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Abstract

It has long been known that principal com-
ponent analysis (PCA) is not robust with re-
spect to gross data corruption. This has been
addressed by robust principal component
analysis (RPCA). The first computationally
tractable definition of RPCA decomposes a
data matrix into a low-rank and a sparse com-
ponent. The low-rank component represents
the principal components, while the sparse
component accounts for the data corruption.
Previous works consider the corruption of
individual entries or whole columns of the
data matrix. In contrast, we consider a more
general form of data corruption that affects
groups of measurements. We show that the de-
composition approach remains computation-
ally tractable and allows the exact recovery of
the decomposition when only the corrupted
data matrix is given. Experiments on synthetic
data corroborate our theoretical findings, and
experiments on several real-world datasets
from different domains demonstrate the wide
applicability of our generalized approach.

1 INTRODUCTION

Principal component analysis (PCA) is a classical data
dimension reduction technique based on the assump-
tion that given high-dimensional data lies near some
low-dimensional subspace, see Pearson [1901]. For-
mally, assume observed data points x(1), . . . , x(n) ∈
Rm that are combined into a data matrix X ∈ Rm×n.
Approximating the data matrix X by a low-rank matrix
L can be formulated as an optimization problem

min
L∈Rm×n

‖X− L‖ subject to rank(L) 6 k,

where ‖ · ‖ is some suitable norm. The classical and
still popular choice, see Hotelling [1933], Eckart and
Young [1936], uses the Frobenius norm ‖ · ‖F, which
renders the optimization problem tractable. The Frobe-
nius norm does not perform well though for grossly
corrupted data. A single grossly corrupted entry in X
can change the estimated low-rank matrix L signif-
icantly, that is, the Frobenius norm approach is not
robust against data corruption. An obvious remedy is
replacing the Frobenius norm by the `1-norm ‖ · ‖1, but
this renders the optimization problem intractable be-
cause of the non-convex rank constraint. Alternatively,
we can explicitly model a component that captures
data corruption. This leads to a decomposition

X = L+ S

of the data matrix into a low-rank component L as
before and a matrix S of outliers. The structure of
the outlier matrix S depends on the data corruption
mechanism and is commonly assumed to be sparse.
In practice, low-rank + sparse decompositions can be
computed efficiently through the convex problem

min
L,S∈Rm×n

‖L‖∗ + γ‖S‖1,2 subject to X = L+ S, (1)

where γ > 0 is a trade-off parameter between the
nuclear norm ‖ · ‖∗, which promotes low rank on L,
and the `1,2-norm ‖S‖1,2 =

∑
g ‖sg‖2, which promotes

structured sparsity on S given a partitioning of the
entries in S into groups sg. The groups are determined
by the assumed data corruption mechanism.

In the simplest data corruption mechanism, individual
entries of the data points can be corrupted. Under
this model, the `1,2-norm reduces to the `1-norm, that
is, the groups sg consist of single elements. Wright
et al. [2009], Candès et al. [2011], and Chandrasekaran
et al. [2011] were first to investigate this model. They
show that exact recovery using the specialized version
of Problem (1) is possible, that is, in many cases the
corruptions can be separated from the data.
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An alternative corruption mechanism that was intro-
duced independently by McCoy and Tropp [2011] and
Xu et al. [2010] corrupts whole data points, which are
referred to as outliers. Here, the groups sg for the `1,2-
norm are the columns of the data matrix X. Xu et al.
[2010] show that exact recovery is also possible in the
column-sparse scenario.

In this work, we study a more general data corruption
mechanism, where the data points are partitioned as

x(i) = (x
(i)
1 , . . . , x(i)d ) ∈ Rm1 × . . .×Rmd = Rm,

that is, they form d groups. We assume that for each
data point, the groups can be individually corrupted.
Hence, the groups in Problem (1) are given by

S =


s11 s12 · · · s1n

...
...

. . .
...

sd1 sd2 · · · sdn

 ∈ Rm×n,

where sij ∈ Rmi . In Section 2, we show that exact
recovery is still possible for our more general data
corruption mechanism. This mechanism has a natural
interpretation in terms of generalized multi-view mod-
els Sun [2013], Zhao et al. [2017], Zhang et al. [2019],
where each data point is obtained by measurements
from different sensors, and every sensor can measure
several variables. Sensor failures in this model result
in corrupted measurements for the group of variables
measured by the failing sensor, but only for the data
points that were measured while the sensor was not
working correctly. Of course, data corruption and sen-
sor failures are an abstraction for what can also be
anomalies or outliers in applications, see Figure 1 for
a real-world example.

Figure 1: The electrical load profiles of four house-
holds from one week. Power consumption for each
household is measured in terms of six quantities per
time step, which form groups of six elements. In the
plot of the data, these groups respectively span six
rows, whereas the columns represent time steps. Note
that for this data, we expect data corruption (outliers)
in the form of short-term usage of electrical devices.
More details can be found in Section 3.

Observe that the approach in Wright et al. [2009], Can-
dès et al. [2011], Chandrasekaran et al. [2011] corre-
sponds to the special case where each sensor just mea-
sures a single variable, and the approach in McCoy
and Tropp [2011], Xu et al. [2010] corresponds to the
special case where a single sensor measures all vari-
ables.

Of course, it is possible to think of data corruption
mechanisms that correspond to even more general
group structures, for example, rectangular groups
formed by sub-matrices of the data matrix. The lat-
ter case does not pose any extra technical challenges.
Hence, here we keep the exposition simple and stick
with generalized multi-view models. These models are
flexible and suitable for many real-world applications.
We provide some examples in Section 3, namely, the
identification of periods of large power consumption
from electrical grid data, the reconstruction of RGB
images, and the detection of weather anomalies using
wave hindcast data.

Some of the applications have data in the form of ten-
sors. Therefore, we briefly discuss some additional
important related work that concerns robust tensor
principle component analysis (RTPCA). The most
closely related works follow the convex optimization
approach. Their main modeling effort lies in the gener-
alization of low rank and the nuclear norm to tensors.
For example, Huang et al. [2014] propose RTPCA us-
ing the sum of nuclear norms (SNN), which is based
on Tucker rank. For 3D tensors, Zhang et al. [2014],
Lu et al. [2016, 2019], Zhou and Feng [2017] use a
nuclear norm based on t-SVD and tensor tubal rank.
Most works, including Huang et al. [2014], Lu et al.
[2016, 2019], assume the simple data corruption mech-
anism that corrupts individual entries of the data ten-
sor. Zhang et al. [2014], Zhou and Feng [2017] consider
outliers distributed along slices of 3D tensors. The lat-
ter data corruption mechanism is a special case of our
multi-view models when all groups have the same size
(and the data matrix is viewed as a flattened version
of a tensor). However, our general multi-view mod-
els allow for different group sizes, which gives them
additional flexibility and distinguishes them from all
existing RTPCA models.

2 EXACT RECOVERY

In this section, we prove exact recovery for generalized
multi-view models. For that, we assume a data ma-
trix Xwith underlying true decomposition X = L?+S?

into a low-rank matrix L? and a group-sparse matrix
S?. We investigate under which conditions the pair
(L?,S?) can be obtained as the guaranteed solution to
Problem (1) with suitably chosen γ.
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Algebraic varieties and tangent spaces. Low rank
and group sparsity are algebraic properties that can
be formalized by algebraic matrix varieties. We need
them for our analysis, hence here we briefly introduce
them. First, the low-rank matrix variety of matrices
with rank at most r is given by

L(r) = {L ∈ Rm×n : rank(L) 6 r}.

As for example shown in Shalit et al. [2010], a rank-r
matrix L is a smooth point in L(r) and has tangent
space

T (L) =
{
UX> + YV> : X ∈ Rn×r, Y ∈ Rm×r

}
,

where L = UDV> is the (restricted) singular value
decomposition of L with U ∈ Rm×r, V ∈ Rn×r, and
diagonal D ∈ Rr×r. Second, the variety of group-
structured matrices with at most s non-zero groups is
given by

S(s) = {S ∈ Rm×n : |gsupp(S)| 6 s},

where

gsupp(S) =
{
(i, j) : 1 6 i 6 d, 1 6 j 6 n, sij 6≡ 0

}
is the group support of S. Remember that sij is the
sub-vector of the j-th column of S that corresponds
to the i-th group of variables. A matrix S ∈ S(s) with
|gsupp(S)| = s is a smooth point in S(s) with tangent
space

Q(S) = {A ∈ Rm×n : gsupp(A) ⊆ gsupp(S)}.

An intuitive version of Problem (1). Instead of di-
rectly analyzing Problem (1), it turns out to be useful
to first consider the non-convex feasibility problem of
finding L and S such that

L ∈ L(rank(L?)), S ∈ S(|gsupp(S?)|),
and X = L+ S. (2)

Netrapalli et al. [2014] tried to directly solve a non-
convex problem similar to Problem (2) for the non-
group case, where individual entries can be corrupted.
They assumed a priori estimates of rank and spar-
sity. However, the true varieties in Problem (2) are
unknown in practice. Yet studying Problem (2) leads
to necessary conditions for successful recovery.

A first observation is that clearly, the true components
(L?,S?) solve Problem (2). We want this solution to
be (locally) unique since we are interested in unique
recovery. Any other nearby feasible decomposition for
Problem (2) must satisfy

(L? −∆,S? +∆) ∈ L(rank(L?))× S(|gsupp(S?)|)

for some small matrix ∆. Here, if S? + ∆ ∈
S(|gsupp(S?)|) for small ∆, then it must hold ∆ ∈
Q(S?). In contrast, L? −∆ ∈ L(rank(L?)) for small ∆
only implies that ∆ is contained in a tangent space to
the low-rank matrix variety that is close to T (L?). This
is due to the local curvature of the low-rank matrix
variety. Nevertheless, for local uniqueness of the so-
lution to Problem (2), it suffices to only consider the
tangent spaces T (L?) and Q(S?):

Lemma 1. If the tangent spaces T (L?) and Q(S?) are
transverse, that is, if

T (L?)∩Q(S?) = {0},

then the solution (L?,S?) to Problem (2) is locally unique.

We prove this lemma in the supplementary material.
Next, we discuss when tangent spaces are transverse.

Sufficient condition for transversality. One basic
scenario with non-transverse tangent spaces T (L?)
and Q(S?) can occur when at least one of the compo-
nents L? or S? is simultaneously low rank and group
sparse. Therefore, to avoid confusion of the compo-
nents, we constrain the matrices L? and S? such that
they cannot be both group sparse and low rank at the
same time.

For that, we first define the maximum group degree
gdegmax(S

?) as the maximum number of non-zero
groups that appear in a row or column of S?. If
gdegmax(S

?) is small, then the non-zero groups are not
concentrated in just a few rows and columns, which
means that the matrix S? is likely not low rank. Next,
to ensure that L? is not group sparse, we want its en-
tries to be spread-out. This is the case if the row and
column spaces of L? are incoherent, that is, if

coh(L?)=max {coh(colspace(L?)), coh(rowspace(L?))}

is small. Here, the incoherence of a subspace V ⊆ Rn

is defined as coh(V) = maxi ‖PVei‖2, that is, as the
maximum length of a projected standard-basis vec-
tor ei of Rn. Incoherence thus measures how well
the subspace is aligned with the standard coordinate
axes. A high value indicates that the subspace is well-
aligned. Having introduced these notions, it turns out
that bounding the product coh(L?) gdegmax(S

?) im-
plies transversality of the tangent spaces.

Lemma 2. Define η = maxdi=1mi to be the maximum
number of variables that a group spans. Let

coh(L?) gdegmax(S
?) < 1/2η−3/4.

Then, it holds that T (L?)∩Q(S?) = {0}.
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The proof of Lemma 2 can be found in the supplemen-
tary material. The insights from analyzing Problem (2)
can be used to prove similar results for the convex
Problem (1). Indeed, an only slightly stronger upper
bound on the product coh(L?) gdegmax(S

?) implies ex-
act recovery of (L?,S?) by Problem (1) for a range of
values of γ.

Theorem 1. Let X = L? + S? and suppose that

coh(L?) gdegmax(S
?) < 1/12η−3/4.

Then, the range (γmin,γmax) is non-empty, where

γmin =
2η1/2 coh(L?)

1 − 8η3/4 coh(L?) gdegmax(S
?)

γmax =
1 − 6η3/4 coh(L?) gdegmax(S

?)

η1/4 gdegmax(S
?)

Moreover, for any γ in that range, Problem (1) with regu-
larization parameter γ has the unique solution (L?,S?).

This result generalizes the recovery results in Chan-
drasekaran et al. [2011] by including the dependency
on η. Theorem 1 can in fact be strengthened by work-
ing with more technical notions instead of incoherence
and maximum group degree. These technical notions
are norm-compatibility constants that measure how
the `∞,2- and spectral norms compare for elements
from different tangent spaces:

µ(Q(S)) = max
M∈Q(S),‖M‖∞,2=1

‖M‖ and

ξ(T (L)) = max
M∈T (L),‖M‖=1

‖M‖∞,2.

Here, Q(S) is the tangent space at a point S to the
group-sparse matrix variety S(|gsupp(S)|), and T (L)
is the tangent space at a point L to the low-rank matrix
variety L(rank(L)). The following lemma, which we
prove in the supplementary material, relates the norm
compatibility constants with maximum group degree
and incoherence.

Lemma 3. Let S ∈ S(|gsupp(S)|) and L ∈ L(rank(L)).
Then, the following bounds hold:

gdegmax(S) > η
−1/4µ(Q(S)) and

coh(L) > 1/2η−1/2 ξ(T (L)).

Due to these lower bounds, the product
coh(L?) gdegmax(S

?) in Theorem 1 can only be
small if also the product µ(Q(S?))ξ(T (L?)) is small.
This is reflected in the assumption of the next theorem
that improves Theorem 1.

Theorem 2. Let X = L? + S? and suppose that

µ(Q(S?))ξ(T (L?)) < 1/6.

Then, the range (γ◦min,γ◦max) is non-empty, where

γ◦min =
ξ(T (L?))

1 − 4µ(Q(S?))ξ(T (L?))

γ◦max =
1 − 3µ(Q(S?))ξ(T (L?))

µ(Q(S?))

Moreover, for any γ in that range, Problem (1) with regu-
larization parameter γ has the unique solution (L?,S?).

We prove Theorem 2 in the supplementary material.
Theorem 1 can be proven as a simple consequence of
Theorem 2 using the bounds from Lemma 3.

It should be noted that in real-word situations, Theo-
rem 1 and Theorem 2 provide little guidance for the
choice of γ. This is because the true maximum group
degree and incoherence are unknown, let alone the
norm compatibility constants. This leaves the choice
of γ up to the user. In the experimental section, we in-
vestigate two heuristics for selecting the parameter γ.
Since we also intend to experiment with synthetic data,
we need to generate random low-rank + group-sparse
decompositions. Therefore, we introduce a random
decomposition model and provide a theoretical result
that concerns the recovery of random decompositions
drawn from this model.

Random decompositions. As in Candès and Recht
[2009], we assume that a rank-r-matrix L? is drawn
from the random orthogonal model, that is, by setting
L? = UV>/

√
mn, where U ∈ Rm×r and V ∈ Rn×r

are drawn at random with independent standard
Gaussian entries. The column spaces of U and V are
incoherent with high probability. Indeed, by [Candès
and Recht, 2009, Lemma 2.2], there exists a constant c
such that it holds

coh(L?) = max{coh(colspace(U)), coh(colspace(V))}

6 cmax
{

max(r, logm)

m
,

max(r, logn)
n

}
(3)

with high probability, that is, with a probability that
converges to one asm and n grow to infinity.

Next, we sample S? as follows: First, the group sup-
port gsupp(S?) is sampled at random using indepen-
dent Bernoulli variables, where each group is non-zero
with probability p. Note that this type of sampling is
characteristic for G(n,p) random graph models, see
for example Bollobás [2001]. As in Candès et al. [2011],
we sample the entries of the groups that belong to the
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support uniformly at random from {−1, 1}. Under this
random group sparsity model, the maximum group
degree is independent from the precise values of the
non-zero entries. Specifically, the following holds:

Lemma 4. If S? is drawn from the random group spar-
sity model, then the maximum group degree satisfies with
high probability (that converges to one as n and d grow to
infinity) that

gdegmax(S
?) 6 2ap+ 3

√
ap,

where a = max{n,d}.

Proof. To bound the maximum group degree, we must
bound the number of non-zero groups in each row and
column. We bound the number of non-zero groups
for a single row first. The result then follows from
applying a union bound.

The number of non-zero groups in a fixed row is a
binomially-distributed random variable Z ∼ Bin(n,p).
A consequence of Talagrand’s inequality is that for
0 6 t 6 np = EZ it holds

P(Z > np+ t+ 3
√
np) 6 exp

(
−t2/(16np)

)
,

see Habib et al. [2013]. We set t = np and obtain

P(Z > 2np+ 3
√
np) 6 exp (−np/16) .

Similarly, we have for the columns that

P(Z > 2dp+ 3
√
dp) 6 exp (−dp/16) .

Hence, with a = max(n,d) and by the union
bound, the probability that any row or column has
more than 2ap + 3

√
ap non-zero groups is at most

m exp (−np/16) +n exp (−dp/16), which is small for
(comparably) large n and d.

The following corollary shows that if the group-
selection probability p is not too high, then random
decompositions can be recovered exactly with high
probability.

Corollary 1. Let (L?,S?) be sampled from the random
decomposition model with sufficiently large n and d. Let

p <

(√
9 + 2/3η−3/4/κ− 3

)2

16a
,

where

κ = cmax
{

max(r, logm)

m
,

max(r, logn)
n

}
is as in Inequality (3). Then, the assumption of Theorem 1
holds with high probability. Hence, with high probability,
the components (L?,S?) are the guaranteed solution to Prob-
lem (1) with input X = L? + S? and γ ∈ (γmin,γmax).

Proof. We show that the assumption

coh(L?) gdegmax(S
?) < 1/12η−3/4

of Theorem 1 holds with high probability. Using the
upper bound on the maximum group degree from
Lemma 4 and that by Inequality (3) the incoherence
satisfies coh(L?) 6 κwith high probability, it suffices
to show that

(2ap+ 3
√
ap) κ < 1/12η−3/4.

This is a quadratic inequality in
√
p. Solving it yields

√
p <

−3
4
√
a
+

√
9

16a
+

1
24a

η−3/4κ−1.

It can be checked that this is equivalent to the assump-
tion of Corollary 1 by taking squares. This finishes the
proof after applying Theorem 1.

Note that the right-hand side of the inequality in Corol-
lary 1 becomes small if r is large. Hence, for large r, the
group-selection probability p is required to be small
in order to guarantee exact recovery with high proba-
bility. Moreover, if r and p are both small, then exact
recovery should be easy.

3 EXPERIMENTS

In this section, we experiment with synthetic and real-
world data. We adapt the alternating direction method
of multipliers (ADMM) Boyd et al. [2011] for solving
Problem (1), see the supplementary material. To ac-
celerate our solver, we use fast randomized singular
value thresholding based on Halko et al. [2011].

3.1 SYNTHETIC DATA

In our first experiment, we intent to experimentally
verify the theory from the previous section. For that,
we generate synthetic data in the form of random pairs
(L?,S?) that we sample according to the random de-
composition model that we introduced before. For
each random decomposition (L?,S?), we check if Prob-
lem (1) can be used to exactly recover (L?,S?), using
only the compound matrix L? + S? as input. Here, our
main goal is to vary the rank r of L? and the group-
selection probability p for S?, where as a consequence
of Corollary 1, we expect that successful recovery is
more likely possible if (L?,S?) is sampled with not too
large r and p.

More specifically for this experiment, we fix n = 500
and the group structure x = (x1, . . . , x100) ∈ R500,
where each group xi ∈ R5 consists of five features.
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Hence, X = L? + S? ∈ R500×500. Then, for selected
pairs (r,p), we respectively create 10 different ran-
dom decompositions to average out sampling effects.
We try to recover these decompositions by solving
instances of Problem (1). However, we still need to
choose a suitable regularization parameter γ for each
problem. In the following, we compare the rates of
successful recovery of two heuristics for choosing γ.

For the first heuristic, observe that according to Theo-
rem 1 exact recovery is possible for a range of values
for γ. Hence, if successful recovery is possible for a
problem, then we expect that there exists an interval
of regularization parameters that yield the correct so-
lution. In particular, the solution is the same for all γ
from this interval–we say that the solution is stable in
this interval. As in Chandrasekaran et al. [2011], we
use this fact to search for an interval of values for γ,
where the solution to Problem (1) is stable (and both
components are non-zero). If the search for such an
interval is successful, then we check if the solution,
which is the same for all γ from the interval, has the
correct algebraic properties. If this is the case, we con-
sider the recovery for the given problem as successful.
Otherwise we declare failure.

For convenience, we rewrite the objective of Prob-
lem (1) as (1 − α)‖L‖∗ + α‖S‖1,2 and denote its solu-
tion by (Lα,Sα), where α is in the compact interval
[0, 1]. Then, we equivalently search for an interval of
values for α, where the solution does not change. For
that, we track how the solution changes by calculating
the differences

diffα = ‖Lα−δ − Lα‖F + ‖Sα−δ − Sα‖F

along the solution path obtained from a grid search
with step size δ = 10−2, see Figure 2.

Figure 2: Search for a stable solution to Problem (1).
The blue line shows the change of the solution at each
step of the grid search. The red line shows the recovery
error. For roughly α ∈ [0.1, 0.2], the solution is stable
with almost zero recovery error.

Figure 3: Recovery results for varying rank r (dis-
played as fractions r/max(m,n) of the maximum pos-
sible rank) and varying group-selection probability p.
Trials were repeated 10 times for selected pairs (r,p).
Empirical success probabilities are encoded as grey
values, where white indicates a probability of 1 and
black a probability of 0. The left plot shows the results
when γ is selected based on a search for a stable solu-
tion. The right plot shows the results that correspond
to the ad-hoc choice γ = 1/

√
max(m,n).

The change of the solution follows a typical pattern,
which can also be seen in Figure 2. There are three inter-
vals, where the solution is stable: First, for very small
values of α, there is little group-sparse regularization,
hence the solution has a zero low-rank component.
Likewise, for too large values of α, the solution always
has a zero group-sparse component. The third interval
with a stable solution in the middle is the one that we
are looking for. In the example shown in Figure 2, the
recovery error

errorα = ‖Lα − L?‖F + ‖Sα − S?‖F

is close to zero for all values in this interval. Note that
the recovery error is unknown in practice.

The search for γ (or equivalently α) as outlined above
requires solving several instances of Problem (1).
Therefore, as a second heuristic, we also compare the
rate of successful recovery to the rate when the ad-hoc
choice γ = 1/

√
max(m,n) is used instead of searching.

This value was suggested for learning RPCA decompo-
sitions under entry-wise data corruption, see Candès
et al. [2011].

The results of the experiment, see Figure 3, support the
theory and effectively demonstrate that exact recovery
is possible. Moreover, they confirm that for smaller r
and p, that is, for smaller ranks and group-selection
probabilities, successful recovery becomes easier.

The results also show that it may pay off to perform the
search for an interval, where the solution is stable. This
is because decompositions with much greater ranks
and group-selection probabilities can still be recovered
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Figure 4: Decomposition of the electrical load profiles of 74 households over the course of one week. The left
plot shows a typical repeated low-rank day-and-night pattern. The right plot shows the outlier component that
captures periods of large loads, when some electrical devices consumed power. On the bottom, the decomposition
for a single household is shown.

successfully, though using the ad-hoc choice fails. On
the other hand, the ad-choice can also be tuned by
hand if there is a priori knowledge about the solution.
For example, if the outlier matrix is very sparse, then
a larger value of γ can be used.

3.2 REAL-WORLD DATA

In the following, our goal is to demonstrate the wide
applicability of robust principal component analysis
for generalized multi-view models. For that, we briefly
discuss three real-world applications.

Identification of power consumption. In house-
holds, aside from the base load, power consumption
usually takes place infrequently and during a limited
period of time when electrical devices are turned on.
Thus, momentary power consumption in households
has characteristic features of outliers. Hence, we first
show that our model can be used to identify periods
of large power consumption from electrical grid data.

Specifically, we use a dataset that contains the electri-
cal load profiles of 74 representative German residen-
tial buildings from the year 2010. The dataset, which
was obtained from Tjaden et al. [2015], constitutes a
time series with a temporal resolution of one second.
For illustrative purposes, we restrict the dataset to the
first week. For each residential building, the electrical
load profiles consist of six quantities that correspond
to three phases, respectively, of active and reactive
power. Hence, each of the 74 residential buildings en-
tails a group of six elements, and thus at each time

step a 444-dimensional vector is observed. In total, the
data matrix is of size 444× 10 080, including one obser-
vation per second of the week. Note that sample data
from the first four households is shown in Figure 1.

The solution to Problem (1) is stable around γ = 10−2.
Figure 4 shows the corresponding decomposition.
There is a noticeable general pattern of electrical load
profiles that is explained by the alternation of day and
night: During sleeping hours there are few devices
that consume power. However, during day-time hours
there generally is increased activity, with the most elec-
trical power being consumed in the evening hours. The
low-rank component of the decomposition in Figure 4
captures the repeated general pattern. Meanwhile the
group-sparse component identifies periods of larger
electrical loads, caused by electrical devices that mo-
mentarily consumed power.

Reconstruction of RGB images (multi-view data).
Here, we briefly show that robust PCA for general-
ized multi-view models can be used to improve RGB
images. For that, we apply our robust PCA model on
a multi-view dataset that consists of images from the
Amsterdam Library of Object Images Geusebroek et al.
[2005], which is equipped with additional views from
Schubert and Zimek [2019]. In the dataset, the data
points are RGB images of the same object under 36
different light conditions. Each image has 144× 192
pixels, where each pixel constitutes a different view
of the image. The first additional view for each image
consists of the first 13 Haralick features (radius 1 pixel),
see Haralick [1979], and the second additional view is
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Figure 5: Robust recovery of RGB images. From left
to right, the original images, the reconstructed low-
rank images, and the outlier components are shown.
Overexposures have been removed in the low-rank
component and appear in the outlier component.

a standard RGB color histogram with 8 uniform bins.
The whole data matrix has dimensions 82 965× 36. Ex-
emplary results of applying robust PCA with γ = 10−2

for a typical object of the Amsterdam Library of Ob-
ject Images are shown in Figure 5. In the low-rank
component, spotlights have been reduced. Additional
results from datasets with other objects from the Ams-
terdam Library of Object Images can be found in the
supplementary material.

Detection of weather anomalies. The wave hindcast
dataset coastdat1 Helmholtz Centre for Materials and
Coastal Research [2012] contains a time series of wave
conditions in the southern North Sea. We use data for
the year 2007 with a resolution of one hour. The cov-
ered area is 51.0N to 56.5N and −3.0W to 10.5E, using
a grid size of approximately 0.05 degrees latitude and
0.10 degrees longitude. At each grid point, the sea state
is described by the variables significant weight height
(hs) and mean wave period (mp), which are derived from
2D wave spectra Groll and Weisse [2016].

The sea state at each grid position naturally defines a
group of two parameters. Hence, to apply robust PCA
for these groups, we change the data representation
for a single time step from grid to a vector that con-
tains the groups from all 6 324 sea-side grid positions.
Hence, the data matrix has overall size 12 648× 8 760,
where each column corresponds one hour of the year.

The resulting decomposition for γ = 10−3 can be
found in Figure 6. Here, we only show the decomposi-
tion for selected time steps, and instead of the columns
of the data matrix we show the covered area for the
mp feature. The corresponding decompositions for the
hs feature can be found in the supplementary material.
We picked November, 9th as a special date since at
this time there was a cyclone that caused severe floods,
that is, a strong weather anomaly. This is reflected in
the outlier component in Figure 6, which highlights

12
am

6a
m

12
pm

6p
m

Figure 6: Wave hindcast data: The mp feature is shown
from four time steps of November 9th, 2007 when
cyclone Tilo caused severe North Sea floods (storm
surges). From left to right, the columns show the orig-
inal data, the low-rank components, and the outlier
components. In the outlier components, the coastal
lines show increased energy (red).

areas, where the storm was particularly strong. In the
supplementary material, we also show the decomposi-
tion for a normal day without weather anomalies. This
experiment shows that generalized multi-view RPCA
models can also be used to detect anomalies.

4 CONCLUSION

In this work, we introduced robust principal com-
ponent analysis for generalized multi-view models,
where observations are structured in groups of mea-
surements. A theoretically well-founded convex op-
timization problem can be used to separate principal
components from groups of outliers. We empirically
evaluated the rates of successful recovery for different
decompositions using synthetic data. We presented a
variety of real-world applications with naturally aris-
ing groups. The learned decompositions yield insights
into the data, such as, general patterns and anomalies.
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