
Constrained Differentially Private Federated Learning
for Low-bandwidth Devices

Raouf Kerkouche1 Gergely Ács2 Claude Castelluccia1 Pierre Genevès3

1Privatics team, Univ. Grenoble Alpes, Inria, 38000, Grenoble, France
2Crysys Lab, BME-HIT

3Tyrex team, Univ. Grenoble Alpes, CNRS, Inria„ Grenoble INP, LIG

Abstract

Federated learning becomes a prominent approach
when different entities want to learn collaboratively
a common model without sharing their training
data. However, Federated learning has two main
drawbacks. First, it is quite bandwidth inefficient
as it involves a lot of message exchanges between
the aggregating server and the participating enti-
ties. This bandwidth and corresponding processing
costs could be prohibitive if the participating enti-
ties are, for example, mobile devices. Furthermore,
although federated learning improves privacy by
not sharing data, recent attacks have shown that it
still leaks information about the training data.
This paper presents a novel privacy-preserving fed-
erated learning scheme. The proposed scheme pro-
vides theoretical privacy guarantees, as it is based
on Differential Privacy. Furthermore, it optimizes
the model accuracy by constraining the model
learning phase on few selected weights. Finally, as
shown experimentally, it reduces the upstream and
downstream bandwidth by up to 99.9% compared
to standard federated learning, making it practical
for mobile systems.

1 INTRODUCTION

In Machine Learning, different entities may want to col-
laborate in order to improve their local model accuracy. In
traditional machine learning, such collaboration requires to
first store all entities’ data on a centralized server and then
to train a model on it. Such data centralization might be
problematic when the data are sensitive and data privacy is
required. In order to mitigate this problem, Federated learn-
ing, which allows different entities to learn collaboratively a
common model without sharing their data, was introduced
[Shokri and Shmatikov, 2015, McMahan et al., 2016]. In-

stead of sharing the training data, Federated Learning shares
the model parameters between a server, which plays the
role of aggregator, and the participating entities. Although
Federated Learning improves privacy, model parameters can
leak information about the training data. Indeed, Zhu et al.
[2019], Zhao et al. [2020], Geiping et al. [2020] presented
some attacks that allow an adversary to reconstruct pieces
of the training data of some entities. Nasr et al. [2019] de-
fine a membership attack that allows to infer if a particular
record is included in the data of a specific entity. Similarly,
Melis et al. [2018] define an attack which aims at inferring
if a subgroup of people with a specific property, like for
example skin color or ethnicity, is included in the dataset of
a particular participating entity. A solution to prevent these
attacks and provide theoretical guarantees in to use a privacy
model called Differential Privacy [Dwork and Roth, 2014].
Differential Privacy has been applied to federated learning
in order to protect either each record included in the dataset
of any entity (record-level guarantee), or the whole dataset
of any entity (client-level guarantee). Unfortunately, it is
well-known that Differential Privacy drastically degrades
the accuracy of the global model as it requires to add ran-
dom noise to the gradients (record-level) or to the updates
(client-level) of each client. Recent work by Kerkouche et al.
[2020] shows that this accuracy penalty can be reduced if the
model is compressed, as compression reduces the required
amount of noise. Furthermore, Kerkouche et al. [2020] show
that accuracy can be further improved by adding noise only
to the largest update’s values as adding noise on values close
to 0 is likely to lead to random update values.

Following up on these results, we propose a novel differen-
tially private federated learning solution that improves the
model accuracy (1) by updating only a fixed subset of the
model weights, and (2) by maintaining the other weights
constant. The proposed scheme provides theoretical privacy
guarantees, as it is based on Differential Privacy. Further-
more, it optimizes the model accuracy by constraining the
model learning phase on a few selected weights. As all par-
ticipants always update the same set of weights and transfer

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:1756–1765.

them to the server for aggregation, the proposal can be
easily integrated with secure aggregation [Bonawitz et al.,
2016], which allows parties to add less noise than other
decentralized perturbation approaches such as randomized
response [Erlingsson et al., 2014] used in local differential
privacy. Moreover, it also reduces the upstream and down-
stream bandwidth by a factor of 1000 compared to standard
federated learning, making it practical for mobile systems.

The paper is structured as follows: In Section 2 we introduce
the necessary background to understand the proposal, in
Section 3 we define our solution called FL-TOP and in
Section 3.2 its private extension called FL-TOP-DP.

2 BACKGROUND

2.1 FEDERATED LEARNING (FL-STD)

In federated learning [Shokri and Shmatikov, 2015, McMa-
han et al., 2016], multiple parties (clients) build a common
machine learning model from union of their training data
without sharing them with each other. At each round of the
training, a selected set of clients retrieve the global model
from the parameter server, update the global model based on
their own training data, and send back their updated model
to the server. The server aggregates the updated models of
all clients to obtain a global model that is re-distributed to
some selected parties in the next round.

In particular, a subset K of all N clients are randomly
selected at each round to update the global model, and
C = |K|/N denotes the fraction of selected clients. At
round t, a selected client k ∈ K executes Tgd local gradi-
ent descent iterations on the common model wt−1 using
its own training data Dk (D = ∪k∈KDk), and obtains the
updated model wk

t , where the number of weights is de-
noted by n (i.e., |wk

t | = |∆wk
t | = n for all k and t). Each

client k submits the update ∆wk
t = wk

t − wk
t−1 to the

server, which then updates the common model as follows:
wt = wt−1 +

∑
k∈K

|Dk|∑
j |Dj |∆wk

t , where |Dk| is known
to the server for all k (a client’s update is weighted with the
size of its training data). The server stops training after a
fixed number of rounds Tcl, or when the performance of the
common model does not improve on a held-out data.

Note that each Dk may be generated from different distribu-
tions (i.e., non-IID case), that is, any client’s local dataset
may not be representative of the population distribution
[McMahan et al., 2016]. This can happen, for example,
when not all output classes are represented in every client’s
training data. The federated learning of neural networks is
summarized in Alg. 1. In the sequel, each client is assumed
to use the same model architecture.

The motivation of federated learning is three-fold: first, it
aims to provide confidentiality of each participant’s training

data by sharing only model updates instead of potentially
sensitive training data. Second, in order to decrease com-
munication costs, clients can perform multiple local SGD
iterations before sending their update back to the server.
Third, in each round, only a few clients are required to per-
form local training of the common model, which further
diminishes communication costs and makes the approach
especially appealing with large number of clients.

However, several prior works have demonstrated that model
updates do leak potentially sensitive information [Nasr et al.,
2019, Melis et al., 2018]. Hence, simply not sharing training
data per se is not enough to guarantee their confidentiality.

2.2 DIFFERENTIAL PRIVACY

Differential privacy allows a party to privately release in-
formation about a dataset: a function of an input dataset is
perturbed, so that any information which can differentiate
a record from the rest of the dataset is bounded Dwork and
Roth [2014].

Definition 1 (Privacy loss). Let A be a privacy mecha-
nism which assigns a value Range(A) to a dataset D.
The privacy loss of A with datasets D and D′ at output
O ∈ Range(A) is a random variable P(A, D,D′, O) =

log Pr[A(D)=O]
Pr[A(D′)=O] where the probability is taken on the ran-

domness of A.

Definition 2 ((ε, δ)-Differential Privacy [Dwork and
Roth, 2014]). A privacy mechanism A guarantees (ε, δ)-
differential privacy if for any database D and D′, differing
on at most one record, PrO∼A(D)[P(A, D,D′, O) > ε] ≤
δ.

Intuitively, this guarantees that an adversary, provided with
the output of A, can draw almost the same conclusions (up
to ε with probability larger than 1− δ) about any record no
matter if it is included in the input of A or not. That is, for
any record owner, a privacy breach is unlikely to be due to
its participation in the dataset.

Moments Accountant. Differential privacy maintains
composition; the privacy guarantee of the k-fold
adaptive composition of A1:k = A1, . . . ,Ak can
be computed using the moments accountant method
Abadi et al. [2016]. In particular, it follows from
Markov’s inequality that Pr[P(A, D,D′, O) ≥
ε] ≤ E[exp(λP(A, D,D′, O))]/ exp(λε) for any
output O ∈ Range(A) and λ > 0. A is (ε, δ)-
DP with δ = minλ exp(αA(λ) − λε), where
αA(λ) = maxD,D′ logEO∼A(D)[exp(λP(A, D,D′, O))]
is the log of the moment generating function of the privacy
loss. The privacy guarantee of the composite mechanism
A1:k can be computed using that αA1:k

(λ) ≤
∑k
i=1 αAi

(λ)
Abadi et al. [2016].

1757

Gaussian Mechanism. A fundamental concept of all DP
sanitization techniques is the global sensitivity of a func-
tion [Dwork and Roth, 2014].

Definition 3 (Global Lp-sensitivity). For any function
f : D → Rn, the Lp-sensitivity of f is ∆pf =
maxD,D′ ||f(D) − f(D′)||p, for all D,D′ differing in at
most one record, where || · ||p denotes the Lp-norm.

The Gaussian Mechanism [Dwork and Roth, 2014] consists
of adding Gaussian noise to the true output of a function. In
particular, for any function f : D → Rn, the Gaussian mech-
anism is defined as adding i.i.d Gaussian noise with variance
(∆2f · σ)2 and zero mean to each coordinate value of f(D).
Recall that the pdf of the Gaussian distribution with mean µ
and variance ξ2 is pdfG(µ,ξ)(x) = 1√

2πξ
exp

(
− (x−µ)2

2ξ2

)
.

In fact, the Gaussian mechanism draws vector values from
a multivariate spherical (or isotropic) Gaussian distribution
which is described by random variable G(f(D),∆2f ·σIn),
where n is omitted if its unambiguous in the given context.

3 FEDERATED PRUNING

In the standard federated learning scheme (FL-STD, in Sec-
tion 2), the server sends the latest updated model to a ran-
domly selected set of clients (downstream), and each client
sends back its complete model update after local training to
the server (upstream) at each round. Knowing that a model
has on average millions of parameters (each is a floating
point value represented on 32 bits), the network can suffer
from large traffic both upstream and downstream.

Our solution, called FL-TOP, aims to reduce the large
amount of network traffic by reducing both downstream
and upstream traffic. Moreover, a privacy-preserving exten-
sion of this scheme, called FL-TOP-DP, is also proposed,
which provides Differential Privacy for the whole training
data of every client.

In what follows, we first describe the non-private scheme
FL-TOP and then the privacy-preserving FL-TOP-DP.

3.1 FL-TOP: FEDERATED PRUNING FOR
COMPRESSION

FL-TOP is inspired by the pruning techniques proposed in
Han et al. [2016] (see Section 5 for more details), and it
aims to reduce the amount of parameters exchanged down-
stream (from the server to the participating entities) and
upstream (from the participating entities to the server). In
our scheme, each client updates only a small subset, Top-K,
of the model parameters (weights) at each round. Only the
K weight values of these Top-K parameters are updated
during training, and neither the clients nor the server need
to transfer the values of the remaining n −K parameters,

where n is the total number of parameters. The set of non
Top-K parameters do not change over the whole training
and are identical for all clients. We experimentally show in
Section 4 that, if these K parameters are chosen carefully,
the performance penalty is negligible even if K = 0.005 ·n,
that is, 99.5% of the model parameters are pruned. Note that
unlike standard pruning techniques, where the set of pruned
weights are re-selected after each SGD iteration [Han et al.,
2016], our scheme always updates the same K parameters.

These Top-K parameters are selected by the server at the
beginning of the protocol. More specifically, the server ini-
tializes the model and trains that with some public data that
have a similar distribution as the clients’ training data. After
a few SGD iterations, the server selects the K parameters
which values changed the most.

FL-TOP is described in Alg. 1. First, the server uses pub-
lic data to identify the set T of the Top-K parameters
(K = |T|), before starting federated learning. In partic-
ular, starting from a public model w0, it accumulates the
absolute value of gradients per parameter over Tinit SGD
iterations, and selects the K parameters with the largest
accumulated gradients. After that, the values/updates1 of
these parameters are the only ones exchanged during the
rest of the training between the server and the clients.

At each round, each selected client k uses the K updated
weights ŵt−1 received from the server to create a new
weight vector wk

t−1 of size n, such that wk
t−1 is composed

from the compressed vector ŵk
t−1 of size K ≤ n (with

coordinates in T) and n−K weights from the initialization
vector w0. w0 is identical for all participants and can be gen-
erated from a shared seed. Note that whenK = |T| = n, the
scheme is equivalent to FL-STD. The weight vector wk

t−1 is
used to train the client’s model. However, only the weights
in T are updated while the remaining ones are kept fixed. To
do that, the weights not in T are reinitialized after each SGD
iteration to w0. The server receives only the values from
wk
t −wk

t−1 at coordinates T, denoted by C(wk
t −wk

t−1) for
short, from every client k, and updates the common model
wt with the average of these compressed updates (in Line
12).

3.2 FL-TOP-DP: DIFFERENTIALLY PRIVATE
FEDERATED PRUNING

3.2.1 Privacy Model

We consider an adversary, or a set of colluding adversaries,
who can access any update vector sent by the server or any
clients at each round of the protocol. A plausible adversary
is a participating entity, i.e. a malicious client or server, that
wants to infer the training data used by other participants.

1weight values for downstream and update/gradients for up-
stream traffic

1758

The adversary is passive (i.e., honest-but-curious), that is, it
follows the learning protocol faithfully.

Different privacy requirements can be considered depending
on what information the adversary aims to infer. In general,
private information can be inferred about:

• any record (user) in any dataset of any client (record-
level privacy),

• any client/party (client-level privacy).

To illustrate the above requirements, suppose that several
banks build a common model to predict the creditworthiness
of their customers. A bank certainly does not want other
banks to learn the financial status of any of their customers
(record privacy) and perhaps not even the average income
of all their customers (client privacy).

Record-level privacy is a standard requirement used in the
privacy literature and is usually weaker than client-level
privacy. Indeed, client-level privacy requires to hide any
information which is unique to a client including perhaps
all its training data.

We aim at developing a solution that provides client-level
privacy and is also bandwidth efficient. For example, in the
scenario of collaborating banks, we aim at protecting any
information that is unique to each single bank’s training
data. The adversary should not be able to learn from the
received model or its updates whether any client’s data is
involved in the federated run (up to ε and δ). We believe
that this adversarial model is reasonable in many practical
applications when the confidential information spans over
multiple samples in the training data of a single client (e.g.,
the presence of a group a samples, such as people from
a certain race). Differential Privacy guarantees plausible
deniability not only to any groups of samples of a client
but also to any client in the federated run. Therefore, any
negative privacy impact on a party (or its training samples)
cannot be attributed to their involvement in the protocol run.

3.2.2 Operation

FL-TOP-DP is described in Alg. 3 is very similar to FL-TOP
except that each client adds Gaussian noise to its Top-K
model updates to guarantee client-level DP, and applies
secure aggregation allowing the server to learn only the ag-
gregated (and noisy) model update. More specifically, each
client first calculates its compressed model update ∆wk

t =
C(wk

t −wk
t−1) (in Line 25) which is then clipped (in Line

26) to obtain ∆ŵk
t with L2-norm at most S. After that, ran-

dom noise zk ∼ G(0, SσI/
√
K) is added to ∆ŵk

t such that
the sum

∑
k∈K(∆ŵk

t + zk) =
∑
k∈K ∆ŵk

t +G(0, SσI) as
the sum of Gaussian random variables also follows Gaussian
distribution2 and then differential privacy is satisfied where

2More precisely,
∑

i G(νi, ξi) = G(
∑

i νi,
√∑

i ξ
2
i)

ε and δ can be computed using the moments accountant
described in Section 2.2. Recall that the Top-K coordinates
in T are selected and distributed by the server, which is
honest-but-curious by assumption.

However, as the noise is inversely proportional to
√
K, zk is

likely to be small if |K| is too large. Therefore, the adversary
accessing an individual update ∆ŵk

t +zk can almost learn a
non-noisy update since zk is small. Hence, each client uses
secure aggregation to encrypt its individual update before
sending it to the server. Upon reception, the server sums the
encrypted updates as:∑
k∈K

ckt =
∑
k∈K

EncKk
(∆ŵk

t + zk) =
∑
k∈K

∆ŵk
t +

∑
k∈K

zk

=
∑
k∈K

∆ŵk
t + G(0, SσI) (1)

where EncKk
(∆ŵk

t + zk) = ∆ŵk
t + zk +Kk mod p and∑

kKk = 0 (see Ács and Castelluccia [2011], Bonawitz
et al. [2016] for details). Here the modulo is taken element-
wise and p = 2dlog2(maxk ||∆ŵk

t +zk||∞|K|)e. Let γkt =

1/max
(

1,
||∆wk

t ||2
S

)
. Then,∑

k∈K
∆ŵk

t =
∑
k∈K

γkt ∆wk
t =

∑
k∈K

γkt C(wk
t −wk

t−1,T)

= C(
∑
k∈K

γkt (wk
t −wk

t−1),T) (2)

where the last equality comes from the linearity of the com-
pression operation. Indeed, recall that each client selects
the values of the same Top-K coordinates from T. Plugging
Eq. (2) into Eq. (1). we get that∑

k∈K
ckt = C(

∑
k∈K

γkt (wk
t −wk

t−1),T) + G(0, SσI)

Privacy analysis: The server can only access the noisy ag-
gregate which is sufficiently perturbed to ensure differential
privacy; any client-specific information that could be in-
ferred from the noisy aggregate is tracked and quantified
by the moments accountant, described in Section 2.2, as
follows.

Let η0(x|ξ) = pdfG(0,ξ)(x) and η1(x|ξ) = (1 −
C)pdfG(0,ξ)(x) + CpdfG(1,ξ)(x) where C is the sam-
pling probability of a single client in a single round.
Let α(λ|C) = log max(E1(λ, ξ, C), E2(λ, ξ, C)) where

E1(λ, ξ, C) =
∫
R η0(x|ξ, C) ·

(
η0(x|ξ,C)
η1(x|ξ,C)

)λ
dx and

E2(λ, ξ, C) =
∫
R η1(x|ξ, C) ·

(
η1(x|ξ,C)
η0(x|ξ,C)

)λ
dx.

Theorem 1 (Privacy of FL-TOP-DP). FL-TOP-DP is
(minλ(Tcl · α(λ|C)− log δ)/λ, δ)-DP.

Given a fixed value of δ, ε is computed numerically as in
Abadi et al. [2016], Mironov et al. [2019].

1759

Algorithm 1: FL-TOP: Federated Learning

1 Server:
2 Initialize common model w0

3 Select set T of Top-K updated weights’ coordinates via
public dataset

4 for t = 1 to Tcl do
5 Select K clients uniformly at random
6 for each client k in K do
7 ckt = Clientk(C(wt−1,T))
8 end
9 wt = w0

10 j = 1
11 for each coordinate i in T do
12 wt[i] = wt−1[i] +

∑
k

ckt [j]

|K|
13 j = j + 1

14 end
15 end

Output: Global model wt

16

17 Clientk(ŵk
t−1):

18 wk
t−1 = w0

19 j = 1
20 for each coordinate i in T do
21 wk

t−1[i] = ŵk
t−1[j]

22 j = j + 1

23 end
24 wk

t = TopkSGD(Dk,w
k
t−1,w0, Tgd,T)

Output: Model update C(wk
t −wk

t−1,T)

3.2.3 Remarks

The magnitude of the added Gaussian noise is proportional
to the clipping threshold S, which is in turn calibrated to
the norm of the model update. However, the norm of the
model update increases if the model size increases [Zhu
et al., 2020], and hence S should be chosen sufficiently
large to guarantee fast convergence with large accuracy. On
the other hand, too large S also increases the perturbation
error caused by the added noise.

FL-TOP aims to diminish this perturbation error by reduc-
ing S via compression which also increases the L2-norm of
the compressed update vector. This is illustrated in Figure 1,
which shows that the norm of the Top-K coordinates with
FL-TOP tend to be larger than with FL-STD (i.e., when all
coordinates get updated not only the Top-K). Therefore, be-
sides decreasing the magnitude of the added noise, FL-TOP
also decreases the relative error on the retained parameters.
These together decrease the perturbation error caused by the
added noise.

Notice that there exist other alternatives to identify the Top-
K coordinates in a privacy-preserving manner than using a
public dataset. For example, every client can select the Top-
K parameters with the largest magnitude during the first
rounds locally, and send them to the server for aggregation.

Algorithm 2: Topk-Stochastic Gradient Descent
Input: D : training data, Tgd : local epochs, w : weights, w0 :

first weights’ initialization, T : set of Top-K values
coordinates .

1 for t = 1 to Tgd do
2 Select batch B from D randomly
3 u = −η∇f(B;w)
4 for each coordinate i in T do
5 w[i] = w[i] + u[i]
6 end
7 end

Output: Model w

More specifically, each client creates a parameter vector
with size n, where the Top-K coordinates are set to 1 while
the rest are kept 0. Then, these binary vectors are noised and
aggregated by the server like in Section 3.2.2. In the rest
of the training, all participants exchange only the updates
and weights of the these Top-K parameters like in FL-TOP.
However, aside from consuming more privacy budget, this
approach also has lower accuracy than our proposal accord-
ing to our tests. Moreover, it has larger communication cost
in the initialization phase when the Top-K parameters are
identified and the whole binarized parameter vector is sent
for aggregation.

4 EXPERIMENTAL RESULTS

The goal of this section is to evaluate the performance of
our proposed schemes FL-TOP and FL-TOP-DP on a bench-
mark dataset and a realistic in-hospital mortality prediction
scenario. We aim at evaluating their performance with dif-
ferent levels of compression and comparing them with the
performance of the following learning protocols3:

• FL-STD: The Standard Federated Learning scheme as
described in Section 2.1 (see Alg. 1).

• FL-BASIC: A Federated Learning scheme that updates
a random subset of parameters instead of the Top-K
parameters at each SGD iteration. This subset is re-
selected at the beginning of each new round. The n−k
non-selected parameters are still reinitialized after each
SGD update as in FL-TOP.

• FL-CS: A Federated Learning scheme that uses Com-
pressive sensing (CS) to compress model updates from
Kerkouche et al. [2020]. See Section 5 for more details.

Note that all compression operators in the baselines are
linear (just like FL-TOP-DP), and hence they can also be
used with secure aggregation. Similarly to FL-TOP-DP, the

3More baselines are considered but due to the lack of space,
we have decided to present only those which return the best results.
All other results can be found in the appendix (Section D).

1760

Algorithm 3: FL-TOP-DP: Federated Learning

1 Server:
2 Initialize common model w0

3 Select set T of Top-K updated weights’ coordinates via
public dataset

4 for t = 1 to Tcl do
5 Select K clients uniformly at random
6 for each client k in K do
7 ckt = Clientk(C(wt−1,T))
8 end
9 wt = w0

10 j = 1
11 for each coordinate i in T do
12 wt[i] = wt−1[i] +

∑
k

ckt [j]

|K|
13 j = j + 1

14 end
15 end

Output: Global model wt

16

17 Clientk(ŵk
t−1):

18 wk
t−1 = w0

19 j = 1
20 for each coordinate i in T do
21 wk

t−1[i] = ŵk
t−1[j]

22 j = j + 1

23 end
24 wk

t = TopkSGD(Dk,w
k
t−1,w0, Tgd,T)

25 ∆wk
t = C(wk

t −wk
t−1,T)

26 ∆ŵk
t = ∆wk

t /max
(

1,
||∆wk

t ||2
S

)
Output: EncKk (G(∆ŵk

t , SIσ/
√
|K|))

private extensions (i.e., FL-STD-DP, FL-BASIC-DP and FL-
CS-DP) also clip and then noise the compressed updates.

We evaluate the above learning algorithms on the well-
known Fashion-MNIST dataset [Xiao et al., 2017] and on
the Premier Healthcare Database, which is a real-world med-
ical dataset of 1.2 million of US hospital patients 4. More
details can be found in Appendix A.1 and Appendix B.1.

Recall that the Top-K weights are selected before start-
ing the federated learning process using public data. For
Fashion-MNIST, we randomly select a batch with size 10
from MNIST dataset [LeCun and Cortes, 2010] described in
Appendix B.2. For the medical dataset, we did not find any
public dataset with the same features as ours, and for this
reason, we selected randomly from the dataset a batch of
356 patients5. This set is used only by the server and never
by any client. Afterwards, the server performs Tinit SGD it-
erations starting from the model parameters w0 on the same
batch to identify the Top-K weights. We experimentally

4https://www.premierinc.com/newsroom/education/premier-
healthcare-database-whitepaper

5Reduced to 24 patients when we train via downsampling with
12 patients for each class

show later that even these small batches are enough for the
server to find a good set of Top-K weights.

In order to select the clipping threshold S, the server exe-
cutes a single training round locally, which is composed of
Tgd SGD iterations starting from the model parameters w0,
using the batch from the public data. The clipping threshold
S is set to the L2-norm of the Top-K weight update ob-
tained for this single training round. For FL-BASIC-DP, the
same steps are repeated for 100 times, where a new random
set of trainable weights with size K are selected each time,
which yields 100 L2-norm values. S is set to the median of
these L2-norm values. We think that this approach is more
fair, because the set of trainable weights is re-selected at
each round in FL-BASIC-DP. The computed values of S
can be found in Table 4 and Table 5 for Fashion-MNIST
and Medical dataset, respectively. More information about
the model architectures and the hyper-parameter selection
can be found in Appendix A.

4.1 RESULTS

Figure 1 displays the distribution of the Top-K updated
weights for FL-TOP and FL-STD at the end of the train-
ing. We select the weights when each scheme reached the
best accuracy over 200 and best balanced accuracy6 over
100 rounds for fashion-MNIST and the medical dataset,
respectively. We choose the smallest compression ratio r
that leads to the best accuracy for the FL-TOP-DP scheme.
Table 1 shows that FL-TOP-DP reaches the best accuracy,
0.81, when r = 0.5% on fashion-MNIST and reaches the
best accuracy, 0.69, when r = 0.1% on the medical dataset.
Both figures validate the intuition that by constraining the
model to update only a small set K of the total weights,
these Top-K become more important and reach larger val-
ues. This result is important when differential privacy is
used as it leads to larger value-to-noise level and therefore
better performance.

Table 1 represents the best accuracy over 200 rounds for
each scheme on the Fashion-MNIST dataset. Round corre-
sponds to the round when the best accuracy is reached and
Cost is the average bandwidth consumption calculated as:
r × n× 32× Round × C, where 32 is the number of bits
necessary to represent a float value, n is the uncompressed
model size, r = |T|

n , |T| is the compressed model size, C is
the sampling probability of a client, and Round is the round
when we get the the best accuracy.

Table 2 represents the best balanced accuracy over 100
rounds for each scheme on the Medical dataset. AUROC
(area under the receiver operating characteristic curve - see
Appendix A.4) corresponds to the AUROC value when the
best balanced accuracy is reached.

6See Appendix A.4 for more details.

1761

https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Weight value

0

250

500

750

1000

1250

1500

1750
Fr

eq
ue

nc
y

Fashion-MNIST dataset
FL-TOP-K (r=0.5%)
FL-STD

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Weight value

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Medical dataset
FL-TOP-K (r=0.1%)
FL-STD

Figure 1: Distributions of the Top-K weight values (after convergence) for both FL-TOP and FL-STD schemes with the
Fashion-MNIST dataset (left) and the medical dataset (right).

r Algorithms

Performance

Accuracy Round
Downstream Upstream

εCost Cost
(Kilobyte) (Kilobyte)

0.5%

FL-BASIC 0.65 193 21402.03 107 N/A
FL-CS 0.57 185 20514.9 102.56 N/A

FL-TOP 0.82 200 110.88 110.88 N/A
FL-BASIC-DP 0.59 200 22178.27 110.88 1

FL-CS-DP 0.53 200 22178.27 110.88 1
FL-TOP-DP 0.81 200 110.88 110.88 1

5%

FL-BASIC 0.78 196 21734.70 1086.73 N/A
FL-CS 0.82 200 22178.27 1108.91 N/A

FL-TOP 0.84 200 1108.91 1108.91 N/A
FL-BASIC-DP 0.76 195 21623.81 1081.18 0.99

FL-CS-DP 0.78 160 17742.61 887.13 0.94
FL-TOP-DP 0.81 152 842.77 842.77 0.92

10%

FL-BASIC 0.81 196 21734.70 2173.47 N/A
FL-CS 0.85 182 20182.22 2018.22 N/A

FL-TOP 0.85 199 2206.74 2206.74 N/A
FL-BASIC-DP 0.79 189 20958.46 2095.85 0.98

FL-CS-DP 0.72 167 18518.85 1851.89 0.95
FL-TOP-DP 0.80 157 1740.99 1740.99 0.93

100%
FL-STD 0.86 200 22178.27 22178.27 N/A

FL-STD-DP 0.56 60 6653.48 6653.48 0.76

Table 1: Summary of results on Fashion-MNIST dataset.

r Algorithms

Performance

Bal_Acc AUROC Round
Downstream Upstream

εCost Cost
(Kilobyte) (Kilobyte)

0.1%

FL-BASIC 0.51 0.51 99 11829.42 11.82 N/A
FL-CS 0.53 0.55 100 11948.91 11.94 N/A

FL-TOP 0.69 0.76 68 8.12 8.12 N/A
FL-BASIC-DP 0.50 0.49 100 11948.91 11.94 1

FL-CS-DP 0.51 0.51 99 11829.42 11.82 1
FL-TOP-DP 0.69 0.76 85 10.15 10.15 0.97

5%

FL-BASIC 0.72 0.80 100 11948.91 597.45 N/A
FL-CS 0.73 0.81 98 11709.93 585.5 N/A

FL-TOP 0.72 0.80 95 567.57 567.57 N/A
FL-BASIC-DP 0.69 0.76 100 11948.91 597.45 1

FL-CS-DP 0.69 0.76 100 11948.91 597.45 1
FL-TOP-DP 0.68 0.75 23 137.41 137.41 0.79

10%

FL-BASIC 0.74 0.81 100 11948.91 1194.89 N/A
FL-CS 0.74 0.82 100 11948.91 1194.89 N/A

FL-TOP 0.74 0.82 90 1075.40 1075.40 N/A
FL-BASIC-DP 0.69 0.76 99 11829.42 1182.94 1

FL-CS-DP 0.69 0.76 96 11470.95 1147.09 0.99
FL-TOP-DP 0.68 0.74 23 274.82 274.82 0.79

100%
FL-STD 0.74 0.82 99 11829.42 11829.42 N/A

FL-STD-DP 0.66 0.72 62 7408.32 7408.32 0.91

Table 2: Summary of results on Medical dataset.

These tables show that the proposed non-private scheme FL-
TOP has similar accuracy than the standard scheme FL-STD
but reduces the bandwidth cost significantly. For example,
with the Fashion-MNIST dataset, the FL-TOP accuracy
reaches 0.85 when the compression ratio r = 10%. In com-
parison, the standard FL-STD scheme reaches an accuracy
of 0.86% but consumes 10 times more bandwidth. Further-
more, although FL-CS reaches the same accuracy than FL-
TOP and consumes slightly less bandwidth upstream (9%
less), its required downstream bandwidth is about 10 times
larger (See Table 1 for more details). The results on the
medical dataset are quite similar. In fact, FL-TOP achieves
its best balanced accuracy (0.74) and AUROC (0.82) when
r = 10% while the FL-STD scheme obtains similar per-
formance but required about 11 times more upsteam and
downstream bandwidth cost. FL-CS achieves similarly ac-
curacy at r = 10% as FL-TOP but its downstream required
bandwidth is about 11 times larger (see Table 2 for more
details).

The results also show that not only our privacy-preserving
solution FL-TOP-DP provides strong privacy guarantee

(with ε values smaller than 1) but that it outperforms the
other schemes in term of accuracy and bandwidth, for both
datasets. For example, with Fashion-MNIST, our scheme
achieves an accuracy of 0.81 when r = 0.5% while the base-
line scheme, FL-BASIC-DP, achieves an accuracy of 0.79
when r = 10% and requires 189 times more downstream
bandwidth and 18 times more upstream bandwidth. With
the medical dataset, FL-TOP-DP reaches the best balanced
accuracy 0.69 and best AUROC 0.76 for a compression
ratio of r = 0.1% while FL-BASIC-DP and FL-CS-DP
achieves the same performance at r = 5%. Note that FL-
STD-DP performs very poorly as noise has to be added to
the all weights of the model and the sensitivity is large (see
Table 2).

5 RELATED WORK

Privacy of Federated Learning: The concept of Client-
based Differential Privacy has been introduced in McMahan
et al. [2018] and Geyer et al. [2017], where the goal is
to hide any information that is specific to a single client’s

1762

training data. These algorithms noise the contribution of a
single client instead of a single record in the client’s dataset.
The noise is added by the server, hence, unlike our solution,
these works assume that the server is trusted.

Recently, Liu et al. [2020] also proposed to add noise only
to the update of the Top-K model parameters a la local-DP.
In local-DP, each client adds larger noise that what is nec-
essary to guarantee DP for the aggregated model update
without using secure aggregation. Therefore, the common
model is less accurate than with our scheme. In addition,
Liu et al. [2020] uses two epsilon budgets; one for selecting
Top-K parameters per client, and the second for perturbing
these selected Top-K parameters. By contrast, we select
the Top-K parameters via public data without sacrificing
any privacy budget. Finally, their solution is also less band-
width efficient than ours: as the Top-K parameters differ
for each client and at each round, the client cannot send
only the Top-K parameters values because the server will
not be able to identify which value corresponds to which
Top-K parameter. For this reason, the client has to send
a sparse vector with only Top-K perturbed values and all
remaining parameters set to 0. Therefore, the quantization
of the non-Top-K parameters is performed only during the
upstream (from client to server) without compressing any
downstream traffic. As opposed to this, in our solution, only
the weights/updates of the Top-K parameters are transferred
downstream/upstream.

Recently, Kerkouche et al. [2020] proposed to use Com-
pressive sensing (CS) in the context of federated learning
in order to compress model updates meanwhile providing
client-level DP. Assuming that the model update is already
sparse in the time domain, the noise is added to its largest
Fourier coefficients in a distributed manner, and the noisy
aggregate is reconstructed with standard optimization tech-
niques. Likewise our solution, this work also uses secure
aggregation by exploiting the linearity of CS. However, the
reconstruction process can be slow for large models, and
therefore our solution is more scalable. Moreover, it can
only compress the upstream traffic.

Bandwidth Optimization in Federated Learning: Differ-
ent quantization methods have been proposed to save the
bandwidth and reduce the communication costs in feder-
ated learning. They can be divided into two main groups:
unbiased and biased methods. The unbiased approximation
techniques use probabilistic quantization schemes to com-
press the stochastic gradient and attempt to approximate the
true gradient value as much as possible [Alistarh et al., 2016,
Wen and al., 2017, Wang et al., 2018, Konecný et al., 2016].
However, biased approximations of the stochastic gradient
can still guarantee convergence both in theory and practice
[Bernstein et al., 2018, Lin et al., 2018, Seide et al., 2014].
SignSGD Bernstein et al. [2018] a quantization protocol
allows to compress during downstream and upstream traffic
but requires the use of all the clients at each round which

is not realistic in the context of federated settings because
each client is available only during few rounds Kairouz et al.
[2019].

A different line of works exploit the sparsity of model up-
dates to compress them. Amiri and Gündüz [2019a,b] pro-
posed to use a compressive sensing for federated learning
in order to compress model updates without privacy guar-
antees. However, they assume that all clients participate in
each round (as they maintain an error accumulation vector
at each client due to the compression scheme), but as dis-
cussed in Kairouz et al. [2019] this assumption is not always
realistic. Sketching was adapted to federated learning for
the purpose of compressing model updates in Ivkin et al.
[2019] and Rothchild et al. [2020]. The authors proposed
to use Count-Sketch from Charikar et al. [2002] to retrieve
the largest weights in the update vector on the server side.
However, it is unclear how these works can be extended
with privacy guarantees. Moreover, unlike our technique,
they do not compress downstream traffic.

Constraining the weights to have a specific distribution has
already been studied. In Han et al. [2016], for example, the
authors use pruning techniques to create a sparse model at
the end of the training. After each SGD iteration, the authors
zero-out all the weights with an absolute value smaller than a
threshold. Iterating the process leads to a sparse model with
only some absolute weight values larger than 0. Similarly,
Courbariaux et al. [2016] aim to create a model with binary
weights such that at the end of the training all the weights are
close to 1 or −1. After each SGD update, the authors take
the sign of the weights before the next update. After some
iterations, the weight values become close to the interval
limits −1 and 1.

In Frankle and Carbin [2018], a new hypothesis claims that
there exists a sub-network which, if trained separately, can
achieve similar performance as the complete network model
which contains that. To find such a sub-network, one has
to follow a simple iterative procedure: train the complete
network, prune the smallest weights, and then reinitialize
the remaining weights to their original values. These steps
are repeated iteratively. This approach was extended to fed-
erated learning in Li et al. [2020].

6 CONCLUSION

This paper presents a novel privacy-preserving federated
learning scheme that reduces bandwidth, latency and there-
fore power consumption. The proposed scheme is based
on Differential Privacy and therefore provides theoretical
privacy guarantees. Furthermore, it optimizes the model
accuracy by constraining the model learning phase on few
selected weights. We show experimentally, using a public
dataset called Fashion-MNIST and a real world medical
dataset of 1.2 million of US hospital patients, that it reduces

1763

the upstream and downstream bandwidth by up to 99.9%
compared to standard federated learning, making it practical
for constrained and mobile devices.

Acknowledgements

This article was developed in the framework of the Greno-
ble Alpes Data Institute, supported by the French National
Research Agency under the "Investissements d’avenir” pro-
gram (ANR-15-IDEX-02). The research was supported by
the NRDI fund of the Ministry of Innovation and Technol-
ogy NRDI Office (Hungary), and also within the framework
of the Artificial Intelligence National Laboratory Program.
This project has received support from the ANR project
ANR-16-CE25-0010.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In ACM CCS,
2016.

Gergely Ács and Claude Castelluccia. I have a dream!
(differentially private smart metering). In IH, 2011.

Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
QSGD: randomized quantization for communication-
optimal stochastic gradient descent. 2016.

Mohammad Mohammadi Amiri and Deniz Gündüz. Ma-
chine learning at the wireless edge: Distributed stochastic
gradient descent over-the-air. 2019a.

Mohammad Mohammadi Amiri and Deniz Gündüz. Feder-
ated learning over wireless fading channels. 2019b.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-
nesheli, and Anima Anandkumar. signsgd: compressed
optimisation for non-convex problems. 2018.

Keith Bonawitz et al. Practical secure aggregation for feder-
ated learning on user-held data. 2016.

Moses Charikar, Kevin Chen, and Martin Farach-Colton.
Finding frequent items in data streams. In International
Colloquium on Automata, Languages, and Programming,
pages 693–703. Springer, 2002.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural networks:
Training deep neural networks with weights and activa-
tions constrained to +1 or -1, 2016.

Cynthia Dwork and Aaron Roth. The Algorithmic Founda-
tions of Differential Privacy. Foundations and Trends in
Theoretical Computer Science, 9(3–4), 2014.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: randomized aggregatable privacy-preserving
ordinal response. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and Com-
munications Security, Scottsdale, AZ, USA, Novem-
ber 3-7, 2014, pages 1054–1067. ACM, 2014. doi:
10.1145/2660267.2660348. URL https://doi.org/
10.1145/2660267.2660348.

Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Training pruned neural networks. 2018.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting gradients – how easy is it to
break privacy in federated learning?, 2020.

Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differen-
tially private federated learning: A client level perspective.
2017.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao
Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar
Paluri, John Tran, Bryan Catanzaro, and William J. Dally.
Dsd: Dense-sparse-dense training for deep neural net-
works, 2016.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica,
Raman Arora, et al. Communication-efficient distributed
sgd with sketching. In Advances in Neural Information
Processing Systems, pages 13144–13154, 2019.

Peter Kairouz et al. Advances and open problems in feder-
ated learning. 2019.

Raouf Kerkouche, Gergely Ács, Claude Castelluccia, and
Pierre Genevès. Compression boosts differentially private
federated learning, 2020. To appear in EuroS&P 2021.

Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communica-
tion efficiency. 2016.

Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng
Li, Yiran Chen, and Hai Li. Lotteryfl: Personalized and
communication-efficient federated learning with lottery
ticket hypothesis on non-iid datasets, 2020.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. In ICLR, 2018.

Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong
Chen. Fedsel: Federated sgd under local differential pri-
vacy with top-k dimension selection. Lecture Notes in
Computer Science, 2020.

1764

https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In AISTATS, 2016.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and
Li Zhang. Learning differentially private recurrent lan-
guage models. In International Conference on Learning
Representations, 2018.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and
Vitaly Shmatikov. Inference attacks against collaborative
learning. 2018.

Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi differen-
tial privacy of the sampled gaussian mechanism. 2019.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Compre-
hensive privacy analysis of deep learning: Passive and
active white-box inference attacks against centralized and
federated learning. In IEEE Symposium on Security and
Privacy, 2019.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita
Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez,
and Raman Arora. Fetchsgd: Communication-efficient
federated learning with sketching, 2020.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong
Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech dnns. In
INTERSPEECH, 2014.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In CCS, 2015.

Hongyi Wang et al. Atomo: Communication-efficient learn-
ing via atomic sparsification. In NeurIPS, 2018.

Wei Wen and al. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. 2017.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg:
Improved deep leakage from gradients. 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from
gradients. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, NeurIPS 2019, 2019.

Yuqing Zhu, Xiang Yu, Yi-Hsuan Tsai, Francesco Pittaluga,
Masoud Faraki, Manmohan chandraker, and Yu-Xiang
Wang. Voting-based approaches for differentially private
federated learning, 2020.

1765

	Introduction
	Background
	Federated Learning (FL-STD)
	Differential Privacy

	Federated Pruning
	FL-TOP: Federated Pruning for Compression
	FL-TOP-DP: Differentially Private Federated Pruning
	Privacy Model
	Operation
	Remarks

	Experimental Results
	Results

	Related work
	Conclusion

