
On Random Kernels of Residual Architectures

Etai Littwin1 Tomer Galanti1 Lior Wolf1

1The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Abstract

We analyze the finite corrections to the neural tan-
gent kernel (NTK) of residual and densely con-
nected networks, as a function of both depth and
width. Surprisingly, our analysis reveals that given
a fixed depth, residual networks provide the best
tradeoff between the parameter complexity and the
coefficient of variation (normalized variance), fol-
lowed by densely connected networks and vanilla
MLPs. While in networks that do not use skip con-
nections, convergence to the NTK requires one to
fix the depth, while increasing the layers’ width.
Our findings show that in ResNets, convergence to
the NTK may occur when depth and width simul-
taneously tend to infinity, provided with a proper
initialization. In DenseNets, however, the conver-
gence of the NTK to its limit as the width tends
to infinity is guaranteed, at a rate that is indepen-
dent of both the depth and scale of the weights.
Our experiments validate the theoretical results
and demonstrate the advantage of deep ResNets
and DenseNets for kernel regression with random
gradient features.

1 INTRODUCTION

Understanding the effect of different architectures on the
ability to train deep networks has long been a major re-
search topic. A popular playing ground for studying the
forward and backward propagation of signals at the point
of initialization, is the “infinite width” regime [Neal, 1996,
Sirignano and Spiliopoulos, 2019, Schoenholz et al., 2017,
Yang and Schoenholz, 2017, Lee et al., 2018, Arora et al.,
2019]. In this regime, Gaussian Process behaviour emerges
in pre-activations, when the weights are sampled i.i.d. from
a normal distribution, giving rise to tractable training dynam-
ics [Jacot et al., 2018, Lee et al., 2019, 2018, de G. Matthews

et al., 2018].

This notion was first made precise by the Neural Tangent
Kernel (NTK) paper [Jacot et al., 2018], in which it is
shown that the training dynamics of fully connected net-
works trained with gradient descent can be characterized by
a kernel when the width of the network approaches infin-
ity. Specifically, the evolution through time of the function
computed by the network follows the dynamics of kernel
regression. Let f(x;w) ∈ R denote the output of a fully
connected feedforward network of width n, with i.i.d. nor-
mally distributed weights w and input x ∈ Rn0 . The neural
tangent kernel (NTK) is given by:

K(x, x′;w) := 〈∂f(x;w)

∂w
,
∂f(x′;w)

∂w
〉 (1)

with:

K̊(x, x′) := Ew[K(x, x′;w)], (2)

where w is the vector that concatenates the weights in
f(x;w). As shown in [Jacot et al., 2018], when the width
tends to infinity, minimizing the squared loss L(w) using
gradient descent is equivalent to a kernel regression with
kernel K̊.

Recent empirical support has demonstrated the power of
NTK and specifically CNTK (convolutional neural tangent
kernel) on practical datasets, showing new state-of-the-art
results for kernel methods, surpassing other known kernels
by a wide margin [Arora et al., 2019, Yu et al., 2020, Arora
et al., 2020].

In [Geiger et al., 2019], the variance of the empirical NTK
was directly connected with the generalization performance
of a trained neural network. When the width of the network
exceeds a threshold n?, it is shown that the generalization
gap is affected by both the fluctuations of the NTK at ini-
tialization as a function of the randomness in the weight
and its evolution during training. Further, it is shown that
the former source dominates the latter. In other words, the
distance between the empirical NTK and its expected value

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:897–907.

mailto:Etai Littwin <etai.littwin@gmail.com>?Subject=Your UAI 2021 paper
mailto:Tomer Galanti <tomerga2@mail.tau.ac.il>?Subject=Your UAI 2021 paper

is the main source of randomness affecting post-training
performance.

Therefore, in this work, we analyze the variance of the NTK
at initialization. To compare different architectures, we use
the coefficient of variation (normalized variance) of the
NTK, which is a unitless measure of variation, to quantify
the variance of the NTK. Namely,

V(K(x, x′;w)) :=
V ar

(
K(x, x′;w)

)
E[K(x, x′;w)]2

(3)

This quantity has recently been addressed in the case of
vanilla feedforward fully connected networks [Hanin and
Nica, 2020], where it was shown that the normalized vari-
ance of the diagonal entries of the NTK is exponential in
the ratio between the depth L and width n:

V(K(x, x;w)) ≈ exp
[CL
n

]
− 1, (4)

where C > 0 is a constant. Hence, convergence to the
asymptotic kernel cannot happen when both are taken to
infinity at the same rate. From Eq. 4 it is evident that for an
L-depth vanilla network, the width should be at least Ω(L)
in order to maintain a fixed ratio in the exponent of Eq. 4. In
this case, the total parameter complexity of the network is at
least Ω(L3). This important observation suggests that deep
and narrow vanilla networks operate far from the “infinite
width” regime at initialization. In this work, we derive finite
width and depth corrections to the NTK of residual and
densely connected architectures, revealing a depth invariant
property unique to these architectures. From this analysis,
it is evident that, in contrast to vanilla ReLU networks,
the required parameter complexities of L-depth ResNets
and DenseNets is as small as O(L) and O(L2) (resp.) to
maintain a bounded normalized variance.

Our theoretical analysis considers only the diagonal en-
tries of the NTK, which from Eq. 1, correspond to output
gradients squared norm. As such, it is able to capture the
pathological implications on back-propagation in these ar-
chitectures by revealing how gradient norms concentrate
at large depths. Since only individual entries along the di-
agonal are investigated theoretically, we complement the
analysis with an empirical investigation of the joint distribu-
tion of the full NTK matrix. We conduct extensive empirical
experiments on MNIST and multiple small UCI datasets
using random draws of K as kernel approximations, demon-
strating the power of random gradient features∇wf(x;w)
of deep residual architectures. Surprisingly, for fixed-width
ResNets and DenseNets, the performance of kernel regres-
sion using K as a substitute for K̊ improve with depth and
approach the latter, whereas, in vanilla architectures, clear
degradation is observed.

Our main contributions are as follows.

1. Thms. 1 and 2 introduce a forward-backward norm prop-
agation duality for a wide family of ReLU feedforward

architectures, which is a useful tool for analyzing the rate
of convergence of K(x, x;w), for finite sized networks.

2. In Thms. 3 and 4, we rigorously derive finite width and
depth corrections for ResNet and DenseNet architectures,
revealing a fundamentally different relationship between
width, depth andK(x, x;w). Unlike vanilla architectures,
when properly scaled, convergence to the asymptotic
kernel is achieved, when taking both the width and the
depth of the architecture to infinity simultaneously.

3. Our experiments validate the convergence rates of both
the diagonal K(x, x;w) and off-diagonal K(x, x′;w)
NTK terms. Furthermore, they demonstrate the advan-
tage of deep ResNets and DenseNets over vanilla net-
works for kernel regression with random gradient fea-
tures on MNIST and multiple small UCI datasets.

2 RELATED WORK

The study of wide neural networks has been at the forefront
of theoretical deep learning research in the last few years. A
number of papers [Yu et al., 2020, Lee et al., 2019, Arora
et al., 2019] have followed up on the original NTK work [Ja-
cot et al., 2018]. An extension of the GP and NTK results
is given in [Yang, 2019], where it is shown that neural net-
works of any architecture (including weight-tied ResNets,
DenseNets, or RNNs) converge to GPs in the infinite width
limit, and prove the existence of the infinite width NTKs.
In [Lee et al., 2019], corrections to the NTK are derived to
bound the change of the NTK during training, which applies
for both the diagonal and off-diagonal entries of the NTK.
However, depth is treated as a constant, and therefore their
result only apply for shallow networks. An interesting prob-
lem is to quantify the convergence rate of the NTK to its
limit. Feynman diagrams were used to provide finite width
corrections to the NTK [Dyer and Gur-Ari, 2020]. However,
the analysis relies on a conjecture and does not hold for
residual and densely connected architectures. What is most
related to our results are the finite width corrections to the
NTK for vanilla networks, introduced in [Hanin and Nica,
2020]. These results depend on the depth of the network.
However, their analysis does not apply to residual archi-
tectures. In contrast, in our Thms. 1 and 2, we establish a
duality that exists between forward and backward statistics,
which allows considering only forward statistics and can
be readily applied for most fully connected architectures,
with arbitrary topologies. In [Hanin and Rolnick, 2018] they
tackle two failure modes that are caused in finite-size net-
works by exponential explosion or decay of the norm of
intermediate layers. It is shown that for random fully con-
nected vanilla ReLU networks, the variance of the squared
norm of the activations exponentially increases, even when
initializing with the 2

fan−in initialization [He et al., 2015].
For ResNets, this failure mode can be overcome by correctly
rescaling the residual branches. However, it is not clear how
such a rescaling affects the backpropagation of gradients.

898

3 GENERALIZATION AS A FUNCTION
OF VARIANCE

Recent work has shown that the generalization of trained
neural networks follows a double descent curve as a func-
tion of width. Counter-intuitively, when the width n exceeds
some threshold n?, the test error decreases until it reaches a
local minimum at n =∞. In [Geiger et al., 2019], a frame-
work was proposed to describe how generalization depends
on the width of the network through analysis of initial fluc-
tuations in function space at initialization, as well as how
randomness propagates through the course of training. In
this section, we briefly summarize their analysis.

Let fT (x) denote the output of a network after T iterations
of gradient descent, and let f̄T (x) = Ew[fT (x)] denote the
expected value of fT (x) over different initializations. Then
we have, fT (x) = f̄T (x) + δfT (x), where δfT arises from
the random draw of the weights. In regression tasks, we can
describe how the fluctuations δfT (x) affect generalization
using the following simple identity:

∆ε :=Ew[Ex‖f̄T (x) + δfT (x)− y(x)‖2]

− Ew[Ex‖f̄T (x)− y(x)‖2] = Ew,x[‖δfT (x)‖2],
(5)

where x is distributed according to some population distri-
butionD, y is the target function that we would like to learn,
and ∆ε is the contribution to the generalization error due to
δfT . This identity follows from the fact that for any x,

Ew[〈fT (x)− y(x), δfT (x)〉]
=〈fT (x)− y(x),Ew[δfT (x)]〉 = 0,

(6)

since fT (x)− y(x) is independent of w.

To understand how δfT behaves as n increases, we must
understand how the initial randomness of the weights prop-
agates through the course of training. Note that the variance
of the initial function f0(x) does not vanish as n → ∞,
as the output function approaches a GP in that limit. We
note that the term δfT can be decomposed in the following
manner:

δfT (x) = f0(x)− f̄T (x) +

T∑
t=1

∆ft(x), (7)

where under gradient descent with a learning rate µ1, ∆ft(x)
is approximately given by the following dynamics:

∆ft(x) =− µ
∑
i

K̊(x, xi) ·
∂L(ft(x))

∂f(x)

− µ
∑
i

(
Kt(x, xi)− K̊(x, xi)

)
· ∂L(ft(x))

∂f(x)

(8)
1Technically Eq. 8 holds approximately up to a O(1/n) cor-

rection.

The variance of the first term is bounded when ft(x) is
bounded through training since K̊(x, xi) has a zero variance.
On the other hand, in general, the second term tends to be
unbounded. In order to upper bound the second term, we
can use the triangle inequality,

‖Kt(x, xi)− K̊(x, xi)‖ ≤‖Kt(x, xi)−K0(x, xi)‖
+ ‖K0(x, xi)− K̊(x, xi)‖

We have, therefore, decoupled the change in the NTK to a
term that depends on how the NTK changes from its initial-
ized value during training, and the difference between its
initial value and its expected value. Note that both terms are
random due to the randomness of the weights. As indicated
in [Lee et al., 2019, Dyer and Gur-Ari, 2020, Littwin et al.,
2020a, Aitken and Gur-Ari, 2020], the first term scales as
O(1/n), while the second term scales asO(1/n0.5) [Geiger
et al., 2019]. In a few recent papers, minimizing the fluctua-
tions of the second term while keeping some computational
envelope constant is shown to improve generalization [Lit-
twin et al., 2020b, Geiger et al., 2019, Golubeva et al., 2020].
Motivated by these findings, in this paper, we analyze the
fluctuations of the second term as a function of both depth
and width.

4 PRELIMINARIES AND NOTATIONS

Throughout the paper, we make use of the following nota-
tions. Let f(x;w) ∈ R denote the output of a parameterized
function f on input x ∈ Rn0 with a vector w of real val-
ued parameters. We assume that the coordinates of w are
normally distributed i.i.d samples. With no loss of general-
ity, we also assume that ‖x‖2 = 1. Throughout the paper
we use the ReLU non-linearity, φ(x) := max(0, x). Our
analysis can be readily extended to Leaky ReLU as well.
The intermediate outputs of a neural network are denoted by
{yl(x)}Ll=0 (see Eqs. 9 and 10), for a fixed input x ∈ Rn0 .
For simplicity, the dependence of the outputs on x is often
made implicit {yl}Ll=0 when the specific input used to calcu-
late the outputs can be inferred from the context. yli denotes
the i’th component of the vector yl, and n1, ..., nL denote
the width of the corresponding layers, with n0 being the
input dimension. We denote by ‖x‖2 the Euclidean norm of
the vector x and by ‖W‖2 the Frobenius norm of the matrix
W . We denote the weight matrix associated with layer l
by W l, with lower case letters wli,j denoting the individual
components of W l. Additional superscripts W l,k are used,
when several weight matrices are associated with layer l.
Weights, w, appearing without any superscript denote all the
weights concatenated into a vector. The NTK of the func-
tion f is denoted byK(x, x′;w) := ∂f(x;w)

∂w · ∂
>f(x′;w)
∂w . We

denote by f = O(g) the big-O notation, f = Ω(g) when
g = O(f) and f = Θ(g) if f = O(g) and f = Ω(g).

Residual networks have reintroduced the concept of bypass
connections [He et al., 2016], allowing the training of deep

899

(a)

(b)

Figure 1: Illustrating (a) ResNet and (b) DenseNet, as in
Eq. 9 and 10 (with constant width and absent scaling coeffi-
cients).

and narrow models with relative ease. A generic, residual
architecture f(x;w), with residual branches of depth m,
takes the form: f(x;w) = 1√

nL
·WL · yL, where, for all

l ∈ [L], yl is defined recursively as follows:

yl =

{
1√
n0
·W 0x l = 0

yl−1 +
√
αly

l−1,m o.w

yl−1,h =

√

1
nl−1,h−1

W l,hql−1,h−1 1 < h ≤ m√
1

nl−1
·W l,hyl−1 h = 1

(9)

Here, {αl}Ll=1 are scaling coefficients, W 0 ∈ Rn
′
0×n0 ,

W l,h ∈ Rnl−1,h×nl−1,h−1 ,W l,1 ∈ Rnl−1,1×nl−1 ,W l,m ∈
Rnl×nl−1,m−1 , ql,h =

√
2φ(yl,h) (see Fig. 1 for an illustra-

tion).

DenseNets were recently introduced [Huang et al., 2017],
demonstrating faster training, as well as improved perfor-
mance on several popular datasets. The main architectural
features introduced by DenseNets include the connection
of each layer output to all subsequent layers, using con-
catenation operations, instead of summation, such that the
weights of layer l multiply the concatenation of the outputs
y0, ..., yl−1. A DenseNet f(x;w) is defined in the following
manner: f(x;w) := 1√

nL
·WL · yL, where, for all l ∈ [L],

yl is defined recursively as follows:

yl =

1√
n0
·W 0x l = 0√
α

nl−1·l
∑l−1
h=0W

l,hqh o.w
(10)

where α is a scaling coefficient, ql =
√

2φ(yl), W l,h ∈
Rnl×nl−1 (see Fig. 1 for an illustration).

5 FORWARD-BACKWARD NORM
PROPAGATION DUALITY

In this work, we aim to derive an expression for the first
and second moments of the diagonal entries K(x, x;w) at
the point of initialization w, given by the Jacobian squared
norm evaluated on x:

K(x, x;w) = ‖J(x)‖22 =
∑
k

‖Jk(x)‖22, (11)

where Jk(x) := ∂f
∂Wk denotes the per-weight Jacobian.

Bold letters (a.k.a k,u,v) stand for identities of matrices in
the network. For instance, in ResNets, k can take values in
{0, L}∪ [L]× [m]. The sum

∑
k ‖Jk‖22 denotes summation

over every weight matrix in the network. In the following
analysis, we assume that the output of f is computed us-
ing a single fixed sample x. To facilitate our derivation, we
introduce a link between the propagation of the norm of
the activations and the norm of the per-layer Jacobian in
random ReLU networks of finite width and depth. This link
will then allow us to study the statistical properties of the
full Jacobian in general architectures incorporating residual
connections and concatenations with relative ease. Specif-
ically, we would like to establish a connection between
the first and second moments of the squared norm of the
output f(x;w)2, and those of the per layer Jacobian norm
‖Jk‖22. Using a path-based notation, for any weight matrix
Wk, the output f(x;w) can be decomposed to paths that
go through Wk (i.e, paths that include weights from Wk),
denoted by fk(x;w), and paths that skip Wk, denoted by
the complement f ck(x;w). Namely:

f(x;w) = fk(x;w) + f ck(x;w)

=
∑
γ∈Sk

cγzγ

|γ|∏
l=1

wγ,l +
∑

γ∈S\Sk

cγzγ

|γ|∏
l=1

wγ,l,

(12)
where the summations are over paths γ ∈ S from input
to output, with |γ| denoting the length of the path, and cγ
a scaling factor. In standard fully connected networks, we
have |γ| = L+ 2 (when considering the initial and final pro-
jections W 0,WL) and the total number of paths is

∏L
l=0 nl.

The term zγ
∏|γ|
l=1 wγ,l denotes the product of weights along

path γ, multiplied by a binary variable zγ ∈ {0, 1}, indi-
cating whether path γ is active (i.e all relevant activations
along the specific path are on). The set Sk indicates the set
of all paths that include weights from Wk.

We make the following definition:

Definition 1 (Reduced network) Let f(x;w) be a neural
network (e.g., vanilla network, ResNet or DenseNet). We de-
fine the reduced network f(k)(x;w) to be the neural network
obtained by removing all connections bypassing weights
Wk from the network f(x;w). The corresponding hidden

900

layers of f(k)(x;w) are denoted by y0(k), ..., y
L
(k) and its

weights by w(k).

Note that for vanilla networks, it holds that, for all k ∈ [L],
we have: f(k)(x;w) = fk(x;w) = f(x;w) and yl(k) = yl.
In the general case, the equality f(k)(x;w) = fk(x;w)
does not hold, since f(k)(x;w) contains different activation
patterns, induced by the removal of residual connections.
The following theorem states that surprisingly, the moments
of both are equal in the family of considered ReLU networks
(see Fig. 2 for an illustration):

Theorem 1 Let f(x;w) be a ResNet/DenseNet. Then, for
any non-negative even integer m, we have:

∀ k : Ew
[
(f(k)(x;w))m

]
= Ew [(fk(x;w))m] (13)

The following theorem relates the moments of ‖Jk‖22 with
those of f(k)(x;w):

Theorem 2 Let f(x;w) be a ResNet/DenseNet. Then, we
have for all k:

1. Ew
[
‖Jk‖22

]
= Ew

[
(f(k)(x;w))2

]
.

2.
Ew

[
(f(k)(x;w))4

]
3 ≤ Ew

[
‖Jk‖42

]
≤

Ew
[
(f(k)(x;w))4

]
.

From Eq. 11 and Thm. 2, we can derive bounds on the
second moment of K(x, x;w), by observing the moments
of f(k)(x;w). In addition, Thm. 2 also allows us to de-
rive bounds on the convergence rate of K(x, x;w) to
Ew[K(x, x;w)] = K̊(x, x), given by the ratio:

η(n,L) :=
Ew[K(x, x;w)2]

Ew[K(x, x;w)]2
=
V ar

(
K(x, x;w)

)
Ew [K(x, x;w)]

2 + 1

(14)

In general, the tools developed in Thms. 1-2 can be used
for analyzing a wide range of feedforward network archi-
tectures. Specifically, in Thms. 3 and 4, we derive bounds
on the asymptotic behavior of η for ResNet and DenseNet
architectures, with respect to both width and depth.

Theorem 3 Let f(x;w) be a depth L, constant width
ResNet with residual branches of depth m (Eq. 10 with
n′0, nl, nl,h = n for all l ∈ [L] and h ∈ [m]), with pos-
itive initialization constants {αl}Ll=1. Then, there exists a
constant C > 0 such that:

max

[
1,

∑
u α

2
lu∑

u,v αluαlv
· ξ

]
≤ η(n,L) ≤ ξ (15)

where:

ξ = exp

[
5m

n
+
C

n

L∑
l=1

αl
1 + αl

]
· (1 +O(1/n)) (16)

First, for clarity, we note that we always have
∑

u α
2
lu∑

u,v αluαlv
≤

1 as the sum in the denominator includes the sum in the nu-
merator (and each summand is non-negative). For example,
by choosing αl = α > 0 for all l, the ratio is 1/L. From
the result of Thm. 3, it is evident that the convergence rate
is exponential in m

n + 1
n

∑L
l=1 αl. This result supports the

selection of a small m, as reflected in the common prac-
tice to have a small depth for the residual branches, since
ξ scales exponentially with respect to m/n. In addition,
when setting {αl}Ll=1, such that, 1

n

∑L
l=1 αl vanishes as n

tends to infinity, ensures the convergence of η to 1, regard-
less of depth. Note that by selecting {αl}Ll=1, such that,∑L
l=1 αl ≈ O(1) is sufficient (although not necessary),

and was also suggested in [Zhang et al., 2019] as a way to
train ResNets without batchnorm [Ioffe and Szegedy, 2015].
Our results, however, reveal a much stronger implication of
this initialization, as it also bounds the fluctuations of the
squared Jacobian norm, implying a closer relationship with
the “kernel regime” at the initialization of deep ResNets.
From Thm. 3, we conclude that a proper initialization plays
a crucial role in determining the asymptotic behavior of η
in deep ResNets. Surprisingly, this relationship between ini-
tialization and η breaks down when considering DenseNets,
as illustrated in the following theorem.

Theorem 4 Let f(x;w) be a constant width DenseNet
(Eq. 10 with n′0, nl = n for all l ∈ [L]), with initializa-
tion constant α > 0. Then, there exist constants C1, C2 > 0,
such that:

max

[
1,

C1

L log(L)2
· ξ
]
≤ η(n,L) ≤ ξ (17)

where:
ξ = exp [C2/n] · (1 +O(1/n)) (18)

Surprisingly, the depth parameter L, as well as the initial-
ization scale α are absent in the upper bound of Eq. 17,
revealing a depth and scale-invariant property unique to
DenseNets. In other words, the convergence rate of η to 1
is exponential in C2

n , and does not depend on depth, or the
scaling coefficient of the weights. This property represents
a fundamental unique aspect of DenseNets, which might
explain the practical advantages observed in models incor-
porating dense residual connections. It is important to stress
that it is impossible to replicate the guarantees presented in
Thms. 3 and 4 by simply normalizing the network differ-
ently. That is because, the expression η(n,L) is invariant to
the scale of the weights, i.e., its value does not change when
multiplying f(x;w) by a constant. Therefore, maintaining
a bounded normalized variance of the NTK of a L-depth
network comes at the cost of a different parameter complex-
ity for each architecture. This is formulated in the following
remark.

901

(a) (b)

Figure 2: An illustration of Thm. 1. The activations of the network in (a) are completely different from those of the network
in (b), in which all skip connections bypassing layer l = 2 are removed. However, the moments of the gradient norms at
layer l = 2 are exactly the same in both (a) and (b).

Remark 1 For DenseNets and ResNets (with αl = 1/L
and m = 2), it is possible to choose a constant width
n = O(1) (independent of L) while maintaining a bounded
NTK variance. In this case, the overall number of parame-
ters in DenseNets is O(L2). On the other hand, in ResNets,
the overall number of parameters is O(L), as each one of
its L layers contributes a constant number of parameters
2n2 = O(1). However, in vanilla models, it is required that
the width n grow linearly with depth in order to maintain a
bounded variance. Therefore, each layer contributes Ω(L2)
parameters, and the overall number of parameters is Ω(L3).
The added efficiency is the product of an inherent architec-
tural advantage brought forth by the ResNet architecture.

Off-diagonal entries in deep linear networks Our anal-
ysis in this work holds for the diagonal entries of the NTK,
and the extension to the off-diagonal entries is not straight-
forward in the general case. However, extending our analysis
to the off-diagonal entries is immediate in the case of deep
linear networks. Indeed for these models, similar results can
be easily extended for any NTK entry by combining Prop. 6
in the appendix with the proofs of Thms. 3 and 4.

6 EXPERIMENTS

To validate our theoretical observations, we conducted a
series of experiments using the MNIST, CIFAR10, and 43
small UCI datasets (see Tab. 1 in the appendix for the list).
Throughout the experiments, the report the average and
standard deviation of the accuracy rate at test time over 20
runs. Our default initialization values are α := α1 = ... =
αL = 0.1/L for ResNets and α = 0.5 for DenseNets.

6.1 NORMALIZED VARIANCE OF NTK

To validate our theory, we conducted an experiment for es-
timating the coefficient of variation of the NTK. For each
model, we fixed the width to be n = 500, varied the num-
ber of layers and for each depth, we estimated the value
in Eq. 3 for x = x′ and for x 6= x′. In order to esti-
mate these terms, we sampled 5000 different vectors w for
f(x;w) from a standard normal distribution and estimated

V(K(x, x;w)) and V(K(x, x′;w)) empirically. In Fig. 3(a-
b), we use synthetic samples x and x′, that are generated as
follows: x = x̂/‖x̂‖2 and x2 = x̂′/‖x̂′‖2 are two vectors,
such that, each coordinate of x̂ is distributed according to
N (0.5, 1) and each coordinate of x̂′ is distributed accord-
ing to N (−0.5, 1). In Fig. 3(c), we used the CIFAR10 data
samples.

In Fig. 3(a-b) we plot the normalized variance of the di-
agonal and off-diagonal elements of the kernel as a func-
tion of the number of layers for the various architec-
tures. In Fig. 3(c) we plot the normalized variance of the
full-kernel matrix over 1000 samples, i.e., we estimate
Ew[‖Kw−Ew[Kw]‖22
‖Ew[Kw]‖22

, where Kw = (K(xi, xj ;w))i,j is the
empirical kernel matrix. In Fig. 3(a), we compare the be-
haviours of fully connected architectures, and in Figs. 3(b-c),
we compare between convolutional architectures, including
the wide ResNet architecture [Zagoruyko and Komodakis,
2016]. The results are plotted in log-scale. As can be seen,
the normalized variance of the diagonal and off-diagonal
elements of the kernel are highly correlated for all architec-
tures. In addition, for residual and dense architectures, the
normalized variance of the NTK is relatively constant when
varying the number of layers, while for vanilla networks,
the normalized variance of the NTK grows exponentially.

We conducted a similar experiment to study the effect of the
depth of each block in ResNets on the normalized variance
of the NTK. The setting is the same as in Fig. 3, except
that we vary the depth of each residual block instead of
the number of blocks, which stays constant (4 or 10). In
Fig. 4(a), we plot the results for fully-connected ResNets on
synthetic samples and in Fig. 4(b) for convolutional ResNets
on samples from CIFAR10. As can be seen, the diagonal
and off-diagonal elements of the NTK scale exponentially
with the depth of each block, as predicted in Thm. 3.

6.2 REGRESSION WITH RANDOM GRADIENT
FEATURES

We conducted various experiments to compare the ability
of the gradients∇wf(x;w) of each architecture to serve as
random features for kernel regression. As we show, the fluc-

902

(a) (b) (c)

Figure 3: Normalized variance of NTK for various models. The x-axis stands for the number of layers. In (a-b) the y-axis
stands for the values of V(K(x, x′;w)) in log-scale. The diagonal terms specify the value for x = x′ and the off-diagonal
terms specify the value for x 6= x′. In (c) the y-axis stands for the values of the deviations of the full-kernel matrix in
log-scale. (a) Results for fully connected networks and (b-c) results for convolutional networks.

Figure 4: Normalized variance of NTK for ResNets
with 4 and 10 residual blocks. The x-axis stands for the
depth of each block. The y-axis stands for the values of
V(K(x, x′;w)) in log-scale. The diagonal terms specify the
value for x = x′ and the off-diagonal terms specify the
value for x 6= x′. (left) results for fully-connected ResNets
and (right) results for convolutional ResNets.

tuations are highly correlated and have a dramatic effect on
the performance of kernel regression. The process is as fol-
lows: for a given network f(x;w), we sampled w1, . . . , wT
at random from a standard normal distribution and used
∇wi

f(x;wi) as our random features. In addition, the labels
are being cast into one-hot vectors corresponding to their
discrete values in [k]. To solve the kernel regression task,
we employed the closed form solution:

g(x;w) := (KT (x, x1), . . . ,KT (x, xm)) ·H−1T · Y (19)

where KT (x, x′) = 1
T

∑T
i=1K(x, x′;wi), Hk =

(KT (xi, xj))i,j∈[m] ∈ Rm×m and Y ∈ Rm×k is a matrix
whose i’th row is yi.

Experiments on MNIST In this set of experiments, each
training run was done over 2000 randomly selected MNIST
training samples, where each train/test sample is normalized
to have norm 1. In Fig. 5(a-c) we report the expected accu-
racy rates of g(x;w) on the test set, when varying the num-
ber of layers of a fully connected network f(x;w), while
fixing the width to be n ∈ {50, 100, 500} and T = 1. The
performances of the infinite-width limit kernels of vanilla

networks, ResNets, and DenseNets are plotted as well, un-
der the names, ‘vanilla kernel’, ‘resnet kernel’ and ‘densenet
kernel’ respectively. Their error bars are taken with respect
to the selection of the training samples. In Fig. 5(d-f) we
report the same results, when the width is n ∈ {2, 50, 100}
and T = 30. As can be seen, when fixing the width of the
network, increasing the depth of a vanilla network is ad-
verse to the performance of the kernel regression. However,
this is not the case with ResNets and DenseNets. In addi-
tion, the results of performing kernel regression with the
NTKs are comparable to the results of their corresponding
infinite-width limit kernels.

In Fig. 6(a-c), we report the effect of varying the width
when fixing the depth and T = 1. As can be seen, the
performance of a standard network is significantly inferior
to the performances of the kernel regressions corresponding
to ResNets and DenseNets when the number of layers is
larger than 4. It is evident that the performance of each
architecture improves when increasing the width, however,
standard neural networks are required to be much wider,
in order to achieve the same degree of success as ResNets
and DenseNets and convergence to the performance of the
asymptotic kernel (which is denoted by ’ker; depth = n’).

Experiments on UCI We also compared the performance
of kernel regression over 43 small UCI datasets (see list
in Tab. 1 in the appendix). We note that the performance
of the various methods vary from one dataset to another
as a result of dataset complexity, number of classes, etc.
Therefore, in order to average the results over the various
datasets, instead of reporting the absolute accuracy rates, we
report the relative accuracy rates with respect to the accu-
racy rate of a three-layered network (i.e., the accuracy rate
divided by the accuracy rate obtained with three layers). For
each fully connected architecture, we compared the relative
accuracy rates for widths 10, 100, 500, when varying the
number of layers. The relative accuracy rates are averaged
over the 43 datasets. The results, presented in Fig. 6(d-f),
show that the performance of kernel regression for ResNet

903

(a) (b)

(c) (d)

(e) (f)

Figure 5: Results on MNIST for kernel regression over
random gradient features. We plot the averaged accuracy
rates, when varying the number of layers. In (a-b) T = 1
and the width of f(x;w) is either (a) 50 (b) 100 or (c) 500.
‘vanilla kernel’, ‘resnet kernel’ and ‘densenet kernel’ stand
for the results of the infinite-width limit kernels of vanilla
networks, ResNets and DenseNets (resp.). In (d-f) T = 30
and the width of f(x;w) is either (d) 2 (e) 10 or (f) 100.

and DenseNet architectures does not degrade as a result of
increasing the number of layers. In fact, the results improve
when increasing the number of layers for DenseNets and
DenseNets of widths 100 (about 4-5% improvement). In
contrast, for vanilla networks, where increasing the number
of layers harms the performance. It is evident that when
increasing the width of the vanilla network, the kernel re-
gression performance becomes more stable but still degrades
when increasing the number of layers. For comparison, we
also plot the results of the infinite-width limit kernels under
the name ’limit kernel’. Since Fig. 6(d-f) does not compare
the performance of the various architectures, rather it com-
pares its stability, for completeness, in Tab. 1 in the appendix
we report the absolute accuracy rates of the various architec-
tures with three layers and widths 10, 100, and 500. As can
be seen, the different models achieve very similar results on
all datasets.

Experiments on CIFAR10 with CNTK We compared
the performance of Convolutional NTKs (CNTK) regressors
on the CIFAR10 dataset. In these experiments f(x;w) is a

(a) Vanilla (b) ResNet

(c) DenseNet (d) Vanilla

(e) ResNet (f) DenseNet

Figure 6: (a-c) Results of kernel regression over random
gradient features on MNIST. Plotted are the averaged
accuracy rates, when fixing T = 1 and varying the width
of the three architectures: vanilla networks, ResNets, and
DenseNets. ’ker; depth = n’ stands for the results of the
infinite-width limit kernel for depth n. (d-f) Results on
UCI. Plotted are the averaged relative accuracy rates, when
varying the depth for the three architectures. ’limit kernel’
stands for the results of the infinite-width limit kernel.

convolutional vanilla, residual or densely connected neural
network. Each convolutional layer consists of 3× 3 convo-
lutions with stride 1 and padding 1. We treat the number of
channels as the width of a given architecture.

Each training run was done over 4000 randomly selected
CIFAR10 samples. In Fig. 8(a-c) we report the performance
of the ResNet and DenseNet regressors when varying the
number of layers and fixing the width of the various mod-
els. As can be seen, the performance of the ResNet and
DenseNet regressors do not degrade as a function of depth,
in contrast to vanilla networks. In Fig. 8(d-f), we report
the performance of the various regressors when varying the
width and fixing the depth to be 3, 6 or 12 (resp.). As evi-
dent from the plots, the performance of each architecture
improves when increasing the width, however, vanilla net-
works are required to be much wider, in order to achieve
the same degree of success as ResNets and DenseNets and
convergence to the performance of the asymptotic kernel.

904

(a) Vanilla (b) ResNet (c) DenseNet

Figure 7: SGD training for the three models of varying depths. The x-axis specifies the epoch and the y-axis specifies the
accuracy rate. (a) Results of vanilla MLPs, (b) Results of ResNets and (c) Results of DenseNets. The optimization stability
of ResNets and DenseNets is unaffected by the depth, in contrast to vanilla networks.

6.3 SGD EXPERIMENTS

We compared the performance of the various architectures
with varying depths on the MNIST dataset. Each model
was trained for 50 epochs, using SGD with a learning rate
µ = 0.01 and batch size 100. For each model, we compare
the performance of depths 2, 4, 6, 8 and the performance of
kernel regression with the corresponding width-limit ker-
nels. As can be seen in Fig. 7, the performance of vanilla
MLPs at the first epochs is worse for higher depths, and
therefore, the overall optimization is slower. In contrast,
for ResNets with a properly conditioned α = 0.1/L, the
performance is similar for different depths throughout the
optimization. Furthermore, for DenseNets, it is evident that
the performance is stable for different depths, even when the
initialization parameter α = 0.5 is independent of depth.

7 CONCLUSIONS

The Neural Tangent Kernel has provided new insights into
the training dynamics of wide neural networks. In this
work, we have derived finite width and depth corrections for
ResNet and DenseNet architectures, and have shown con-
vergence properties of deep residual models that are absent
in the vanilla fully connected architectures. Our results shed
new light on the effect of residual connections on the train-
ing dynamics of practically sized networks, suggesting that
models incorporating residual connections operate much
closer to the “kernel regime” approximation than vanilla
architectures, even at large depths.

Author Contributions

Etai Littwin and Tomer Galanti contributed equally to this
paper.

Acknowledgements

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant ERC CoG
725974).

References

Kyle Aitken and Guy Gur-Ari. On the asymptotics of wide
networks with polynomial activations, 2020.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan
Salakhutdinov, and Ruosong Wang. On exact computa-
tion with an infinitely wide neural net. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, NeurIPS, 2019.

Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhut-
dinov, Ruosong Wang, and Dingli Yu. Harnessing the
power of infinitely wide deep nets on small-data tasks. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rkl8sJBYvH.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland,
Richard E. Turner, and Zoubin Ghahramani. Gaussian
process behaviour in wide deep neural networks. In Inter-
national Conference on Learning Representations, ICLR,
2018. URL https://openreview.net/forum?
id=H1-nGgWC-.

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide net-
works from feynman diagrams. In International Confer-
ence on Learning Representations, ICLR, 2020.

M. Geiger, Arthur Jacot, S. Spigler, F. Gabriel, Lev-
ent Sagun, Stéphane d’Ascoli, G. Biroli, C. Hongler,
and M. Wyart. Scaling description of generalization
with number of parameters in deep learning. ArXiv,
abs/1901.01608, 2019.

905

https://openreview.net/forum?id=rkl8sJBYvH
https://openreview.net/forum?id=rkl8sJBYvH
https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=H1-nGgWC-

(a) (b)

(c) (d)

(e) (f)

Figure 8: Results on CIFAR10 for kernel regression over
random gradient features. We plot the averaged accuracy
rates, when varying the width or the number of layers. In
(a-c) we fix the width (number of channels) of f(x;w) to
be either (a) 8 (b) 16 or (c) 32, when varying the depth
between 2-12. In (d-f) we fix the number of layers to be
either (d) 3 (e) 6 or (f) 12, when varying the number of
channels between 5-35. ‘limit; vanilla’, ‘limit; resnet’ and
‘limit; densenet’ stand for the results of the infinite-width
limit kernels of vanilla networks, ResNets and DenseNets
(resp.).

A. Golubeva, Behnam Neyshabur, and Guy Gur-Ari. Are
wider nets better given the same number of parameters?
ArXiv, abs/2010.14495, 2020.

B. Hanin and D. Rolnick. How to start training: The ef-
fect of initialization and architecture. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, NeurIPS. Curran Associates, Inc.,
2018.

Boris Hanin and Mihai Nica. Finite depth and width
corrections to the neural tangent kernel. In Interna-
tional Conference on Learning Representations, ICLR,
2020. URL https://openreview.net/forum?
id=SJgndT4KwB.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
connected convolutional networks. IEEE Conference on
Computer Vision and Pattern Recognition, pages 2261–
2269, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International
Conference on International Conference on Machine
Learning, volume 37 of ICML, page 448–456. JMLR,
2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, NIPS,
page 8580–8589, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S.
Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes.
In International Conference on Learning Representations,
ICLR, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman
Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve
as linear models under gradient descent. In Advances in
Neural Information Processing Systems 32, pages 8572–
8583. Curran Associates, Inc., 2019.

Etai Littwin, Tomer Galanti, Lior Wolf, and Greg Yang.
On infinite-width hypernetworks. In Advances in Neural
Information Processing Systems 33. Curran Associates,
Inc., 2020a.

Etai Littwin, Ben Myara, Sima Sabah, J. Susskind,
Shuangfei Zhai, and Oren Golan. Collegial ensembles.
ArXiv, abs/2006.07678, 2020b.

Radford M. Neal. Priors for infinite networks. In Bayesian
Learning for Neural Networks, volume 118 of Lecture
Notes in Statistics. Springer, New York, NY, 1996.

Samuel Schoenholz, Justin Gilmer, Surya Ganguli, and
Jascha Sohl-Dickstein. Deep information propagation. In
International Conference on Learning Representations,
ICLR, 11 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Mean
field analysis of deep neural networks. arXiv preprint
arXiv:1903.04440, 2019.

906

https://openreview.net/forum?id=SJgndT4KwB
https://openreview.net/forum?id=SJgndT4KwB

Greg Yang. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. CoRR,
abs/1902.04760, 2019. URL http://arxiv.org/
abs/1902.04760.

Greg Yang and Samuel S. Schoenholz. Mean field resid-
ual networks: On the edge of chaos. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS, page 2865–2873, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Dingli Yu, Ruosong Wang, Zhiyuan Li, Wei Hu, Rus-
lan Salakhutdinov, Sanjeev Arora, and Simon S.
Du. Enhanced convolutional neural tangent kernels,
2020. URL https://openreview.net/forum?
id=BkgNqkHFPr.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Edwin R. Hancock Richard C. Wilson and
William A. P. Smith, editors, Proceedings of the British
Machine Vision Conference (BMVC), pages 87.1–87.12.
BMVA Press, September 2016.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Resid-
ual learning without normalization via better initializa-
tion. In International Conference on Learning Represen-
tations, ICLR, 2019. URL https://openreview.
net/forum?id=H1gsz30cKX.

907

http://arxiv.org/abs/1902.04760
http://arxiv.org/abs/1902.04760
https://openreview.net/forum?id=BkgNqkHFPr
https://openreview.net/forum?id=BkgNqkHFPr
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX

	Introduction
	Related Work
	Generalization as a Function of Variance
	Preliminaries And Notations
	Forward-Backward Norm Propagation Duality
	Experiments
	Normalized Variance of NTK
	Regression with Random Gradient Features
	SGD Experiments

	Conclusions

