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1 PROOFS OF LEMMAS

1.1 PROOF OF LOCAL IDENTIFIABILITY

Proof of Lemma 1.. Let r = rank(L?) and s =
|gsupp(S?)|. For local identifiability we must find a
(small) ball such that for all ∆ 6= 0 from this ball it
holds that (L? −∆,S? +∆) /∈ L(r)× S(s). We already
motivated in the main paper that the points that are
close to S? ∈ S(s) and L? ∈ L(r) in the varieties can be
characterized using tangent spaces. Specifically, it can
only hold S? +∆ ∈ S(s) for small ∆ 6= 0 if ∆ ∈ Q(S?).
Likewise, it can only hold L? − ∆ ∈ L(r) for small
∆ 6= 0 if ∆ ∈ T (L ′) for some tangent space T (L ′) to
L(r) at a (smooth) point L ′ ∈ L(r) that is close to L?.
Note again that due to the local curvature of the low-
rank matrix variety, we also need to consider nearby
tangent spaces. Hence, to prove local identifiability it
is sufficient to show that the tangent spacesQ(S?) and
T (L ′) are transverse for all smooth L ′ ∈ L(r) from
some small ball around L.

By definition, transversality of Q(S?) and T (L ′)
means that T(L ′)∩Q(S?) = {0}, which is equivalent to

min
M∈Q(S?),‖M‖=1

‖M− PT (L ′)M‖ > 0. (1)

This is because M = PT (L ′)M if and only if M ∈
T(L ′) ∩ Q(S?). In the following, we want to verify
Condition (1) for smooth L ′ ∈ L(r) from a small
ball around L?. We start by calculating that for any
M ∈ Q(S?) with ‖M‖ = 1 it holds that

‖M− PT (L ′)M‖

= ‖M− PT (L?)M+
[
PT (L?) − PT (L ′)

]
M‖

> ‖M− PT (L?)M‖− ‖
[
PT (L?) − PT (L ′)

]
M‖

> κ− ρ(T (L?), T (L ′)),

where the first inequality is the triangle inequality, and

for the second inequality we defined

κ = min
M∈Q(S?),‖M‖=1

‖M− PT (L?)M‖

and the twisting between subspaces

ρ(T (L?), T (L ′)) = max
‖M‖=1

∥∥∥[PT (L?) − PT (L ′)]M∥∥∥ .

Here, the assumed transversality of the tangent spaces
Q(S?) and T (L?) implies that κ > 0. Hence, a suf-
ficient condition for the transversality of Q(S?) and
T (L ′) is that ρ(T (L?), T (L ′)) < κ since then Condi-
tion (1) is satisfied. We show that ρ(T (L?), T (L ′)) < κ
holds whenever L ′ is sufficiently close to L?. This proof
is technical, but the main idea is to show that the map
from smooth L ′ ∈ L(r) to ρ(T (L?), T (L ′)) is continu-
ous and since it maps L? onto zero, there exists a small
ball around L? for which ρ(T (L?), T (L ′)) < κ.

We now dive into the technical details. For that, we
consider the function f that maps (L ′,M) with domain
restricted to L ′ ∈ L(r), ‖L? − L ′‖ 6 1, and ‖M‖ = 1
onto R as follows

f(L ′,M) = ‖PT (L?)M− (PU(L ′)M

+MPV(L ′) − PU(L ′)MPV(L ′))‖,

where PU(L ′) is the projection matrix that projects onto
the column space U(L ′) of L ′, and PV(L ′) is the projec-
tion matrix that projects onto the row space V(L ′) of
L ′. Note that for a rank-r matrix L ′, that is, L ′ ∈ L(r)
is smooth, it holds that

PT (L ′)M = PU(L ′)M+MPV(L ′) − PU(L ′)MPV(L ′),

see, for example, Candès et al. [2011]. Consequently,
for smooth L ′ we have f(L ′,M) = ‖[PT (L?) −
PT (L ′)]M‖ and in particular f(L?,M) = 0 for all M.
We now argue that f is continuous as a composition of
continuous functions: First, L ′maps continuously onto
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the projection matrices PU(L ′),PV(L ′) because small
changes to L ′ only cause small changes to the row and
column spaces of L ′ and hence to the corresponding
projections. Second, the remaining composite func-
tions in the definition of f above are additions, norm
functions or matrix products of PU(L ′), PV(L ′), andM.
All these operations are continuous, thus overall f is
continuous.

Because f is continuous on a compact domain, it is
also uniformly continuous. Hence, there exists δ > 0
(w.l.o.g. δ 6 1) such that for all L ′1,L ′2 with ‖L ′1 − L

′
2‖ <

δ and for allM1,M2 with ‖M1 −M2‖ < δ it holds that
|f(L ′1,M1) − f(L

′
2,M2)| <

κ
2 . Consequently, it holds for

L ′ with ‖L? − L ′‖ < δ independently ofM that

f(L ′,M) < f(L?,M) +
κ

2
=
κ

2
.

We can take the supremum overMwith ‖M‖ = 1 on
the left-hand side of this equation. If we only consider
smooth L ′, this implies that

ρ(T (L?), T (L ′)) = sup
M:‖M‖=1

‖[PT (L?) − PT (L ′)]M‖

= sup
M:‖M‖=1

f(L ′,M) 6
κ

2
< κ.

This completes the proof because we have shown that
for all smooth L ′ from the spectral-norm ball with ra-
dius δ around L? the tangent spaces Q(S?) and T (L ′)
are transverse. Particularly, there do not exist small
non-zero ∆ ∈ T (L ′)∩Q(S?) for any L ′ from that ball,
hence locally around (L?,S?) there are no alternative
decompositions (L? −∆,S? +∆) ∈ L(r)× S(s). This
establishes local identifiability of (L?,S?).

1.2 PROJECTIONS ON TANGENT AND
NORMAL SPACES

Throughout the remaining proofs, we frequently
need the following lemma that bounds the norms
of projections onto tangent and normal spaces.
Here, the `∞,2-norm on Rm×n, given by ‖A‖∞,2 =
maxi∈[d],j∈[n] ‖aij‖2, is the dual norm of the `1,2-
norm.

Lemma 5. Let Q(S) be the tangent space at S ∈
S(|gsupp(S)|). Then, forM ∈ Rm×n, it holds that

‖PQ(S)M‖∞,2 6 ‖M‖∞,2 and

‖PQ(S)⊥M‖∞,2 6 ‖M‖∞,2.

Next, let T (L) be the tangent space at L ∈ L(rank(L)).
Then, for N ∈ Rm×n, it holds that

‖PT (L)N‖ 6 2‖N‖ and ‖PT (L)⊥N‖ 6 ‖N‖.

Proof. The claims for the projections on low-rank tan-
gent spaces have been proven in Nussbaum and
Giesen [2020]. The claims for projections on group-
sparse tangent and normal spaces are simple.

1.3 WEAKER ASSUMPTIONS USING
NORM-COMPATIBILITY CONSTANTS

Proof of Lemma 3. We prove the bound for µ(Q(S))
first. Remember the definition

µ(Q(S)) = max
M∈Q(S),‖M‖∞,2=1

‖M‖,

and recall that the group-sign function gsign maps a
matrix A ∈ Rm×n onto the matrix gsign(A) ∈ Rm×n

with

gsign(A)ij =

{
aij/‖aij‖2, aij 6≡ 0
0, else

for i ∈ 1, . . . ,d and j = 1, . . . ,n. Now, consider M
with ‖M‖∞,2 = 1. Then, the matrix |gsign(M)| has
normalized groups and non-negative entries. More-
over, it satisfies the element-wise inequality |M| 6
|gsign(M)|. As a consequence of the Perron-Frobenius
theorem Horn and Johnson [2012] it follows that
‖M‖ 6 ‖|gsign(M)|‖. This allows us to conclude
that to obtain µ(Q(S)) we only need to consider non-
negative matrices 0 6M ∈ Q(S) that are normalized in
the sense that its non-zero groups precisely have norm
1, that is,M = gsign(M). Now, we bound the spectral
norm of a matrixM, see Schur [1911], as follows

‖M‖2 6 ‖M‖1‖M‖∞,

where ‖M‖1 is the maximum `1-norm of a column of
M and ‖M‖∞ is the maximum `1-norm of a row ofM.
We bound ‖M‖1. W.l.o.g. let c be a column ofMwith
‖M‖1 = ‖c‖1. Then, it holds

‖M‖1 = ‖c‖1 6
√
η‖c‖1,2 6

√
ηgdegmax(M)

6
√
ηgdegmax(S),

where the first inequality follows since η =
maxi∈[d]mi is the maximum number of elements that
belong to a group from the column and hence that

√
η

is a norm compatibility constant for the column (vec-
tor) `1-norm and the column (vector) `1,2-norm. The
second inequality follows because the vector `1,2-norm
of c is equal to the number of non-zero groups of c.
This number is bounded by gdegmax(M). Finally, the
last inequality follows from gsupp(M) ⊆ gsupp(S) as
M ∈ Q(S).

Similar reasoning for rows instead of columns leads us
to conclude that ‖M‖∞ 6 gdegmax(S) since this time



comparison of the `1,2- and `1 row (vector) norms is not
necessary because the intersections of the groups ofM
with a row respectively contain at most one element.
Therefore, we get the upper bound

‖M‖ 6
√
‖M‖1‖M‖∞ 6 η1/4 gdegmax(S).

This establishes the claim µ(Q(S)) 6 η1/4 gdegmax(S).

Proof of (b). The claim about ξ(T (L)) follows from

ξ(T ) = max
M∈T (L),‖M‖=1

‖M‖∞,2

6
√
η max
M∈T (L),‖M‖=1

‖vec(M)‖∞
6 2
√
η coh(L),

where the first inequality follows from the general
norm bound between the (vector) `∞-norm and the
`∞,2-norm which holds because η is the maximum
number of elements of a group. Finally, the last in-
equality is a consequence of [Chandrasekaran et al.,
2011, Proposition 4].

1.4 SUFFICIENT CONDITIONS FOR
TRANSVERSALITY

Using the norm-compatibility constants introduced in
the previous section, we can prove the following result
that is stronger than Lemma 2 from the main paper.

Lemma 6. Let S ∈ S(|gsupp(S)|) with tangent space
Q(S) at S, and let L ∈ L(rank(L)) with tangent space
T (L) at L. Suppose that it holds µ(Q(S))ξ(T (L)) < 1.
Then, the tangent spaces are transverse, that is, it holds
Q(S)∩ T (L) = {0}.

Proof. Let 0 6=M ∈ T (L). We calculate

‖PQ(S)M‖ 6 µ(Q(S))‖PQ(S)M‖∞,2

6 µ(Q(S))‖M‖∞,2

6 µ(Q(S))ξ(T (L))‖M‖ < ‖M‖,

where the first inequality uses the definition of
µ(Q(S)), the second inequality uses the projection
Lemma 5, the third inequality follows from M ∈
T (L) and the definition of ξ(T(L)), and the last in-
equality follows from the assumption. It follows that
PQ(S)(M) 6= M such that M cannot be contained
in Q(S). This implies transversality of the tangent
spaces.

Lemma 2 can now be proven as a simple corollary of
Lemma 6.

Proof of Lemma 2.. By Lemma 3 and the assumption of
Lemma 2 it holds that

µ(Q(S?))ξ(T (L?)) < 2η3/4 gdegmax(S
?) coh(L?) < 1.

Hence, the claim follows from Lemma 6.

2 PROOFS OF THEOREM 2 AND
THEOREM 1

In this section, we prove the theorems from the main
paper. The first two section contain the proof of Theo-
rem 2, which is done by studying the optimality con-
ditions of Problem (1). The third section contains the
proof of Theorem 1 as a corollary of Theorem 2.

2.1 OPTIMALITY CONDITIONS

Any solution (L,S) to Problem (1) must satisfy the first-
order optimality conditions of Problem (1) that can be
derived from the Lagrangian

L(L,S,Z) = ‖L‖∗ + γ‖S‖1,2 + 〈Z,X− L− S〉 ,

where Z are the dual variables for the constraint X =
L+ S, and 〈·, ·〉 denotes the standard scalar product on
matrices. The first-order optimality conditions w.r.t. S
and L require that Z is a subgradient from the `1,2-
norm and the nuclear norm subdifferentials, that is, it
must hold Z ∈ γ∂‖S‖1,2 and Z ∈ ∂‖L‖∗. The norm
subdifferentials can be characterized using dual norms
Watson [1992]. First, it holds Z ∈ γ∂‖S‖1,2 if and only
if

PQ(S)(Z) = γgsign(S) and ‖PQ⊥(S)(Z)‖∞,2 6 γ.

Next, it holds Z ∈ ∂‖L‖∗ if and only if

PT (L)(Z) = UV
> and ‖PT (L)⊥(Z)‖ 6 1,

where L = UDV> is a singular value decomposition
of L, and ‖ · ‖ denotes the spectral norm, which is dual
to the nuclear norm.

Based on the first-order optimality conditions, the fol-
lowing result states that (L?,S?) uniquely solves Prob-
lem (1) provided that the tangent spaces Q = Q(S?)
and T = T (L?) are transverse and given a dual Z that
strictly satisfies the subgradient conditions above.

Proposition 1. Suppose that X = L? + S?. Then, (L?,S?)
is the unique minimizer of Problem (1) if the following
conditions are satisfied:

1. It holds Q(S?)∩ T (L?) = {0}.



2. There exists a subgradient Z ∈ γ∂‖S?‖1,2 ∩ ∂‖L?‖∗
that satisfies the strict dual-feasible conditions

‖PQ⊥(S?)(Z)‖∞,2 < γ and ‖PT ⊥(L?)(Z)‖ < 1.

The idea for the proof of uniqueness, which can be
done similarly as in Candès et al. [2011], is to assume
the existence of another minimizer (L? −M,S? +M)
with the goal of showing that M = 0. For that, the
proof uses the subgradient property and the subgradi-
ent characterizations to show thatM ∈ Q(S?)∩ T (L?).
In the spirit of the primal-dual witness proof technique
that was originally introduced in Wainwright [2009]
this implies that S?+M ∈ Q(S?) and L?−M ∈ T (L?).
However, from the transversality Q(S?)∩ T (L?) = {0}
it follows thatMmust be zero.

Proof of Proposition 1. First, it follows that (L?,S?) is
an optimum since by the second condition from the
assumption there exists a dual Z that satisfies both
optimality conditions. Now, for some matrix M, let
(L?−M,S?+M) be another minimizer of Problem (1).
The minimizer must have this form in order to be
feasible. Our goal is to show that the components ofM
in the normal spaces Q⊥ and T ⊥ vanish, respectively.
We begin by using the subgradient property:

0 = γ‖S? +M‖1,2 + ‖L? −M‖∗ − γ‖S?‖1,2 − ‖L?‖∗
>
〈
Z1,2,M

〉
− 〈Z∗,M〉

=
〈
PQ⊥(Z1,2),M

〉
− 〈PT ⊥(Z∗),M〉

+
〈
PQ(Z1,2),M

〉
− 〈PT (Z∗),M〉 ,

where Z1,2 ∈ γ∂‖S?‖1,2 and Z∗ ∈ ∂‖L?‖∗ are sub-
gradients whose choices we make precise later. The
idea is to chose them such that the right hand side
of the inequality is maximized. In the last line, we
decomposed the terms into their tangential and nor-
mal components. Note that the tangential components〈
PQ(Z1,2),M

〉
− 〈PT (Z∗),M〉 do not depend on the

choice of the subgradients since by the subgradient
characterizations the pair (Z1,2,Z∗) must satisfy

PQ(Z1,2) = γgsign(S?) and PT (Z∗) = UV
>,

where L? = UDV> is the singular value decomposi-
tion of L?. Hence, this constant part can be bounded
by 〈

PQ(Z1,2),M
〉
− 〈PT (Z∗),M〉

=
〈
Z− PQ⊥(Z),M

〉
− 〈Z− PT ⊥(Z),M〉

= −
〈
PQ⊥(Z),M

〉
+ 〈PT ⊥(Z),M〉

= −
〈
PQ⊥(Z),PQ⊥(M)

〉
+ 〈PT ⊥(Z),PT ⊥(M)〉

> −
∣∣〈PQ⊥(Z),PQ⊥(M)

〉∣∣− |〈PT ⊥(Z),PT ⊥(M)〉|
> −

∥∥PQ⊥(Z)∥∥∞,2

∥∥PQ⊥(M)
∥∥

1,2

− ‖PT ⊥(Z)‖ ‖PT ⊥(M)‖∗ ,

where the first equality uses that Z satisfies the sub-
gradient conditions as well, and the final inequality
applies the generalized Hoelder inequality (respec-
tively for the ‖ · ‖1,2, ‖ · ‖∞,2 and the ‖ · ‖, ‖ · ‖∗ dual
norm pairs).

Next, we calculate
〈
PQ⊥(Z1,2),M

〉
− 〈PT ⊥(Z∗),M〉 af-

ter choosing the normal components of Z1,2 and Z∗ in
Q⊥ and T ⊥, respectively. First, we select PQ⊥(Z1,2) =

γgsign
(
PQ⊥(M)

)
. This yields a valid subgradient be-

cause then ‖PQ⊥(Z1,2)‖∞,2 = γ. Moreover, it holds
that〈

PQ⊥(Z1,2),M
〉
=
〈
PQ⊥(Z1,2),PQ⊥(M)

〉
= γ

〈
gsign

(
PQ⊥(M)

)
,PQ⊥(M)

〉
= γ‖PQ⊥(M)‖1,2.

Second, we select PT ⊥(Z∗) = −Ũ sign(Σ̃)Ṽ> based
on a singular value decomposition PT ⊥(M) = ŨΣ̃Ṽ>

of PT ⊥(M). This forms a valid subgradient since
‖PT ⊥(Z∗)‖ = 1. Besides, we have

− 〈PT ⊥(Z∗),M〉 = − 〈PT ⊥(Z∗),PT ⊥(M)〉

= −
〈
−Ũ sign(Σ̃)Ṽ>, ŨΣ̃Ṽ>

〉
= tr

((
Ũ sign(Σ̃)Ṽ>

)>
ŨΣ̃Ṽ>

)
= tr

(
Ṽ sign(Σ̃)Ũ>ŨΣ̃Ṽ>

)
= tr

(
Ṽ |Σ̃|Ṽ>

)
= tr

(
Ṽ>Ṽ |Σ̃|

)
= tr

(
|Σ̃|
)
= ‖PT ⊥(M)‖∗ .

In summary, the specific choices of the subgradients
yield

0 >
〈
PQ⊥(Z1,2),M

〉
− 〈PT ⊥(Z∗),M〉

+
〈
PQ(Z1,2),M

〉
− 〈PT (Z∗),M〉

> γ‖PQ⊥(M)‖1,2 + ‖PT ⊥(M)‖∗
−
∥∥PQ⊥(Z)∥∥∞,2

∥∥PQ⊥(M)
∥∥

1,2

− ‖PT ⊥(Z)‖ ‖PT ⊥(M)‖∗
=
(
γ− ‖PQ⊥(Z)‖∞,2

)
‖PQ⊥(M)‖1,2

+ (1 − ‖PT ⊥(Z)‖) ‖PT ⊥(M)‖∗.

By the strictly-dual-feasible condition we have that
‖PQ⊥(Z)‖∞,2 < γ and ‖PT ⊥(Z)‖ < 1. Thus, if any of
PQ⊥(M) or PT ⊥(M) are non-zero, then the right-hand
side becomes strictly positive, which would be a con-
tradiction. Therefore, we must have PQ⊥(M) = 0 and
PT ⊥(M) = 0. This means thatMmust be contained in
both Q and T . However, since we assumed transver-
sality, we have Q ∩ T = {0}. It follows that M = 0,
which implies the uniqueness of the solution to Prob-
lem (1).



2.2 PROOF OF THEOREM 2

Here, we prove Theorem 2. The main idea of the proof
is to show that for any γ ∈ (γ◦min,γ◦max) there exists a
strictly dual feasible Z as required by Proposition 1.

Proof of Theorem 2. Let us first check that the range of
values for γ given by(

ξ(T )
1 − 4µ(Q)ξ(T ) ,

1 − 3µ(Q)ξ(T )
µ(Q)

)
is non-empty. For that, observe that comparing the
borders of the interval leads to the quadratic inequality

12 [µ(Q)ξ(T )]2 − 8 [µ(Q)ξ(T )] + 1 > 0

in µ(Q)ξ(T ). The roots of the quadratic polynomial
are 1/6 and 1/2, so clearly under the assumption
µ(Q)ξ(T ) < 1/6 the given range is non-empty.

Because of the assumption, we also can apply
Lemma 6 that yields Q ∩ T = {0}. Therefore, there
exists a unique Z ∈ Q⊕ T , where ⊕ denotes the direct
sum, such that the orthogonal projections of Z onto
the tangent spaces Q and T are consistent with the
subgradient conditions, that is, it holds

PQ(Z) = γgsign(S?) and PT (Z) = UV
>.

Remember that L? = UDV> is the (restricted) singular
value decomposition of L?. The rest of the proof is
dedicated to showing that Z also strictly satisfies the
remaining subgradient conditions that concern the
orthogonal projections, that is, we want to show the
strict dual-feasible conditions

‖PQ⊥(Z)‖∞,2 < γ and ‖PT ⊥(Z)‖ < 1

that are required by Proposition 1. For that, let Z =
ZQ + ZT be the unique splitting of Z into its compo-
nents ZQ ∈ Q and ZT ∈ T , see Figure 7. We have
ZQ = PQ(Z) − PQ(ZT ) = γgsign(S?) − PQ(ZT ) and
ZT = PT (Z) − PT (ZQ) = UV> − PT (ZQ). Now, we

Q

T0

Z
ZQ

ZT UV>

γgsign(S?)

Figure 7: Decomposition of the dual Z in Q⊕ T .

start bounding the orthogonal components. The com-
ponent of Z in Q⊥ can be bounded as

‖PQ⊥(Z)‖∞,2 = ‖PQ⊥(ZT )‖∞,2 6 ‖ZT ‖∞,2

6 ξ(T )‖ZT ‖ = ξ(T )‖UV> − PT (ZQ)‖
6 ξ(T )(1 + ‖PT (ZQ)‖), (2)

where we used the projection Lemma 5 in the first, the
definition of ξ(T ) in the second, and the triangle in-
equality in the last inequality. Similarly, we can bound
the component of Z in T ⊥

‖PT ⊥(Z)‖ = ‖PT ⊥(ZQ)‖ 6 ‖ZQ‖
6 µ(Q) ‖ZQ‖∞,2

= µ(Q)‖γgsign(S?) − PQ(ZT )‖∞,2

6 µ(Q)
(
γ+ ‖PQ(ZT )‖∞,2

)
, (3)

where again Lemma 5 was used in the first, the defi-
nition of µ(Q) in the second, and finally the triangle
inequality in the last inequality. To continue the calcu-
lations we bound the norms of PT (ZQ) and PQ(ZT ).

‖PT (ZQ)‖ 6 2‖ZQ‖ 6 2µ(Q)
(
γ+ ‖PQ(ZT )‖∞,2

)
,

‖PQ(ZT )‖∞,2 6 ‖ZT ‖∞,2 6 ξ(T ) (1 + ‖PT (ZQ)‖) ,

where we used the projection Lemma 5, bounded
‖ZT ‖∞,2 as in (2), and bounded ‖ZQ‖ as in (3). Plug-
ging the bounds on ‖PT (ZQ)‖ and ‖PQ(ZT )‖ into each
other yields

‖PT (ZQ)‖ 6 2µ(Q) [γ+ ξ(T ) (1 + ‖PT (ZQ)‖)] ,

‖PQ(ZT )‖∞,2 6 ξ(T )
[
1 + 2µ(Q)

(
γ+ ‖PQ(ZT )‖∞,2

)]
.

By solving these inequalities for ‖PT (ZQ)‖ and
‖PQ(ZT )‖∞,2, respectively, we obtain

‖PT (ZQ)‖ 6
2γµ(Q) + 2µ(Q)ξ(T )

1 − 2µ(Q)ξ(T ) (4a)

‖PQ(ZT )‖∞,2 6
ξ(T ) + 2γµ(Q)ξ(T )

1 − 2µ(Q)ξ(T ) (4b)

Note that since µ(Q)ξ(T ) < 1/6 < 1/2, the denomina-
tors are positive. Bringing (2) and (4a) together yields

‖PQ⊥(Z)‖∞,2 6 ξ(T )(1 + ‖PT (ZQ)‖)

6 ξ(T )
(

1 +
2γµ(Q) + 2µ(Q)ξ(T )

1 − 2µ(Q)ξ(T )

)
= ξ(T )

(
1 + 2γµ(Q)

1 − 2µ(Q)ξ(T )

)
=

[
ξ(T )

(
1 + 2γµ(Q)

1 − 2µ(Q)ξ(T )

)
− γ

]
+ γ

=

[
ξ(T ) + 2γµ(Q)ξ(T ) − γ+ 2γµ(Q)ξ(T )

1 − 2µ(Q)ξ(T )

]
+ γ

=

[
ξ(T ) − γ (1 − 4µ(Q)ξ(T ))

1 − 2µ(Q)ξ(T )

]
+ γ < γ,

where the last inequality holds by the assumption

γ > ξ(T )/[1 − 4µ(Q)ξ(T )].



Next, by (3) and (4b) we have

‖PT ⊥(Z)‖ 6 µ(Q)
(
γ+ ‖PQ(ZT )‖∞,2

)
6 µ(Q)

(
γ+

ξ(T ) + 2γµ(Q)ξ(T )
1 − 2µ(Q)ξ(T )

)
= µ(Q)

(
γ+ ξ(T )

1 − 2µ(Q)ξ(T )

)
< µ(Q)

(
[1 − 3µ(Q)ξ(T )]/µ(Q) + ξ(T )

1 − 2µ(Q)ξ(T )

)
=

1 − 3µ(Q)ξ(T ) + µ(Q)ξ(T )
1 − 2µ(Q)ξ(T ) = 1,

where we used the bound γ < [1 − 3µ(Q)ξ(T )]/µ(Q)
from the assumption in the last inequality. This com-
pletes the proof.

2.3 PROOF OF THEOREM 1

Finally, we prove Theorem 1 from the main paper as a
simple corollary of Theorem 2.

Proof of Theorem 1 as a Corollary of Theorem 2. This
is straightforward using the lower bounds on
gdegmax(S

?) and coh(L?) from Lemma 3. Particularly,
it holds

µ(Q(S?))ξ(T (L?)) 6 η
1
4 gdegmax(S

?)2η
1
2 coh(L?) <

1
6

,

where the final inequality follows from the assumption.
Hence, we can apply Theorem 2. One can check by
plugging in the lower bounds from Lemma 3 that the
range (γmin,γmax) of values for γ is a non-empty sub-
range of the range (γ◦min,γ◦max) given in Theorem 2.

3 ADMM FOR PROBLEM (1)

Similar to Candès et al. [2011], we derive an Alternat-
ing Direction Method of Multipliers (ADMM) algo-
rithm for the decomposition problem

min
S,L∈Rm×n

γ‖S‖1,2 + ‖L‖∗ s.t. X = S+ L

(note that we changed the order of S and L). This has
augmented Lagrangian

L(S,L,Z) = γ‖S‖1,2 + ‖L‖∗

+ 〈Z,X− S− L〉+ 1
2κ
‖X− S− L‖2

F

= γ‖S‖1,2 + ‖L‖∗

+
1

2κ
‖X− S− L+ κZ‖2

F −
κ

2
‖Z‖2

F,

where Z are the dual variables for the constraint and
κ > 0. Minimization of the augmented Lagrangian
w.r.t. S and L is equivalent to solving proximal oper-
ators with known solutions. Consequently, ADMM
performs the following updates:

Sk+1 = arg minS L(S,Lk,Zk)
= gShrink(X− Lk + κZk,γκ),

Lk+1 = arg minL L(Sk+1,L,Zk)
= sShrink(X− Sk+1 + κZk, κ),

Zk+1 = Zk + κ−1(X− Sk+1 − Lk+1),

where the group soft-shrinkage operation acts on the
(i, j)-th group as

[gShrink(Z, κ)]ij = zij ·max
{

1 −
κ

‖zij‖2
, 0
}

,

remember that zij is the sub-vector that corresponds
to the i-th group of variables in the j-th column of Z.
Moreover, the spectral shrinkage operator is given by

sShrink(Z, κ) = U Shrink(E, κ)V>, with
Shrink(z, κ) = sign(z) max {z− κ, 0} ,

where Z = UEV> is the singular value decomposition
of Z.

4 ADDITIONAL EXPERIMENTAL
RESULTS

In addition to the materials in the main paper, Figure 8
shows how the solution of Problem (1) for different
regularization parameters changes for the electrical
grid data. Remember that we reparameterize the objec-
tive of Problem (1) as (1−α)‖L‖∗+α‖S‖1,2 and search
for α in the compact interval [0, 1] instead of searching
for γ in the unbounded interval [0,∞). In Figure 8,
we see that between roughly α = 0.01 and α = 0.014
the solution does not change much. The change is not
completely zero. Still, the solution is relatively stable,
particularly, the same structural discoveries (a low-
rank day-and-night pattern, see the main paper) can
be made for all values of α (or equivalently γ) in the
stable range.

In what follows, we show additional experimental
results that concern the tasks reconstruction of RGB
images, cloud removal from Sentinel-2 data, and de-
tection of weather anomalies.
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Figure 8: Change of the solution for different regularization parameter values for the electrical loadprofiles data:
Here, diffα = ‖Lα−δ − Lα‖F + ‖Sα−δ − Sα‖F is as in the main paper, where we use the step-size δ = 10−3. Green
dots represent local minima, red dots local maxima.

Figure 9: Robust reconstruction of RGB images for two additional objects from the Amsterdam Library of
Object Images Geusebroek et al. [2005], respectively using γ = 10−2. From left to right, the original images, the
reconstructed low-rank RGB images, and the identified group-sparse components are shown. In the low-rank
components, spotlights have been removed and shadows have been diminished.



Figure 10: Cloud removal using robust PCA (Sentinel-2 data), γ = 10−3. In this additional experiment (which
is not included in the main paper for space reasons), we investigate the task of detecting/removing clouds
from satellite data. For this task, it makes sense to apply robust PCA because the surface does not change much
(besides seasonal shifts in vegetation), while clouds cover parts of the surface only temporarily. Experiments
were performed on a multi-spectral image time series that consists of 20 observations of Fort Wayne (Indiana,
USA) from the years 2019 and 2020. The data was obtained from the Copernicus Open Access Hub ESA [2020].
After cropping and downsampling, each image has a size of 1000× 1000 pixels and uses four bands: red, green,
blue, and near infrared (these correspond to bands 2, 3, 4, and 8 from the 13 available bands of the Sentinel-2
mission). To apply robust PCA, we group the four channels such that each pixel forms a group. In total, the
data matrix has dimensions X ∈ R4 000 000×20. In the plot, the three columns on the left show the decompositions
with RGB colors, the three columns on the right show the corresponding false color images that are constructed
from the red, green, and near infrared bands. As usual, from left to right, the original images, the low-rank
components, and the group-sparse components are shown.
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Figure 11: Decomposition of the wave hindcast data, γ = 10−3: The features mp (mean wave period) and hs
(significant weight height) are shown for four time steps of November 8th, 2007 (top row of plots) and November
9th (bottom row), respectively. In each plot, the left column shows the data matrix, the middle one the low-rank
component, and the right one shows the outlier component. Red corresponds to increased energy. November
8th, 2007 was a day without weather anomalies. Consequently, the outlier component is mostly zero (white). The
next day cyclone Tilo caused severe North Sea floods. As a consequence, the coastal lines show increased energy
(storm surges) in the outlier components.
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