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A GRADIENT OF THE EXPECTED
LOG-LIKELIHOOD

This section reports the gradient of the expected log-
likelihood of STruGMA w.r.t. its parameters β.

We remind that when omitting class conditioning c, the
expected log-likelihood is:
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. To avoid any confusion, the σkd are dif-

ferent here from ση(x) = 1/ (1 + exp(−ηx)) .

Derivatives with respect to each parameter of β are:
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where d is a feature number, n is a data-instance number, k is
a component number of STru GMA and F is the cumulative
distribution function of the univariate normal distribution.

B BREAKING THE OVERLAPPING

This section provides details for the heuristic we used to
break the overlapping.

Considering two hyper-rectangles i and j, the non-
overlapping constraint is
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By looking at the form of the constraint, it can be seen that
breaking overlapping can be done on only one particular
dimension d. In cases where the gradient-based updates of
parameters violate the constraint in Eq. 1, given a dimension
d, our heuristic considers 4 adaptations:{
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Note that (ii) and (iv) are simply alternatives of (i) and
(iii) respectively when permuting i and j. Furthermore, by
applying any of these adaptations, it can be checked that the
constraints α(2)

i > α
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i are satisfied.
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Table 1: Details of neural network architectures.

Network Architecture Datasets

Network1
Dense layer - 128, ELU

Marketing, Credit, Pima, Waveform, WineDense layer - 128, ELU
Dense layer - C, Softmax

Network3

Dense layer - 40, ELU

Magic gamma

Dropout - 0.4
Dense layer - 25, ELU
Dense layer - 10, ELU
Dropout - 0.4
Dense layer - C, Softmax

Network2

Dense layer - 128, ELU

Ionosphere

Dense layer - 128, ELU
Dropout - 0.4
Dense layer - 256, ELU
Dense layer - 256, ELU
Dropout - 0.4
Dense layer - C, Softmax

Figure 1 illustrates adaptations along a particular dimension
d.

As we have 4 adaptations per dimension, therefore, there are
4D choices, where D is the size of the input space. The best
choice is taken as the choice that maximises the expected
log-likelihood score. Another interpretation is that it is the
choice that minimises the loss in coverage of data-instances
by STruGMA.

In summary, with this heuristic, breaking overlapping has
the algorithmic complexity O(K2 × D), where K is the
number of hyper-rectangles and D is the number of features.

Figure 1: Illustration of adaptations along a particular di-
mension d. (i) and (iii) correspond to adaptations described
in Eq. 2 and Eq. 3.

C DETAILS OF NEURAL NETWORK
ARCHITECTURES

The three architectures in the table 1 where used in the
experiments. Neural networks with different architectures

that gave best results were chosen for each dataset as the
black-box.
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