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A PROBABILITY TOOLS

Lemma A.1 (Matrix Bernstein, Theorem 6.1.1 in Tropp [2015]). Consider a finite sequence {X1, · · · , Xm} ⊂ Rn1×n2 of
independent, random matrices with common dimension n1 × n2. Assume that

E[Xi] = 0,∀i ∈ [m] and ‖Xi‖ ≤M,∀i ∈ [m].

Let Z =
∑m
i=1Xi. Let Var[Z] be the matrix variance statistic of sum:

Var[Z] = max

{∥∥∥ m∑
i=1

E[XiX
>
i ]
∥∥∥,∥∥∥ m∑

i=1

E[X>i Xi]
∥∥∥} .

Then

E[‖Z‖] ≤ (2Var[Z] · log(n1 + n2))
1/2 +M · log(n1 + n2)/3.

Furthermore, for all t ≥ 0,

Pr[‖Z‖ ≥ t] ≤ (n1 + n2) · exp

(
− t2/2

Var[Z] +Mt/3

)
.

B PROOF OF MAIN RESULT

We state the complete version of the proofs shown in Section 3.4 in this section. Parts of Section B.1, B.2 and B.3 have
been stated in Section 3.4, we restate here for completeness. In Section B.1, we give a concentration bound on the particle
approximation of the latent state. In Section B.2, we study how the error of inference in each round accumulates through the
sequential planning process. In Section B.3, we put the pieces together to give the upper bound on the number of particles
needed so that the long-run rewards of the two processes are close. We show the proofs of most of the lemmas in this section
to Section B.4.

B.1 PARTICLE CONCENTRATION

We first note that at time t, since we know the initial state x0, the transition matrices A0:t−1 and B0:t−1 and the past actions
û0, ..., ût−1, estimating the state xt is equivalent to estimating ξ0, ..., ξt−1. We show in Lemma 3.9 that we can write the
states as a function of the initial state, past transformation noise and actions, which follows straightly from our definitions of
the processes.

Lemma B.1 (Lemma 3.9). For any t ∈ [T ], we can write the state xt as

xt =

t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξs +Bs · ûs) +

t−1∏
s=0

As · x0, (1)
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the state x∗t as

x∗t =

t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξs +Bs · u∗s) +

t−1∏
s=0

As · x0, (2)

and for particle i ∈ [N ],

x
(i)
t =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ(i)s +Bs · ûs

)
+

t−1∏
s=0

As · x0. (3)

Recall from Section 2 that the estimation ŷt is given by a weighted average of the states of the simulated particles,

ŷt =

∑N
i=1 w

(i)
t x

(i)
t∑N

i=1 w
(i)
t

. (4)

and the estimation ỹt is given by the posterior mean of x∗t given observations o0:t,

ỹt =

∫
x′1:t∈X t

∏t
s=1 P [o∗s | x′s]x′tdρt(x′1:t)∫

x′1:t∈X t

∏t
s=1 P [o∗s | x′s] dρt(x′1:t)

. (5)

By Lemma 3.9, we know that to estimate xt and x∗t , it is enough to estimate ξ0:t−1. Surprisingly, we can further show that
the estimators ŷt and ỹt can be written as a function of estimators ξ̂t,0:t−1 and ξ̃t,0:t−1, past actions û0:t−1 and u∗0:t−1, and
the initial state x0. The estimator ξ̂t,0:t−1 is given by a weighted average of the noise of the particles, ξ(1)0:t−1, ..., ξ

(N)
0:t−1,

similar to (4). The estimator ξ̃t,0:t−1 is given by the posterior mean of the noise given observations, similar to (5). We show
this formally in Lemma B.2.

Lemma B.2. At time t ∈ [T ], for any s = 0, .., t− 1, if we estimate ξs as ξ̂t,s, given by,

ξ̂t,s =

∑N
i=1 w

(i)
t ξ

(i)
s∑N

i=1 w
(i)
t

,

ŷt can be written as

ŷt =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s +Bs · ûs

)
+

t−1∏
s=0

As · x0.

Moreover, let πt(ξ0:t−1) be the distribution of ξ0:t−1, given by the density
∏t−1
s=0 ηs(ξs). If we estimate ξs as ξ̃t,s, given by,

ξ̃t,s =

∫
ξ′0:t−1

P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1)∫

ξ′0:t−1
P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
dπt(ξ′0:t−1)

,

ỹt can be written as

ỹt =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̃t,s +Bs · u∗s

)
+

t−1∏
s=0

As · x0.

By Lemma B.2, since û0:t−1 and u0:t−1 are determined by ŷ0:t−1 and ỹt−1, to show that ŷt is close to ỹt, it is enough to
show that ξ̂s,0:s−1 is close to ξ̃s,0:s−1 in all rounds s = 1, ..., t − 1. In this section, we focus on showing how accurately
ξt,0:t−1 can approximate ξ̃t,0:t−1 in one time step. We postpone the discussion of how the error of this approximation
accumulates through the process to Section B.2.

To see how ξ̂t,s can approximate ξ̃t,s, we study the numerator and the denominator of ξ̂t,s and ξ̃t,s seperately. To simplify
our notation, we make the following definition.



Definition B.3. We define the scalar γt ∈ R and vector Γt,s ∈ Rd for any time 0 ≤ s < t ≤ T as follows:

γt =

∫
ξ′0:t−1

P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
dπt(ξ

′
0:t−1),

Γt,s =

∫
ξ′0:t−1

P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1).

We can further show that since we couple our two processes using the same noise, the posterior mean of the noise given
observations, o1:t, and actions û0:t−1 in the approximate process is the same as that given observations, o∗1:t, and actions
u∗0:t−1 in the ideal process.

Lemma B.4. For any time 0 ≤ s < t ≤ T ,

γt =

∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
dπt(ξ

′
0:t−1),

Γt,s =

∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1).

Then, to show that the particle approximation, ξ̂t,s, is close to ξ̃t,s, it is enough to show that ξ̂t,s concentrates around the
posterior mean of ξt,s. We show the relationship between the accuracy of particle approximation and the number of particles,
N , in the following lemma.

Lemma B.5 (Lemma 3.10). Let M :=
√

d
m (1 + 2

√
log β′/d+ 2 log β′/d) for some β′ > 1. At time t ∈ [T ], for each

s = 0, .., t− 1, we have for any β ≤ 1
2 ,

‖ξ̂t,s − ξ̃t,s‖ ≤ 4βM,

holds with probability at least

1− (d+ 1) exp(−Nβ2γt/3)−N exp(−β′).

We defer the proof of Lemma B.2, Lemma B.4 and Lemma 3.10 to Appendix B.4.

B.2 ERROR ACCUMULATION

In Section B.1, we studied how the particle approximation concentrates in one time step. In this Section, we discuss how the
error of approximation in one time step can affect the actions in the future and further affect the long-run reward of the
process.

Lemma 3.9 shows that the states of the two processes, xt and x∗t , at time step t, can be written as

xt =

t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξs +Bs · ûs) +

t−1∏
s=0

As · x0,

x∗t =

t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξs +Bs · u∗s) +

t−1∏
s=0

As · x0.

It is easy to see that the distance between xt and x∗t is determined by the distance between actions in the past time steps,
û0:t−1 and u∗0:t−1.

Lemma B.6 (Lemma 3.11). At time t,

xt − x∗t =

t−1∑
s=0

(
t−1∏

s′=s+1

As′

)
Bs (ûs − u∗s) .



The actions ûs and u∗s at s = 1, ..., t− 1 is determined by the state estimations, ŷs and ỹs,

ûs = g(ŷt) and u∗s = g(ỹs).

Moreover, by Lemma B.2, at time step t,

ŷt =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s +Bs · ûs

)
+

t−1∏
s=0

As · x0,

ỹt =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̃t,s +Bs · u∗s

)
+

t−1∏
s=0

As · x0.

which shows that ŷt and ỹs are in turn determined by the past actions. Thus, the key step of bounding the error accumulation
is bounding the distance between the actions in the two processes. We show the upper bound on the action distance in the
following lemma.

Lemma B.7 (Lemma 3.12). Assume that max0≤s<t≤T ‖ξ̂t,s − ξ̃t,s‖ = ε. At time t, we can show the following bounds on
‖ût − u∗t ‖.

• Under Assumptions 3.1, 3.2 and 3.3, for t ∈ [T ], let Σ
(t)
a = 1 +Ca

∑t−2
s=0 ρ

s
a and Σ

(t−1)
ab =

∑t−2
s=0(Ca +CbLg)

s. Then,
we have

‖ût − u∗t ‖ ≤LgΣ(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε.

• Under Assumptions 3.1, 3.2 and 3.6, for t ∈ [T ], let Σ
(t)
a = 1 + Ca

∑t−2
s=0 ρ

s
a and Σ̄

(t−1)
ab = 1 + Cab

∑t−3
s=0 ρ

s
ab. Then,

we have

‖ût − u∗t ‖ ≤ LgΣ(t)
a

(
1 + CbgΣ̄

(t−1)
ab

)
· ε.

We defer the proof of Lemma 3.12 to Appendix B.4. Lemma 3.11 and Lemma 3.12 together show that we can bound the
distance between the states and the action of the two processes in terms of the accuracy of the particle approximation of
transformation noise ξt.

B.3 BOUND ON REWARD DIFFERENCE

In this section, we combine the results from Section B.1 and Section B.2 to show an upper bound on the number of particle
needed so that the rewards of the two processes are close. Lemma 3.10 upper bounds the number of particles needed so that
the particle approximation of the noise ξt is accurate. Lemma 3.11 and Lemma 3.12 show that the actions and the states of
the two processes are close if the particle approximation is accurate. Then, for reward function that depends on states and
actions, we can combine these results to upper bound the number of particles that can guarantee the rewards of the two
processes are close. We state our main result in Theorem 3.7 and show the proof below.

Proof of Theorem 3.4 and Theorem 3.7. We state the proof for the Lipschitz g case here. The proof for linear g follows the
same steps. We first show the number of particles needed so that the estimation of the noise, ξt, in a single round is accurate.
If

N = Ω(β−2p−1 log(dT/δ)), (6)

then

(d+ 1) · exp(−Nβ2γt/3) ≤ (d+ 1) · exp(−Nβ2p/3) ≤ δ/(2T 2),

where the first inequality follows from

γt = PO∗1:t [o
∗
1:t|u∗0:t, x0] = PO1:t

[o1:t|û0:t, x0] ≥ p.



Let M :=
√

d
m (1 + 2

√
log β′/d+ 2 log β′/d). If we choose β′ = log(2T 2N/δ) and β = ε/(4MT ), by Lemma 3.10,

with success probability at least

1−
T∑
t=1

t−1∑
s=0

δ/(2T 2)−
T∑
t=1

t−1∑
s=0

δ/(2T 2) ≥ 1− δ,

we have for all time step t = 1, ..., T and s = 0, .., t− 1,

‖ξ̂t,s − ξ̃t,s‖ ≤ 4βM = ε/T.

Next, we bound the distance between actions in the two processes. By Lemma 3.12, for any t = 1, ..., T ,

‖ût − u∗t ‖ ≤ LgΣ(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε
T
. (7)

The second inequality follows from our assumption. By Lemma 3.11 and our assumptions, we can further bound the distance
between the states of the two processes as

‖xt − x∗t ‖ =

∥∥∥∥∥
t−1∑
s=0

(
t−1∏

s′=s+1

As′

)
Bs(ûs − u∗s)

∥∥∥∥∥ ≤ Cb

(∥∥ût−1 − u∗t−1∥∥+ Ca

t−2∑
s=0

ρsa ‖ûs − u∗s‖

)
≤ CbΣ(t)

a · LgΣ(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε
T
, (8)

Thus, combining (7) and (8), we can get for any Lr-Lipschitz reward function rT ,

rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1) ≤

T∑
t=1

Lr‖xt − x∗t ‖+

T∑
t=1

Lr‖ût−1 − u∗t−1‖

≤ LrLgΣ(T )
a

(
1 + CbΣ

(T )
a

)(
1 + LgCbΣ

(T−1)
ab

)
ε,

where the first step follows from rT is Lr-Lipschitz and the second step follows from (7) and (8).

Plugging β2 = ε2/(16T 2M2) = Θ̃(ε2T−2d−1m) into (6), the number of particles needed is

N = Õ(β−2p−1) = Õ(T 2dm−1ε−2p−1),

which completes the proof. Similarly, we can also show that the number of particles needed for linear g so that

rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1) ≤ LrLgΣ

(T )
a

(
1 + CbΣ

(T )
a

)(
1 + CbgΣ̄

(T−1)
ab

)
ε

is
N = Õ(T 2dm−1ε−2p−1).

B.4 DEFERRED PROOFS

Lemma B.2. At time t ∈ [T ], for any s = 0, .., t− 1, if we estimate ξs as ξ̂t,s, given by,

ξ̂t,s =

∑N
i=1 w

(i)
t ξ

(i)
s∑N

i=1 w
(i)
t

,

ŷt can be written as

ŷt =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s +Bs · ûs

)
+

t−1∏
s=0

As · x0.



Moreover, let πt(ξ0:t−1) be the distribution of ξ0:t−1, given by the density
∏t−1
s=0 ηs(ξs). If we estimate ξs as ξ̃t,s, given by,

ξ̃t,s =

∫
ξ′0:t−1

P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1)∫

ξ′0:t−1
P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
dπt(ξ′0:t−1)

,

ỹt can be written as

ỹt =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̃t,s +Bs · u∗s

)
+

t−1∏
s=0

As · x0.

Proof. By Lemma 3.9, for every particle i ∈ [N ],

x
(i)
t =

t−1∑
s=0

t−1∏
s′=s+1

As′
(
ξ(i)s +Bs · ûs

)
+

t−1∏
s=0

As · x0.

Then,

ŷt =

∑N
i=1 w

(i)
t x

(i)
t∑N

i=1 w
(i)
t

,

=

t−1∑
s=0

t−1∏
s′=s+1

As′ ·

(∑N
i=1 w

(i)
t ξ

(i)
t∑N

i=1 w
(i)
t

+Bs · ûs

)
+

t−1∏
s=0

As · x0

=

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂s +Bs · ûs

)
+

t−1∏
s=0

As · x0.

Similarly, by Lemma 3.9 and the definition of ρt,

ỹt =

∫
x′1:t∈X t

∏t
s=0 P [o∗s | x′s]x′tdρt(x′1:t)∫

x′1:t∈X t

∏t
s=0 P [o∗s | x′s] dρt(x′1:t)

=

∫
ξ′0:t−1

P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]∫
ξ′0:t−1

P
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
dπt(ξ′0:t−1)

[
t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξ′s +Bs · u∗s) +

t−1∏
s=0

As · x0

]
dπt(ξ

′
0:t−1)

=

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̃t,s +Bs · u∗s

)
+

t−1∏
s=0

As · x0.

Lemma B.4. For any time 0 ≤ s < t ≤ T ,

γt =

∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
dπt(ξ

′
0:t−1),

Γt,s =

∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1).



Proof. For any t ∈ [T ], we have

PO∗1:t
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
=

t∏
t′=1

PO∗1:t
[
o∗t′ | ξ′0:t′−1, u∗0:t′−1, x0

]
=

t∏
t′=1

ηt′

t′−1∑
s=0

t′−1∏
s′=s+1

As′ · (ξs +Bs · ûs) +

t′−1∏
s=0

As · x0 + ζt′

−
t′−1∑
s=0

t′−1∏
s′=s+1

As′ ·
(
ξ̂′s +Bs · ûs

)
+

t′−1∏
s=0

As · x0


=

t∏
t′=1

ηt′

t′−1∑
s=0

t′−1∏
s′=s+1

As′ · (ξs − ξ′s) + ζt′


= PO1:t

[
o1:t | ξ′0:t−1, û0:t−1, x0

]
,

where the third step follows from Lemma 3.9, so∫
ξ′0:t−1

PO1:t

[
o1:t | ξ′0:t−1, û0:t−1, x0

]
dπt(ξ

′
0:t−1) =

∫
ξ′0:t−1

PO∗1:t
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
dπt(ξ

′
0:t−1),∫

ξ′0:t−1

PO1:t

[
o1:t | ξ′0:t−1, û0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1) =

∫
ξ′0:t−1

PO∗1:t
[
o∗1:t | ξ′0:t−1, u∗0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1).

Now, we state the proof of Lemma 3.10.

Proof of Lemma 3.10. We first consider the random variables

P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
=

t∏
t′=1

ηt′

t′−1∑
s=0

t′−1∏
s′=s+1

As′ · (ξs − ξ′s) + ζt′

 ,

for i = 1, ..., N . By the way we generate ξ(1)0:t , ξ
(2)
0:t , ..., ξ

(N)
0:t ,

P
[
o1:t | ξ(1)0:t−1, û0:t−1, x0

]
,P
[
o1:t | ξ(2)0:t , û0:t, x0

]
, ...,P

[
o1:t | ξ(N)

0:t−1, û0:t−1, x0

]
are independent. Also, for i = 1, ..., N , by Lemma B.4

E
[
P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]]
=

∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
dπt(ξ

′
0:t−1) = γt.

and

E
[
P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
ξ′s

]
=

∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1) = Γt,s.

By Lemma A.1,

Pr

[∣∣∣∣∣ 1

N

N∑
i=1

P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
− γt

∣∣∣∣∣ ≥ βγt
]

≤ exp

− Nβ2γ2t

2Var
[
P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]]
+ 2

3 max
∣∣∣P [o1:t | ξ(i)0:t−1, û0:t−1, x0

]∣∣∣βγt


≤ exp(−Nβ2γt/3).



where the third step follows from

Var
[
P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]]
≤ E

[
P2
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]]
=

∫
ξ′0:t−1

P2
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
dπt(ξ

′
0:t−1)

≤ γt,

and

max
∣∣∣P [o1:t | ξ(i)0:t−1, û0:t−1, x0

]∣∣∣ ≤ 1.

Without loss of generality, we assume the noise ξ has mean zero. Since the noise ‖ξ(i)s ‖ is sub-gaussian, with probability at
least 1−N exp(−β′), for all i ∈ [N ],

‖ξ(i)s ‖2 ≤M2 =
d

m
(1 + 2

√
log β′/d+ 2 log β′/d).

Similarly, by Lemma A.1, since the noise ‖ξ(i)s ‖ ≤M for all i ∈ [N ],

Pr

[∥∥∥∥∥ 1

N

N∑
i=1

P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
ξ(i)s − Γt

∥∥∥∥∥ ≥ βγtM
]

≤ d · exp

− Nβ2γ2tM
2

2Var
[
P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
ξ
(i)
s

]
+ 2

3 max
∥∥∥P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
ξ
(i)
s

∥∥∥βγtM


≤ d · exp(−Nβ2γt/3).

where the third step follows from

Var
[
P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
ξ(i)s

]
≤ γtM2,

and

max
∥∥∥P
[
o1:t | ξ(i)0:t−1, û0:t−1, x0

]
ξ(i)s

∥∥∥ ≤M.

Then, with probability at least

1− (d+ 1) exp(−Nβ2γt/3)−N exp(−β′),

we have

‖ξ̂t,s − ξ̃t,s‖ =

∥∥∥∥ξ̂t,s − Γt,s
γt

∥∥∥∥
≤ max

{∥∥∥∥∥ 1

(1− β) γt

N∑
i=1

w
(i)
t ξ

(i)
t′ −

Γt,s
γt

∥∥∥∥∥ ,
∥∥∥∥∥ 1

(1 + β) γt

N∑
i=1

w
(i)
t ξ

(i)
t′ −

Γt,s
γt

∥∥∥∥∥
}

≤ max

{
1

1− β

∥∥∥∥∥
∑N
i=1 w

(i)
t ξ

(i)
t′

γt
− Γt,s

γt

∥∥∥∥∥+

(
1

1− β
− 1

)∥∥∥∥Γt,s
γt

∥∥∥∥ ,
1

1 + β

∥∥∥∥∥
∑N
i=1 w

(i)
t ξ

(i)
t′

γt
− Γt,s

γt

∥∥∥∥∥+

(
1− 1

1 + β

)∥∥∥∥Γt,s
γt

∥∥∥∥
}

≤ max

{
βM

1− β
+

βM

1− β
,
βM

1 + β
+

βM

1 + β

}
≤ 4βM



where the first step follows from |
∑N
i=1 w

(i)
t − γt| ≤ βγt, the second step follows from triangle inequality, the third step

follows from
∥∥∥∑N

i=1 w
(i)
t ξ

(i)
t′ − Γt,s

∥∥∥ ≤ βγtM , and

∥∥∥∥Γt,s
γt

∥∥∥∥ =

∥∥∥∥∥
∫
ξ′0:t−1

P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
ξ′sdπt(ξ

′
0:t−1)∫

ξ′0:t−1
P
[
o1:t | ξ′0:t−1, û0:t−1, x0

]
dπt(ξ′0:t−1)

∥∥∥∥∥ ≤ M,

and the last step follows from β ≤ 1
2 .

Finally, we state the proof of Lemma 3.12.

Proof of Lemma 3.12. When t = 0, we have û0 = u∗0 = g(x0), so ‖û0 − u∗0‖ = 0. For t > 0, we study the two cases
separately.

In the first case, for Lg-Lipschitz g, at time t > 0,

‖ût − u∗t ‖ = ‖g(ŷt)− g(ỹt)‖

=

∥∥∥∥∥g
(
t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s +Bs · ûs

)
+

t−1∏
s=0

As · x0

)
− g

(
t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̃t,s +Bs · u∗s

)
+

t−1∏
s=0

As · x0

)∥∥∥∥∥
≤ Lg ·

∥∥∥∥∥
(
t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s +Bs · ûs

)
+

t−1∏
s=0

As · x0

)
−

(
t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̃t,s +Bs · u∗s

)
+

t−1∏
s=0

As · x0

)∥∥∥∥∥
≤Lg ·

∥∥∥∥∥
t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξ̂t,s − ξ̃t,s)

∥∥∥∥∥+ Lg ·

∥∥∥∥∥
t−1∑
s=0

t−1∏
s′=s+1

As′Bs · (ûs − u∗s)

∥∥∥∥∥ .
where the first step follows from definitions of ût and u∗t , the second step follows from Lemma B.2, the third step follows
from g is Lg-Lipschitz and the last step follows from triangle inequality.

We define ft and ht as follows:

ft =

∥∥∥∥∥
t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s − ξ̃t,s

)∥∥∥∥∥ ,
ht =

∥∥∥∥∥
t−1∑
s=0

t−1∏
s′=s+1

As′Bs · (ûs − u∗s)

∥∥∥∥∥ .
Then,

ht ≤ Caht−1 + Cb‖ût−1 − u∗t−1‖
≤ Caht−1 + CbLg(ft−1 + ht−1)

≤ CbLgft−1 + (Ca + CbLg) (Caht−2 + CbLg(ft−2 + ht−2))

≤ · · ·

≤ CbLg
t−1∑
s=1

(Ca + CbLg)
t−s−1fs,

The first step follows from definition. The second step follows from ‖ût−1 − u∗t−1‖ ≤ Lg(ft−1 + ht−1). The third step and
the last step follow from induction. Thus, for Lg-Lipschitz g,

‖ût − u∗t ‖ ≤ Lg · ft + Lg · CbLg
t−1∑
s=1

(Ca + CbLg)
t−s−1fs

≤ Lg

(
1 + Ca

t−2∑
s=0

ρsa

)
ε+ Lg · CbLg

t−1∑
s=1

(Ca + CbLg)
t−s−1 ·

(
1 + Ca

s−2∑
s′=0

ρs
′

a

)
· ε

≤ LgΣ(t)
a · ε+ Lg · CbLgΣ(t−1)

ab · Σ(t)
a · ε = LgΣ

(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε.



The second step follows from our assumption and the last two steps follow from our definitions of Σ
(t)
a and Σ

(t)
ab .

In the second case, for linear g = G, similarly, we have

ût − u∗t = g(ŷt)− g(ỹt)

= G ·
t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξ̂t,s − ξ̃t,s) +G ·
t−1∑
s=0

t−1∏
s′=s+1

As′Bs · (ûs − u∗s).

We define ft and ht as follows:

ft =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ̂t,s − ξ̃t,s

)
,

ht =

t−1∑
s=0

t−1∏
s′=s+1

As′Bs · (ûs − u∗s) .

then by induction,

ht = At−1ht−1 +Bt−1
(
ût−1 − u∗t−1

)
≤ At−1ht−1 +Bt−1G(ft−1 + ht−1)

≤ Bt−1Gft−1 + (At−1 +Bt−1G) (At−2ht−2 +Bt−2G(ft−2 + ht−2))

≤ · · ·

≤
t−1∑
s=1

t−1∏
s′=s+1

(As′ +Bs′G)BsGfs,

Thus, by our assumptions and the definitions of Σ
(t)
a and Σ̄

(t)
ab .

‖ût − u∗t ‖ =

∥∥∥∥∥G · ft +G ·
t−1∑
s=1

t−1∏
s′=s+1

(As′ +Bs′G)BsGfs

∥∥∥∥∥
≤ Lg

(
1 + Ca

t−2∑
s=0

ρsa

)
· ε+ Lg · Cbg

(
1 + Cab

t−3∑
s=0

ρsab

)
·

(
1 + Ca

s−2∑
s′=0

ρs
′

a

)
· ε

≤ LgΣ(t)
a

(
1 + CbgΣ̄

(t−1)
ab

)
· ε.

C EXPERIMENT

In this section, we use simulations to show the error of particle filtering can accumulate and be amplified through sequential
planning. We run a process with a maximum time step T = 40 and d = 1. Since our bound shows the number of particles
needed is insensitive to the dimension d, we mainly show how the number of time steps can affect the accuracy of particle
filtering.

We consider the following process, for all t ∈ [T ],

xt = xt−1 + ut−1 + ξt−1, and ot = xt + ζt.

The process can suffer a random shift of size 1, i.e., ξt follows a uniform distribution on set {0, 1}. ζt follows the standard
normal distribution N (0, 1). The regret is defined as the average `1 norm of the states, i.e., r(x1:t) =

∑t
i=1 |xt|/t. The

policy function is g(x) = −x. We show in Figure 1 the regret and its standard deviation of the estimation using different
number of particles. The result shows the number of particles needed for an accurate estimation can increase fast as the
number of time step increases due to error accumulation. This experiment corroborates the importance of our theoretical
results.



Figure 1: Relationship between the regret and the number of particles.
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