Global Explanations with Decision Rules:
a Co-learning Approach (supplementary material)

Géraldin Nanfack!

Paul Temple'

Benoit Frénay'

'PReCISE Research Center , Namur Digital Institute (NADI), University of Namur, Belgium ,

A GRADIENT OF THE EXPECTED
LOG-LIKELIHOOD

This section reports the gradient of the expected log-

likelihood of STrTuGMA w.r.t. its parameters 3.

We remind that when omitting class conditioning ¢, the
expected log-likelihood is:
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We consider the case where ¥ is diagonal i.e. 3; =
01%1
. To avoid any confusion, the o4 are dif-
Jl%d
ferent here from o, (x) = 1/ (1 + exp(—nz)) .

Derivatives with respect to each parameter of 3 are:
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where d is a feature number, n is a data-instance number, & is
a component number of STru GMA and F' is the cumulative
distribution function of the univariate normal distribution.

B BREAKING THE OVERLAPPING

This section provides details for the heuristic we used to
break the overlapping.

Considering two hyper-rectangles ¢ and j, the non-
overlapping constraint is
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By looking at the form of the constraint, it can be seen that
breaking overlapping can be done on only one particular
dimension d. In cases where the gradient-based updates of
parameters violate the constraint in Eq.[I] given a dimension
d, our heuristic considers 4 adaptations:
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and
(iii) « Z) = aid) if a(d) > oz(z) 3)
@iv) a(l) aﬁ) otherwise.

Note that (ii) and (iv) are simply alternatives of (i) and
(iii) respectively when permuting ¢ and j. Furthermore, by
applying any of these adaptations, it can be checked that the
@ a(l) and a(z) > az(-l)

constraints o; are satisfied.
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Table 1: Details of neural network architectures.

Network Architecture

Datasets

Dense layer - 128, ELU
Dense layer - 128, ELU
Dense layer - C, Softmax

Network1

Marketing, Credit, Pima, Waveform, Wine

Dense layer - 40, ELU
Dropout - 0.4

Dense layer - 25, ELU
Dense layer - 10, ELU
Dropout - 0.4

Dense layer - C, Softmax

Network3

Magic gamma

Dense layer - 128, ELU
Dense layer - 128, ELU
Dropout - 0.4

Dense layer - 256, ELU
Dense layer - 256, ELU
Dropout - 0.4

Dense layer - C, Softmax

Network2

Ionosphere

Figure[I]illustrates adaptations along a particular dimension
d.

As we have 4 adaptations per dimension, therefore, there are
4D choices, where D is the size of the input space. The best
choice is taken as the choice that maximises the expected
log-likelihood score. Another interpretation is that it is the
choice that minimises the loss in coverage of data-instances
by STruGMA.

In summary, with this heuristic, breaking overlapping has
the algorithmic complexity O(K? x D), where K is the
number of hyper-rectangles and D is the number of features.
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Figure 1: Illustration of adaptations along a particular di-
mension d. (i) and (iii) correspond to adaptations described

in Eq.2]and Eq. 3}

C DETAILS OF NEURAL NETWORK
ARCHITECTURES

The three architectures in the table [Tl where used in the
experiments. Neural networks with different architectures

that gave best results were chosen for each dataset as the
black-box.



	GRADIENT OF THE EXPECTED LOG-LIKELIHOOD
	BREAKING THE OVERLAPPING
	Details of neural network architectures

