
High-Dimensional Bayesian Optimization with Sparse
Axis-Aligned Subspaces

David Eriksson1 Martin Jankowiak2

1Facebook, Menlo Park, California, USA
2Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA

Abstract

Bayesian optimization (BO) is a powerful
paradigm for efficient optimization of black-box
objective functions. High-dimensional BO presents
a particular challenge, in part because the curse of
dimensionality makes it difficult to define—as well
as do inference over—a suitable class of surrogate
models. We argue that Gaussian process surrogate
models defined on sparse axis-aligned subspaces
offer an attractive compromise between flexibil-
ity and parsimony. We demonstrate that our ap-
proach, which relies on Hamiltonian Monte Carlo
for inference, can rapidly identify sparse subspaces
relevant to modeling the unknown objective func-
tion, enabling sample-efficient high-dimensional
BO. In an extensive suite of experiments compar-
ing to existing methods for high-dimensional BO
we demonstrate that our algorithm, Sparse Axis-
Aligned Subspace BO (SAASBO), achieves excel-
lent performance on several synthetic and real-
world problems without the need to set problem-
specific hyperparameters.

1 INTRODUCTION

Optimization plays an essential role in many fields of sci-
ence, engineering and beyond. From calibrating complex
experimental systems to tuning hyperparameters of machine
learning models, the need for scalable and efficient optimiza-
tion methods is ubiquitous. Bayesian Optimization (BO)
algorithms have proven particularly successful on a wide
variety of domains including hyperparameter tuning [Snoek
et al., 2012], A/B tests [Letham et al., 2019], chemical en-
gineering [Hernández-Lobato et al., 2017], materials sci-
ence [Ueno et al., 2016], control systems [Candelieri et al.,
2018], and drug discovery [Negoescu et al., 2011].

These algorithms typically consist of two components. The

first component employs Bayesian methods to construct a
surrogate model of the (unknown) objective function. The
second component uses this model together with an acquisi-
tion function to select the most promising query point(s) at
which to evaluate the objective function. By leveraging the
uncertainty quantification provided by the Bayesian model,
a well-designed BO algorithm can provide an effective bal-
ance between exploration and exploitation, leading to highly
sample-efficient optimization.

While BO has become a workhorse algorithm that is em-
ployed in a wide variety of settings, successful applications
are often limited to low-dimensional problems, e.g. fewer
than twenty dimensions [Frazier, 2018]. Applying BO to
high-dimensional problems remains a significant challenge.
The difficulty can be traced to both of the algorithm compo-
nents mentioned above, although we postulate that suitable
function priors are especially important for good perfor-
mance. In particular, in order for BO to be sample-efficient
in high-dimensional spaces, it is crucial to define surrogate
models that are sufficiently parsimonious that they can be
inferred from a small number of query points. An overly
flexible class of models is likely to suffer from overfitting,
which severely limits its effectiveness in decision-making.
Likewise, an overly rigid class of models is unlikely to
capture enough features of the objective function. A com-
promise between flexibility and parsimony is essential.

In this work we focus on the setting where we aim to opti-
mize a black-box function with hundreds of variables and
where we are limited to a few hundred queries of the objec-
tive function. We argue that in this low-sample regime Gaus-
sian process surrogate models defined on sparse axis-aligned
subspaces provide an attractive compromise between flexi-
bility and parsimony. More specifically, our contributions
are as follows:

• We propose the sparsity-inducing SAAS function prior

• We demonstrate that when combined with the No-Turn-
U-Sampler (NUTS) for inference, our surrogate model
quickly identifies the most relevant low-dimensional
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subspace, which in turn leads to sample-efficient BO.

• We show that SAASBO outperforms a number of strong
baselines on several problems, including three real-
world problems with as many as 388 dimensions, all
without setting problem-specific hyperparameters.

2 RELATED WORK

There is a large body of research on high-dimensional BO,
and a wide variety of surrogate modelling and acquisition
strategies have been proposed [Chen et al., 2012]. In the
following we draw attention to a number of common themes.

A popular approach is to rely on low-dimensional structure,
with several methods utilizing random projections [Wang
et al., 2016, Qian et al., 2016, Binois et al., 2020, Letham
et al., 2020]. REMBO uses a random projection to project
low-dimensional points up to the original space [Wang et al.,
2016]. ALEBO introduces several refinements to REMBO
and demonstrates improved performance across a large num-
ber of problems [Letham et al., 2020]. Alternatively, the
embedding can be learned jointly with the model, includ-
ing both linear [Garnett et al., 2014] and non-linear [Lu
et al., 2018] embeddings. Finally, Hashing-enhanced Sub-
space BO (HeSBO) [Nayebi et al., 2019] relies on hashing
and sketching to reduce surrogate modeling and acquisition
function optimization to a low-dimensional space.

Several methods rely on additive structure, where the func-
tion is assumed to be a sum of low-dimensional compo-
nents [Kandasamy et al., 2015, Gardner et al., 2017, Mutny
and Krause, 2018, Wang et al., 2018]. This approach al-
lows separating the input space into independent domains,
reducing the effective dimensionality of the model.

A common feature of many BO algorithms in high dimen-
sions is that they tend to prefer highly uncertain query points
near the domain boundary. As this is usually where the
model is the most uncertain, this is often a poor choice
that leads to over-exploration and poor optimization perfor-
mance. Oh et al. [2018] address this issue by introducing a
cylindrical kernel that promotes selection of query points in
the interior of the domain. LineBO [Kirschner et al., 2019]
optimizes the acquisition function along one-dimensional
lines, which also helps to avoid highly uncertain points. The
TuRBO algorithm uses several trust-regions centered around
the current best solution [Eriksson et al., 2019]. These trust-
regions are resized based on progress, allowing TuRBO to
zoom-in on promising regions. Li et al. [2017] use dropout
to select a subset of dimensions over which to optimize the
acquisition function, with excluded dimensions fixed to the
value of the best point found so far.

Most similar to our method is COMBO [Oh et al., 2019],
which uses a sparsity-inducing prior in conjunction with
a finite feature expansion to define a surrogate model that
is suitable for BO on combinatorial search spaces. The fi-

nite feature expansion enables efficient inference via slice
sampling. Unfortunately, a finite feature expansion is inap-
propriate in our setting with real-valued inputs, since the
curse of dimensionality severely limits the flexibility of the
resulting function prior.

It also important to note that there are many black-box
optimization algorithms that do not rely on Bayesian meth-
ods, with evolutionary algorithms being especially com-
mon. While most methods require thousands of evaluations
to find good minima [Yu and Gen, 2010], the popular co-
variance matrix adaptation evolution strategy (CMA-ES;
[Hansen et al., 2003]) is competitive with BO on some prob-
lems [Letham et al., 2020].

3 BACKGROUND

We use this section to establish our notation and review nec-
essary background material. Throughout this paper we work
in the D-dimensional domain D = [0, 1]D. We consider
the minimization problem xmin ∈ argminx∈D fobj(x) for
a noise-free objective function fobj : D → R. We assume
that evaluations of fobj are costly and that we are limited
to at most a few hundred. Additionally, fobj is a black-box
function and gradient information is unavailable.

The rest of this section is organized as follows: in Sec. 3.1
we review Gaussian processes; and in Sec. 3.2 we review
the expected improvement acquisition function.

3.1 GAUSSIAN PROCESSES

Gaussian processes (GPs) offer powerful non-parametric
function priors that are the gold standard in BO due to their
flexibility and excellent uncertainty quantification. A GP
on the input space D is specified1 by a covariance function
or kernel k : D ×D → R [Rasmussen, 2003]. A common
choice is the RBF or squared exponential kernel, which is
given by

kψ(x,y) = σ2
k exp{− 1

2

∑
i

ρi(xi − yi)2} (1)

where ρi for i = 1, ..., D are inverse squared length scales
and where we use ψ to collectively denote all the hyper-
parameters, i.e. ψ = {ρ1:D, σ2

k}. For scalar regression
f : D → R the joint density of a GP takes the form

p(y, f |X) = N (y|f , σ21N )N (f |0,Kψ
XX) (2)

where y are the real-valued targets, f are the latent function
values, X = {xi}Ni=1 are the N inputs with xi ∈ D, σ2 is
the variance of the Normal likelihood N (y|·), and Kψ

XX is
the N ×N kernel matrix. Throughout this paper we will be

1Here and elsewhere we assume that the mean function is
uniformly zero.
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interested in modeling noise-free functions, in which case
σ2 is set to a small constant. The marginal likelihood of the
observed data can be computed in closed form:

p(y|X, ψ) =

∫
df p(y, f |X) = N (y,Kψ

XX + σ21N ).

(3)

The posterior distribution of the GP at a query point x∗ ∈ D
is the Normal distributionN (µf (x

∗), σf (x
∗)2) where µf (·)

and σf (·)2 are given by

µf (x
∗) = kψ∗X

T
(Kψ

XX + σ21N )
−1

y (4)

σf (x
∗)2 = kψ∗∗ − kψ∗X

T
(Kψ

XX + σ21N )
−1
kψ∗X (5)

Here kψ∗∗ = kψ(x∗,x∗) and kψ∗X is the column vector spec-
ified by (kψ∗X)n = kψ(x∗,xn) for n = 1, ..., N .

3.2 EXPECTED IMPROVEMENT

Expected improvement (EI) is a popular acquisition function
that is defined as follows [Mockus et al., 1978, Jones et al.,
1998]. Suppose that in previous rounds of BO we have
collected H = {x1:N , y1:N}. Then let ymin = minn yn
denote the best function evaluation we have seen so far. We
define the improvement u(x|ymin) at query point x ∈ D
as u(x|ymin) = max(0, ymin − f(x)). EI is defined as the
expectation of the improvement over the posterior of f(x):

EI(x|ymin, ψ) = Ep(f(x)|ψ,H) [u(x|ymin)] (6)

where our notation makes explicit the dependence of
Eqn. (6) on the kernel hyperparameters ψ. For a GP like in
Sec. 3.1 this expectation can be evaluated in closed form:

EI(x|ymin, ψ) = (ymin − µf (x))Φ(Z) + σf (x)φ(Z) (7)

where Z ≡ (ymin − µf (x))/σf (x) and where Φ(·) and
φ(·) are the CDF and PDF of the unit Normal distribution,
respectively. By maximizing Eqn. (7) over D we can find
query points x that balance exploration and exploitation.

4 BAYESIAN OPTIMIZATION WITH
SPARSE AXIS-ALIGNED SUBSPACES

We now introduce the surrogate model we use for high-
dimensional BO. For a large number of dimensions, the
space of functions mapping D to R is—to put it mildly—
very large, even assuming a certain degree of smoothness.
To facilitate sample-efficient BO it is necessary to make
additional assumptions. Intuitively, we would like to assume
that the dimensions of x ∈ D exhibit a hierarchy of rele-
vance. For example in a particular problem we might have
that {x3,x52} are crucial features for mapping the princi-
pal variation of fobj, {x7,x14,x31,x72} are of moderate

importance, while the remaining features are of marginal
importance. This motivates the following desiderata for our
function prior:

1. Assumes a hierarchy of feature relevances
2. Encompasses a flexible class of smooth non-linear

functions
3. Admits tractable (approximate) inference

4.1 SAAS FUNCTION PRIOR

To satisfy our desiderata we introduce a GP model with a
structured prior over the kernel hyperparameters, in particu-
lar one that induces sparse structure in the (inverse squared)
length scales ρi. In detail we define the following model:

[kernel variance] σ2
k ∼ LN (0, 102) (8)

[global shrinkage] τ ∼ HC(α)

[length scales] ρi ∼ HC(τ) for i = 1, ..., D.

[function values] f ∼ N (0,Kψ
XX) with ψ = {ρ1:d, σ2

k}
[observations] y ∼ N (f , σ21N )

where LN denotes the log-Normal distribution andHC(α)
denotes the half-Cauchy distribution, i.e. p(τ |α) ∝ (α2 +
τ2)−11(τ > 0), and p(ρi|τ) ∝ (τ2 + ρ2i )

−11(ρi > 0).
Here α > 0 is a hyperparameter that controls the level
of shrinkage (our default is α = 0.1). We use an RBF
kernel, although other choices like the Matérn-5/2 kernel
are also possible. We also set σ2 → 10−6, since we focus on
noise-free objective functions fobj. Noisy objective functions
can be accommodated by placing a weak prior on σ2, for
example σ2 ∼ LN (0, 102).

The SAAS function prior defined in (8) has the following im-
portant properties. First, the prior on the kernel variance σ2

k

is weak (i.e. non-informative). Second, the level of global
shrinkage (i.e. sparsity) is controlled by the scalar τ > 0,
which tends to concentrate near zero due to the half-Cauchy
prior. Third, the (inverse squared) length scales ρi are also
governed by half-Cauchy priors, and thus they too tend to
concentrate near zero (more precisely for most i we expect
ρi . τ ). Consequently most of the dimensions are ‘turned
off’ in accord with the principle of automatic relevance
determination introduced by MacKay and Neal [1994]. Fi-
nally, while the half-Cauchy priors favor values near zero,
they have heavy tails. This means that if there is sufficient
evidence in the observations y, the posterior over τ will be
pushed to higher values, thus reducing the level of shrinkage
and allowing more of the ρi to escape zero, effectively ‘turn-
ing on’ more dimensions. The parsimony inherent in our
function prior is thus adaptive: as more data is accumulated,
more of the ρi will escape zero, and posterior mass will
give support to a richer class of functions. This is in contrast
to a standard GP fit with maximum likelihood estimation
(MLE), which will generally exhibit non-negligible ρi for
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Algorithm 1: We outline the main steps in SAASBO when NUTS is used for inference. To instead use MAP we simply
swap out line 4. For details on inference see Sec. 4.2; for details on EI maximization see Sec. 4.3.
Input: Objective function fobj; initial evaluation budget m ≥ 2; total evaluation budget T > m; hyperparameter α;

number of NUTS samples L; and initial query set x1:m and evaluations y1:m (optional)
Output: Approximate minimizer and minimum (xmin, ymin)

1 If {x1:m, y1:m} is not provided, let x1:m be a Sobol sequence in D and let yt = fobj(xt) for t = 1, ...,m.
2 for t = m+ 1, ..., T do
3 LetHt = {x1:t−1, y1:t−1} and y tmin = mins<tys.
4 Fit SAAS GP in Eqn. (8) toHt using NUTS to obtain L hyperparameter samples {ψt`}.
5 Optimize the expected improvement in Eqn. (10) to obtain xt = argmaxx EI(x|y t

min, {ψt
`}).

6 Query fobj and set yt = fobj(xt).

7 return (xmin, ymin) where (xmin, ymin) ≡ (xtmin
, ytmin

) and tmin = argmintyt.

most dimensions—since there is no mechanism regularizing
the length scales—typically resulting in drastic overfitting
in high-dimensional settings.

Conceptually, our function prior describes functions defined
on sparse axis-aligned subspaces, thus the name of our prior
(SAAS) and our method (SAASBO).

4.2 INFERENCE

Doing inference for the model defined in Sec. 4.1 is chal-
lenging because of the dimension of the latent space and
the many non-linearities. Thankfully, the latent variables in
our model are continuous (and the joint density is differen-
tiable), so we can leverage efficient gradient-based inference
techniques. In this section we describe the two inference
strategies we pursue. The first relies on the No-U-Turn sam-
pler (NUTS) [Hoffman and Gelman, 2014], an adaptive
variant of Hamiltonian Monte Carlo that is the gold standard
for inference in models like ours. The second is a maximum
a posteriori (MAP) approach, which trades off fidelity of the
posterior approximation for faster runtime. In both cases we
make use of the marginal likelihood p(y|X, ψ) in Eqn. (3),
i.e. we integrate out the latent function f analytically.

4.2.1 No-U-Turn Sampler (NUTS)

We use the NUTS sampler implemented in NumPyro [Phan
et al., 2019] to target the un-normalized joint density

p(y|X, ψ)p(ψ|τ)p(τ) ∝ p(τ, ψ|X,y). (9)

Here p(ψ|τ)p(τ) denotes the density over the kernel hyper-
parameters ψ and shrinkage parameter τ given in Eqn. (8).
After running NUTS we obtain L approximate posterior
samples for the kernel hyperparameters, {ψ`}L`=1. The cost
of obtaining a posterior sample is O(N3D) where N is the
total number of datapoints and D is the dimension of the
input domain D.2 Thus our method inherits the scalability

2The factor of D comes from computing terms that arise in the
gradients of Eqn. (3).

bottleneck of all BO methods that rely on GPs and is most
suitable for moderate numbers of datapoints, e.g. N . 500.
The kernel hyperparameters can then be plugged into the
closed form GP predictive formulae in Eqn. (4)-(5).

4.2.2 Maximum a posteriori (MAP)

In MAP we target the same un-normalized density as in
Eqn. (9), with a few small differences. First, since MAP
is formulated as an optimization problem w.r.t. the target
density, the result of inference is a single point estimate
and not a bag of samples as in NUTS. Second, we remove
the prior over τ and instead learn separate models for a
small number S of pre-selected3 values of τ , e.g. τs ∈
{10−1, 10−2, 10−3}. Thus after convergence we obtain S
point estimates {(ψs)}Ss=1. Finally, to choose between these
S point estimates we use a leave-one-out measure of the
predictive log likelihood to select the best performing ψs.
See Sec. A.2 in the supplementary materials for details.

4.3 ACQUISITION STRATEGY

We use expected improvement (EI) as our acquisition func-
tion given its simplicity, favorable computational properties,
and good empirical performance. We begin by noting that
the expression for EI given in Eqn. (7) depends on the ker-
nel hyperparameters ψ through µf (x) and σ2

f (x). Thus in
our context where ψ is a latent variable, the expected im-
provement is defined by averaging Eqn. (7) over posterior
samples {ψ`}L` ∼ p(ψ|H)

EI(x|ymin, {ψ`}) ≡
1

L

L∑
`=1

EI(x|ymin, ψ`) (10)

where in Eqn. (10) we assume we have obtained L samples
from NUTS.

3Note that this means that SAASBO-MAP does not require
specifying the hyperparameter α.
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An essential property of Eqn. (10) is that it is differentiable
w.r.t. x and thus can be efficiently optimized with gradient
methods. In practice we optimize Eqn. (10) by generating a
Sobol sequence inD to find a small number K of promising
starting points {x̃k}Kk=1 and then use these to initialize K
runs of L-BFGS-B to obtain the query point

xnext = argmaxxEI(x|ymin, {ψ`}) (11)

See the supplementary materials for further details and
Alg. 1 for a complete outline of the SAASBO algorithm.

4.4 DISCUSSION

We note that the axis-aligned structure of our model need
not be as restrictive as one might at first assume. For exam-
ple, suppose that fobj can be written as fobj(x) = g(x3−x7)
for some g : R→ R. In order for our model to capture the
structure of fobj, both x3 and x7 need to be identified as
relevant. In many cases we expect this to be possible with
a relatively small number of samples. While it is true that
identifying the direction z = x3 − x7 could be even easier
in a different coordinate system, inferring non-axis-aligned
subspaces would come at the cost of substantially increased
computational cost. More importantly, by searching over
a much larger set of subspaces our surrogate model would
likely be much more susceptible to overfitting. Given that
for many problems we expect much of the function varia-
tion to be captured by axis-aligned blocks of input features,
we view our axis-aligned assumption as a good compro-
mise between flexibility and parsimony. Indeed in Sec. D.4
in the supplementary materials we describe an experiment
in which we construct objective functions with significant
non-axis-aligned structure by performing a random rota-
tion on an objective function that is axis-aligned. We find
that SAASBO performs well in this challenging setting;
see Fig. 10 in the supplementary material. Importantly, our
modeling approach does not sacrifice any of the many bene-
fits of GPs (e.g. flexible non-linearity and non-parametric
latent functions) nor do we need to make any unduly strong
assumptions about fobj (e.g. additive decomposition).

It is important to emphasize that it is by design that the
model defined in Sec. 4.1 does not include any discrete
latent variables. A natural alternative to our model would
introduce D binary-valued variables that control whether or
not a given dimension is relevant to modeling fobj. However,
inference in any such model is very challenging as it requires
exploring a discrete space of size 2D. Our model can be
understood as a continuous relaxation of such an approach.
Indeed, the structure of our sparsity-inducing prior closely
mirrors the justly famous Horseshoe prior [Carvalho et al.,
2009], which is a popular prior for Sparse Bayesian linear
regression. We note that in contrast to the linear regression
setting of the Horseshoe prior, our sparsity-inducing prior
governs inverse squared length scales in a non-linear kernel

and not variances. We discuss this point in more detail in
Sec. A.3 in the supplementary materials.

5 EXPERIMENTS

We present an empirical validation of our approach. In
Sec. 5.1-5.2 we characterize the behavior of SAASBO
in controlled settings. In Sec. 5.4-5.7 we benchmark
SAASBO against a number of state-of-the-art methods for
high-dimensional BO. An open source implementation of
SAASBO that relies on Pyro [Bingham et al., 2019] will be
made available in BoTorch [Balandat et al., 2019], while a
NumPyro [Phan et al., 2019] version is available at https:
//github.com/martinjankowiak/saasbo.

5.1 THE SAAS PRIOR PROVIDES GOOD MODEL
FIT IN HIGH DIMENSIONS

In Fig. 1 we demonstrate the importance of using a sparsity-
inducing prior like SAAS when fitting a GP in a high-
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Figure 1: We compare model fit for three models on theD =
124 vehicle design problem and theD = 388 SVM problem
(see Sec. 5.6-5.7 for details). We compare: (left) a GP fit
with MLE; (middle) a GP with weak priors fit with NUTS;
and (right) a GP with a SAAS prior (this paper; see Eqn. (8))
fit with NUTS. For the vehicle design problem we use 100
training points and for the SVM problem we use 50 training
points. We use 100 test points for both problems. Only
SAAS provides a good fit. In each figure mean predictions
are depicted with dots and bars denote 95% confidence
intervals.

dimensional domain. For these high-dimensional problems,
both maximum likelihood estimation and full Bayesian infer-
ence for a GP with weak log-Normal priors on the squared
length scales ρ−1i concentrate on solutions in which the
vast majority of the ρi are O(1). Consequently with high
probability the kernel similarity between a randomly chosen
test point and any of the N = 100 training data points is
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O(exp(−D)) ≈ 0, with the result that both these models
revert to a trivial mean prediction across most of the do-
main. By contrast, the SAAS prior only allows a few ρi to
escape zero, resulting in a model that is much more use-
ful for exploration and exploitation of the most important
design variables.

5.2 SAASBO CAN QUICKLY IDENTIFY THE MOST
RELEVANT DIMENSIONS

We characterize the behavior of SAASBO in a controlled
setting where we embed the two-dimensional Branin func-
tion in D = 100 dimensions. First, we explore the degree to
which SAASBO’s performance depends on the approximate
inference algorithm used, in particular comparing NUTS
to MAP (see Sec. 4.2 for details on inference). In Fig. 2
(left) we see that NUTS outperforms MAP by a consider-
able margin. In Fig. 2 (middle and right) we demonstrate
that both inference methods are able to reliably identify the
two relevant dimensions after ∼ 20− 30 evaluations.

Why does NUTS outperform MAP even though MAP is
able to identify the relevant subspace? We hypothesize that
the primary reason for the superior performance of NUTS
is that the EI objective in Eqn. (10) is considerably more
robust when averaged over multiple samples of the GP ker-
nel hyperparameters. In particular, averaging over multiple
samples—potentially from distinct modes of the posterior—
appears to mitigate EI’s tendency to seek out the boundary
of the domain D. For this reason we use NUTS for the ex-
periments in this work, noting that while we obtain good
performance with MAP in some problem settings we find
that NUTS is significantly more robust.

Next, we explore the dependence of SAASBO-NUTS on the
hyperparameter α. In Fig. 2 (left) we see that there is mini-
mal dependence on α, with the three values leading to simi-
lar optimization performance. In Fig. 2 (middle and right)
we see that, as expected, smaller values of α are more con-
servative (i.e., prefer smaller subspaces), while larger values
of α are less conservative (i.e., prefer larger subspaces). We
note, however, that this effect is most pronounced when
only a small number of datapoints have been collected. Af-
ter ∼ 20 function evaluations the observations overwhelm
the prior p(τ) and the posterior quickly concentrates on the
two relevant dimensions.

Given the good performance of all three values of α, for
the remainder of our experiments we choose the interme-
diate value α = 0.1. While performance can perhaps be
improved in some cases by tuning α, we find it encourag-
ing that we can get good performance with a single α. We
emphasize that α is the only hyperparameter that governs
the function prior, and that all remaining hyperparameters
control the computational budget (e.g. the number of NUTS
samples L). This is in contrast to the many methods for

high-dimensional BO that rely on several (potentially sensi-
tive) hyperparameters such as the dimension de of a random
embedding.

5.3 BASELINES

We compare SAASBO to a comprehensive selection of base-
lines: ALEBO, CMA-ES, EBO, HeSBO, SMAC, Sobol,
and TuRBO. ALEBO [Letham et al., 2020] is chosen as a
representative random embedding method, as it improves
upon the original REMBO method [Wang et al., 2016]. Ad-
ditionally, we compare to HeSBO, which uses hashing and
sketching to project low-dimensional points up to the origi-
nal space [Nayebi et al., 2019]. The EBO method by Wang
et al. [2018] exploits additive structure to scale to high-
dimensional spaces. We also compare to CMA-ES [Hansen
et al., 2003], which is a popular evolutionary method that
is often competitive with BO methods on high-dimensional
problems, see e.g., [Letham et al., 2020]. TuRBO [Eriksson
et al., 2019] uses a trust region centered at the best solution
to avoid exploring highly uncertain parts of the search space.
We also include an additional BO method that does not rely
on GPs, namely SMAC [Hutter et al., 2011]. Finally, we
also compare to scrambled Sobol sequences [Owen, 2003].

We use the default settings for all baselines. For ALEBO and
HeSBO we evaluate both de = 5 and de = 10 on the three
synthetic problems in Sec. 5.4. As de = 5 does not perform
well on the three real-world applications in Sec. 5.5-5.7, we
instead evaluate de = 10 and de = 20 on these problems.

We also mention a baseline method for which we do not re-
port results, since it underperforms random search. Namely
for our surrogate model we use a quadratic polynomial over
D with O(D2) coefficients governed by a sparsity-inducing
Horseshoe prior [Carvalho et al., 2009]. As in Baptista and
Poloczek [2018], this finite feature expansion admits effi-
cient inference with a Gibbs sampler. Unfortunately, in our
setting, where D is continuous and not discrete, this leads
to pathological behavior when combined with EI, since the
minima of simple parametric models are very likely to be
found at the boundary of D. This is in contrast to the mean-
reverting behavior of a GP with a RBF or Matérn kernel,
which is a much more appropriate modeling assumption in
high dimensions.

5.4 SYNTHETIC PROBLEMS

In this section we consider the Branin (d = 2), Hartmann
(d = 6), and Rosenbrock (d = 3) test functions embedded
in aD = 100 space.4 These are problems with unambiguous
low-dimensional structure where we expect both random
embedding methods and SAASBO to perform well.

4That is to say each synthetic function depends on exactly d
variables and is independent of the remaining D − d variables.
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Figure 2: We explore how SAASBO performs on Branin (D = 100), comparing SAASBO-NUTS for three values of the
sparsity controlling hyperparameter α to SAASBO-MAP. Each curve corresponds to 60 independent replications of Algorithm
1. Left: We compare performance w.r.t. the best minimum found (the mean is depicted by a thick line and shaded bands denote
standard errors). Middle: We depict the mean number of relevant dimensions found, where a relevant dimension is declared
‘found’ if its corresponding PosteriorMedian(ρk) is among the two largest {PosteriorMedian(ρi)}Di=1. Right: We depict
the mean effective subspace dimension, defined to be the number of dimensions for which PosteriorMedian(ρk) > 0.5.
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Figure 3: We compare SAASBO to seven baseline methods on three d−dimensional functions embedded in D = 100
dimensions. In each case we do 30 independent replications. Top row: For each method we depict the mean value of the best
minimum found at a given iteration. Bottom row: For each method we depict the distribution over the final approximate
minimum ymin encoded as a violin plot, with horizontal bars corresponding to 5%, 50%, and 95% quantiles.

Fig. 3 shows that SAASBO and ALEBO-5 perform the best
on Branin. SAASBO performs the best on Hartmann fol-
lowed by ALEBO-10. HeSBO performs well on Rosenbrock

and the final performance of SAASBO, HeSBO-5, HeSBO-
10, and ALEBO-5 are similar. However, both ALEBO and
HeSBO show significant sensitivity to the embedded sub-
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Figure 4: We compare SAASBO to baseline methods on rover trajectory planning (D = 100), SVM hyperparameter tuning
(D = 388), and MOPTA vehicle design (D = 124). We do 30 independent replications for Rover and SVM and 15
replications for MOPTA. Top row: For each method we depict the mean value of the best minimum found at a given
iteration. Bottom row: For each method we depict the distribution over the final approximate minimum ymin encoded as a
violin plot, with horizontal bars corresponding to 5%, 50%, and 95% quantiles.

space dimension on at least two of the three problems, high-
lighting a serious downside of random embedding methods.
Crucially this important hyperparameter needs to be chosen
before the start of optimization and is not learned.

5.5 ROVER TRAJECTORY PLANNING

We consider a variation of the rover trajectory planning
problem from [Wang et al., 2018] where the task is to find
an optimal trajectory through a 2d-environment. In the
original problem, the trajectory is determined by fitting a
B-spline to 30 waypoints and the goal is to optimize the
locations of these waypoints. This is a challenging problem
that requires thousands of evaluations to find good solutions,
see e.g. [Eriksson et al., 2019]. To make the problem
more suitable for small evaluation budgets, we require
that the B-spline starts and ends at the pre-determined
starting position and destination. We also increase the
dimensionality to D = 100 by using 50 waypoints. Fig. 4
shows that SAASBO performs the best on this problem. This
problem is challenging for all methods, each of which had at
least one replication where the final reward was below 2.5.

5.6 HYPERPARAMETER TUNING OF AN SVM

We define a hyperparameter tuning problem using a ker-
nel support vector machine (SVM) trained on a 385-
dimensional regression dataset. This results in a D = 388
problem, with 3 regularization parameters and 385 kernel
length scales. We expect this problem to have some amount
of low-dimensional structure, as we expect the regulariza-
tion parameters to be most relevant, with a number of length
scales of secondary, but non-negligible importance. This
intuition is confirmed in Fig. 8 in the supplementary mate-
rials, which demonstrates that SAASBO quickly focuses on
the regularization parameters, explaining the superior per-
formance of SAASBO seen in Fig. 4. ALEBO makes little
progress after iteration 30, indicating that there may not be
any good solutions within the random embeddings. HeSBO
and EBO do better than the other methods, but fail to match
the final performance of SAASBO.

5.7 VEHICLE DESIGN

We consider the vehicle design problem MOPTA08, a chal-
lenging real-world high-dimensional BO problem [Jones,
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Figure 5: We depict the effective subspace dimension during
a single run of Algorithm 1 on the MOPTA vehicle design
problem. Here the effective subspace dimension is the num-
ber of dimensions for which PosteriorMedian(ρk) > ξ,
with ξ = 0.1 an arbitrary cutoff.

2008]. The goal is to minimize the mass of a vehicle sub-
ject to 68 performance constraints. The D = 124 design
variables describe materials, gauges, and vehicle shape. To
accommodate our baseline methods, While some meth-
ods such as Scalable Constrained Bayesian Optimization
(SCBO) [Eriksson and Poloczek, 2021] can handle this con-
strained problem with thousands of evaluations, we convert
the hard constraints into a soft penalty, yielding a scalar
objective function. Fig. 4 shows that SAASBO outperforms
other methods by a large margin. TuRBO and CMA-ES
perform better than the remaining methods, which fail to
identify good solutions. While this problem does not have
obvious low-dimensional structure, our flexible SAAS prior
still results in superior optimization performance.

In Fig. 5 we see that during the course of a single run of
SAASBO on this problem, the effective dimension of the
identified subspace steadily increases from about 2 to about
10 as more evaluations are collected. Using an increasingly
flexible surrogate model over the course of optimization is
key to the excellent optimization performance of SAASBO.

6 DISCUSSION

Black-box optimization in hundreds of dimensions presents
a number of challenges, many of which can be traced to the
many degrees of freedom that characterize high-dimensional
spaces. The majority of approaches to Bayesian optimiza-
tion try to circumvent this potential hazard by reducing the
effective dimensionality of the problem. For example ran-

dom projection methods like ALEBO and HeSBO work
directly in a low-dimensional space, while methods like
TuRBO or LineBO constrain the domain over which the
acquisition function is optimized. We take the view that it
is much more natural to work directly in the full space and
instead rely on a sparsity-inducing function prior to mitigate
the curse of dimensionality.

As we have shown in a comprehensive set of experiments,
SAASBO outperforms state-of-the-art BO methods on sev-
eral synthetic and real-world problems. Our approach pro-
vides several distinct advantages: we highlight three. First,
it preserves—and therefore can exploit—structure in the in-
put domain, in contrast to methods like ALEBO or HeSBO
which risk scrambling it. Second, it is adaptive and exhibits
little sensitivity to its hyperparameters. Third, it can nat-
urally accommodate both input and output constraints, in
contrast to methods that rely on random projections, for
which input constraints are particularly challenging.

While we have obtained strikingly good performance using a
simple acquisition strategy, it is likely that making the most
of our SAAS function prior will require a decision-theoretic
framework that is better suited to high-dimensional settings.
This is an interesting direction for future elaborations of
SAASBO.
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