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Abstract

Intensive longitudinal data (ILD) could be a solution for two problems in psychology: 1)
In traditional experiments and survey studies, findings are not necessarily representative
of the real-life constructs and relationships studied, and 2) Group-level analyses commonly
mischaracterize or obscure relationships for individuals. Popular analytic methods within
psychology are currently not well-equipped to use ILD for causal discovery and causal infer-
ence, however. We have performed the first causal discovery analysis on ILD, encountered
some challenges, and developed some solutions to these challenges. This paper describes
our application of causal discovery to an example ILD dataset, and addresses two particular
challenges that arose: 1) How should one address variables measured on different timelines,
and 2) What number of observations is needed for individual-level analysis.
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1. Introduction

For the last several decades, there has been growing interest among psychological scientists
in using intensive longitudinal data (ILD) as a solution for two problems in psychology: 1) In
traditional experiments and survey studies, findings are not necessarily ecologically valid, or
representative of the real-life constructs and relationships studied (Reis and Gable, 2000)
and 2) Group-level analyses commonly mischaracterize or obscure relationships between
variables at the individual level (Kievit et al., 2013; Molenaar, 2004). Accordingly, ILD
are increasingly used to identify ecologically valid targets for interventions (i.e., variables
that, when manipulated, should cause a change in clinical outcome) and map out causal
relationships between variables within people. However, popular analytic methods within
psychology are currently not well-equipped for causal discovery. Because causal discovery
methods are not commonly used for ILD, a number of challenges may arise for which there
are no widely known solutions. The purpose of this paper is to describe the application of
causal discovery algorithms to an example ILD dataset and address two challenges that arose
in the process: how to address variables measured on different timelines and the number
of observations needed for individual-level analysis. We first begin by describing common
analytic techniques used for analyzing ILD in psychology, then move to the application of
causal discovery to ILD.
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2. Intensive Longitudinal Data (ILD)

In ILD, researchers sample constructs of interest in real time, often via self-report surveys
delivered to a participant via mobile device, or by passively collecting information from a
wearable or portable device, such as heart rate or GPS location (Bolger and Laurenceau,
2013). ILD is distinguished from non-intensive longitudinal data by the higher volume
of assessments per person, usually with a daily or multiple-per-day assessment schedule,
as compared to assessments being separated by weeks, months, or years in traditional
longitudinal studies (Bolger and Laurenceau, 2013). Several terms are used to describe ILD
and similar data types. Though the terms are not always applied uniformly, in general,
‘experience sampling methodology’, ‘ambulatory assessment’, and ‘ecological momentary
assessment (EMA)’ often refer to similar types of ILD. The important common factor is
that the method involves sampling the constructs of interest in real time (i.e., momentary
assessments). In this paper, we use the term ILD to refer to methods that include repeated
momentary assessments captured within participants.

ILD could also be referred to as ‘time series data’ in that repeated measurements are
collected over time. In psychology, the term ‘time series’ invokes connotations of the meth-
ods used to analyze time series data, such as controlling for autocorrelation and predicting
patterns, rather than explaining them, as is more common in psychology (Jebb et al., 2015).
Further, time series data are typically sampled at regular intervals, but in many psycholog-
ical ILD studies, surveys are administered at irregular time intervals. As a result of these
differences, the term ‘time series data’ is not as commonly used to describe datasets in
psychological literature.

Daily diary datasets are also considered a subtype of ILD, but daily diary protocols
entail a once-daily survey that typically measures constructs over the past day rather than
in real time, a methodological distinction which must be taken into account when analyzing
and interpreting the causal structure between variables.

ILD are now collected widely in psychology to measure constructs of interest in natural
environments and at the temporal specificity required to capture meaningful variation in
things like mood (Bolger & Laurenceau, 2013).

3. Standard Analytic Approach to ILD

The average ILD protocol includes 3-4 scheduled assessments per day over the course of
a month with a 75% completion rate for scheduled assessments, resulting in an average of
65-90 completed assessments per person (Jones et al., 2019; Wen et al., 2017). In addition to
scheduled assessments, datasets may also include passive data collection methods (e.g., step
count via fitness watch) or event-based surveys that are initiated by the participant when
an event of interest (e.g., social conflict, cigarette or alcohol use) occurs. Although this data
structure lends itself well to performing idiographic (i.e., individual-level) analyses because
of the relatively high volume of observations collected per person, group-level analyses are
much more common.

The predominant modeling method used to analyze ILD in psychology is referred to
as multilevel modeling, or mixed effects modeling (Hoffman, 2015). This approach enables
researchers to model fixed effects (effects that are the same for all individuals) and random
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effects (which vary by person; Hoffman (2015)). In this paper, we use an ILD dataset mea-
suring alcohol use and mood in young adults multiple times per day. Using the field-standard
analysis method, multilevel modeling, we can look at the between-person association be-
tween mood and alcohol use (e.g., people who have higher positive mood also tend to drink
more) and the within-person associations, though these within-person relationships are typ-
ically still summarized and interpreted at the group level (e.g., across all subjects, higher
positive mood on a given day is associated with higher likelihood of drinking that day).
In the full dataset, there are N = 100 subjects, but in order to facilitate comparisons of
the two analysis methods, we have used just the same eight individuals analyzed in causal
discovery. Using these eight individuals, a multilevel logistic model was used to predict
the odds of drinking from the individual mood variables, including the lagged effects (each
variable at the most immediately preceding time point). The multilevel model included
separate terms for within-subject and between-subject effects. Results showed that, among
these eight people as a group, there were several significant correlates of drinking at a given
time point. These were higher than usual within-subject relaxation (OR = 1.44, p = .012),
within-subject energy (OR = 2.26, p j .001), and lower than usual within-subject stress
(OR = 0.73, p = .032). Between-subject drinking and mood were not related to odds of
drinking. Among lagged variables, endorsing drinking at the previous assessment predicted
endorsement of drinking at the current assessment (OR = 8.56, p j .001), and within-subject
sadness (OR = 0.66, p = .009) and relaxation (OR = 0.64, p = .003) predicted lower odds
of drinking. With enough observations, it is also possible to explore random effects of these
relationships—for example, if there were a random effect for sadness, this would indicate that
the relationship between drinking and sadness varies by individual. Exploring this effect
could reveal that the relationship is very negative for some people and neutral for others.
However, exploring random effects still does not characterize any given individual within
the dataset, and is costly in degrees of freedom. Hence, using multilevel modeling, we can
discover associations between variables in groups, but not individuals.

In addition, a primary disadvantage of multilevel modeling for ILD is that this method is
not capable of discovering the causal structures that underlie the data (e.g., energetic mood
causes drinking), limiting the usefulness of many researchers’ data to inform interventions,
a primary aim of many ILD studies.

4. Application of Causal Discovery to ILD

Applying causal discovery to ILD offers the important advantage of uncovering the potential
causal structures that underlie momentary variables, which is critical information for the
development of interventions. Because this method is novel, there are a number of challenges
that need to be addressed when applying causal discovery to ILD. Below we discuss two
primary issues: variables measured over different time periods and how many observations
are needed to conduct individual-level analyses for ILD.

Addressing variables that were measured over variable time periods. It is
important to understand the assessment schedule for each ILD study before analysis, be-
cause it is exceedingly common for variables to be measured on different time spans. For
example, many researchers measure mood as a momentary variable (i.e., “How [happy] are
you feeling right now?”), but many also measure it over a certain time period (e.g., “Over
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the last hour, how [happy] have you been on average?”). Further, it is common for ILD
studies to include a mix of momentary (i.e., real-time) and retrospective variables, often
measuring the same constructs in both ways (e.g., current alcohol use and use since the last
assessment).

In order to analyze datasets with variable time spans, it is preferable to select a subset
of variables that were measured on the same time span, though this will likely reduce the
number of usable observations. If this is not done, it is possible that variables will be from
overlapping or variable time periods, obscuring interpretation of causal relationships. To
help ameliorate this problem, sometimes ILD researchers include extra assessment questions
that can be used to fill in missing data from another time point. For example, in our example
ILD dataset, alcohol use was measured in real time via participant-initiated surveys, but if
the participant forgot to initiate a survey, they could report alcohol use the next morning, as
well as the precise time range they were drinking (for full study design details, see Carpenter
and Merrill (2021)). This allows the analyst to impute missing real-time information for
alcohol use the previous day, improving the number of observations that can be used in an
analysis of only real-time variables. Using logic from retrospective questions in our dataset,
we were able to improve the number of complete real-time drink reports from 73.96% to
99.18%, substantially increasing the number of observations that could be used for each
participant. If it is known at the time of study design that idiographic causal discovery
analyses are intended to be used, it will greatly facilitate data analysis to design each
assessment to measure the variables of interest on comparable time spans, and to include
the same variables in every assessment.

Example ILD Dataset. Causal relationships between mood and alcohol use were
modeled in a sample of eight individuals who completed an ILD protocol consisting of
multiple daily assessments of mood and alcohol use. Several other variables were measured
at various time points in this study, but they were not measured at every assessment,
producing a very low number of observations per person. Mood and alcohol use were
measured multiple times per day and at almost every assessment, therefore producing the
highest number of observations per person. Mood states included were happiness, stress,
energy, irritability, relaxation, and sadness. Alcohol use was measured as the number of
standard drinks (defined as 12 oz beer, 5 0z wine, or 1-1.5 oz liquor) consumed since the last
assessment. Lagged variables (i.e., mood and alcohol use at the last assessment) were also
added to the model for all variables. We analyzed the eight individual graphs with the most
observations in the dataset in greater detail. In a clinical application of causal discovery,
these graphs could be used to identify targets for a personalized intervention for alcohol
use by examining pathways that lead to alcohol use. For example, subject 1 (see Figure 1)
appears to follow a cycle where drinking leads to happiness, which leads to energy, which
leads to more drinking. In addition, drinking for this individual predicts more drinking
at the next hourly assessment. For this individual, a successful intervention would include
alternative strategies for achieving happiness and energy, and strategies for preventing a
drinking episode from starting, suggesting that perhaps abstinence would be easier for this
individual to maintain than moderation.

How many observations are needed? An average ILD study produces 65-90 assess-
ments per person and recruits an average of 150 participants (Jones et al., 2019). When
conducting group-level analyses on ILD, these sample sizes are sufficient to detect even
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Figure 1: Subject 1’s causal network of mood and alcohol use. Black numbers are
standardized effect sizes for each edge. Green numbers are the intercept for the
node (i.e., mean for the variable). Variables were centered at the individual’s
mean, hence all intercepts = 0.
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very small effects. However, when performing idiographic analyses (analyzing each individ-
ual’s data separately), the number of observations per person is key. It is well documented
that in simulation studies, the precision and recall of causal discovery algorithms declines
substantially as sample size decreases; for examples, see Kummerfeld and Danks (2013);
Kummerfeld and Rix (2019); Biza et al.; Ogarrio et al. (2016). It is less well documented
that the same is true when effect sizes change, however, inference methods typically have
greater recall and precision when effect sizes are larger. We have tested this process in
several individuals from our ILD dataset measuring momentary mood and alcohol, and
the discovered graphs included both strong edges (i.e., connections between variables; r >
0.50) and moderate edges (r > 0.30). We analyzed eight individual subjects with a range
of 30-118 observations per person (M = 80.13, SD = 27.44). We used greedy fast causal
inference (GFCI) (Ogarrio et al., 2016) with default parameters in Tetrad 6.8.0 to generate
causal networks of mood (6 variables) and alcohol use (1 variable) at the current assessment
and at a time lag (¢t — 1), for a total of 14 variables. Background knowledge indicated that
lagged variables cannot be caused by the primary (non-lagged) variables. The discovered
graphs found more edges when the number of observations was higher (r = .66). On aver-
age, 13.5 edges were found, but the number of edges detected was higher and less variable
among the four with 90-118 observations (M = 15.75, SD = 1.26) as compared to the four
individuals with 30-77 observations each (M = 11.50, SD = 3.11). The number of causal
edges detected was also higher and less variable for the higher-observation group (M =
5.75, SD = 0.96) than for the lower-observation group (M = 3.75, SD = 3.50), though the
correlation between number of observations and causal edges detected was weak (r = .08).
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Figure 2: Group graph of mood and alcohol use. Black numbers are the standardized
effect size for the edge. Green numbers are the intercept for the node. All variables
were centered at the group mean, hence each intercept = 0.
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Next, we combined the four people with the highest number of observations together
for a total of 405 observations and generated a group graph to compare with the individual
graphs (See Figure 2). The group graph detected 19 edges, exceeding the average detected
in the individual graphs, and fit was good (RMSEA = 0.0990, CFI = 0.9840). This fit
was slightly superior to Subject 1’s graph (RMSEA = 0.1119, CFI = 0.9690). Each edge
that emerged in the group network was checked to see if it emerged in at least one of the
individual networks (see Table 1). A total of 5 edges emerged in the group network that were
not present in the individual networks (25% of those detected). The group graph omitted
38-50% of the total edges detected in each individual’s network, including between 40-60%
of all directed edges. Further, between 0 and 19% of edges with directions in the individual
networks were reversed in direction in the group network. Of the 15 edges that emerged
in both individual and group networks, 11 were consistent in direction across individuals.
Interestingly, two edges that emerged in the group network (irritable to sad and irritable to
happy) only emerged in the reverse direction in any of the individual networks. These figures
raise the question of whether the group network adequately represents each individual in
the dataset.

The group graph detected five edges that were not present in any of the individual
graphs. To explore the possibility that the group graph was better powered to detect
weaker edges, we examined edge strengths detected in individual and group graphs. The
average absolute edge strength detected in the group graph was r = 0.38, in subject 1’s
graph was r = .42, and the average edge strength of an edge that was not detected in
the individual graphs but was detected in the group graph was r = .27. At first glance,
this would suggest that the group graph was better powered to find weak edges than the
individual graph. However, we also tested the stability of the edges detected in the group
graph as compared to Subject 1’s graph with 200 bootstrapped samples.

Using 200 bootstrap resamples for the group graph and the individual with the highest
number of observations (N = 118, Subject 1), we examined the stability of the edges found
in each graph. There were six different edge types possible for each pair of variables (di-
rected edge in either direction, semi-directed edge in either direction, undirected edges, and
bidirected edges). If an edge emerged as one type consistently in at least 50% of bootstrap
resamples, we classified this edge as moderately stable, and highly stable edges emerged
75% or more of the time. For the group graph, two edges (happy — energy and energy —
drinking) emerged as highly stable, six emerged as moderately stable, and eight emerged
with low stability, such that an edge emerged between the two variables more than 50% of
the time, but the direction and certainty of the edge was variable. For Subject 1’s network,
three edges emerged as highly stable, eight emerged as moderately stable, and three had low
stability. These results show that, although the individual network contains fewer edges, the
edges that have emerged have higher stability than those found in a group graph with three
times the observations. This suggests that combining multiple individuals’ data together
introduces more noise than signal. The improved ability to detect weaker edges is offset
by the decreased stability in edges detected. Further, at a theoretical level, we found that
many edges in the individual graphs were changed or omitted in the group graph, demon-
strating that our group graph did not adequately represent any of the four individuals in
the dataset.
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Table 1: Comparison of Edges in Combined 4-Person Graph vs. Individual
Graphs. The symbol — indicates a directed relationship from left to right, and
— is an undirected relationship. A blank cell indicates that this edge was not de-
tected in that individual’s graph. The last three rows refer to edges that were in
the individual networks but omitted or changed in the group network.

Edge in Combined Graph Subject 1 Subject 2 Subject 3 Subject 4
(lag) Energy — (lag) Drinking - — —
(lag) Happy — (lag) Energy - — — -
(lag) Irritable — (lag) Happy

(lag) Sad — (lag) Irritable — - —
(lag) Sad — (lag) Stress

(lag) Stress — (lag) Irritable
(lag) Drinking — Drinking
(lag)
(lag)
(lag)
(lag)
(lag)

UG
{
1
Ll

lag) Energy — Drinking
lag) Happy — Happy —
lag) Happy — Sad

lag) Relax — Relax

lag) Sad — Sad —

(lag) Stress - Stress — -

Irritable — Relax N

Irritable — Sad — V.
Stress — Irritable — — N
Stress — Sad

Irritable — Happy —

Happy — Energy — — — —
Energy — Drinking — -
Number of edges omitted 8 (50%) 6 (43%) 7 (41%) 6 (38%)

Number of directed edges omitted 3(60%) 2 (40%) 3 (50%) 3 (43%)
Number of edges changed directions 1 (6%) 0 (0%) 1 (6%) 3 (19%)
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To conclude the discussion of how many observations are needed to conduct an idio-
graphic analysis of ILD, based on the results of our analyses, for edges with moderate effect
sizes, it is recommended to have 90 or more observations per individual. Below 90 observa-
tions, edge detection decreased noticeably. At 118 observations, stability of edges detected
was higher than for the group graph. It is worth noting that most ILD studies produce fewer
than 90 observations per person, particularly when observations are restricted to those that
measured the same set of constructs. Therefore, it may be difficult to apply causal discov-
ery to ILD studies that did not consider this analytic approach in advance (i.e., during the
design of the study).

5. Conclusion

The application of causal discovery to ILD is novel and may help to inform clinical in-
terventions and be particularly useful for uncovering relationships between variables for a
given individual, rather than groups. In the current study, we addressed variables that
were measured on different timelines by imputing values based on questions asked in other
assessments and excluding many variables that were not measured on the same time span.
These practices can facilitate causal discovery analyses in ILD datasets. However, when
possible, studies intending to use causal discovery analyses should be designed to measure
as many variables as possible on the same time span. We also found that 90 or more obser-
vations per person is ideal for causal discovery analyses. With this number of observations,
individual-level graphs detected edges of moderate strength and edges emerged with higher
stability than a graph that combined four people’s data together. Results suggest that
causal discovery is feasible in ILD, even at the individual level, as long as the number of
usable observations per person is high (e.g., 90 or more). In future work, we plan to sys-
tematically analyze the performance of causal discovery on larger ILD datasets, and explore
the use of causal discovery methods that are more targeted to time-series data types, such
as (Malinsky and Spirtes, 2018, 2019).
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