up the objects with the prior frame, and for each object, the new
position is matched up with its predicted position. The trackers include banks of Kalman
filters (Kalman, 1960; Robertson and Laddaga, 2009b) that determine where the object is
expected to be. If the object is not close to where it is expected to be, this produces a
high salience score for the object. If the object has changed state, for example, every object
has several Kalman filters associated with it, each with different system equations, one of
which is for free fall. If the object is dropped, the Kalman filter representing free fall in the
filter bank will indicate that the object has changed state and that it has been dropped.
Similarly, if the object comes to rest or assumes the motion model of one of the hands, this
will register that the object has been picked up, or put down. Any change in the state of a
tracked object increases its salience score. An object that is relevant to the ongoing activity
has a higher salience than an object that is in the background but not participating in the
task.

The high-level mission determines the primary objective of the robot. If there is no
mission underway, the level of attention is low and any change will have a salience sufficient
to be paid attention to. In the course of the mission, certain objects that play a part in the
mission will be attended to and the key objects that are expected to change state next in
the mission will have the highest attention.

All learned actions that are enabled by the working memory, which is to say that there
are bindings for the objects of those actions in the working memory, will be enabled. The
actions are rank-ordered based on the attention paid to them and the calculated reward
is based on TD Learning will decide which action is chosen to run in the act cycle. A
fear response that occurs during the mission will cause the object of the fear to assume
high salience by setting the attention to attend to the object of fear instead of what the
ongoing task was paying attention to. When that happens, the fear response action will be
enabled and will be selected. In this article, we have not described the mission model, but
the high-level reasoning part of the system dictates what should be attended to and what
objects are expected to change state.

An anxiety level is constantly computed by comparing the context with learned contexts.
If the state that we are in falls within a well-defined context that we have learned about, we
may be aware of dangers in that context, specific things to watch out for, or the contexts
may be considered safe, until such time as we learn otherwise. Being in a known context can
heighten awareness of dangers that may be found when in that context. That is increased
sensitivity, while in that context to learned fear. If we find ourselves in a context that is
unfamiliar, it is here that anxiety plays its role. It is not fear of a particular danger, but
rather a sense that we are in unknown territory and that we should allow ourselves to be
distracted by anything that might indicate danger.

Contexts are continually calculated and contexts that are familiar and for which fear
situations have never been encountered yield a very low anxiety level which enables the
level of attention to be high. This results in largely ignoring the background events that are
not fear events. Familiar contexts that sometimes have fear events yield a higher level of
anxiety, as do unfamiliar contexts. Higher anxiety lowers the level of attention applied, so
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whereas the attended objects will still rise above the background, a high saliency event in
the background, such as an irrelevant object being dropped, or a background object changes
its trajectory to be towards the robot, the high saliency will cause it to rise up to a level,
where actions associated with those objects will be selectable for execution. Higher anxiety
therefore yields greater distraction from the primary task than lower anxiety.

5.5. Saliency and Novelty

Saliency is calculated using methods that are sensor-specific and usually work in conjunction
with the trackers.

Given an observation consisting of interior and exterior sensory inputs, what is wor-
thy of further attention beyond simply remembering the state? One approach is to mea-
sure saliency in terms of local spatial entropy (Gilles, 1998; Kadir and Brady, 2001) or
change over time. More generally, model prediction violation (Brown and Friston, 2013).
A metronome in the visual scene is salient until its periodicity is modeled after which it
ceases to represent a prediction violation, but if the frequency of the metronome suddenly
changes, or if it stops, the prediction failure is salient. How much attention should be paid
to the metronome? That depends upon a number of factors, some learned and some in-
nate: (1) Is the object of attention dangerous? If so, the sudden prediction violation might
merit distracting the current task. (2) If the person is anxious, the prediction violation is
more likely to be distracting. (3) If the subject has been primed to expect a change in the
metronome, it will be treated as important although not strictly distracting, since it is the
anticipated event.

A salient event can come from any sensory modality, including: (1) movement detected
in the visual field either towards or away from the viewer, (2) a change in color in the
visual field, (3) a change in smell, (4) a change in sound, (5) a haptic change, (6) a change
in body position, joint positions, and so on. Salient events can occur concurrently in a
variety of modalities such as the visual appearance of the dog and the pain of the bite that
it is inflicting. Additionally, all events occur in a context that may weigh the relevance of
the salient event. Being in a safe location surrounded by a pet, well known to be friendly
would assign less importance to a dog that approaches us than a similar dog in an unknown
environment.

5.5.1. FOCUSING ATTENTION:

Control of attention based on context is also essential. When performing a task, we may
want to prime for expected outcomes while paying less attention to other distracters. But
one wants to respond to danger signs so that work on a task can be temporarily abandoned
in order to respond to a threat. If we are already responding to an established threat,
we may want to reduce attention to other distracters, such as animals would do for pain,
hunger, and thirst. Escaping danger is more important than attending to the pain of a
scratch or cut that occurs during flight.

Default attentional responses can be the result of innate values which can be refined
by learning. In biological systems, these parameters are often implemented as chemical
markers and hormones that affect behavior but in our robot architecture, these parameter
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values can be represented directly and be observable directly as part of the robot state in
the same way that joint angles are. They thus become part of the robot state vector.

Beyond the triggering of learned responses and the associated learning mechanisms
associated with the improvement of future responses within contexts, emotions serve as
mechanisms for focusing or reducing focus of attention.

To learn that a threat should be learned so as to evoke a fear response in the future,
it is necessary to identify the correct culprit. Imagine that I feel a pain in my foot as the
result of a dog bite, I should learn that the dog in question is dangerous and thus learn a
fear response to that dog. Let’s say that prior to the bite, the dog was running toward me
and ultimately bit my leg.

The dog, followed by physical contact, followed by a bite, supports identification of the
culprit. If there is a picture hanging on the wall when the dog bites me, is the picture the
culprit, or is it the dog, or both? We want to be able to learn from a single instance but
also from a history of examples. It is reasonable for innate mechanisms to contribute to the
diagnosis and for learning by experience to provide for a better diagnosis of culpability.

We know that certain animals can invoke a fear response innately, for example, certain
people exhibit an innate fear response to snakes and/or spiders. More generally, animate
objects are more likely to bite than inanimate ones like pictures on a wall. In identifying
the probability of an object being the culprit, prior, possibly innate probabilities play an
important role.

Locality is another useful rule of thumb. When pain is detected, say, on a foot, and
upon looking down at the foot we observe a wasp at the site of the pain, and we have prior
knowledge that wasps are capable of producing painful strings, we may conclude that the
wasp is responsible for the pain especially if the pain is compatible with what is known
about wasp stings.

If we stand on a thumbtack and look down to see a wasp on our foot, we may incorrectly
associate the pain with a wasp sting. Such culprit identification failures can occur. Similarly,
food poisoning can be associated with the wrong food based on temporal locality. These
learned fears can be very powerful and be essentially indelible, so misidentification of the
culprit is to be proscribed.

A dog that approaches with a wagging tail and a friendly disposition is probably not a
danger, whereas an angry looking animal that approached equally rapidly while growling is
likely to be a danger. A learned fear response based on a single example is useful because
if we are lucky enough to survive one such attack, we may not be so lucky the next time
and we want to learn to avoid it the next time.

Outside of innate prejudices, there are many learned things that can help with single-shot
learned fear. Animals often exhibit aggression by an emotional; response that involves an
angry sound: a growl is a dog, hissing, in some animals, a squawk in a bird, just as humans
can produce an angry face. These kinds of responses can be either innate or learned or a
combination thereof.

6. Conclusions

The CARL architecture builds upon prior experiments involving learning and reusing pre-
viously successful sequences of actions. It adds a mechanism for learning the use of these
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action sequences using TD learning, which resembles reward processing in the mammalian
brain and which permits us to perform experiments involving learned behavior with rewards.

The focus on fear and reward-based learning allows for experimentation with unsuper-
vised learning in robots.

CARL provides an architecture in which unsupervised learning can take place during the
normal operation of the robot. Emphasis is placed on learning automated responses based
on memorizing previously successful responses in equivalent situations and recognizing and
learning to avoid dangers.

A, yet to be confirmed, prediction of this kind of automating reuse of learned context-
dependent responses, is that it allows the high level planning problems to be easier.

Higher-level reasoning is provided using path planners, generative planners, and tempo-
ral planners, while specialized sensors can be plugged in for vision, LIDAR, speech, touch,
and so on as knowledge sources (KS). All of whom can contribute to shared working memory.

The attention system provides allocation of computing power as would a traditional
scheduler, but control can be taken away to deal with automated responses to threats.
The collection of training data for deep learning occurs automatically during the normal
operation of the robot and can be processed during a “sleep” cycle.

Unsupervised learning is used throughout the system but in this article, we have chosen
to focus on: Fear, Reward, and Context, since they tell a coherent story about how the
architecture orchestrates the collection of data for CNN training of fear objects, how TD
learning calculates action sequence rewards, and howMDL clustering automatically learns
contexts. These three forms of learning are the central features of the architecture. Learning
is also used in establishing attentions levels and anxiety levels. In these cases, the intuition,
is that if we are doing useful work, a mission, in the case of our testbed, tracking a repair
operation, if we are in a familiar setting (context) and there are no fear components in play,
we should allow the focus of attention on the key objects to the exclusion of the background
irrelevant objects. If the context is less comfortable, (the context is less familiar, or if a
potential danger has been detected in the background) we should allow sufficient distraction
to avoid an unpleasant surprise. If the robot has a known fearful angry beast heading in its
direction, it should forget the mission and execute the flight/fight action!
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