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A PROOF OF THEOREM 1

In this section, we show that Theorem 1 holds even for a
special type of deterministic-update regular strategies where,
for all (𝑣, 𝑚) ∈ ˆ︁𝑉 and 𝑣′ ∈ 𝑉 , there is at most one 𝑚′ such
that 𝜎((𝑣, 𝑚), (𝑣′, 𝑚′)) > 0.

For the rest of this section, we fix a patrolling graph 𝐺 =

(𝑉,𝑇, 𝐸, time, 𝑑, 𝛼, 𝛽). We say that a strategy 𝛾 is optimal
if Val𝐺 (𝛾) = Val𝐺 . The existence of optimal strategies in
patrolling games has been proven in Brázdil et al. [2015].

For a strategy 𝛾 and 𝑜 = 𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑣𝑛+1 ∈ 𝛺, let
𝛾 [𝑜] be a strategy that starts in 𝑣𝑛 by selecting the edge
𝑣𝑛→𝑣𝑛+1 with probability one, and for every finite path of
the form 𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑛+𝑘+1 where 𝑘 ≥ 1 we have that
𝛾 [𝑜] (𝑣𝑛, 𝑣𝑛+1, . . . , 𝑣𝑛+𝑘+1) = 𝛾(𝑣1, . . . , 𝑣𝑛+𝑘+1).

First, we need the following lemma.

Lemma 1. Let 𝛾 be an optimal strategy and 𝑜 ∈ 𝛺 such
that Prob𝛾 (𝑜) > 0. Then 𝛾 [𝑜] is optimal.

Proof. For every ℓ ≥ 1, let 𝛺(ℓ) be the set of all obser-
vations 𝑜 = 𝑣1, . . . , 𝑣ℓ , 𝑣ℓ→𝑣ℓ+1 such that Prob𝛾 (𝑜) > 0.
Clearly, for every fixed ℓ ≥ 1 we have that∑︂

𝑜∈𝛺 (ℓ)
Prob𝛾 (𝑜) · Val𝐺 (𝛾 [𝑜]) ≤ Val𝐺

because Val𝐺 (𝛾 [𝑜]) ≤ Val𝐺 and
∑︁

𝑜∈𝛺 (ℓ) Prob𝛾 (𝑜) = 1.
We show that

Val𝐺 ≤
∑︂

𝑜∈𝛺 (ℓ)
Prob𝛾 (𝑜) · Val𝐺 (𝛾 [𝑜]) (1)

which implies Val𝐺 =
∑︁

𝑜∈𝛺 (ℓ) Prob𝛾 (𝑜) ·Val𝐺 (𝛾 [𝑜]), and
hence Val𝐺 (𝛾 [𝑜]) = Val𝐺 for every 𝑜 ∈ 𝛺(ℓ).

It remains to prove (1). Since Val𝐺 = Val𝐺 (𝛾), it suffices to
show that, for an arbitrarily small 𝜀 > 0,

Val𝐺 (𝛾) ≤ 𝜀 +
∑︂

𝑜∈𝛺 (ℓ)
Prob𝛾 (𝑜) · Val𝐺 (𝛾 [𝑜]) .

For every 𝑜 ∈ 𝛺(ℓ), let 𝜋𝑜 be an Attacker’s strategy such
that E𝑈𝐷 (𝛾 [𝑜], 𝜋𝑜) ≤ Val𝐺 (𝛾 [𝑜]) + 𝜀. Consider another
Attacker’s strategy ˆ︁𝜋 waiting for the first ℓ moves and then
“switching” to an appropriate 𝜋𝑜 according to the corre-
sponding observation. Then,

Val𝐺 (𝛾) ≤ E𝑈𝐷 (𝛾,ˆ︁𝜋)
≤

∑︂
𝑜∈𝛺 (ℓ)

Prob𝛾 (𝑜) · E𝑈𝐷 (𝛾 [𝑜], 𝜋𝑜)

≤
∑︂

𝑜∈𝛺 (ℓ)
Prob𝛾 (𝑜) · (Val𝐺 (𝛾 [𝑜]) + 𝜀)

= 𝜀 +
∑︂

𝑜∈𝛺 (ℓ)
Prob𝛾 (𝑜) · Val𝐺 (𝛾 [𝑜]) .

This completes the proof of Lemma 1.

Proof of Theorem 1. We show that for an arbitrarily small
𝜀 > 0, there exists a deterministic-update regular strategy
𝜎𝜀 such that Val𝐺 (𝜎𝜀) ≥ Val𝐺 −𝜀.

Let 𝑑max = max𝑡 ∈𝑇 𝑑 (𝑡), and 𝛼max = max𝑡 ∈𝑇 𝛼(𝑟) and let
an optimal Defender’s strategy 𝛾 be fixed.

We say that two non-empty finite paths ℎ, ℎ′ ∈ H are 𝛿-
similar, where 𝛿 > 0, if the following conditions are satis-
fied:

• ℎ and ℎ′ end with the same vertex 𝑣,
• Prob𝛾 (ℎ) > 0, Prob𝛾 (ℎ′) > 0,
• for every target 𝑡 and every ℓ ∈ {1, . . . , 𝑑max}, the

probabilities that 𝛾 successfully detects an ongoing
attack at 𝑡 in at most ℓ time units after executing the
histories ℎ and ℎ′ differ at most by 𝛿.

Note that there are only finitely many pairwise non-𝛿-similar
histories. More precisely, their total number is bounded from
above by |𝑉 | ·

(︁
⌈𝛿−1⌉

)︁𝑑max · |𝑇 | .

Let us fix an arbitrarily small 𝜀 > 0, and let 𝛿 = 𝜀/𝛼max.
Furthermore, let 𝜅 = |𝑉 | ·

(︁
⌈𝛿−1⌉

)︁𝑑max · |𝑇 | . We construct a
regular deterministic-update strategy 𝜎𝜀 as follows:
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• Let 𝐻𝛿 be the set of all finite paths ℎ of length at most
𝜅 · 𝑑max such that Prob𝛾 (ℎ) > 0 and for all proper pre-
fixes ℎ′, ℎ′′ of ℎ whose length is a multiple of 𝑑max we
have that if ℎ′, ℎ′′ are 𝛿-similar, then ℎ′ = ℎ′′. For no-
tation simplification, from now on we identify memory
elements with such finite paths.

• For every eligible pair (𝑣, ℎ), the distribution 𝜎𝜀 (𝑣, ℎ)
is determined in the following way:

– If the length of ℎ is a multiple of 𝑑max and there
is a proper prefix ℎ′ of ℎ where the length of ℎ′ is
also a multiple of 𝑑max and the histories ℎ, ℎ′ are
𝛿-similar, then 𝜎𝜀 (𝑣, ℎ) = 𝜎𝜀 (𝑣, ℎ′) (since ℎ′ is
shorter than ℎ, we may assume that 𝜎𝜀 (𝑣, ℎ′) has
already been defined).

– Otherwise, 𝜎𝜀 (𝑣, ℎ) is a distribution
𝜇 ∈ Dist(𝑉×𝐻𝛿) such that 𝜇(𝑣′, ℎ𝑣′) =

Prob𝛾 (ℎ𝑣′)/Prob𝛾 (ℎ) for every vertex 𝑣′ such
that ℎ𝑣′ ∈ 𝐻𝛿 . For the other pairs of 𝑉 × 𝐻𝛿 , the
distribution 𝜇 returns zero.

• The initial distribution assigns 𝛾(𝜆) (𝑣) to every
(𝑣, 𝑣) ∈ 𝑉 × 𝐻𝛿 . For the other pairs of 𝑉 × 𝐻𝛿 , the
initial distribution returns zero.

Intuitively, the strategy 𝜎𝜀 mimics the optimal strategy 𝛾,
but at appropriate moments “cuts” the length of the history
stored in its memory and starts to behave like 𝛾 for this
shorter history. These intermediate “switches” may lower
the overall protection, but since the shorter history is 𝛿-
similar to the original one, the impact of these “switches” is
very small.

More precisely, we show that, for an arbitrary Attacker’s
strategy 𝜋, E𝑈𝐷 (𝜎𝜀 , 𝜋) ≥ E𝑈𝐷 (𝛾, 𝜋) − 𝜀. Since 𝛾 is opti-
mal, we obtain E𝑈𝐷 (𝜎𝜀 , 𝜋) ≥ Val𝐺 −𝜀, hence Val𝐺 (𝜎𝜀) ≥
Val𝐺 −𝜀 as required. For the rest of this proof, we fix an At-
tacker’s strategy 𝜋. For every target 𝜏, let 𝜋𝜏 be an Attacker’s
strategy such that 𝜋𝜏 (𝑢→𝑣) = attack𝜏 for every edge 𝑢→𝑣,
i.e., 𝜋𝜏 attacks 𝜏 immediately. Furthermore, let Att(𝜋, 𝜏) be
the set of all observations 𝑜 such that Prob𝜎𝜀 (𝑜) > 0 and
𝜋(𝑜) = attack𝜏 . We have the following:

E𝑈𝐴(𝜎𝜀 , 𝜋)

=
∑︂
𝜏∈𝑇

∑︂
𝑜∈Att(𝜋,𝜏)

Prob𝜎𝜀 (𝑜) · (𝛼(𝜏) − P𝜎𝜀 (𝜏 | 𝑜))

=
∑︂
𝜏∈𝑇

∑︂
𝑜∈Att(𝜋,𝜏)

Prob𝜎𝜀 (𝑜) · E𝑈𝐴(𝜎𝜀 [𝑜], 𝜋𝜏)

Here, 𝜎𝜀 [𝑜], where 𝑜 = 𝑣1, . . . , 𝑣𝑛, 𝑣𝑛→𝑣𝑛+1, is a strategy
that starts in 𝑣𝑛 by executing the edge 𝑣𝑛→𝑣𝑛+1, and then
behaves identically as 𝜎𝜀 after the history 𝑜 (since 𝜎𝜀 is
deterministic-update, the associated memory elements are
determined uniquely by 𝑜).

Now, realize that for every 𝑜 ∈ Att(𝜋, 𝜏), there exists an
observation 𝑜′ (stored in the finite memory of 𝜎𝜀) such
that Prob𝛾 (𝑜′) > 0 and the strategy 𝜎𝜀 [𝑜] “mimics” the
strategy 𝛾 [𝑜′] until the finite path stored in the memory of
𝜎𝜀 is “cut” into a shorter path in the way described above.
Since at most one such “cut” is performed during the first
𝑑max steps and the shorter path obtained by the cut is 𝛿-
similar to the original one, we obtain that the difference
between E𝑈𝐴(𝜎𝜀 [𝑜], 𝜋𝜏) and E𝑈𝐴(𝛾 [𝑜′], 𝜋𝜏) is at most 𝜀.

By Lemma 1, we obtain E𝑈𝐷 (𝛾 [𝑜′], 𝜋𝜏) ≥ Val𝐺 , hence
E𝑈𝐴(𝛾 [𝑜′], 𝜋𝜏) ≤ 𝛼max − Val𝐺 and E𝑈𝐴(𝜎𝜀 [𝑜], 𝜋𝜏) ≤
𝛼max − Val𝐺 +𝜀. This gives

E𝑈𝐴(𝜎𝜀 , 𝜋)

≤
∑︂
𝜏∈𝑇

∑︂
𝑜∈Att(𝜋,𝜏)

Prob𝜎𝜀 (𝑜) · (𝛼max − Val𝐺 +𝜀)

= (𝛼max − Val𝐺 +𝜀) ·
∑︂
𝜏∈𝑇

∑︂
𝑜∈Att(𝜋,𝜏)

Prob𝜎𝜀 (𝑜)

≤ 𝛼max − Val𝐺 +𝜀

since the sum is equal to the probability that 𝜋 attacks at
all against 𝜎𝜀 , which is at most 1. Hence, E𝑈𝐷 (𝜎𝜀 , 𝜋) ≥
Val𝐺 −𝜀 and we are done.
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