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Abstract

This paper analyzes the historical development of the conceptions of “reasoning” and
“learning”, especially their separation in the study of artificial intelligence and the at-
tempts to combine them in various ways. A unified treatment of cognitive functions is
provided in the AGI model NARS, where reasoning and learning are different facets of the
same underlying process.
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1. Introduction

Reasoning and learning are important cognitive functions that have been part of artifi-
cial intelligence (AI) research from its early days (McCarthy et al., 1955; Feigenbaum and
Feldman, 1963).

In AI, reasoning and learning have been studied separately (Luger, 2008; Russell and
Norvig, 2010; Poole and Mackworth, 2017), though in many cases both are needed for the
desired results. Currently most of these situations are handled in a case-by-case manner,
where these two cognitive functions are carried out separately and combined according to
the specific situation of the problem.

To achieve general-purpose AI—artificial general intelligence (AGI) (Wang and Go-
ertzel, 2007)—these two cognitive functions, as well as many others, should be integrated
in a domain-independent manner. Various cognitive architectures have been proposed with
similar objectives (Duch et al., 2008; Kotseruba and Tsotsos, 2020).

In this article, a unified model of reasoning and learning (as well as other cognitive
functions) is introduced. This model, NARS (Non-Axiomatic Reasoning System), has been
designed according to a theory of intelligence as a whole, where various cognitive functions
are developed to serve the overall objectives of the system (Wang, 1995, 2006, 2013).

In the following, I will start by reviewing the development of the notions of “reasoning”
and “learning” to explain the historical root for their separation in AI research, then intro-
duce the most relevant parts of NARS, and finally summarize the features of this approach
using a concrete example.

2. Historical Development of the Notions

To fully understand the current issues, it is necessary to briefly trace the development of
the notions of “reasoning” and “learning” in history.
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2.1. How reasoning has become mainly about proofs

The study of reasoning started mostly in logic, which focuses on valid reasoning and nor-
mative models (Kneale and Kneale, 1962).

The following are some representative works in traditional logic:

• Aristotle’s syllogism is a set of valid inference rules, to be followed in thinking and
debating in general (Aristotle, 1989).

• Leibniz attempted to extend the traditional syllogism to a “universal calculus” so that
differences in people’s opinions can be resolved by calculation (Kneale and Kneale,
1962).

• Boole hoped to find the “the laws of thought” by treating logic as an algebra (Boole,
1854).

The overall objective of these works was to identify and formalize the patterns of valid
reasoning (or call it inference) in human thinking in general, though the focused inference
type was deduction, since its validity is relatively easy to justify. Other types of reasoning,
such as induction and abduction, were considered to be cognitively useful, but not truth-
preserving, as they may derive false conclusions from true premises (Hume, 1748; Peirce,
1931). The typical domain of application of logic is mathematics, where deduction takes
the central role, though it was usually explicitly or implicitly assumed that reasoning in
other domains, such as natural science and everyday life, should follow the same logic, at
least approximately.

This mathematical orientation was made explicit and even exclusive by the works of
Frege (1999) and Whitehead and Russell (1910), which have been properly referred to as
“mathematical logic”, as these logic systems were developed primarily to provide a solid
foundation for mathematics, and therefore take theorem proving as the canonical form of
reasoning. The anti-psychologism in logic has become so strong that the reality of human
reasoning is mostly taken as irrelevant and misleading.

As mathematical logic has dominated the field, research on non-mathematical logic has
been under the rubric of “philosophical logic” (Grayling, 2001) where various types of non-
classical logic are explored (Haack, 1996). A non-classical logic usually attempts to extend
or modify classical logic to explain or reproduce some phenomenon or function observed in
human reasoning, while largely keep the traditional framework and principles of classical
logic as much as possible.

Though logicians have ignored psychological observations, psychologists have widely
taken classical logic as “the logic” against which the rationality of human reasoning is
judged. For instance, deviation from classical logic, as shown in Wason Selection Task, is
judged as human fallacy (Wason and Johnson-Laird, 1972). Even competing psychological
theories “mental logic” (Braine and O’Brien, 1998) and “mental models” (Johnson-Laird,
1983) are largely based on the syntax and semantics of classical logic, respectively.

While the study of individual inference steps is dominated by mathematical logic, the
study of multi-step inference processes has been mostly guided by the notion of effective
procedure. In mathematics, a problem-solving procedure is considered as “effective” if it
consists of a finite number of exact, finite instructions, and for each problem instance the
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solving process is deterministic and always terminates. In theoretical computer science, this
notion is formalized as “computation” in a Turing Machine (Hopcroft et al., 2007). For an
axiomatic system, it corresponds to a decision procedure that judges whether an arbitrary
proposition is a theorem.

With such an intellectual heritage, in AI the works on reasoning started in theorem
proving, also known as “automated reasoning”, which gradually develops into a domain of
its own (Feigenbaum and Feldman, 1963; Robinson and Voronkov, 2001).

The cognitive functionality of reasoning is clearly not restricted to mathematics, and it
is natural to treat reliable knowledge as axioms to derive their implications, which should
also be reliable knowledge. Such approaches have been proposed to cover “näıve physics”
(Hayes, 1979), expert knowledge (Buchanan and Shortliffe, 1985), and encyclopedic knowl-
edge (Lenat, 1995).

However, reasoning outside mathematics, especially with “commonsense” knowledge,
does not have the “from truth to truth” nature of theorem proving, so there is a need for
new logic systems in which the validity of reasoning can be relaxed in certain ways. Major
attempts to revise and extend the reasoning frameworks include the following:

• To open the reasoning system to new evidence, which may reject the tentative con-
clusions derived by default rules, or to revise the system’s beliefs (McCarthy, 1989;
Reiter, 1980; Alchourrón et al., 1985).

• To reason under uncertainty with numerical measurements according to probability
theory or fuzzy logic (Nilsson, 1986; Pearl, 1988; Zadeh, 1983; Dubois and Prade,
2003)).

• To reason on procedural knowledge, so the conclusions can be executable, as in robot
control (Fikes and Nilsson, 1971), logic programming (Kowalski, 1979), and agent
systems (Rao and Georgeff, 1995).

Even after the above extensions and revisions, the study of reasoning in AI is still focused
on variants of deduction and theorem proving, where the correctness of the conclusions is
guaranteed by the correctness of the given knowledge, plus the validity of the inference
rules. Though such techniques are useful, they are far from reaching what human reasoning
achieves.

2.2. How learning has become mainly about algorithms

Learning in general includes various types of experience-driven changes in capacity or behav-
ior (Reisberg, 1999). The scientific study of learning started in psychology and neuroscience,
as exemplified by the works on Pavlovian conditioning (Rescorla and Wagner, 1972) and
Hebbian learning (Hebb, 1949).

Since learning is widely recognized as a central component or aspect of intelligence,
it was taken as an important topic in AI research from the field’s very beginning (Tur-
ing, 1950; McCarthy et al., 1955; Samuel, 1959; Minsky, 1961). In the 1980’s, “machine
learning” became a field of its own (Michalski et al., 1984), with a diverse collection of
approaches (Carbonell, 1989), including decision tree (Quinlan, 1986), genetic algorithm
(Holland, 1986), and so on. Various types of artificial neuronal network (ANN) models are
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designed with learning as its central capability (Rosenblatt, 1957; Rumelhart and McClel-
land, 1986; LeCun et al., 2015; Schmidhuber, 2015), and after decades of explorations ANN
has become the most remarkable achievement of machine learning.

Since the intuitive sense of “intelligence” is closely related to “problem-solving capabil-
ity”, it is quite common for the latter to be used to define or measure the former. Following
this path, “learning” is widely considered as the increasing of a system’s problem-solving
capability. As in computer science “problem solving” is normally formalized as “compu-
tation in a Turing Machine”, or equivalently, as “following an algorithm” (Cormen et al.,
2009), learning corresponds to “algorithm improvement”. Accurately, machine learning is
often defined as a meta-level computation that uses a learning algorithm with training data
as input, and produces a “model” for an object-level (practical) problem (Flach, 2012). As
the model is also an algorithm that finds solutions for the instances of the practical problem,
the learning process can be called “algorithmic” as it follows a (meta-level) algorithm to
generate an (object-level) algorithm (Wang and Li, 2016).

The above conceptual analysis explains many features and limitations of the current
mainstream machine learning techniques, in spite of their differences in details. For instance,
learning systems usually have clearly separated training phase (which follows the learning
algorithm) and working phase (which follows the learned algorithm), and therefore need
special arrangements to learn during the working process. On the contrary, there is no
such a clear separation in human cognition, where “learning” and “working” are relatively
distinguished, and usually interweave with each other.

Since the result of learning is to get a model or function (input-output mapping), the
learning process can be more accurately described as “function approximation” (as in su-
pervised learning, where the objective is to generalize the input-output pairs in the training
data) or “function optimization” (as in unsupervised learning and reinforcement learning,
where the objective is to maximize the quality of a classification or a policy, also according
to the training data). In both cases, the most common technique is to tune a parameterized
function that has universal approximation capability, such as certain ANNs.

When solving specific problems, computational systems depend on human-designed algo-
rithms, while learning systems only demand proper training data to generate the algorithms
needed. Consequently, the scope of applicability of computer has been greatly increased by
the progress in machine learning. However, when compared to human learning, algorithmic
learning only captures certain special cases.

The above conclusion is supported by the collection of new concepts appearing in the
field in recent years: one-shot learning, multi-task learning, transfer learning, online learn-
ing, life-long learning, active learning, cumulative learning, semi-supervised learning, self-
supervised learning, and so on. What is shown by these concepts is that the features men-
tioned in them are not naturally provided by algorithmic learning, so have to be added with
special effort. On the contrary, these features are all intrinsic in human learning altogether.

2.3. The relation of the two functions in AI

Given their different origins and conceptions, reasoning and learning had been taken to be
two separate cognitive functions even before the field of AI was formed. Partly for this
reason, in AI they have been largely studied independent of each other. This situation is
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often justified from a problem-solving perspective: to solve a specific problem, one of them
is often enough (Dietterich, 2003; Sutton, 2019; Sejnowski, 2020).

However, there are clearly many situations where both functions are needed. To use
them together, there are the following alternatives:

Hybrid: To combine the existing techniques of both domains into one system.

Integrated: To design a system with a reasoning module and a learning module that can
work together.

Unified: To use a single technique for both functions.

Hybrid systems work well for special applications, where multiple techniques can be
aligned in task-specific ways, such as in IBM Watson (Ferrucci et al., 2013) and the projects
of my own team (Hammer et al., 2021). However, it is not easy to get a system that works in
a wide range of situations where the techniques have to cooperate under various conditions,
and especially unanticipated ones. There are recent claims that the way to go for AI is to
combine deep learning with symbolic reasoning (Marcus, 2020), though how to make the
two techniques compatible is still an open problem.

Integrated systems often take the form of a cognitive architecture (Newell, 1990; Sun,
1995; Anderson and Lebiere, 1998; Franklin, 2007; Chong et al., 2007). This approach is
different from the hybrid approach, as the modules are designed together. A typical way
is to use reasoning for routine problem solving, while to use learning for increasing the
system’s capability. A concrete example is Soar, where the routine works are carried out
by production rules (as a variant of reasoning), while learning happens as “chunking” that
generates new rules (Newell, 1990).

More recent attempts of integration happens between symbolic reasoning and con-
nectionist learning, as in “neural-symbolic computing” (Garcez et al., 2019). Such ap-
proaches have the potential of combining the advantages of these two competing paradigms,
though the largest issue is still the conceptual conflict of the two. Even though the human
brain/mind complex can be described both at the conceptual level (as in psychology) and
at the neural level (as in neuroscience), it cannot be meaningfully seen as an integration of
a “conceptual part” and a “neural part”.

Contrary to the hybrid and integrated approaches, a unified approach attempts to
mainly depend on a single technique for both reasoning and learning. Therefore, conceptual
consistency will not be an issue, but the challenge is to provide the functionalities.

Previous examples of using reasoning to carry out learning include the Inference Theory
of Learning, where non-deductive reasoning, such as induction and analogy, are effectively
learning rules (Michalski, 1993). Also, since Bayesian theorem can be interpreted either as
a reasoning rule or a learning rule (Pearl, 1990; Heckerman, 1999), the two functions are
naturally unified in a Bayesian network.

In recent years, the successes of deep learning drove many researcher to use this technique
for reasoning. Here the basic idea is to see reasoning as a special type of input-output
mapping, which can be learned just like other mappings (Santoro et al., 2017; Saxton et al.,
2019; Banino et al., 2020; Minervini et al., 2020).

As usual, each of these approaches has its strength and weakness. This article is not a
survey on this topic, though some of the issues will be further analyzed in the following.
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3. Reasoning and Learning in NARS

This section briefly introduces how NARS carries out reasoning and learning as the same
process. As NARS is a complicated system and has been covered in many publications,
including (Wang, 1995, 2006, 2013), the papers at the author’s website, and the OpenNARS
project website1, here only the most relevant aspects of NARS are described.

3.1. NARS as an AGI

NARS is an AI model aimed at capturing the essence of intelligence and realizing the major
cognitive functions observed in the human mind. The model is based on the theory that
intelligence is the ability of adaptation under insufficient knowledge and resources (Wang,
1995, 2019b).

Here “adaptation” is basically what “learning” means in psychology, though not the
algorithmic learning specified previously.

“Insufficient knowledge” means the problems faced by the system are often novel, so
the system has no existing algorithm to follow as in Turing computation, nor the training
data required by the conventional learning algorithms to learn a problem-specific algorithm.
Therefore, a different type of problem solving mechanism is needed.

The restriction of “insufficient resources” requires the system to work in real time, in
the sense that new problems may appear at any moment, and usually come with various
time requirements, such as to be finished as soon as possible. Since the demand and supply
of resources—especially computational time—change from time to time, the system cannot
depend on problem-specific algorithms, as their time expense is fixed for a given problem
instance in a specific implementation, and has no flexibility.

Consequently, the working definition of intelligence accepted in NARS prevents the
system from depending on Turing computation or algorithmic learning for each problem
class, but have to directly process each problem instance in a case-by-case manner, using
whatever knowledge and resource available.

NARS still consists of basic processes following predetermined algorithms, though not
at the problem-solving or task-processing level. The granularity of its executable process
is much smaller than the ordinary AI systems, as the “Peewee Granularity” suggested by
Thórisson and Nivel (2009). The basic steps in NARS are organized flexibly at run time to
solve various problems, similar to production rules (Newell, 1990) and codelets (Hofstadter
and Mitchell, 1994). A key difference between NARS and the previous techniques is that as
NARS is designed to be a general-purpose AI, or Artificial General Intelligence (Goertzel
and Pennachin, 2007), it cannot be equipped with problem-specific steps, nor to leave that
for the user to provide for each problem. Instead, the system needs a set of domain-
independent processing steps that can be combined to solve a wide range (if not all) of
problems.

Though the above request looks hard to meet at first glance, it is exactly what is expected
from a logic, in the original and ordinary sense of the word, that is, a set of well-justified
rules that each only takes a small amount of knowledge and resources to work, and can be
combined to solve problems in many domains.

1. http://opennars.org/
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This is why NARS is built as a reasoning system that follows a logic. Of course, it
cannot be the proof-oriented mathematical logic or its close variants. Among the functions
missed in ordinary reasoning systems, it is learning that NARS must have.

3.2. Extended form of reasoning

An adaptive reasoning system is fundamentally different from an axiomatic reasoning sys-
tem, as the former must face a changing environment, so it is absolutely necessary for the
system to be able to revise its beliefs according to its experience. With the assumption
of insufficient knowledge, it means no belief can be taken as an “axiom” in the sense that
its truth-value cannot be challenged by new experience, and this is why NARS has “non-
axiomatic” in its name, which stresses its key difference from the traditional systems. On
the other hand, NARS also has “reasoning system” in its name, as it still follows a logic.

Without a set of axioms as reference, how can NARS decide the truthfulness of a state-
ment? Being adaptive, NARS uses an experience-grounded semantics, and judges the truth-
value of each statement by its extent of agreement with the system’s relevant experience, or
available evidence (Wang, 2005). According to this definition, non-deductive reasoning—
such as induction, abduction, analogy, and so on—become justifiable, as they are still
truth-preserving in the sense that their premises support the conclusion to the extent indi-
cated by the truth-value (Wang, 2013). Similarly, the meaning of a term used in the system
is determined by its role in the experience, so may change as the system is running and
getting new experience.

NARS’ primary work is not theorem proving, but achieving its goals according to its
beliefs obtained from its experience. Since accurately predicting the future is impossible,
what reasoning does is to relate the current situation to the past situations to treat novel
objects as familiar ones. In a broad sense, all reasoning is analogy as argued by Hofstadter
(1995). For this reason, the basic statement in NARS does not describe the relation among
objects in the world, but the substitutability among concepts, that is, to what extent concept
A can be treated as concept B.

The formal language suitable for such statements is not predicate calculus, but the
categorical language used in term logic, as exemplified by Aristotle’s Syllogistic (Aristotle,
1989), where the typical form of a statement consists of a subject term and a predicate
term, with a copula indicating their substitutability. Using these categorical statements as
premises and conclusions, the syllogistic rules specify the various ways the substitutability
transfer among the terms. In this format, Peirce found an elegant way to uniform deduction,
induction, and abduction, by taking the latter two as the former one with a premise switched
with the conclusion (Peirce, 1931).

In NARS, the rules used by Aristotle and Peirce are extended from binary to multi-
valued, with the truth-value interpreted as a measurement of evidential support, so as to
consistently justify deduction, induction, and abduction, as well as many other inference
rules (Wang, 2013):

• The revision rule combines truth-values coming from disjoint evidence bases.

• The choice rule selects the best answer for a question by balancing evidential support,
simplicity, and other factors.
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• The compositional rules build compound terms from existing terms to express expe-
rience more efficiently.

• Statements are extended to represent events with time-stamped truth-value, so as to
support temporal and causal reasoning.

• Events are extended to represent operations (executable/realizable statements) and
goals (statements to be realized) to support procedural reasoning, as in logic program-
ming (Kowalski, 1979).

• Via a sensorimotor interface, NARS can send commands and receive feedback from
connected hardware/software devices, so as to control sensors and actuators.

Each problem usually takes multiple inference steps to solve. Since each rule is justified
independently, there are many different ways to combine them for a given problem. Under
the knowledge restriction, NARS normally does not know the optimal procedure (that is,
the problem-specific algorithm); under resource restriction, the system cannot exhaustively
explore every possible path.

In this situation, what NARS does is controlled concurrency (Wang, 2006), which is
similar to the time-sharing mechanism in operating systems. Conceptually, there are many
tasks under processing in parallel, and the system moves among them and carries out one
inference step on one of them in each time slot. The system does not equally treat every task,
or every possible path (formed by the beliefs accessed) of processing a task, but gives each
of them a relative priority value to indicate its rank in resource allocation. Each priority
value is a summary of the relevant factors evaluated according to the system’s experience.
Tasks and beliefs with higher priority have higher chance to be accessed, and priority values
are adjusted according to the changes in the situation.

Consequently, the reasoning process for a given problem is not designed or learned in
advance, but formed at run time when the problem instance is under processing. The
processing path depends on the available knowledge and resources at the moment, so is
highly context-sensitive. Even if the same problem instance is repeatedly given to the
system, the process and the result may (though not necessarily) be different.

3.3. Learning as self-organizing

The architecture of NARS is shown in Figure 1. The system interacts with its environment
via multiple channels. In some channels, input/output messages are in a language, including
Narsese (the native language of NARS), a computer language, or a human language. Some
other channels connect sensorimotor devices that directly interact with the physical world.
Each channel manages the input and output operations, converts the data formats, and
carries out some preliminary processing.

All input messages are treated as reasoning tasks by the system. There are three types
of task: a judgment to be remembered, a goal to be achieved, or a question to be answered.
Some (selected) tasks from the channels are pooled in the overall experience buffer, where
cross-modality relations are built among them, and some (selected) tasks are entered into
the system’s memory for further processing.
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Figure 1: Architecture of NARS.

NARS’ memory is a concept network, where each concept is named by a term, and
contains the beliefs, desires, and tasks about that term. In each working cycle, a concept
is selected, then a task and a belief (or desire) are select, and all these selections are biased
by the priority of the items involved.

The selected task-belief pair is feed into the inference engine, where they are used as
premises by the applicable rules and produce a number of derived tasks. The derived tasks
are collected in the internal experience buffer for preliminary processing, and the selected
ones among them enter the overall experience buffer, just like the selected input tasks.

After starting, NARS simply repeats the above working cycle until it is stopped from
the outside. In the process, each task is processed using the system’s knowledge (i.e., beliefs
and desires), and at the same time enrich or revise the knowledge. The system’s objective
is not to process any specific task to a predetermined ending condition, but to carry out all
existing tasks as far as possible, that is, as allowed by the available knowledge and resources.

The above is only a highly simplified description of how NARS works, and more details
of the systems can be found in the relevant publications like Wang (2006, 2013), plus the
online documentation and source code of the implementation. For the purpose of this
article, it is enough to show the pervading nature of learning in NARS, as it happens in
various forms in many places in the system:

• New inputs from the channels form the system’s experience, from which the system
learns various forms of knowledge at different levels of generalization and abstraction.

• The judgment tasks are processed in spontaneous forward inference that creates new
beliefs and revise previous beliefs.

• The goals and questions are processed in backward inference that creates new desires
and revise previous desires.
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• Compound terms are composed to summarize experience, including new percepts and
operations as special cases. Compound operations work like problem-specific skills or
programs.

• The priority distributions among tasks, beliefs, desires, and concepts are adjusted
from time to time according to history and context.

• New concepts are formed both from new compound terms and from significantly
changed old concepts.

Overall, these experience-driven changes reorganize the system’s memory to better pre-
dict the future and to use the computational resources more efficiently, so they are indeed
“learning” in the original and general sense of the word (Wang, 2000; Wang and Li, 2016).
However, it is very different from the current machine learning techniques:

• There is no overall learning algorithm.

• The system accepts multiple types of knowledge or data, rather than only the concrete
problem instances.

• The learning process works with any amount of data, and no converging is expected.

• The system learns in real time and is sensitive to contextual time pressure.

• The reasoning processes and conclusions are explainable, at least in principle.

Now we can see why it is claimed at the beginning of the article that reasoning and
learning are unified in NARS, as there is no separate processes for each of the two. Even so, it
is still meaningful to talk about the two functions separately: when the process is considered
as reasoning, the focus is at the individual steps, with its premise-conclusion relations and
their computational implementation; when the process is considered as learning, the focus
is at the long-term consequences of the steps in memory.

4. An Example

In this section, a concrete example is used to show how NARS reasons and learns. Limited
by the length of the article, the description is highly simplified to keep the basics, and only
includes a small portion of the cognitive functions of NARS.

Representation

In this example, only the simplest Narsese statement is used, which has the format of
“S → P”, where S is the subject term, P the predicate term, and ‘→’ the inheritance
copula. The statement intuitively means “S is a specialization of P”, or equivalently, “P is
a generalization of S”. To make the examples understandable, English words are used for
terms, though in NARS the meaning of a term is determined by what the system knows
about it, which will not be the same as what the same word means to a human reader,
though there are certain similarity between the two.
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The truth-value of a statement is written as 〈f, c〉, a pair of real numbers in [0, 1], where
f is frequency, measuring the proportion of positive evidence among current evidence, and
c is confidence, measuring the proportion of current evidence among all evidence at a near
future after a constant amount of new evidence arrives. The formal definition of evidence
in NARS is given in (Wang, 2013), and it is enough to be intuitively understood in this
article. To make the description simple, in the following all given “facts” have the same
truth-value 〈1.0, 0.9〉, that is, as supported by the same amount of positive evidence, and
no negative evidence.

This example starts with three facts:

bird→ animal 〈1.0, 0.9〉 (1)

robin→ bird 〈1.0, 0.9〉 (2)

{Tweety} → robin 〈1.0, 0.9〉 (3)

They intuitively express “Bird is a type of animal”, “Robin is a type of bird”, and “Tweety
is a robin”, respectively. Curly braces are used in {Tweety}, because Tweety is a proper
name, so cannot be treated as “a type of robin” until the extensional set operator (written
as curly braces) turns Tweety into “Tweety-like things”, intuitively speaking.

Deduction

As a term logic, typical inference rules in NARS are syllogistic, in that each rule takes
two premises sharing a term, and derives a conclusion between the other two terms. Since
statements in NARS have numerical truth-values, each inference rule has an associated
truth-value function to calculate the truth-value of the conclusion from those of the premises.

The two factors in a truth-value are interpreted as extended Boolean variables, and the
Boolean operators AND, OR, and NOT are extended from {0, 1} to [0, 1], similar to how
Triangular Norms are used (Bonissone, 1987). Using these operators as building blocks, the
truth-value functions of NARS are established from their boundary conditions determined
according to the experience-grounded semantics. Since truth-value calculation is not the
focus of this article, in the following the results are directly displayed and their properties are
discussed, without explaining the truth-value functions involved. For the formal definitions
and derivations of all the truth-value functions of NARS, see (Wang, 2013).

The deduction rule requires the subject of the first premise to be the same as the
predicate of the second premise. Using pairs (1)-(2) and (2)-(3) as premises, the deduction
rules derived (4) and (5), respectively:

robin→ animal 〈1.0, 0.81〉 (4)

{Tweety} → bird 〈1.0, 0.81〉 (5)

Finally, from (4)-(3) or (1)-(5), the following conclusion is derived:

{Tweety} → animal 〈1.0, 0.73〉 (6)

In the above deductions, since all evidence involved are positive, the conclusions all have
frequency 1.0 (purely positive), though the confidence values get lower and lower with the
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increasing of inference steps, indicating the decrease of the stability of the judgments when
challenged by new evidence.

If the truth-values in the premises and conclusions are all omitted and all statements are
taken as (binary) true statements, the inference remains valid. It shows that the deduction
rule extends the transitivity of the inheritance copula from binary to multi-valued.

Induction

The induction rule requires the two premises to share the same subject. In this example,
after the system is given

{Tweety} → [yellow] 〈1.0, 0.9〉 (7)

where square brackets are used in [yellow], because yellow is an adjective, so needs to be
turned into “yellow things” by the intensional set operator (written as square brackets), so
as to serve as the predicate in an inheritance statement.

From (3) and (7), the induction rule derives the following conclusion

robin→ [yellow] 〈1.0, 0.45〉 (8)

What happened here is the property of “being yellow” is generalized from {Tweety} to
robin. Since the conclusion states about a larger number of situations than the premises,
such an inference is “ampliative” and therefore invalid according to the traditional theories,
as argued by Hume (1748). Induction and other non-deductive inference become justifiable
in NARS, because reasoning is no longer taken as theorem proving but a form of adaptation,
or learning, where a conclusion is evaluated against past experience, not future experience or
objective reality. In the above example, {Tweety} provides a piece of positive evidence for
the conclusion, as indicated by the truth-value. Again, the detail of truth-value calculation
is explained in (Wang, 2013), though it can still be seen that with the same truth-values
of the premises, inductive conclusions are less confident than deductive conclusions. In
NARS, induction is a form of “weak” inference while deduction is “strong”. Therefore, the
traditional distinction between the two types of inference still exists in NARS, except that
here it is a quantitative difference, not a qualitative one.

Given the symmetry of the premises, from (7) and (3) the induction rule also derives

[yellow]→ robin 〈1.0, 0.45〉 (9)

because positive evidence supports inheritance in both directions. However, since negative
evidence only effects one of the two conclusions, (8) and (9) may get different truth-values
in the long run. This will become more clear after the revision rule is described in the
following.

For the same reason, (5) and (6) can be used with (7) to get more inductive conclusions:

bird→ [yellow] 〈1.0, 0.42〉 (10)

animal→ [yellow] 〈1.0, 0.40〉 (11)

They show that NARS can generalize the same observation to different levels. Unlike in
machine learning algorithms, in NARS there is no “inductive bias” that favors certain
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specific generalizations among all possibilities. Instead, different levels of generalizations
can coexist, though usually with different truth-values and usages. Of course, NARS will
not attempt to exhaust all possible generalizations of an observation, but only produces the
ones obtained under the existing knowledge and resource restriction.

Abduction

The abduction rule is symmetric with the induction rule, and requires the two premises to
share the same predicate. In this example, after the system is given

goldfinch→ [yellow] 〈1.0, 0.9〉 (12)

from (12) and (7) by abduction, it is derived

{Tweety} → goldfinch 〈1.0, 0.45〉 (13)

In this case, “being yellow” provides positive evidence for Tweety to be judged as a goldfinch,
though abduction is also a form of weak inference, so the confidence of the conclusion is
relatively low, as in induction.

Peirce (1931) considered the cognitive function of abduction to be explanation, which
can be applied to this example, that is, “Tweety is a goldfinch” explains why it is yellow.
However, in NARS the rules are defined and applied in a formal way, so to say the above
inference is abduction, it is completely because of the pattern it has.

Revision

In each inference step, only the premises are considered, so the above abductive step does
not consider that Tweety cannot be both a robin and a goldfinch. However, further inference
may reveal such contradictions, then the revision rule will be invoked. The premises of the
revision rule are two judgments that are about the same statement, but their truth-values
are based on disjoint bodies of evidence. In the conclusion, the evidence from both premises
are pooled, and the truth-value is calculated accordingly.

To continue the current example, assume from some source the system gets the following
judgment that has negative evidence only:

{Tweety} → animal 〈0.0, 0.9〉 (14)

From (14) and the earlier conclusion (6), the revision rule generates

{Tweety} → animal 〈0.23, 0.92〉 (15)

which is mostly negative, because (14) is based on more evidence than (6).
Since (6) is derived from other judgments, the revision process does not stop here.

From (14) and the relevant judgments, eventually the following revision conclusions will be
produced, where the step-by-step process is omitted:

robin→ animal 〈0.84, 0.83〉 (16)

{Tweety} → bird 〈0.84, 0.83〉 (17)
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bird→ animal 〈0.93, 0.91〉 (18)

{Tweety} → robin 〈0.93, 0.91〉 (19)

robin→ bird 〈0.96, 0.90〉 (20)

This example shows that even the initial input “facts” can be revised to different extents,
depending on their relations with other knowledge obtained from the experience.

Composition

From (7) and (5), a composition rule derives the conclusion

{Tweety} → ([yellow] ∩ bird) 〈1.0, 0.73〉 (21)

This rule is different from the other rules introduced earlier in that it constructs a
compound term that intuitively means “yellow bird”, which was not in the premises.

Composition rules build various types of compound terms from the terms in the premises,
as attempts to find patterns and to summarize experience. This is one way to create
new concepts in the system. It is usually impossible to decide whether a new concept
will be valuable, as the future is not accurately predictable. What NARS does is to let
concepts compete for resources, and gradually form a relatively stable concept network in
memory with the concepts that have been useful in summarizing the system’s experience
and accomplishing its tasks, while the other concepts are forgotten, sooner or later.

The above description of the example focuses on the inference rules, though at the same
time there are other activities going on, such as the attention allocation mechanism that
selects the premises in each inference step. The selection is priority-based, but to describe
that aspect of the system will be too complicated for this article.

Now we can see that each of the above inference steps can be considered as both reasoning
and learning, according to certain interpretation of these notions. When the focus is on the
relationship between the input and output of each step, we see reasoning; when the focus
is on the consequence of each step, we see learning.

5. Conclusions

What distinguish NARS from the other AI/ML projects are primarily in its working defi-
nitions of the following basic concepts:

Problem solving. Turing computation properly captures the meaning of “problem solv-
ing” in mathematics and computer science, where a problem is defined on a set of
instances, and the solving process should be repeatable and terminable. However, for
adaptive systems, problem solving should be case-by-case, depending on the available
knowledge and resources at the moment. The Turing computation definition is too
restrictive, not because of the transition function, but the initial and final states,
since the unique initial state excludes memory between computation processes, and
the predetermined final states exclude context sensitivity in deciding the standard for
solutions. What an adaptive system needs is relative rationality (Wang, 2011) and
the corresponding notion of problem solving.
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Intelligence. Though currently “intelligence” has multiple major understandings and each
has its theoretical and practical values, there are reasons to define it as “adaptation
with insufficient knowledge and resources”, as such a definition gives intelligence a
domain-independent identity by taking it as a meta-level capability. On the con-
trary, the current focus on problem-solving confuses intelligence with skills, and con-
sequently fails to distinguish intelligent mechanisms from computational mechanisms
(Wang, 2019b). NARS is a realization of this working definition of intelligence, and
shows many advantages over the other approaches.

Reasoning. The type of reasoning captured by mathematical logic is only a special case
of human reasoning, and there are still types of valid inference outside axiomatic
systems. These two kinds of reasoning systems, axiomatic and non-axiomatic, with
their corresponding logic, are suitable for different situations and purposes. What is
needed for AI most is to recognize the patterns of valid reasoning in everyday thinking,
then to formalize and automatize them, as exemplified by NARS (Wang, 2019a).

Learning. Though machine learning research has achieved great successes, what they have
been focused on is only a special type of learning, when compared to the types of
learning occurring in human cognition. In NARS, learning is taken as self-organizing
activities that occur in many forms and many places in the system, and shows many
desired features (Wang and Li, 2016).

In scientific research, usually we should use a concept with its generally accepted defini-
tion and understanding, unless there is enough reason to challenge the consensus. Here my
major reason is that the above new definitions provide better solutions to many existing
problems, and are also arguably closer to the original meanings of these concepts.

One consequence of the new conceptions is the natural unification of the various cognitive
functions. In this article only the unification of reasoning and learning is discussed, though
in the same spirit many other cognitive functions are also carried out by the same underlining
process in NARS.

Given the complexity of intelligence, cognition, thinking, and the related notions, people
often focus on one aspect of them in research, which is a valid and feasible strategy. However,
just because we can recognize a cognitive function and describe it coherently, it does not
mean that it should be realized in computers as a process independent of the other cognitive
functions. On the contrary, it is very likely to be one aspect of a underlying process that
is also responsible for many other cognitive functions altogether. In such a situation, to
achieve them together may be not only theoretically more coherent, but also technically
easier. NARS is still an on going project, and its further progress will hopefully tell us more
about this strategy toward general intelligence.
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