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A  PROBABILITY TOOLS

Lemma A.1 (Matrix Bernstein, Theorem 6.1.1 in Tropp|[2015])). Consider a finite sequence {X1,--- , X,,} C R"*"2 of
independent, random matrices with common dimension n, X ny. Assume that

E[X;]=0,Vie [m] and |X;|| < M,Vie [m].

Let Z =Y"" | X;. Let Var|Z] be the matrix variance statistic of sum:

Var[Z] = max { H zm: E[XZ-XZ-T]H, H i E[X;Xi]
i=1 i=1

} |

E[l|Z]]] < (2Var[Z] - log(n1 + n2))"/? + M -log(n1 + n2)/3.

Then

Furthermore, for allt > 0,

Pr{|Z]| = ] < (1 +n2) - exp (_Va[zt]fMt/?)) '

B PROOF OF MAIN RESULT

We state the complete version of the proofs shown in Section [3.4]in this section. Parts of Section and [B.3| have
been stated in Section [3.4] we restate here for completeness. In Section[B.I] we give a concentration bound on the particle
approximation of the latent state. In Section[B.2] we study how the error of inference in each round accumulates through the
sequential planning process. In Section [B.3] we put the pieces together to give the upper bound on the number of particles

needed so that the long-run rewards of the two processes are close. We show the proofs of most of the lemmas in this section
to Section[B.4]

B.1 PARTICLE CONCENTRATION

We first note that at time ¢, since we know the initial state x, the transition matrices Ag.;_1 and By.;_1 and the past actions
Ug, ..., U1, estimating the state z; is equivalent to estimating &g, ..., &_1. We show in Lemmathat we can write the
states as a function of the initial state, past transformation noise and actions, which follows straightly from our definitions of
the processes.

Lemma B.1 (Lemma[3.9). For any t € [T, we can write the state ; as

t—1 t—1 t—1
xt:ZU H AS"(§S+Bs'aS)+II(:)AS'x07 (1)
=0 s"=s+1 s=
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the state i as
t—1 t—1 t—1
xfzz H AS/‘(§S+BS‘U:)+HAS'IO7
s=0 s'=s+1 s=0
and for particle i € [N],

t—1 t—1 t—1
o =3 I Av- (€9 +B,-a,) I 4w

s=0 s’'=s5+1

Recall from Section [2] that the estimation 7, is given by a weighted average of the states of the simulated particles,

N oL@
T = Dimi Wi T

- N o (@)
D1 Wy
and the estimation y; is given by the posterior mean of x} given observations 0.,
t
fx’me?(t Hs:l Plo; | %] zydpe(21.,)
T
fz/mext Hs:l Plo: | zi]dpe(x.)

i)

o~

Yt =

@

3

“

&)

By Lemma (3.9] we know that to estimate x; and zj, it is enough to estimate £y.;—1. Surprisingly, we can further show that

the estimators ¥; and y; can be written as a function of estimators &; o.;—1 and & o.;—1, past actions Uo.;—1 and ug.,_,, and

(N)

the initial state x(. The estimator Et,o:t—l is given by a weighted average of the noise of the particles, 5(():12_1, Y

similar to (@). The estimator Emt,l is given by the posterior mean of the noise given observations, similar to (5). We show

this formally in Lemma|[B.2]

Lemma B.2. Artime t € [T, forany s =0, ...t — 1, if we estimate &, as as given by,

o _Xliwe)

gt,s = N (’L) )
Zi=1 Wy
Ui can be written as
t—1 t—1 t—1
yt = As’ . (gt,s“i’Bs’as) +HAS +Zo-
s=0 s'=s+1 s=0

Moreover, let 74 (€o.4—1) be the distribution of §o..—1, given by the density Hi;é ns(&s). If we estimate &5 as 5575, given by,

ffé;tfl P [OT:t | 56:#17”3::571’550} §edme(§o.6-1)

gﬁ,s = ;
fE(I):t—l P [Oik:t | 66:t—17u8:t—1’x0} dm (€611
Yy can be written as
t—1 t—1 t—1
b = Ay - (& + By ul) + [T As - 2o,
s=0s'=s+1 s=0

By Lemma since g.;_1 and ug.;_1 are determined by 7o.;_1 and 3;_1, to show that 7; is close to 7;, it is enough to
show that & g.s—1 is close to &5 .s—1 in all rounds s = 1, ...,¢ — 1. In this section, we focus on showing how accurately

&t,0:.—1 can approximate & o.,—1 in one time step. We postpone the discussion of how the error of this approximation

accumulates through the process to Section [B.2]

To see how f:ys can approximate Et,s, we study the numerator and the denominator of fAtws and Et,s seperately. To simplify

our notation, we make the following definition.



Definition B.3. We define the scalar v, € R and vector Ty 5 € R for any time 0 < s < t < T as follows:

Yt = /§ P [OT:t | f(,):t—h US:t—lJ«”O] dﬂ't(f(l):t—ﬁy

/
0:t—1

Iys = /5 P [OT:t ‘ fé):t—la Ua:t—uIO] €;d7rt(£6:t—1)'

/
0:t—1

We can further show that since we couple our two processes using the same noise, the posterior mean of the noise given
observations, o01.¢, and actions Ug.;—1 in the approximate process is the same as that given observations, o}.;, and actions
ug.¢_q in the ideal process.

Lemma B.4. Foranytime(0<s<t<T,

Tt = / P [Olzt \ f(’);tﬂa aO:tfleO] dﬂ—t(&):tfl)?
13

i
0:t—1

Iys= / P o1t | €615 To:—1, o] Eodme (€01 )-
13

’
0:t—1

Then, to show that the particle approximation, Et,s, is close to Ets it is enough to show that Et,s concentrates around the
posterior mean of &; ;. We show the relationship between the accuracy of particle approximation and the number of particles,
N, in the following lemma.

Lemma B.5 (Lemma|3.10). Ler M := \/%(1 + 2y/log 3’ /d + 2log ' /d) for some B’ > 1. At time t € [T, for each
s=0,..,t— 1, we have for any 3 < 1,

||Et,s - 'gt,SH < 45M;

holds with probability at least

1 —(d+1)exp(—NB*y/3) — N exp(—f').
We defer the proof of Lemma|[B.2} Lemma[B.4]and Lemma to Appendix

B.2 ERROR ACCUMULATION

In Section[B.1] we studied how the particle approximation concentrates in one time step. In this Section, we discuss how the
error of approximation in one time step can affect the actions in the future and further affect the long-run reward of the
process.

Lemma@] shows that the states of the two processes, x; and x, at time step ¢, can be written as

t—1 t—1 t—1

Ty = H As"(§s+Bs'as)+HAs'x0>
s=0s'=s+1 s=0
t—1 t—1 t—1

I:: H AS”(SSJFBS'U:)JFHAS'IO-
s=0 s'=s+1 s=0

It is easy to see that the distance between z; and x} is determined by the distance between actions in the past time steps,
ao;t_l and uat_l.

Lemma B.6 (Lemma|3.11)). Az timet,

t—1 t—1
Tt —.I‘r = Z ( H As/> B (ae —U:)

s=0 \s/=s+1



The actions us and uf at s = 1, ..., ¢ — 1 is determined by the state estimations, Js and ¥,
us =g(4:) and ug = g(ys).

Moreover, by Lemma[B.2] at time step ¢,

t—1 t—1 t—1

@\t = Ay - (gt,s‘f'Bs'as) +HAS'$O?
s=0 s'=s+1 s=0
t—1 t—1 ~ t—1

gt = AS/ . (fﬁ,s + BS . u:) + H As +Xo-
s=0 s’'=s5+1 s=0

which shows that 7; and 75 are in turn determined by the past actions. Thus, the key step of bounding the error accumulation
is bounding the distance between the actions in the two processes. We show the upper bound on the action distance in the
following lemma.

Lemma B.7 (Lemma . Assume that maxo<s<i<T HE“ - Et,s || = e. At time t, we can show the following bounds on
e — uill.

. UnderAssumptions and fort € [T), let P =1+, Zz;% ps and Z((ltbfl) = Ei;% (Coq+CyLy)®. Then,
we have

Gy —uf|| <LySO (14 LGl e
t t 9~a g~bHap
» Under Assumptions and Sfort € [T), let y® 140, ZZ;% pS and i((ltb_l) =1+4+Cy Zi;?(’) p5y. Then,
we have
U — | < LySP (14 CpyS V) e
I il < Lg%y 9% ab
We defer the proof of Lemma[3.12]to Appendix [B:4] Lemma[3.11|and Lemma [3.12] together show that we can bound the

distance between the states and the action of the two processes in terms of the accuracy of the particle approximation of
transformation noise &;.

B.3 BOUND ON REWARD DIFFERENCE

In this section, we combine the results from Section and Section to show an upper bound on the number of particle
needed so that the rewards of the two processes are close. Lemma [3.10]upper bounds the number of particles needed so that
the particle approximation of the noise ¢, is accurate. Lemma [3.1T]and Lemma [3.12] show that the actions and the states of
the two processes are close if the particle approximation is accurate. Then, for reward function that depends on states and
actions, we can combine these results to upper bound the number of particles that can guarantee the rewards of the two
processes are close. We state our main result in Theorem[3.7]and show the proof below.

Proof of Theorem[3.4|and Theorem[3.7] We state the proof for the Lipschitz g case here. The proof for linear g follows the
same steps. We first show the number of particles needed so that the estimation of the noise, &;, in a single round is accurate.
If
N = Q(B87%p™ " log(dT/9)), ©6)
then
(d+1) - exp(—=NB%y/3) < (d+1) -exp(=Nfp/3) < §/(21?),

where the first inequality follows from

Yt = Poy,, [07.¢|ug.s, o] = Poy., [01:4]To0:t, To] > p.



Let M := \/%(1 +2+/log ' /d + 21og B’ /d). If we choose 3’ = log(2T?N/d) and 3 = ¢/(4MT), by Lemma [3.10
with success probability at least

T t—1 T t-1
1=Y"3"6/(21%) = > ) 6/(2T%) > 13,
t=1 s=0 t=1 s=0

we have for all time stept = 1,...,Tand s = 0, ..,t — 1,
€5 — Evsll < 4BM = €/T.

Next, we bound the distance between actions in the two processes. By Lemma[3.12] forany ¢t = 1,..., T,

e — u|| < Lys® (1+L ol 1)) % %)
The second inequality follows from our assumption. By Lemma[3.TT]and our assumptions, we can further bound the distance

between the states of the two processes as

t—1 t—1 t—2
e — il = Z ( H AS’> By(us —uy)|| < Gy (Hatl - ut*—lu + Ca ZPZ llds — u:”)
s=0 \s'=s+1 s=0
<G L0 (141,650 - 2, ®)

Thus, combining (7) and (8), we can get for any L..-Lipschitz reward function rr,

ro(@1r, Uor—1) = T (T, g 1) < Z Lollzs —af ]| + Y Lellti—1 —uj_y |
=1

< L, L, 57 (1 T CngT)) (1 + L,Cx - 1>) ‘.
where the first step follows from 77 is L,-Lipschitz and the second step follows from (7)) and ().
Plugging 32 = €2/(16T2M?) = ©(2T~2d~'m) into (6], the number of particles needed is

N =0(p%p") = O(T?dm™ e ),

which completes the proof. Similarly, we can also show that the number of particles needed for linear g so that

re(eve,dor) = ro(@le, uiro) < LeLSD (14 GED) (14 GG ) €

is
N =O(T?dm e ?p~1).

B.4 DEFERRED PROOFS

Lemma B.2. Artimet € [T), forany s =0, ..,t — 1, if we estimate & as Et}s, given by,
N o
> T
8 — N - )
>iz1 wgz)
Ui can be written as

t—1 t—1 t—1
/y\t = AS’ . (ft,s"‘Bs'as) +HAS +Zo-
s=0 s'=s+1 s=0



Moreover, let 7y (€o.4—1) be the distribution of §..—1, given by the density HL;E ns(&s). If we estimate &5 as é,s, given by,

~ fg(’mil P [Of:t | 56:t717u3:t71’x0} ggdﬂ-t(gé:tfl)

gt,s = )
fg(’):t_l P (0% | €6:—1> Ubee—15 To] dme(&fy—1)
yi can be written as
t—1 -1 B t—1
5= I Av- (Gt Boul)+ ] A 20
s=0s'=s+1 s=0

Proof. By Lemma[3.9] for every particle i € [N],

t—1 t—1 t—1
xiz) = Z H Ay (ﬁﬁl) + Bs - 175) + H Ag - 2.
s=0s'=s+1 s=0

Then,

t—1 t—1 N (4) +(4) t—1
LW R
3T e (B e ) e T
s=0 s’'=s5+1 Zi:l Wy s=0

t—1

:ti ﬁ AS,.(ESJFBS@S)JFHAS-xo.

s=0 s'=s+1 s=0

Similarly, by Lemma[3.9]and the definition of py,

t *
fw,];teXt Hs:(} P [Os | .’E;] xédpt(xllt)
t *
fw&;text Hs:o P [Os | xls} dpt(z/lzt)
f% P [OT:t | S(/):tfhu(:;:tfl’xo] o

t—1 t—1
_ a1 [Z H Ag - (€L + By - ul) + H Ay - wo | dme(§p.—1)

ff{mq P I:OT:t | 5({):1‘,—17”8:1‘,—1"%0} dﬂ-t(gé:t—l) s=0 /=541 s=0

Yt =

t—1 t—1 _ t—1
:Z H AS,.(§t7s—|—Bs~u:)+HAs~a:0.
s=0

s=0 s'=s+1

Lemma B.4. Foranytime0 <s<t<T,

Ve = / P {014 | &0.p— 1> To:e—1, 0] A (€541 ),
13

/
0:t—1

s = / P (012t | €1, Toi—1, To) E4dmy(Edy—y ).
13

/
0:t—1



Proof. For any t € [T], we have
POf:t [O)lk:t ‘ gé:t—laugct—l»xO]

t
= H Pof;t [0:’ |€6:t/71=u8;t’717x0]

t'=1
t t'—1 t'—1 t'—1 t'—1 t'—1 N t'—1
=TIn |3 I] A& +B.-a +HA9 o+ G| =S TT Av-(€0+Bo-a)+ [T Ao
t'=1 s=0 s’'=s+1 s=0 s’'=s+1 s=0
t'—1 t'—1
1 1050 | EERCRIR
t'=1 s=0 s'=s+1

= POlzt [Ollt ‘ g(l):t—la a0:t—17$0] s

where the third step follows from Lemma 3.9} so

// POl:t [Olit | 56:t717a01t*17 ‘TO] dﬂ-t(é-{):tfl) = Pof;t [OT:t | gé):tfl?uzk):tfhxo} dﬂ-t(fé):tfl)?

0:t—1

/ Pol:t [Olit ‘ g(l):tfh ao;t,1,$0] §;dﬂ-t(€6:t71) = POf:t [OT:t | 56:15717”8%717330} g./sdﬂ-t(gé:tfl)'
0:—1 0:e—1
O
Now, we state the proof of Lemma [3.10}
Proof of Lemma[3.10} We first consider the random variables
_ —1 -1
P |:01:t ‘ 567;41)57177:6\0:15717 !on| H N Z H As/ . s ) + Ct’ )
t'=1 s=0 s’=s+1

for¢ =1, ..., N. By the way we generate 5612, 0: t), e Sf),

P [01:15 | f(():lt)—laaO:t—laxO} ,P [Olzt \ f(g?t)vao:t@o} R |:01:t | f((){ﬁl,ao:t—hxo

are independent. Also, for i = 1, ..., N, by Lemma[B-4]

E [P [Ou \ f((f,)g_p@o:t—hxoﬂ = // P (014 | €1, Toit—1, @0 dme(€hp—1) = e-

0:t—1
and
E [P [Ou | 5(()2_1730::&—1%0} f;} = / P o1t | €0:—1> To:—1, T0) E4dm(E0.—1) = Tis.
&0it—1
By Lemmal([A.T]
1 & :
N Z P {Om | 581:2—17a0:t—17330} — Y| = /3%]
i=1
. NB*~¢
> exXp | — : i
2Var [P [Olzt \ féfi_l, a0:1:—1,330H + %max ‘P |:01:t | 56?2-17170:%1’350} ‘ B
< exp(—=NB%71/3).



where the third step follows from
Var {P {01:1‘/ | 5(()?72—1730:1671’110“ <E [PQ [Om | §Sf2_17a0:t71’x0”

= P2 [01175 | 5(/):15717&0:157171'0] dﬂt(f(/);t,l)

and
max ‘P {01;75 | 5(()2_1,&”717300] ‘ <1

Without loss of generality, we assume the noise £ has mean zero. Since the noise ||€ ,E") || is sub-gaussian, with probability at
least 1 — N exp(—/'), forall i € [N],

; d
19117 < M2 = —(1+21/log '/d + 2log §'/d).
Similarly, by Lemma since the noise ||§5i) | < M foralli € [N],

1 N
r E—
N_

Z P |:011t | 662717a0:t717 $0:| fgl) - Ft
i=1

> ﬂ%M]

NBQ'Y?MQ
2Var [P [01:15 | f(()fzﬂ, ﬁo:tq,xo} 5&')] + 2 max HP |:01:t | 562717@0:?17%}
< d-exp(=NB%y/3).

<d-exp

gi) ‘ By M

where the third step follows from

Var [P [Om | 5(()2717@0::571,330} ggi)} <~ M2,
and

e0|| < m.

max H P [Olzt | 5(()?1)5,1, ﬂo:t_l, 1:0:|
Then, with probability at least

1—(d+1)exp(—NB*y/3) — N exp(—f),

we have
16— Goell = |[fe — 22
1 N DG T, . 1 N .
Smax{’“m;‘”ﬁ“’)‘% laram ame’ =50 }
e e e nC L
2 (el
1+5 . 1+ﬁ

BM  BM  BM  BM
<max{1—ﬁ+l—ﬁ’1+ﬂ+1+g}
<4pM



where the first step follows from | ZL 1 wﬁz) — 7v¢| < B, the second step follows from triangle inequality, the third step

follows from HZl LW (Z) — Tt || < BveM, and

‘ T, Jeo P lone [ €615 Tow—1, 0] €4dme(&6. 1) <
Yt fg{):til P [Ol:t | §6:t—17ﬂ0:t—17x0] dﬂ-t(g(l):t—l) N 7
and the last step follows from g < % O

Finally, we state the proof of Lemma[3.12]

Proof of Lemma([3.12] When t = 0, we have 1y = uf = g(x), so ||tig — uj|| = 0. For t > 0, we study the two cases
separately.

In the first case, for L4-Lipschitz g, at time ¢ > 0,

e —will = llg(@) — 9(@e)

t—1 t—1 t—1

g(Z H As/-(§t5+B us>—|—1_[AS x0>—g<z H As/'(é,s"‘Bs'U:)"’HAs'xO)H
s_i)jlzs;i-_ll i L s=0 s'=s+1 i st__O1
(Z H As"<§t,s+Bs'a3)+HAs'$0> — <Z H AS/-(ft,s-i-Bs-u:)—l-HAs.xo)H

s=0 s'=s+1 s=0 s=0s'=s+1 s=0

Z H As" gts gts +L Z H AS’B )
=0 s'=s+1 =0 s'=s+1

where the first step follows from definitions of @; and uj, the second step follows from Lemma the third step follows
from g is L4-Lipschitz and the last step follows from triangle inequality.

We define f; and h; as follows:

t—1 t—1 . _

ft = Z H As’ : (ét,s - gt,s) )
s=0 s'=s+1
t—1 t—1

hy = Z H Ay Bs - (us — ug)
s=0s'=s+1

Then,
hy < Cohi—1 + Cy|tig—1 — uy_4||
< Cohi—1 + CoLg(fr—1 + he—1)
< CpLyfi—1+(Co + CpLyg) (Cohi—o + CyLy(fi—2 + hi—2))

§ .
t—1

< ChoLg Y (Ca+CyLy) 7' fo,
s=1

The first step follows from definition. The second step follows from |[@;—1 — u}_;|| < Ly(fi—1 + ht—1). The third step and
the last step follow from induction. Thus, for L -Lipschitz g,

t—1
@ = uill < Ly - fi+ Ly oLy 3 (Ca + CoLy) 7 s
s=1
t—2 t—1 s—2
<L, <1 +C, Zp3> €+ Ly CoLy» (Ca+CpLy) ™" (1 +Ca Y 1 > €
s=0 s=1 s'=0

LD et Ly LG Y 20 e = L3P (1+ 4,625 V) e



The second step follows from our assumption and the last two steps follow from our definitions of Et(lt) and Z((ltb).

In the second case, for linear g = G, similarly, we have
uy —ui = g(Ur) — 9(Ye)

t—1 t—1 R N t—1 t—1
:G-Z H Ay - (& —ft,s)"‘G'Z H Ay By - (s — ).

s=0 s'=s+1 s=0s'=s+1

We define f; and h; as follows:

t—1 t—1
L= T1 Av- (G —6).

5=0 s’'=s+1
t—1 t—1

he=> ] AvBe-(i—ul).
s=0 s'=s+1

then by induction,

hi = A¢1hy 1 + By ('atfl - U?Ll)
<Ay qhi—1+ Bio1G(fi—1 + hi—1)
< Bi_1Gfio1 4+ (A1 + Bio1G) (Ay—2hi—2 + Bi_2G(fi—2 + hi—2))
<

IN

(AS/ -+ BS/G)BSG]CS,

Thus, by our assumptions and the definitions of Eff) and i]((fb) .

t—1 t—1
@ —uill = |G- fi + G- [] (Av + B«G)B.G/,
s=1s'=s+1
t—2 -3 5-2
<L, <1+cang> e+ Ly - Chy <1+Cab2p2b> : <1+Ca Zpi) X
s=0 s=0 s'=0

< LgEflt) (1 + Cbgiétb_l)) - €.

C EXPERIMENT

In this section, we use simulations to show the error of particle filtering can accumulate and be amplified through sequential
planning. We run a process with a maximum time step 7" = 40 and d = 1. Since our bound shows the number of particles
needed is insensitive to the dimension d, we mainly show how the number of time steps can affect the accuracy of particle
filtering.

We consider the following process, for all ¢ € [T,
T =1 +u—1 + &1, and oy = & + G

The process can suffer a random shift of size 1, i.e., & follows a uniform distribution on set {0, 1}. ¢; follows the standard
normal distribution A7(0, 1). The regret is defined as the average ¢, norm of the states, i.e., 7(z1.1) = Y.._, || /t. The
policy function is g(x) = —z. We show in Figure the regret and its standard deviation of the estimation using different
number of particles. The result shows the number of particles needed for an accurate estimation can increase fast as the
number of time step increases due to error accumulation. This experiment corroborates the importance of our theoretical
results.
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Figure 1: Relationship between the regret and the number of particles.
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