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Abstract

Causal abstraction is key in finding efficient representations of noisy and complex sys-
tems, for decision-making and prediction of future system states. Hand-crafted causal
abstractions, although accurate and interpretable, can be costly to construct and cannot
generalize to large, novel datasets. In this paper, we explore the information-theoretic con-
cept of causal emergence, its correspondence to recent definitions of causal abstraction, and
the properties of emergent representations that enable more accurate state predictions and
semantic interpretations. Using the bilateral trade network as a case study, we enumer-
ate the conditions under which trade agreements exhibit causal emergence properties, and
show that causally emergent representations are indeed able to provide better prediction
capability than original trade network representations in a variety of cases.
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1. Introduction

Abstract representations of space, time, and information enable us to make predictions,
and therefore good decisions, when faced with complex scenarios. Causal abstraction, in
particular, is required to construct optimal decision-making policies. Its goal is to summarize
a given system while maintaining all causal information in the form of causal dependencies
and intervention effects. Causal abstraction can be performed using expert knowledge or
physical properties, however these methods do not easily generalize to new observational
data sets. In this paper, we focus on quantitative and automated methods; namely we map
recent definitions of causal abstraction by Beckers and Halpern (2019) to networks of causal
variables, using the information-theoretic concept of causal emergence (Hoel et al., 2013).
Causal emergence allows us to reveal a data-driven abstract representation of the observed
bilateral trade network, which provides better (albeit coarser granularity) prediction of
future trade, and which we hypothesize could be useful for assessment of economic policies
(interventions).

Given a set of causally related variables, causal abstraction seeks to find a lower-
dimensional representation of those variables such that the causal information (i.e., effects
of interventions) is preserved. Recent theoretical papers on causal abstraction have care-
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fully defined what it means for a causal system to be abstracted (Beckers and Halpern,
2019; Chalupka et al., 2017), or approximately abstracted (Beckers et al., 2019). These
papers focus on a single pairwise causal relationship. Specifically, a high-dimensional pair
of cause and effect “micro-variables,” which can be mapped to a lower dimensional pair of
“macro-variables” by abstracting away the non-causal details of the system. Causal emer-
gence (Hoel et al., 2013), on the other hand, is an information-theoretic measure defined
on the state progression of networks. The set of all node values (variables) in the network
represents the state of a system, and transitions between possible states are represented
as a transition probability matrix (TPM). Similar to causal abstraction, the method seeks
to find a “macro-node” representation of the network which can accurately approximate
the TPM of the original “micro-node” network. However, causal emergence seeks to im-
prove the causal representation, where that improvement is based on the determinism and
degeneracy of state transitions. These key properties are used to characterize the causal
information of the system, turning the search for macro-nodes into an optimization over
micro-node groupings which increase the determinism and/or decrease degeneracy of the re-
sulting network. The concept of causal emergence has also been adapted by Klein and Hoel
(2020) to provide macro-node groupings for purely observed, non-causal graphs. Section 2
discusses causal emergence and its relationship to causal abstraction and state prediction
in further detail. To the best of our knowledge, we are the first to draw this connection
between the two ideas.

Inferring causal models from macro-economic data is a difficult task, due to unaccounted
for confounding factors which threaten the validity of causal estimates, limits in data avail-
ability such as selection-biased samples (Hünermund and Bareinboim, 2019), and the general
oversimplification of models related to the complex interconnectivity of the global economy.
Many studies focus on pairs of cause-effect relationships (Doremus et al., 2019) using vari-
ants of Granger causal tests (Granger, 1969) or structural vector autoregressions (SVAR)
(Moneta et al., 2011), which force researchers to assume a specific set of potential causal
variables a priori (Hall et al., 2019; Su et al., 2019). Such models are abstractions which em-
bed researcher’s assumptions about the system, and then fit parameters which may turn out
to be statistically significant or predictive, but do not necessarily prove their assumptions.
One extreme case of such hand-crafted abstractions are Computable General Equilibrium
(CGE) models (Aguiar et al., 2019), where relationships between all economic variables are
predefined by simple equations, allowing researchers to study the effects of economic shocks
within a simulated setting. These models, while criticized for their use in analyzing the
North American Free Trade Agreement (Stanford, 1993), are still used by entities such as
the World Bank to determine the causal impact of exogenous shocks to economic systems
(Ianchovichina et al., 2016). Here, the shock variables are not truly exogenous, since one
can only administer shocks to predefined endogenous variables. Causal emergence allows
us to avoid many of the pitfalls associated with these approaches to economic modeling by
deriving causal macro-variables in an automated and data-driven way.

In this study, we focus on discovering a macro-node abstraction of the bilateral trade
network using causal emergence. This abstract representation, which maintains the causal
information of the noisier network of micro-nodes, should indicate the appropriate level of
detail for policy makers to optimize their predictions regarding the effects of their inter-
ventions on the market. With this goal in mind, we test the ability of causal emergence to
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characterize specific trade agreement dynamics, and more generally to improve the predic-
tion of future economic states (bilateral trade). To our knowledge, this is the first paper to
outline the correspondence between causal abstraction and causal emergence, and the first
application of causal emergence to prediction of a real-world time-evolving causal network.
This paper attempts to answer the following:

• How does emergence map to abstraction and should emergent representations impact
prediction accuracy? (Section 2)

• Do trade agreements between countries constitute appropriate causal macro-nodes?
(Section 3.2)

• Does the emergent representation of the bilateral trade network provide better pre-
diction capability than the micro-node representation? (Section 3.3)

Section 2 presents the ideas and implementation details of causal emergence. Section
3.1 describes the economic dataset used in this study. Section 3 presents the experiments
and results and Section 4 contains conclusions and next steps.

2. Causal Emergence

As opposed to the aforementioned recent definitions of causal abstraction which do not
explicitly mention abstracting causal networks of micro-nodes to macro-nodes, causal emer-
gence aims to do just this. It relies on finding coarse-grained macro mechanisms which
are more effective (more deterministic and/or less degenerate) than the underlying micro
mechanisms. The concept of “emergence” assumes that in some specific cases “the whole is
greater than the sum of its parts”, and is contrary to that of “supervenience” (Hoel et al.,
2013), which is the idea that the properties of micro-level systems necessarily determine all
properties of macro-level systems.

Causal emergence relies on the assumption that the effective information (EI) contained
in a causal network’s connectivity is a measure of its causal information, and can be char-
acterized by the uncertainty in the out-weights and in-weights of its nodes. Finding a
causally emergent representation then translates to finding macro-nodes of a network, ei-
ther in space, time, or both, by grouping nodes which have similar causal effect on other
nodes in the network. Specifically, following the definition of Klein and Hoel (2020), EI is
computed as

EI = H(< W out
i >)− < H(W out

i ) > (1)

where W out
i is a vector of edge weights wij from node vi to each other node vj and∑

j wij = 1, <> represents the averaging function, and function H represents Shannon

entropy (Shannon, 1948). The first term H(< W out
i >) characterizes the extent to which

uncertainty is distributed across the entire network, thereby offering an understanding of
how degenerate the network is. If the average of the outweights from all nodes i to any given
node j is particularly high (resulting in low entropy, high degeneracy), it will be difficult to
determine the previous node in the path (the “cause” from the “effect”). The second term
uses Shannon entropy H(W out

i ) to measure the uncertainty of a node’s output, and averages
this value across nodes to characterize the level of determinism. Nodes with low entropy
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have outweight distributions concentrated on one or few nodes, making it easier to deter-
mine the next node in the path (the “effect” from the“cause”). As a measure of causation,
EI captures how effectively (deterministically and uniquely) causes produce effects in the
system, and how selectively causes can be identified from effects. EI is a general measure
for causal interactions because it uses perturbations to capture the effectiveness/selectivity
of the mechanisms of a system in relation to the size of its state space. EI is maximal
for systems that are deterministic and not degenerate, and decreases with noise (causal
divergence) and/or degeneracy (causal convergence). Although a corresponding increase in
prediction accuracy of the macro-node system representation is not explicitly addressed in
the literature, the optimization of these key properties of causality indicate that if one can
find a macro-level grouping of nodes with a higher EI, it should intuitively lead to a better
prediction model.

In the original definition of Hoel et al. (2013), the maximum EI is found by perturbing
each system through the entire set of possible causal states (“counterfactuals,” in the general
sense of alternative possibilities) and evaluating the resulting effects using EI. Not only is
this combinatorial state-space expensive to estimate for networks of more than a few nodes,
but it assumes access to interventional data, i.e. one must be able to set the network
to any given state and observe the resulting TPM. In Klein and Hoel (2020) the concept
of causal emergence is adapted for purely observed static networks, and an intervention
effect is estimated by dropping a random walker on a particular node in the graph (system
state) and observing its path. The random walker’s path over nodes represents the causal
process of various subsequent system states being realized. The accuracy of the macro-
node representation in this case is determined by whether or not random walkers behave
consistently between the abstracted network (Gmacro) and the original network (Gmicro),
where inconsistency is defined as the Kullback-Leibler (KL) divergence between the expected
distribution of random walkers on Gmacro and Gmicro given identical initial conditions.

Note that the causal emergence process differs from the community detection problem
of graph theory in that community detection is focused on subgraphs that have more in-
group connectivity than out-group, whereas macro-nodes represent subgraphs that possess
a viable summary statistic in terms of their behavior in the network, and therefore macro-
nodes can exist over a range of connectivity patterns. Additionally, after finding appropriate
subgraphs, macro-nodes are a recasting of the network itself (Griebenow et al., 2019).

2.1. Mapping Emergence to Abstraction

Klein and Hoel (2020)’s definition of emergence can be mapped to Beckers et al. (2019)’s
definition of approximate causal abstraction. Following the terminology in Beckers et al.
(2019), the function τ which maps micro to macro-variables in causal emergence is simply
an aggregation of system states (nodes), either in time or (network) space. A τ -abstraction
is one for which τ induces a natural mapping between interventions in the two spaces, which
in the case of causal emergence is captured by the four methods of aggregating micro-node
edge weights into macro-node edge-weights outlined in Klein and Hoel (2020). This is also a
strong τ -abstraction since once the new edge weights are calculated all interventions on the
macro-level model are allowed, and more specifically it is a constructive τ -abstraction since
the individual macro-variables can be computed from non-overlapping subsets of micro-
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variables. Finally, it is a constructive τ −α approximate abstraction since the interventional
effects between Gmicro and Gmacro differ by at most α, where α is the value of the KL diver-
gence between random walker distribution over micro-nodes vs macro-nodes. By mapping
causal emergence to the definitions from causal abstraction theory, we further validate its
usefulness in causal inference.

2.2. Implementation Details

Since the EI of a network is dependent on the network’s size N , we use the normalized form
of EI known as “effectiveness” to better compare graphs of different sizes (e.g. before and
after creating a new macronode). Effectiveness ranges from 0.0 to 1.0 and is computed as

effectiveness =
EI

log2(N)
(2)

This differs from the publicly available implementation provided by Klein and Hoel (2020),
which can lead to counterintuitive results because it uses EI.

Another known issue with the available implementation is that the use of “out-weights”
alone skews results for smaller networks which contain nodes that do not have any emanating
edges. These nodes are ignored in the computation of EI and effectiveness, resulting in the
counterintuitive result shown in Figure 1. Due to the size of our trade network we do not
implement any adjustment for this here, but we believe it should be considered in future
work.

Figure 1: EI (and effectiveness) for Motif 2 are higher than for Motif 1 despite Motif 1 being
a perfect causal chain with theoretical determinism = 1.0 and degeneracy = 0.0 according
to Hoel et al. (2013).

3. Experiments and Results

In this section, we describe our exploration regarding emergence of trade network macro-
nodes. Given our bilateral trade network (described in section 3.1), we seek to understand
whether trade organizations and agreements can be considered macro-nodes, and whether
the measure for causal emergence naturally groups countries at the macro-level in a way
that positively affects prediction of future trade. Since we do not have direct intervention
capabilities on the bilateral trade network as outlined in Hoel et al. (2013), we employ Klein
and Hoel (2020)’s formulation for identifying causal emergence on general networks.

Section 3.2 focuses on select trade agreements which naturally partition the bilateral
trade network into macro-nodes (groups of countries) which are likely to exhibit causal
emergence based on their network structure, according to the findings of Klein and Hoel
(2020). We examine causal emergence on those trade agreements and compare it to that of
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randomly selected sets of countries. In Section 3.3, we test our hypothesis that the macro-
node representation of a system should achieve better prediction accuracy on future states
of the system by comparing the prediction capabilities of network features on bilateral trade
using a traditional regression approach.

3.1. Bilateral Trade Network

We make use of the BACI International Trade Database (Gaulier and Zignago, 2010) in
order to re-construct the bilateral trade network over a span of several years. Trade networks
constructed from this data are ones in which each country is represented by a node, and
the directed, weighted edges between country nodes represent the export volume from the
origin country to the destination country. Although this is not an explicitly causal network,
the aggregation of products traded between countries represents the flow of trade and can
be thought of as a causal process in which resources transition from state to state, or
country to country. The resulting macro-nodes have implications regarding trade policies
and agreements as described in section 3.2.

The database provides bilateral trade data that is disaggregated into the Harmonized
System (HS Rev 1992, 4-digit level). The data consists of import and export values for var-
ious origin-product-destination triplets, and has been cleaned to ensure consistency among
importer and exporter trade reports for each given product (Feenstra et al. (2005), Jun
et al. (2019)). We filter our data following the work of Jun et al. (2019), focusing on the
years 2000-2017. Our analyses include countries with a population of at least 1.2 million
and trade volume of at least one billion (US dollars). As in Jun et al. (2019), we also remove
data related to Iraq, Chad and Macau.

3.2. Emergence of Trade Agreement Macro-Nodes

Klein and Hoel (2020) outlines a number of useful conditions under which the opportunity
for causal emergence, or an increase in effectiveness, exists. In general, effectiveness in-
creases when nodes that have the same causal effect on the rest of the network are grouped
together, thereby increasing determinism and decreasing degeneracy. With regard to net-
work structure, this corresponds to networks which have clusters (groups of nodes) that are
either a) bipartite-like with connections mostly existing between clusters or b) clique-like
with connections mostly within clusters and where the relative sizes of clusters differ (size
asymmetry). These conditions create a high level of uncertainty or noise in the network,
since a network with size asymmetry has a less evenly distributed < W i

out > and therefore
high degeneracy, and a network with very low (bipartite) or very high (clique-like) within
cluster connections has low determinism. This uncertainty or noise can more likely be
reduced by an emergent macro-node representation.

We consider two trade agreements as potential macro-nodes. The first is the Organiza-
tion of the Petroleum Exporting Countries (OPEC), a trade organization created in 1960
by oil-producing countries that coordinates the petroleum policies of its members. We in-
clude only countries that were members of OPEC for the year span of 2000-2017 - Algeria,
Congo, Ecuador, Iran, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, United Arab Emirates,
and Venezuela. In the context of the bilateral trade network, it seems intuitive that the
countries within OPEC have a similar causal effect on the rest of the network. In addition,
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Table 1: Effectiveness values (and percent change in effectiveness) resulting from manual
grouping of trade agreements into macro-nodes. Effectiveness of bilateral oil trade network
in which OPEC countries are grouped is higher due to the coordination of policies and
shared causal effect on the rest of the world.

2000 2005 2010 2015
Original Network .521 .529 .512 .484

OPEC .546 (+4.8%) .549 (+3.8%) .535 (+4.5%) .503 (+3.9%)
NAFTA .515 (−1.2%) .516 (−2.5%) .508 (−0.8%) .478 (−1.2%)

Random Grouping .509 (−2.1%) .516 (−2.5%) .498 (−2.7%) .457 (−5.6%)

a macro-node including OPEC would be both asymmetric (since OPEC is a small subset
of total countries which trades widely with the rest of the world) and bipartite-like (since
member countries mainly export crude oil to non-OPEC nations and there is minimal trade
of oil between those importing countries). Therefore, we hypothesize that causal emergence
will be significant in this context. The second is the North American Free Trade Agreement
(NAFTA), created in 1994, which is a treaty entered into by the United States, Canada,
and Mexico that eliminates all tariff and non-tariff barriers of trade and investment be-
tween member countries. Typical items traded include fruits, vegetables, textiles, vehicles
and auto parts, and mineral fuels. While NAFTA resulted in increased trade within its
member countries, it did not make any stipulations for trade with the rest of the world. As
such, NAFTA countries are likely to differ in their trading patterns with outside countries
and are therefore not likely to have the same causal effect on the rest of the network. By
grouping them, we actually lose information related to those patterns. Therefore, a macro-
node containing NAFTA countries is unlikely to show causal emergence because it would
have significant between and within cluster connections.

Since OPEC is a crude oil trading organization and crude oil is also one of the top
products traded between NAFTA countries, we restrict our focus to the crude oil trade
network, i.e., directed, weighted edges between two countries represent the amount of crude
oil exported from one country to the other. Using this network, we tested the hypothesis
that grouping OPEC countries by trade agreement membership should increase the effec-
tiveness of the oil trade network, while grouping NAFTA countries should offer limited, if
any, improvement. We compare the effectiveness of the original oil trade network Gmicro

to that of three modified Gmacro trade networks with OPEC members grouped, NAFTA
members grouped, and a randomly chosen set of countries (with no formal trade agreement)
grouped into one macro-node. The modified networks are said to exhibit causal emergence
if the effectiveness of the network increases after grouping nodes, and causal reduction if
effectiveness decreases.

Table 1 shows the effectiveness values and percent change in effectiveness from manually
grouping macro-nodes in the networks corresponding to four different years. The results
presented in the “Random Grouping” row are an average over 20 trials, each with a different
set of randomly chosen countries. The results confirm our hypotheses that grouping OPEC
countries into a macro-node results in causal emergence whereas grouping NAFTA results
in causal reduction. Finally, as expected, randomly grouped countries show the greatest
causal reduction since these groups have no formal organization.

We also ran the greedy algorithm implementation on the entire crude oil trade network
to see whether we could find any semantic meaning or economic interpretation of the result-
ing macro-nodes. While the algorithm was able to find abstractions for each Gmicro that
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exhibited causal emergence, the macro-nodes found were not entirely intuitive. Each coun-
try within NAFTA belongs to separate macro-nodes, as expected based on our results from
the manual grouping above. However, OPEC countries were also spread across multiple
macro-nodes. While most of the OPEC countries fell into one macro-node, the remainder
were either placed in other macro-nodes or remained micro-nodes. In addition, the macro-
node that contained the largest number of OPEC countries also contained a large number
of non-OPEC countries. These results, combined with the manual grouping results above,
indicate that while the OPEC trade agreement is a driving causal force in the network,
there are more complicated trade patterns remaining to be considered.

3.3. Prediction Capability of Emergent Representations

Following Jun et al. (2019), we formulate a regression model for predicting bilateral trade
volume at future time points. Since the goal of Jun et al. (2019) was to determine whether
product or geographic neighbor relatedness played a significant role in predicting bilateral
trade flows between countries, their regression model relied on independent variables which
included three measures of relatedness (product, exporter, and importer) as well as standard
gravity model-related measures such as gross domestic product, geographic distance between
origin and destination, and language proximity.

Since our goal is to determine whether the macro-node representation of the trade
network provides a better basis for prediction of future export volume between two countries,
we instead focus solely on independent variables related to network structure features. By
doing so, we avoid having to make ad-hoc choices for the mappings between micro and
macro-node gravity features which may not make sense. For example, since importer and
exporter relatedness are partially based on geographic distance between two countries, we
would need to define the geographic location of a macro-node, which is an aggregate of
multiple countries. Averaging over pairwise distances between countries in the macro-node,
or taking the centroid of all country locations are not desirable approaches if the countries
in the macro-node are globally spread out. Network features, however, have been proven
to impact the evolution of trade (Kosowska-Stamirowska, 2020) and are straightforward
to compute on both the Gmicro and Gmacro networks. As shown by the abbreviations in
Figures 2 and 3, the network features we use as independent variables in the regression model
include number of common neighbors, in-degree, out-degree, closeness centrality (Freeman,
1979), betweenness centrality (Brandes, 2001), PageRank centrality (Page et al., 1999),
and eccentricity of both the origin and destination countries. Using the louvain clustering
algorithm (Blondel et al., 2008), we also include a variable indicating whether or not the
origin and destination countries belong to the same community.

As in Jun et al. (2019), we split the results into three time periods based on the Global
Financial Crisis (GFC) starting in 2007. These correspond to 2000–2006 (pre-financial cri-
sis), 2007–2012 (crisis period), and 2013–2017 (recovery period). We also add a regression
model for the full time period of the dataset (2000-2017). In order to check whether our
results are product-dependent, we construct three different views of the trade network by
summing the export values of all products, oil products (crude oil, refined petroleum, and
petroleum gas), and fruit products (bananas, tropical and citrus fruits, grapes, melons, ap-
ples, pears, pitted and other fruits) between countries to create the edge weight values. For
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Table 2: Resulting R2 coefficients for regression models built using the time period of the
entire dataset, 2000–2006 (pre-financial crisis), 2007–2012 (crisis period), and 2013–2017
(recovery period), and using either all products, only oil products, or only fruit products.
In all cases we see that the regression model fit is better for the Gmacro representation.

Product Type Years Prediction Horizon R2,Gmicro R2,Gmacro

All Products 2000− 2017 1 year .578 .686
2 years .574 .693

2000− 2006 1 year .577 .677
2 years .574 .707

2007− 2012 1 year .577 .682
2 years .574 .674

2013− 2017 1 year .589 .715
2 years .592 .733

Oil Products 2000− 2017 1 year .244 .447
2 years .238 .458

2000− 2006 1 year .248 .458
2 years .245 .460

2007− 2012 1 year .252 .440
2 years .246 .455

2013− 2017 1 year .237 .461
2 years .240 .483

Fruit Products 2000− 2017 1 year .310 .487
2 years .306 .474

2000− 2006 1 year .313 .461
2 years .314 .456

2007− 2012 1 year .311 .522
2 years .302 .502

2013− 2017 1 year .298 .510
2 years .299 .492

each time periods and view, we compare the quality of the regression model of the original
trade network Gmicro to that of the abstracted trade network Gmacro by running the causal
emergence algorithm to automatically identify macro-nodes in the network, recalculating
network features based on these macro-nodes, and re-fitting the regression model.

We find that for all twelve cases, Gmacro provides a better R-squared coefficient than
Gmicro, indicating a better prediction model, and supporting our hypothesis that causal
emergence increases the predictive ability of the emergent network. These results are shown
in Table 2. The biggest improvement in model fit is found using the recovery period data for
only oil-related products with a 2-year prediction horizon, followed by a 1-year prediction
horizon. We hypothesize that this may be due to the relative stability of other sectors with
respect to oil prices experienced during the post-GFC of 2014-2016 (Mensi, 2019). Figures
2 and 3 show the regression results for that largest improvement (Table 2, bold).

4. Conclusion

The goal of this paper is to explore the concept of causal emergence as it relates to defi-
nitions of causal abstraction, the properties needed for accurate state predictions, and the
semantic meaning behind emergent macro-nodes of the bilateral trade network. To our
knowledge, we are the first to explore these connections between causal abstraction, causal
emergence, and prediction. In Section 2, we established the correspondence between defi-
nitions of causal abstraction and causal emergence and discussed how causally abstract (or
emergent) representations should theoretically impact prediction accuracy. In Section 3.2,
we outlined cases where causal emergence of trade agreement macro-nodes do or do not
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Figure 2: Regression Results for Predicting Future Bilateral Trade from Gmicro, Oil Prod-
ucts only, 2013-2017

Figure 3: Regression Results for Predicting Future Bilateral Trade from Gmacro, Oil Prod-
ucts only, 2013-2017

occur. Finally, in Section 3.3, we showed that the automatically-identified macro-level net-
work representations (via the greedy algorithm) are indeed able to provide better prediction
capability than the original trade networks in a variety of cases. As such, we contend that
this work is one step towards the broader goal of developing automated algorithms to find
optimal and efficient abstract representations that maintain the faithfulness of causal rela-

48



Causal Emergence of Bilateral Trade

tionships for improved prediction of future states from large, noisy, complex data sources.
These automated algorithms overcome drawbacks associated with hand-crafted abstractions
which, although easily interpreted and accurate, do not generalize to the larger and novel
datasets commonly collected today. On the other hand, automated abstraction methods
may produce uninterpretable results, as evidenced by the discrepancy between the expected
and actual results of the greedy algorithm (described in Section 3.2). Our future work fo-
cuses on novel methods which narrow the gap between these two types of abstraction. The
applications of such methods extend beyond economic trade networks to any domain in
which data can be represented as a causal graph, such as vehicle health maintenance and
digital twin systems, decision-making sciences, and social influence networks.
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