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Abstract

Source code can be parsed into the abstract syntax
tree (AST) based on defined syntax rules. How-
ever, in pre-training, little work has considered
the incorporation of tree structure into the learning
process. In this paper, we present TreeBERT, a tree-
based pre-trained model for improving program-
ming language-oriented generation tasks. To uti-
lize tree structure, TreeBERT represents the AST
corresponding to the code as a set of composi-
tion paths and introduces node position embedding.
The model is trained by tree masked language mod-
eling (TMLM) and node order prediction (NOP)
with a hybrid objective. TMLM uses a novel mask-
ing strategy designed according to the tree’s char-
acteristics to help the model understand the AST
and infer the missing semantics of the AST. With
NOP, TreeBERT extracts the syntactical structure
by learning the order constraints of nodes in AST.
We pre-trained TreeBERT on datasets covering
multiple programming languages. On code summa-
rization and code documentation tasks, TreeBERT
outperforms other pre-trained models and state-of-
the-art models designed for these tasks. Further-
more, TreeBERT performs well when transferred
to the pre-trained unseen programming language.

1 INTRODUCTION

With the development of pre-trained models such as BERT
[Devlin et al., 2019], state-of-the-art performance has been
achieved on many natural language processing tasks. The
use of pre-trained models reduces the budget of down-
stream tasks while achieving high accuracy and fast training
speed. The success of pre-trained models in natural lan-
guage processing (NLP) has also driven the emergence of
pre-trained models for programming language (PL), such as

CuBERT [Kanade et al., 2020] and CodeBERT [Feng et al.,
2020], which learn generic code representations through
pre-training tasks and then use them to enhance PL-oriented
downstream tasks, such as code summarization and code
classification.

However, existing PL-oriented pre-trained models face two
main challenges. 1) Design of appropriate mechanism for
learning program syntactical structure. PL-oriented pre-
trained models all adopt a natural language-like treatment,
modeling the code as a sequence of words and considering
only the linguistic nature of the code. However, the code
is also strongly structured, and the semantics of the code
relys on the combination of program statements and expres-
sions with different syntactical structures to be represented.
Therefore, the structural features of the program cannot
be ignored. Typically, a code snippet can be parsed into a
unique corresponding abstract syntax tree (AST) based on
defined syntax rules. Previous works [Yin and Neubig, 2017,
Rabinovich et al., 2017, Mou et al., 2016] have noted the
key role of AST in program representation. However, the
standard Transformer [Vaswani et al., 2017] architecture for
pre-trained models cannot utilize the tree structure. How
to use AST as input to the pre-trained model is a challeng-
ing problem. 2) Exploration of pre-training tasks for the
tree structure. The existing PL-oriented pre-trained models
straightforwardly follow the NLP pre-training tasks. There
is some inappropriate application of sequence-oriented tasks
directly to non-sequential structured AST. Therefore, new
pre-training tasks should be designed for tree so that the
pre-trained model can extract both syntactic and semantic
information from AST.

In this paper, we propose TreeBERT, a tree-based pre-
trained model for programming language. TreeBERT fol-
lows the Transformer encoder-decoder architecture. To en-
able the Transformer to utilize the tree structure, we rep-
resent the AST corresponding to the code snippet as the
set of root node to terminal node paths and then introduce
node position embedding to obtain the position of the node
in the tree. We propose a hybrid objective applicable to
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AST to learn syntactic and semantic knowledge, i.e., tree
masked language modeling (TMLM) and node order predic-
tion (NOP). In TMLM, we design a novel masking strategy
to mask the input of the encoder and decoder, input the set
of AST paths with masked nodes at the encoder side, and
predict the complete code snippet using the contextual in-
formation in AST at the decoder side. Since the order of
nodes in the path expresses the program structure informa-
tion, NOP improves the ability of the model to capture the
syntactical structure information by predicting whether the
nodes are out of order. As a result, TreeBERT can be applied
to a wide range of PL-oriented generation tasks by means
of fine-tuning and without extensive modifications to the
task-specific architecture.

Our contributions are summarized as follows:

• We propose TreeBERT, a PL-oriented tree-based pre-
trained model. TreeBERT is pre-trained on multiple
programming language datasets and can be fine-tuned
for improving the accuracy of PL-oriented generation
tasks. Our source code and model are available at
https://github.com/17385/TreeBERT.

• We represent the AST as a set of constituent paths and
introduce node position embedding. We propose a hy-
brid objective for the tree structure, including TMLM
and NOP. The former designs a novel masking strategy
to help the model understand AST and infer semantics.
The latter enables more program syntactical structure
features to be extracted.

• We conduct extensive experiments on Python, Java,
and C# datasets to verify that TreeBERT achieves
state-of-the-art performance in code summarization
and code documentation and generalizes better to an-
other programming language that has not been seen in
the pre-training phase.

2 MOTIVATION

In this section, we describe our motivations for proposing
TreeBERT, including the program syntactical structure and
the pre-training task.

Program syntactical structure CuBERT [Kanade et al.,
2020] represents the first attempt to pre-training a BERT
contextual embedding of source code and shows its efficacy
on five classification tasks. CodeBERT [Feng et al., 2020]
is the first bimodal pre-trained model capable of handling
programming language (PL) and natural language (NL). It
is trained using a hybrid objective function, including stan-
dard masked language modeling [Devlin et al., 2019] and
replacement token detection [Clark et al., 2020], to achieve
state-of-the-art performance in NL-PL comprehension tasks
(e.g., code retrieval) and generation tasks (e.g., code doc-
umentation). Nevertheless, both CuBERT and CodeBERT

are based purely on the sequence. The knowledge they learn
from the sequence is not sufficient because they do not
take into account the learning of syntactical structural in-
formation in the program. Additionally, CodeBERT points
out that using the code sequence causes a partial loss of
accuracy compared to using AST. Hu et al. [2018] use a
linear traversal approach to represent AST as the sequence.
LeClair et al. [2019] combine tokens in code with code
structure in AST. Alon et al. [2019] represent a given code
snippet as the set of paths between k pairs of random termi-
nal nodes in the AST, which makes their model outperform
other state-of-the-art techniques in code summarization and
code captioning tasks. Each of these task-specific, non-pre-
trained models demonstrates that a tree-based representation
can effectively extract information from source code than
can a sequential representation.

The Transformer [Vaswani et al., 2017] has demonstrated
strong feature learning capability on NLP tasks, and the
strategy of using large amounts of data for pre-training has
been successful. Addressing how to enable Transformer to
utilize tree structure is the first step in enabling pre-trained
models to learn syntactical structure. Sun et al. [2020] at-
tempt to solve this problem by adding the structural convo-
lution sublayers to the first few Transformer decoder blocks.
Instead of changing the Transformer structure, TreeBERT
represents the AST using the set of paths from the root to
the terminal nodes to serialize the AST. This approach rep-
resents a tree uniquely compared to other traversal methods,
such as pre-order traversal. We also introduce node position
embedding, which obtains hierarchy information and the
relative position information of the node’s parent and sibling
nodes. These operations ensure that the Transformer makes
maximum use of all the information in the tree.

Pre-training Task Pre-training tasks are crucial for learn-
ing generic representations of language. In NLP, masked
language modeling [Devlin et al., 2019], next sentence pre-
diction [Devlin et al., 2019], sentence order prediction [Lan
et al., 2020], replaced token detection [Clark et al., 2020],
permuted language modeling [Yang et al., 2019], and other
tasks have been used for pre-training. These specially de-
signed pre-training tasks enable the model to learn contex-
tually relevant representations of each member of the input
sentence using a large amount of data, thus the model to
implicitly learn generic knowledge in the language.

The pre-training tasks of CuBERT and CodeBERT follow
the pre-training tasks of NLP. These pre-training tasks are
designed for sequence, while non-sequential structured AST
has more a complex structure than sequence. It is required
to design pre-training tasks for AST to learn the code repre-
sentation effectively. Our work is based on Seq2Seq MLM
used in MASS [Song et al., 2019] and T5 [Raffel et al.,
2020] and has been shown to benefit Seq2Seq-style down-
stream tasks. Specifically, we design TMLM. Considering
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Figure 1: AST representation of the code snippet. When we represent AST, the terminal node is its corresponding
value attribute, and the non-terminal node is its corresponding type attribute, except for the function name that acts as a
non-terminal node but uses the value attribute.

the repetition of nodes in AST paths and the importance of
terminal nodes, we adopt a novel masking strategy to mask
the nodes in AST and tokens in code snippet. The input of
the encoder is the set of masked AST paths, and the output
of the decoder is the predicted complete code snippet, which
facilitates TreeBERT to understand AST and infer the miss-
ing semantics. In addition, to learn node order constraints in
the AST, e.g., the "if" node must be followed by the "body"
node, we develop NOP to capture more information about
the syntactical structure of the program.

3 PROPOSED MODEL

In this section, we describe the details of TreeBERT, includ-
ing the model architecture, the input representation, and the
pre-training tasks employed by TreeBERT.

3.1 MODEL ARCHITECTURE

The model architecture of TreeBERT is based on the original
implementation of the Transformer-based encoder-decoder
described by Vaswani et al. [2017]. We omit the detailed
description of the Transformer architecture since the use of
the Transformer is already widespread [Dong et al., 2019,
Lan et al., 2020, Liu et al., 2019]. Our model modifies
the encoder side of the Transformer, adding only a fully
connected layer to adjust the dimensionality of the input.

3.2 INPUT REPRESENTATION

In the pre-training phase, we set the input as a set of con-
stituent paths in the corresponding AST given a code snippet.
All node embeddings in the path are concatenated to repre-
sent the path after adding the node position embedding. The
input at the decoder side is the sequence of tokens obtained
from the code snippet after tokenization. In particular, the
value nodes in the AST and tokens in the code snippet are
represented by summing the subword embeddings.

AST Representation Each code snippet is converted into
an AST, as shown in Figure 1, which exhibits the syntactical
structure of the program in the form of a tree. Each node in
the tree represents a structure in the code. For example, a
conditional jump statement such as if-condition-then can be
represented by a node with two branches.

AST nodes are divided into two categories: type nodes,
such as "argument" and "Eptr", denoted as v, and value
nodes (i.e., the tokens in the code), such as "sys_path" and
"join_path", denoted as x. Note that the value nodes are
almost always terminal nodes.We use the set of paths from
the root node to the terminal nodes to represent the AST,
A = {p1,p2, · · · ,pN}, where N is the number of paths
contained in the AST.

Code Representation The code snippet corresponding
to AST is tokenizing into a sequence of tokens, and tokens
[LT ] and [CLS] are added at the beginning and end, respec-
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tively, i.e., C = [LT],x1,x2, ...,xM, [CLS] where [LT]
is the representation vector of [LT ], [CLS] is the represen-
tation vector of [CLS], and M is the length of the code
snippet. C will be used as the input to the decoder, which
is shown in Figure 2. [EOS] is the end-of-sentence iden-
tifier at the decoder side. Not only does [LT ] serve as a
start-of-sentence identifier, but its value represents the type
of the target programming language, e.g., [LT ] = [PLT ]
when the language type is Python, [LT ] = [JLT ] when
the language type is Java and [LT ] = [UNK] when the
language generated by the decoder is a language not seen in
the pretraining phase. This is because the implementation
details of the different types of languages are hidden when
the code snippet is converted to AST. We need to hint at
the language type for the model to learn the differences
between different programming languages. [CLS] is used
as the aggregate representation for NOP.

Path Representation Each path is a sequence of nodes,
pi = vi1v

i
2 · · · viL−1xit, where the terminal node xit of the

path is a token in the corresponding code snippet, and L is
the length of the path. We concatenate the vector of nodes
in the path to represent the path.

pi = Concat[vi
1;vi

2; · · · ;vi
L−1;xi

t].

Note that there is no ordering relationship between path
representation vectors in the set of paths. Therefore, unlike
the standard Transformer, our model encoder side does not
add position encoding to assign position information to the
path vectors but adds the position information of the nodes
in the tree using node position embedding when forming
the node representations.

Token Representation A large number of user-defined
identifiers in the program often lead to out-of-vocabulary
tokens or sparse vector representation. To alleviate this prob-
lem, we use bytes-pair-encoding (BPE) [Sennrich et al.,
2016] to learn the most frequent subtoken from value nodes
in the AST and tokens in the code snippet and split them,
e.g., "third_party" might be split into "third", "_", "party".
Following Alon et al. [2019], we use the vector sum of all
subtokens that constitute each token to represent the com-
plete token.

xt =
∑

s∈BPE_split(xt)

Esubtokenss .

where Esubtokens is a learned embedding matrix to repre-
sent each subtoken. The number of type nodes in AST is
fixed and small, so it is represented as a real-valued vector
by embedding.

To train a more general pre-trained model, we share vocab-
ulary and weights for Python and Java. This approach can
reduce the overall vocabulary size and maximize the token

overlap between languages, thereby improving the cross-
language performance of the model [Conneau and Lample,
2019, Devlin et al., 2019, Lample et al., 2018].

Node Position Embedding To obtain the relative position
information of the nodes in the AST, we add node position
embedding to the node embedding on the encoder side.

A node’s position embedding is a linear combination of its
parent node position embedding and its corresponding level
embedding. There areH+1 level embeddings as parameters,
namely, W level, where H is the height of the tree. We use
W level

0 as the parent position embedding of the root node.
If there is a node on level j whose position embedding is
W parent and has c child nodes, then the position embedding
of its i-th child node is

Epositioni = c−i+1
c+1 W parent+ i

c+1W
level
j+1 , c≥1 and 1≤ i≤c.

whereW parent,W level are learnable weight matrices. Node
position embedding can obtain hierarchy information and
the relative position information of the node’s parent and
sibling nodes.

The pros of node position embedding are fewer parame-
ters (approximately 1/200 of learned position embedding
[Gehring et al., 2017] in the experiment) and extrapolabil-
ity. If n parameters are used, learned position embedding
can encode n nodes, while node position embedding is all
nodes in a tree of height n-1, the number much larger than
n. Learned position embedding, which allocates a different
weight matrix as parameters for each position, fails to scale
up. Compared to learned position embedding, node posi-
tion embedding allows the model to extrapolate to a larger
number of nodes than the ones encountered during training.

3.3 PRE-TRAINING TASKS

We design two tasks, TMLM and NOP, for training Tree-
BERT. Seq2Seq MLM has been shown to be effective in
previous studies [Song et al., 2019, Raffel et al., 2020]. We
design the TMLM by extending the Seq2Seq MLM to the
AST. NOP considers the node order constraints in AST
to further extract program structure information. The two
pre-training tasks are illustrated in Figure 2.

3.3.1 Tree Masked Language Modeling (TMLM)

Given an AST-code snippet pair (A, C), we propose a strat-
egy for masking the nodes in the AST and the tokens in the
code snippet.

At the encoder side, we first sample the nodes in path pi
according to the distribution of probability {qin}n=1···L and
use the TOPK() operation to select the top k nodes mA

i

with the higher probability and then replace these nodes in
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Figure 2: Overview of TreeBERT. The gray nodes indi-
cate that the nodes (or tokens) are masked, and green nodes
mean that the nodes (e.g., v3 and v5) exchange their posi-
tions.

path pi with a special token [mask] to obtain pmaskedi .

qin =
e(l−L)∑L
j=1 e

(j−L)
,

mA
i = TOPK

(
pi, k, {qin}

)
,

pmaskedi = REPLACE
(
pi,m

A
i , [mask]

)
,

Amasked = {pmasked1 , pmasked2 , · · · , pmaskedN }.

where Amasked denotes the set of masked paths, l is the
current node level, L is the maximum node level in the
path, N is the number of paths contained in an AST, and
i = 1 · · ·N . Note that L is subtracted to prevent numerical
overflow. This ensures that nodes with larger levels in the
path have a higher probability of being masked.

TMLM masks the nodes closer to the terminal in the path
with higher probability. The main reasons are 1) since each
path is from the root node to the terminal node, the closer the
node is to the root node, the more times it is repeated in the
set of paths. If we use the standard MLM masking strategy,
many same type nodes are masked. Repeatedly learning the
representation of such nodes will harm the performance of
the model. 2) The terminal nodes of the AST usually refer
to user-defined values that represent identifiers and names
in the code with rich meanings. Therefore, masking such
nodes more frequently can force our model to learn their
representations.

At the decoder side, the input Cmasked of the decoder is ob-
tained by masking the tokens in the code snippet according
to the following equations.

mC = {x|x ∈ C ∩ x /∈ mA},
Cmasked = REPLACE

(
C,mC , [mask]

)
.

where mA = mA
1 ∪mA

2 ∪ · · · ∪mA
N and x is the element

of the set mC that needs to be masked in the code snippet.

We keep the tokens corresponding to the value nodes in mA

and mask the other tokens in the code snippet C. In this
way, by making the next token prediction, TMLM can force
the decoder to rely on the feature representation of the AST
instead of the previous tokens in the code snippet.

An example is shown in Figure 2. In the AST, according
to the above strategy, the set of nodes to be masked for the
four paths are mA

1 = {v4, x1}, mA
2 = {x2}, mA

3 = {}, and
mA

4 = {x4}. In the code snippet, the masked value nodes
x1, x2, x4 in the path are given, and the other nodes are
masked, i.e., mC = {x3, x5}. The decoder needs to predict
the complete code snippet x1, x2, x3, x4, x5, x6.

In TMLM, the encoder reads the set of masked AST paths,
and then the decoder infers the code snippet corresponding
to the AST. Notably, when the code is converted to AST,
some semantic information is hidden, such as "+", ">", "<="
and other binary operators are represented in AST using the
"BinOpSub" node. In this case, if the decoder is designed
to predict AST, the above semantic information will be
ignored. Therefore, we design the decoder to predict the
code snippet to encourage the model to infer such semantic
information, thus enhancing its generalization ability in
downstream tasks. The objective function of TMLM is given
as follows.

LTMLM (θ) =
1

M

∑
x∈C
−log

M∏
t=1

P
(
xt|x<t, Amasked

)
.

where M is the length of the code snippet and x is the token
in the code snippet.

In summary, TMLM can force the encoder to understand the
AST and infer the semantic information hidden in the AST.
It also encourages the decoder to extract information from
the encoder to help with code snippet prediction, enabling
joint training of the encoder-decoder framework.

3.3.2 Node Order Prediction (NOP)

TMLM is capable of learning rich semantic knowledge. To
further improve the ability to extract syntactical structure
information from program, we designed the binarized pre-
training task NOP.

There are some implicit constraints on the order of nodes
in the AST. Taking the path "Module ->· · · -> if -> body ->
Expr ->· · · -> third_party_dir" in Figure 1 as an example,
there must be a "body" node below the "if" node and a
"body" node must have an "Expr" node underneath it. To
capture this syntactical structure information, we decide
with a certain probability whether to randomly exchange the
positions of some nodes in the path, and then train the model
to distinguish whether the order of nodes in the AST is
correct or not. As shown in Figure 2, we swap the positions
of nodes v3 and v5. The hidden vector of [CLS] will be
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compressed to 1 dimension by a fully connected layer, and
then the probability ȳ of the existence of nodes out of order
in the AST path is obtained via the Sigmoid function. The
objective function of NOP is as follows.

LNOP (θ) = − (ylogȳ + (1− y) log (1− ȳ)) .

where ȳ takes a value of 1 when AST has nodes out of order
and is 0 otherwise.

Since TMLM and NOP play different roles, we adopt the
hyperparameter α to adjust the loss function.

L = min
θ

(αLTMLM (θ) + (1− α)LNOP (θ)) .

4 EXPERIMENTS

In this section, we first present the pre-training setup for
TreeBERT. Then, we provide the results of fine-tuned Tree-
BERT on some generation tasks. Finally, an ablation study
is performed to evaluate the effectiveness of various compo-
nents of TreeBERT.

4.1 PRE-TRAINING

Pre-training Data The pre-training datasets we used are
the Python and Java corpus published by CuBERT. Dupli-
cate data from the fine-tuned datasets were removed. The
Python dataset consists of 7.2 million Python files contain-
ing over 2 billion tokens, which are processed into ASTs
with approximately 500 million paths and 7 billion nodes.
The Java dataset consists of 14.1 million Java files contain-
ing approximately 4.5 billion tokens, which are processed
into ASTs containing approximately 1.1 billion paths and
16.5 billion nodes.

Training Details TreeBERT sets the number of encoder
layers (i.e., Transformer blocks) to 6, the hidden size to
1024, and the number of self-attention headers to 8. The de-
coder uses the same settings as the encoder. For pre-training,
the max path number, max node number and max code
length are set to 100, 20 and 200, respectively, based on
the statistical information about the dataset. We took 32K
BPE merge operations. We use Adam [Kingma and Ba,
2015] with a learning rate of {1e-3, 1e-4, 1e-5}, β1 = 0.9,
β2 = 0.999, L2 weight decay of 0.01, learning rate warm
up during the first 10% of steps, and linear decay afterwards.
We use a GELU activation, and the batch size is {2048,
4096, 8129}. We also applied 0.1 dropout [Srivastava et al.,
2014] on all layers. In TMLM, each path randomly masks
15% of the nodes. In the NOP, each AST has a 50% chance
of exchanging a pair of nodes.

We train TreeBERT with different values of weight α (0.25,
0.5, 0.75, 1) and test the performance of TreeBERT in two

downstream tasks, code summarization and code documen-
tation. The results show that TreeBERT’s performance im-
proves as the value of α increases and performs best at 0.75,
but the model performance starts to deteriorate when the
value of α increases further. Therefore, we set the weight α
in the loss function to 0.75.

4.2 FINE-TUNING

To verify the effectiveness of TreeBERT, TreeBERT was
fine-tuned for two generation tasks and was compared with
the baselines. The generation tasks are code summarization
and code documentation. We also evaluate the performance
of TreeBERT on the C# dataset and experimentally demon-
strate that TreeBERT generalizes well to programming lan-
guage not seen in the pre-training phase.

4.2.1 Code Summarization

Code summarization refers to predicting the function name
of a given function body, which can roughly describe the
function and help programmers name the function.

Datasets and Training Details In the code summarization
task, we evaluate TreeBERT on Python and Java datasets,
where the Python dataset uses ETH Py150 [Raychev et al.,
2016] and the Java datasets [Allamanis et al., 2016] use Java-
small, Java-med and Java-large. The statistical information
of the datasets is provided in the supplementary material.

We set the learning rate and batch size to 1e-5 and 64, respec-
tively. We use the Adam update parameter, and the number
of epochs is set to 100. If the model performance does not
improve over several epochs, we end the training early and
select the model with the lowest loss in the validation set
for subsequent evaluation.

Model Comparison The selected comparison baselines
are the sequence-based Transformer [Vaswani et al., 2017],
graph-based Graph2Seq [Xu et al., 2018], AST-based
Code2Seq [Alon et al., 2019], and both AST and sequence-
based Code+Gnn+GRU [LeClair et al., 2020]. Transformer
has achieved state-of-the-art performance for translation
tasks. Graph2Seq introduces a novel graph-to-sequence neu-
ral encoder-decoder model that maps input graphs to vector
sequences and decodes target sequences from these vec-
tors using an attention-based LSTM. Code2Seq represents
a code snippet as k paths between terminal nodes in its
AST and uses attention to select the relevant paths when de-
coding. Code+Gnn+GRU processes AST using ConvGNN
and combines the output of the ConvGNN encoder with the
output of the code token encoder.

We also compared TreeBERT with other pre-trained mod-
els, namely, NL-oriented MASS (Le = 6, Ld = 6, H =
1024, A = 8) and PL-oriented CuBERT (Le = 24, H =
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Table 1: Experimental results of code summarization on datasets of different sizes in Java and Python.

Methods ETH Py150 Java-small Java-med Java-large
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Methods without pre-training
Transformer 22.18 12.67 16.13 28.13 26.7 31.41 50.11 35.01 41.22 59.13 40.58 48.13
Graph2Seq 35.74 24.77 29.26 50.44 37.15 42.79 61.07 46.89 53.05 62.89 54.07 58.15
Code2Seq 36.45 25.59 30.07 50.64 37.40 43.02 61.24 47.07 53.23 64.03 55.02 59.18
Code+Gnn+GRU 40.66 29.89 34.45 55.87 42.32 48.16 67.10 52.35 58.81 71.66 60.56 65.64

Methods with pre-training
MASS(Pre-training with code) 38.05 28.14 32.35 53.06 40.15 45.71 62.96 48.56 54.83 67.27 55.45 60.79
CuBERT 33.48 22.61 26.99 46.15 32.62 38.22 54.58 39.73 45.99 57.55 45.07 50.55
CodeBERT 35.97 25.12 29.58 49.39 35.19 41.10 58.41 43.16 49.64 61.76 49.18 54.76

TreeBERT 45.81 34.01 39.04 60.33 45.68 51.99 69.95 54.42 61.22 73.43 62.03 67.25
Absolute gain over Code+Gnn+GRU +5.15 +4.12 +4.58 +4.46 +3.36 +3.83 +2.85 +2.07 +2.40 +1.77 +1.47 +1.61

1024, A = 16) and CodeBERT (Le = 12, H = 768, A =
12), where Le is the number of encoder layers, Ld is the
number of decoder layers, H is the hidden size, and A is the
number of self-attention heads. We retrained MASS using
the same parameter settings and pre-training data as those
used for TreeBERT. In addition, we used the parameters
of CuBERT and CodeBERT to initialize Transformer’s en-
coder. The other baseline models were set according to the
parameters given in their papers. In this task, we evaluate the
performance of each model using three metrics: precision,
recall, and F1 score, which refer to supplementary material
for the calculation methods.

Table 1 lists the results of the code summarization task,
and visualizations of the data are shown in the supplemen-
tary material. TreeBERT significantly outperformed other
models, including both with pre-trained and without pre-
trained on all four datasets. Graph2Seq, Code2Seq, and
Code+Gnn+GRU outperform Transformer, and these results
suggest that tree-based or graph-based representations are
more effective than sequence in extracting information from
code. MASS, after retraining using the code dataset, out-
performs the pre-trained models CuBERT and CodeBERT,
suggesting that joint encoder-decoder training improves the
generative ability. However, MASS does not perform as
well as Code+Gnn+GRU, which was specifically designed
for this task. TreeBERT makes more use of the syntacti-
cal structure of the code than MASS, and it outperforms
Code+Gnn+GRU.

When compared to the best baseline, Code+Gnn+GRU,
in terms of the F1 score, TreeBERT performs better on
small datasets, where it achieves a relative improvement
of 7.95% on the Java-small dataset. On the smaller ETH
Py150 dataset, TreeBERT achieves a relative improvement
of 13.29%. The relative difference becomes smaller as the
dataset becomes larger, but it still achieves a relative im-
provement of 2.45% on the Java-large dataset. These results
indicate that TreeBERT performs better in the absence of an-
notated data, and it is more robust as the data size increases.

4.2.2 Code Documentation

Code documentation refers to generating a comment for
the code to understand what the code does by reading the
comment rather than the code itself.

Datasets and Training Details We use the Java dataset
provided by DeepCom [Hu et al., 2018] to fine-tune Tree-
BERT. The size of the original dataset is reduced due to
the presence of some code that cannot be converted to AST.
The statistics of the processed dataset are provided in the
supplementary material.

In this experiment, we set the learning rate and batch size to
3e-5 and 64, respectively, and the Adam optimizer and early
stopping are adopted. Finally, we select the best-performing
model on the validation set.

Table 2: Evaluation results of code documentation on Java
dataset using BLEU.

Methods BLEU

Methods without pre-training
Transformer 13.32
DeepCom 14.81
Graph2Seq 18.39
Code2Seq 18.48
Code+Gnn+GRU 19.73

Methods with pre-training
MASS(Pre-training with code) 18.92
CuBERT 17.41
CodeBERT 17.87

TreeBERT 20.49

Model Comparison In the code documentation task, we
use the same baseline as for code summarization but add a
comparison with DeepCom, which proposes an AST traver-
sal method that converts the AST into the sequence to train
a seq2seq model for the code documentation task. As with
DeepCom, we adopt BLEU as the metric in this experi-
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ment, and its calculation is described in the supplementary
material.

Table 2 shows the results of the code documentation task.
TreeBERT achieves a BLEU score of 20.49, which is 7.17
points higher than that of Transformer. In this task, Trans-
former produces a very poor result because it stays at the
shallow textual token-level compared to other methods with-
out pre-training, thereby overlooking information that is im-
portant to the program. Transformer is trained from scratch
and does not perform as well as methods with pre-training,
which proves that pre-trained models learn valuable infor-
mation. The performance of TreeBERT is significantly im-
proved compared to other baselines because of the joint
training of the encoder-decoder using AST.

4.2.3 Generalization to Programming Language not
Seen during Pre-training

We now evaluate the performance of TreeBERT on pro-
gramming language not seen in the pre-training phase. We
use CodeNN’s [Iyer et al., 2016] C# dataset which con-
tains programming questions and answers about the C#
language obtained from StackOverflow. The dataset statis-
tics are presented in the supplementary material. In this task,
we compare TreeBERT with CodeNN, MASS, CuBERT,
and CodeBERT. In addition, we evaluate the model using
the BLEU metric and the same hyperparameters as those
used in code documentation.

Table 3: Performance of TreeBERT and Baseline models on
language not seen in the pre-training phase.

Methods BLEU

TreeBERT 17.94
CodeNN 14.18

MASS(Pre-training with code) 16.84
CuBERT 14.95
CodeBERT 15.31

Table 3 shows the performance of TreeBERT on C# dataset.
The experimental results indicate that TreeBERT performs
generalization surprisingly well on language not seen in
the pre-training phase. Specifically, TreeBERT achieves a
BLEU of 17.94 by fine-tuning, which is 3.76 points better
than that of CodeNN, whose authors introduced the dataset.
We suppose that TreeBERT can be well generalized to the
new language because of the high similarity between the
AST of the new language and the AST used for pre-training.

4.3 ABLATION STUDY

Extensive ablation studies were conducted to better under-
stand the role of the different components and masking
strategy in the model. We vary the model in different ways

and measure the performance changes for each variant. The
experiment is performed on a Java dataset of code documen-
tation task in the following scenarios.

• No TMLM — We do not use TMLM.

• No NOP — We do not use NOP.

• No Node Position Embedding — We use learned posi-
tion embedding instead of node position embedding.

• Randomly Masking Nodes — In TMLM, we do not
use our proposed masking strategy and randomly mask
nodes in the AST according to the standard MLM.

• Only Masking Value Nodes — Since value nodes ex-
press rich semantics, we try not to mask type nodes
and mask only value nodes.

Figure 3: Results of ablation study. The left side shows
the loss in BLEU values, and the right side shows the total
BLEU values.

The detailed results of the ablation study are presented in the
supplementary material. The experimental results in Figure
3 show that the model lost the most BLEU when the TMLM
is missing, which can prove its important role in TreeBERT.
Although the loss is smaller when NOP is missing, the
syntactical structure information captured by the NOP is in-
dispensable. When we use node position embedding instead
of learning position embedding, the results indicate that we
achieve comparable or even higher results than learning po-
sition embedding. It is worth mentioning the great role of
the masking strategy in TMLM. If the random masking strat-
egy is used, the model will perform poorly, and the result is
almost similar to that without TMLM because most of the
nodes masked are repeated AST non-terminal type nodes, re-
sulting in a large number of code tokens not being involved
in the pre-training, which is detrimental to the extraction of
key semantic information in the code. Value nodes represent
rich semantics, but some loss can be caused if all masked
nodes are value nodes. This suggests that masking a small
number of type nodes is useful, and we suppose that this
approach can be used to extract structural information and
help improve the performance of the model.

5 CONCLUSION

In this paper, we propose a PL-oriented tree-based pre-
trained model called TreeBERT. To learn code represen-
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tation using AST, TreeBERT uses the set of constituent
paths of AST as input, introduces node position embedding
and then trains the model using a hybrid objective, includ-
ing TMLM and NOP. The experimental results indicate that
TreeBERT achieves state-of-the-art performance in code
summarization and code documentation tasks and performs
well when transferred to the pre-training unseen program-
ming language. To further investigate the role of each part
of TreeBERT, we conducted an extensive ablation study.

TreeBERT still has considerable room for improvement.
First, TreeBERT can be used not only for tasks such as code
summarization and code documentation, and it can be used
in any task where the source language can be constructed as
an AST. We will continue to explore the possibility of ap-
plying TreeBERT to more PL tasks. Second, we will further
improve TreeBERT, for example, by adding more program
information to the AST or by using multimodal forms such
as AST, graph and sequence simultaneously, thus extracting
information about the program from different perspectives
so that TreeBERT can better solve PL downstream tasks.
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