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1 R-SENS AND R-SENS2 DERIVATIONS

1.1 R-SENS
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1.2 R-SENS2

Here, we make the approximation that third and fourth derivatives of the Rényi divergence are zero. Let us start from the
previous identity
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Then differentiating with respect to xe gives the equality
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Differentiating a second time gives
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Dropping the third derivative terms and the factor 2 results in
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2 FINITE DIFFERENCE APPROXIMATION OF THE KULLBACK-LEIBLER
DIVERGENCE

Consider two probability distributions, p(·|λ∗) and p(·|λ∗∗) parameterised by vectors λ∗ and λ∗∗, respectively. Keeping λ∗

constant, let us make a second-order approximation of the Kullback-Leibler divergence between the distributions in the
neighbourhood around λ∗∗ = λ∗.
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The first two terms are zero, because the Kullback-Leibler divergence obtains a minimum value of zero at λ∗∗ = λ∗.
Dropping them and the third degree term, we are left with the approximation
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If the distributions p(·|λ∗) and p(·|λ∗∗) are predictive distributions, then the parameters λ∗ and λ∗∗ depend on the predictor
value x, i.e. λ∗∗ = λ(x∗∗). When only one predictor variable, xd, is varied, an infinitesimal change in the parameters can
be written as
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Rearranging the terms gives the approximate equivalence
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The last identity is based on the chain rule of differentiation. Finally, taking the square root gives the approximate equivalence√
2DKL(p(·|λ∗)||p(·|λ∗∗))

|x∗∗d − x∗d|
≈
√
∂2DKL(p(·|λ∗)||p(·|λ∗∗))

(∂x∗∗d )2

∣∣∣∣
λ∗∗=λ∗

,

where the left hand side is the finite difference KL method of Paananen et al. [2019] and the right hand side is the R-sens
measure with α = 1.



3 R-SENS2 APPROXIMATION BENEFITS

In this section, we show an example of how the simplified R-sens2 formula we use is better than the full formula that
includes cross-derivative terms. With full formula we mean the fourth derivative of the Rényi divergence without dropping
any terms. We replicate the simulation experiment from Section 3.2 of the main paper such that we compute interaction
importance estimates using the simplified R-sens2 formula and the full formula that is obtained with automatic differentiation.
In Figure 1 we show the different interaction importances for a single simulation. The three annotated pairs are the true
simulated interactions, whereas all the other interactions are irrelevant. The figure shows that the two formulas give almost
equivalent importances for the true interactions, but the simplified formula gives much lower importance estimates for the
irrelevant interactions, thus having significantly better ability to separate true interactions from nonexisting interactions.
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Figure 1: Comparison of interaction importance estimates for R-sens2 (red) and the fourth derivative of the Rényi divergence
(blue).



4 COMPUTATIONAL COST DETAILS

Here, we discuss the computational cost of the variable importance methods used in the main paper. Let us denote the
number of observations with N and the number of predictor variables with D. Let us also denote the number of possible
pairwise interactions with D(D+1)

2 ≡ D2. Let us denote the costs of making predictions from a regression model with a
location-scale likelihood with

• CE cost of E[y],

• CV cost of Var[y],

• C̃E cost of ∂E[y]
∂xd

,

• C̃V cost of ∂Var[y]
∂xd

,
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2E[y]
∂x2

d
,

• ĈV cost of ∂
2Var[y]
∂x2

d
.

The computational cost of the variable importance methods can be tuned based on the amount of computational resources.
We tried to tune the cost of each method roughly equal in order to make the comparison fair. The computational costs that
were used in the experiment of Section 3.1 in the main paper are shown in Table 1, and the costs used in the Concrete data
experiment of Section 3.3 are shown in Table 2.

Table 1: Computational costs of the variable importance methods used in the first experiment of the main paper.

Method Time complexity

R-sens ND(CV + C̃E + C̃V)

EAD NDC̃E

AED NDC̃E
APC 2NDCE +D3

SHAP 2NDCE
PD 9NDCE
PFI N(D + 1)(CE + CV)

VAR NDCE +D3

Table 2: Computational costs of the variable importance methods (for interactions) used in the Concrete experiment of the
main paper.

Method Time complexity

R-sens ND2(CV + ĈE + ĈV)

EAH ND2ĈE

AEH ND2ĈE
SHAP 4ND2CE

PD 9ND2CE
HS N2D2CE



Table 3: Average error in rankings in the simulated example of the main paper. Each predictor has an independent standard
normal distribution.

Ground-truth models

Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0 0 0 0.9± 0.1 0.7± 0.1 1.0± 0.1 0.4± 0.1
x3 0 0.0± 0.1 0.0± 0.1 5.9± 0.4 2.8± 0.2 3.3± 0.2 4.2± 0.3 2.0± 0.2

x+ cos(3x) 0 0.0± 0.0 3.9± 0.2 8.0± 0.3 0.8± 0.1 0.0± 0.1 0.7± 0.1 0.0± 0.1
sin(3x) 0 0.0± 0.0 21.0± 0.6 10.8± 0.3 0.4± 0.1 0.1± 0.0 0.3± 0.1 3.2± 0.2

x exp(−x) 0 0.4± 0.1 0.5± 0.1 7.9± 0.4 3.1± 0.3 1.6± 0.2 6.0± 0.3 2.2± 0.2
exp(−x2) 0 0.0± 0.0 20.5± 0.5 7.2± 0.3 0.5± 0.1 0.4± 0.1 0.4± 0.1 −0.1± 0.0

Imperfect models
Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0.2± 0.1 0.1± 0.2 0.2± 0.2 1.3± 0.2 0.1± 0.1 1.9± 0.2 0.2± 0.1
x3 0 0.2± 0.3 0.2± 0.3 6.2± 0.4 5.1± 0.4 2.0± 0.3 7.5± 0.5 1.1± 0.3

x+ cos(3x) 0 0.0± 0.1 4.0± 0.2 8.1± 0.3 1.5± 0.2 −0.1± 0.1 1.7± 0.2 0.0± 0.1
sin(3x) 0 0.0± 0.0 20.9± 0.5 10.4± 0.3 0.4± 0.1 0.1± 0.1 0.4± 0.1 3.2± 0.2

x exp(−x) 0 0.5± 0.3 0.7± 0.3 8.3± 0.5 5.8± 0.4 2.8± 0.4 10.0± 0.5 2.6± 0.3
exp(−x2) 0 0.0± 0.0 20.5± 0.5 7.2± 0.3 0.5± 0.1 0.5± 0.1 0.4± 0.1 −0.1± 0.0

5 SIMULATED INDIVIDUAL EFFECTS - ADDITIONAL RESULTS

In this Section, we show additional results for the simulated experiment of Section 3.1 in the main paper. Here, we show
the results with different distributions for the predictor variables: 1) Independent Gaussians (Table 3), 2) mixtures of 2
Gaussians (Table 4), and 3) correlated Gaussians (Table 5).

Table 4: Average error in rankings in the simulated example of the main paper. Each predictor is independently distributed
with a mixture of 2 Gaussians.

Ground-truth models

Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.5± 0.1 0.1± 0.0 0.4± 0.1 0.0± 0.0
x3 0 0.0± 0.0 0.0± 0.0 6.6± 0.4 1.6± 0.2 1.4± 0.1 2.0± 0.2 1.0± 0.1

x+ cos(3x) 0 0.0± 0.0 3.8± 0.2 6.5± 0.3 0.6± 0.1 0.1± 0.1 0.5± 0.1 −0.1± 0.0
sin(3x) 0 0.0± 0.0 3.6± 0.2 8.1± 0.3 0.5± 0.1 0.1± 0.1 0.3± 0.1 2.3± 0.2

x exp(−x) 0 0.1± 0.1 0.2± 0.1 8.2± 0.4 1.2± 0.2 0.5± 0.2 1.8± 0.2 2.5± 0.2
exp(−x2) 0 0.0± 0.0 20.4± 0.5 9.8± 0.4 0.7± 0.1 0.3± 0.1 0.6± 0.1 0.0± 0.0

Imperfect models
Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0.1± 0.2 0.2± 0.2 −0.6± 0.1 −0.0± 0.2 −0.8± 0.1 −0.2± 0.1 −0.7± 0.1
x3 0 0.1± 0.2 0.1± 0.2 6.0± 0.4 1.4± 0.2 0.4± 0.2 2.5± 0.2 1.3± 0.2

x+ cos(3x) 0 0.0± 0.1 3.9± 0.2 6.6± 0.3 0.7± 0.1 −0.1± 0.1 0.7± 0.1 −0.3± 0.1
sin(3x) 0 0.0± 0.0 3.7± 0.2 7.7± 0.3 0.5± 0.1 0.1± 0.1 0.4± 0.1 1.9± 0.2

x exp(−x) 0 0.1± 0.2 0.2± 0.2 7.8± 0.4 1.1± 0.3 0.0± 0.2 2.6± 0.3 3.9± 0.3
exp(−x2) 0 0.0± 0.0 20.4± 0.5 9.3± 0.4 0.7± 0.1 0.3± 0.1 0.6± 0.1 0.0± 0.0



Table 5: Average error in rankings in the simulated example of the main paper. The predictors have a multivariate Normal
distribution with all correlations 0.8.

Ground-truth models

Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.5± 0.1 0.1± 0.0 3.5± 0.2 0.4± 0.1
x3 0 0.0± 0.0 0.0± 0.0 4.6± 0.4 2.6± 0.2 2.8± 0.2 5.2± 0.3 1.1± 0.1

x+ cos(3x) 0 0.0± 0.0 3.4± 0.2 6.1± 0.3 0.5± 0.1 −0.1± 0.1 2.5± 0.2 −0.1± 0.1
sin(3x) 0 0.0± 0.0 20.8± 0.5 7.4± 0.3 0.5± 0.1 0.1± 0.0 1.0± 0.1 0.0± 0.0

x exp(−x) 0 0.2± 0.1 0.3± 0.1 4.4± 0.3 3.1± 0.2 1.6± 0.2 6.7± 0.3 1.4± 0.2
exp(−x2) 0 0.0± 0.0 18.9± 0.6 4.6± 0.3 0.4± 0.1 0.1± 0.1 2.1± 0.2 0.0± 0.0

Imperfect models
Function ftrue,i(x) R-sens EAD AED APC SHAP PD PFI VAR

x 0 0.2± 0.1 0.2± 0.1 1.3± 0.2 0.7± 0.2 −0.4± 0.1 4.3± 0.3 −0.0± 0.1
x3 0 0.1± 0.3 0.1± 0.3 6.4± 0.4 3.8± 0.4 1.4± 0.3 9.5± 0.8 0.5± 0.3

x+ cos(3x) 0 0.0± 0.1 3.4± 0.2 6.6± 0.3 1.0± 0.1 −0.2± 0.1 3.2± 0.2 −0.3± 0.1
sin(3x) 0 0.0± 0.0 20.7± 0.5 7.5± 0.3 0.5± 0.1 0.0± 0.1 1.0± 0.1 −0.1± 0.0

x exp(−x) 0 0.4± 0.3 0.5± 0.3 5.7± 0.4 4.8± 0.4 3.2± 0.5 11.1± 0.8 1.9± 0.3
exp(−x2) 0 0.0± 0.0 18.9± 0.6 4.6± 0.3 0.5± 0.1 0.1± 0.1 2.1± 0.2 0.0± 0.0



6 R-SENS FOR GAUSSIAN PROCESS MODELS

Gaussian process models are widely used in supervised learning, where the task is to predict an output y from a D-
dimensional input x. The type of functions the Gaussian process can represent are determined by its covariance function,
which is a key decision made during modelling. The covariance function k(x(i),x(j)) defines the covariance between the
function values at the input points x(i) and x(j). We assume the Gaussian process has a zero mean, in which case the joint
distribution of the latent output values f at the training points is

p(f(X)) = p(f) = Normal(f | 0,K),

where K is the covariance matrix between the latent function values at the training inputs X = (x(1), . . . ,x(N)) such that
Kij = k(x(i),x(j)).

In this work, we use the exponentiated quadratic covariance function
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k )2

l2k

)
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Here, the hyperparameter σf determines the overall variability of the functions, and (l1, ..., lD) are the length-scales of each
input dimension. By defining an observation model that links the observations to the latent values of the Gaussian process,
the model can be used for inference and predictions in many supervised learning tasks.

For example, in regression with an assumption of Gaussian noise, the posterior distribution of latent values for a new input
point x∗ is a univariate normal distribution with mean and variance

E[f∗|x∗,y] = k(x∗,X)(k(X,X) + σ2I)−1y

Var[f∗|x∗,y] = k(x∗,x∗)− k(x∗,X)(k(X,X) + σ2I)−1k(X,x∗),
(7)

where σ2 is the noise variance, I is the identity matrix, and y is the vector of training outputs. For many other observation
models, the posterior of latent values is not Gaussian, but it is commonplace to approximate it with a Gaussian distribution
during inference, and many methods have been developed for doing so [Williams and Barber, 1998, Opper and Winther,
2000, Minka, 2001, Rasmussen and Williams, 2006]. The variable importance assessment thus depends implicitly on the
posterior approximation, as does any general method that uses the model’s predictions.

6.1 DIFFERENTIATING GAUSSIAN PROCESSES

We assume that the posterior distribution of latent values is Gaussian. Because differentiation is a linear operation, the
derivatives of the parameters of a Gaussian process posterior distribution with respect to predictor variables are available in
closed form [Solak et al., 2003, Rasmussen, 2003]. For example, for the Gaussian observation model, the derivatives of the
mean and variance of the predictive distribution in equation (7) with respect to the predictor variable xd at point x∗ are
given as
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For the exponentiated quadratic covariance function in equation (6), the partial derivatives with respect to the predictor
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For the R-sens measure, we need derivatives with respect to the parameters of the predictive distribution and not the posterior
of the latent values. However, for many observation models these are obtained as a function of the derivatives of the latent
values. In this section, we derive the equations for some commonly used observation models.

6.2 REGRESSION WITH GAUSSIAN OBSERVATION MODEL

In regression problems, it is commonly assumed that the noise has a Gaussian distribution. For a Gaussian observation
model, the predictive distribution for a new observation y∗ at a single predictor value x∗ is a normal distribution, which we
will denote

p(y∗|x∗,y) = Normal(y∗|E[y∗],Var[y∗]) = Normal(y∗|E[f∗],Var[f∗] + σ2),

where E[f∗] and Var[f∗] are the mean and variance of the posterior distribution of latent values at x∗, and σ2 is the noise
variance. Now, the derivatives of E[y∗] and Var[y∗] with respect to predictor variable x∗d are simply
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The Fisher information elements of the normal distribution are
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Thus, the R-sens measure takes the form
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Here, the first term is proportional to the slope of the mean prediction scaled by the predictive uncertainty, as with the linear
regression model discussed in Section 2.1 of the main paper. The R-sens2 measure evaluates to
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6.3 BINARY CLASSIFICATION

For binary classification problems, the predictive distribution is a Bernoulli distribution with only one parameter, the
probability of positive classification. This is obtained by squashing the latent Gaussian process function through a link
function and integrating over the posterior of the latent function values. Two commonly used link functions for Gaussian
process classification are the logit and probit. The Probit link function has the benefit that the predictive distribution has an
analytical formula when the posterior distribution of latent values is approximated with a Gaussian. Using a Probit link
function, the predictive probability has thus an approximate analytical form

π∗ = p(y = 1|x∗,y) = Φ

(
E[f∗]√

1 + Var[f∗]

)
,

where Φ is the cumulative distribution of the standard normal distribution.



Now, the derivatives of π∗ with respect to x∗d are

∂π∗

∂x∗d
= Normal

(
E[f∗]√

1 + Var[f∗]

)[
1√

1 + Var[f∗]

∂E[f∗]

∂x∗d
− E[f∗]

2(1 + Var[f∗])3/2
∂Var[f∗]

∂x∗d

]
,

∂2π∗

∂x∗d∂x
∗
e

= Normal

(
E[f∗]√

1 + Var[f∗]

)(
E[f∗]√

1 + Var[f∗]

)[
1√

1 + Var[f∗]

∂E[f∗]

∂x∗d
− E[f∗]

2(1 + Var[f∗])3/2
∂Var[f∗]

∂x∗d

]
×[

1√
1 + Var[f∗]

∂E[f∗]

∂x∗e
− E[f∗]

2(1 + Var[f∗])3/2
∂Var[f∗]

∂x∗e

]
+

Normal

(
E[f∗]√

1 + Var[f∗]

)[
1√

1 + Var[f∗]

∂2E[f∗]

∂x∗d∂x
∗
e

− ∂E[f∗]

∂x∗d

1

2(1 + Var[f∗])3/2
∂Var[f∗]

∂x∗e

− ∂2Var[f∗]

∂x∗d∂x
∗
e

E[f∗]

2(1 + Var[f∗])3/2
− ∂Var[f∗]

∂x∗d

(
∂E[f∗]

∂x∗e

1

2(1 + Var[f∗])3/2
− 3E[f∗]

4(1 + Var[f∗])3/2
∂Var[f∗]

∂x∗e

)]
.

The Fisher information of the Bernoulli distribution is

IBern(π∗) =
1

π∗(1− π∗)
=

(
Φ

(
E[f∗]√

1 + Var[f∗]

))−1(
1− Φ

(
E[f∗]√

1 + Var[f∗]

))−1

.

The R-sens and R-sens2 measures take the form

R-sens(x∗, xd, α = 1) =

√
IBern(π∗)

(
∂π∗

∂x∗d

)2

,

R-sens2(x∗, (xd, xe), α = 1) =

√
IBern(π∗)

(
∂2π∗

∂x∗d∂x
∗
e

)2

.

6.4 POISSON OBSERVATION MODEL

For modelling count data with Gaussian processes, it is common to use a combination of a count observation model with a
link function that transforms the positively constrained parameters to unconstrained scale where the Gaussian Process prior
is placed. Here, we derive the equations needed for the R-sens method for the case of Poisson likelihood and exponential
link function.

The likelihood is

p(y|f) =

n∏
i=1

Poisson(yi|λi(fi)) =

n∏
i=1

Poisson(yi| exp(fi)).

Now, the Gaussian process prior is placed on the unconstrained latent values. If one uses a Gaussian approximation to the
posterior of the latent values, then the transformed λ’s have a log-normal distribution. The intensity λ at any input point is
given by integrating over the approximate posterior q(f∗|y,x∗)

λ∗ =

∫
exp(f∗)q(f∗|y,x∗)df∗.

This evaluates to the mean of the log-normal distribution

λ∗ = E[Lognormal(E[f∗],Var[f∗])] = exp(E[f∗] + Var[f∗]/2).

The derivatives of this with respect to the predictor variables are

∂λ∗

∂x∗d
= exp(E[f∗] + Var[f∗]/2)

(
∂E[f∗]

∂x∗d
+

1

2

∂Var[f∗]

∂x∗d

)
,

∂2λ∗

∂x∗d∂x
∗
e

= exp(E[f∗] + Var[f∗]/2)×[(
∂E[f∗]

∂x∗d
+

1

2

∂Var[f∗]

∂x∗d

)(
∂E[f∗]

∂x∗e
+

1

2

∂Var[f∗]

∂x∗e

)
+

(
∂2E[f∗]

∂x∗d∂x
∗
e

+
1

2

∂2Var[f∗]

∂x∗d∂x
∗
e

)]
.



The Fisher information of the Poisson distribution is

IPois(λ
∗) =

1

λ∗
=

1

exp(E[f∗] + Var[f∗]/2)
.

Thus, the R-sens and R-sens2 measures take the form

R-sens(x∗, xd, α = 1) =

√
exp

(
E[f∗] +

Var[f∗]

2

) ∣∣∣∣∂E[f∗]

∂x∗d
+

1

2

∂Var[f∗]

∂x∗d

∣∣∣∣ ,
R-sens2(x∗, (xd, xe), α = 1)

=

√
exp

(
E[f∗] +

Var[f∗]

2

)∣∣∣∣∣
(
∂E[f∗]

∂x∗d
+

1

2

∂Var[f∗]

∂x∗d

)(
∂E[f∗]

∂x∗e
+

1

2

∂Var[f∗]

∂x∗e

)
+

(
∂2E[f∗]

∂x∗d∂x
∗
e

+
1

2

∂2Var[f∗]

∂x∗d∂x
∗
e

) ∣∣∣∣∣.



7 ILLUSTRATIVE EXAMPLE - LINEAR REGRESSION

This section shows an extended version of Figure 2 in the main paper, where the variables x1 and x2 range from −20 to 20.
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Figure 2: R-sens uncertainty-aware sensitivity measure for x1 (red) and x2 (blue) for the linear regression model from
Section 2.2 in the main paper.

8 ILLUSTRATIVE EXAMPLE - LOGISTIC REGRESSION

In this section, we show an illustrative example similar to the main paper, but with a logistic regression model where
the target variable y is binary. As the inverse link function, we use the cumulative Normal distribution. We consider a
simple multivariate Gaussian prior on the regression coefficients. Contrary to the linear regression example, the posterior
distribution has no closed form. We will use the Laplace approximation to get a Gaussian approximation to the posterior.
The approximate posterior is

p(β|X,y) ≈ N (β̂,H−1),

where β̂ is the maximum a posteriori estimate of the regression coefficients. When using the inverse cumulative Normal
distribution as the link function, the predictive distribution at a new point x∗ has a closed form equation.

p(y∗ = 1|x∗,X,y) = π∗(x∗) = Φ

(
x∗β̂√

1 + x∗(H)−1x∗T

)
.

The derivative of the success probability is

∂π∗(x∗)

∂x∗d
= N

(
x∗β̂√

1 + x∗(H)−1x∗T

)[
β̂d√

1 + x∗(H)−1x∗T
− x∗β̂[(H)−1x∗T ]d

(1 + x∗(H)−1x∗T )3/2

]
.

The Fisher information of the Bernoulli distribution is

IBer(π
∗) =

1

π∗(1− π∗)
.

The R-sens sensitivity measure for variable x∗d thus evaluates to√
1

π∗(1− π∗)
N
(

x∗β̂√
1 + x∗(H)−1x∗T

)∣∣∣∣∣ β̂d√
1 + x∗(H)−1x∗T

− x∗β̂[(H)−1x∗T ]d
(1 + x∗(H)−1x∗T )3/2

∣∣∣∣∣ . (8)

To illustrate the R-sens measure in equation (8), we simulated 1000 observations from a logistic regression model with
two predictor variables x1 and x2 whose true regression coefficients are β1 = 1 and β2 = 0. The predictor variables are
independent and normally distributed with zero mean and standard deviation one. The R-sens sensitivities for both variables
given by equation (8) are shown in Figure 3. The dashed line shows the derivative of the prediction function without the
Fisher information term. Because of the link function, this derivative is not constant and is much larger close to the decision
boundary. The Fisher information term does not remove this effect, but gives a bit more weight to points further away.
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Figure 3: Top: Predictive distributions p(y = 1|x1, x2 = 0) (red) and p(y|x2, x1 = 0) (blue) for the logistic regression
model. Bottom: R-sens uncertainty-aware sensitivity measure given by equation (8) for x1 (red) and x2 (blue).



9 ASYMPTOTIC RESULTS FOR GENERALISED LINEAR MODELS

In Section 2.1 in the main paper, we discussed the behaviour of the posterior predictive distribution for a Bayesian linear
regression model as the number of observations goes to infinity. In this case, the predictive uncertainty tends to a constant,
and the R-sens local sensitivity measure for each predictor is proportional the absolute value of the maximum likelihood
estimate of the regression coefficient, |β̂d|. In this section we discuss the asymptotic results of the logistic and Poisson
regression models, which are nonlinear models that can be used to model binary or integer data.

9.1 LOGISTIC REGRESSION MODEL

9.1.1 Logit Link Function

The predictive distribution of a logistic regression model is a Bernoulli distribution. In the asymptotic limit, the posterior of
the regression coefficients concentrates to a point β̂, and the “success probability" parameter as a function of the predictor
variables is the logistic function

p(y∗ = 1|X,y,x∗) := π∗(x∗) =
exp(x∗β̂)

1 + exp(x∗β̂)
.

The derivative of π∗ with respect to x∗d is
∂π∗

∂x∗d
= β̂d π

∗(1− π∗).

The Fisher information of the Bernoulli distribution

Ibern(π∗) =
1

π∗(1− π∗)
.

In the limit when the number of observations goes to infinity, the R-sens measure thus evaluates to√
Ibern(π∗)

(
∂π∗

∂x∗d

)2

= |β̂d|
√
π∗(1− π∗).

The R-sens importance measure for the logistic regression model is proportional to the absolute value of the regression
coefficient. In addition, due to the logistic (inverse) link function, the local importance measure is higher for points close to
the decision boundary p(y∗ = 1) = 0.5 compared to points further away. Because the term

√
π∗(1− π∗) is the same for

each predictor variable, ranking the variables with R-sens is equivalent to ranking with the absolute regression coefficients
|β̂d| in the limit of infinite data.

Contrary to the linear regression example in the main paper, in logistic regression, the R-sens measure gives more importance
to observations further from the decision boundary. It can be interpreted in the sense that the derivative of the logistic
prediction function, ∂π

∗

∂x∗
d

= β̂d π
∗(1− π∗) gives too much emphasis to points near the decision boundary, and the R-sens

measure makes the sensitivity measure more even.

9.1.2 Inverse Normal Link Function

Now, the “success probability" parameter as a function of the predictor variables is the cumulative Normal distribution
function

p(y∗ = 1|X,y,x∗) := π∗(x∗) = Φ(x∗β̂).

The derivative of π∗ with respect to x∗d is
∂π∗

∂x∗d
= β̂dN (x∗β̂).

The Fisher information of the Bernoulli distribution

Ibern(π∗) =
1

π∗(1− π∗)
.



In the limit when the number of observations goes to infinity, the R-sens measure thus evaluates to√
Ibern(π∗)

(
∂π∗

∂x∗d

)2

= |β̂d|
N (x∗β̂)√
π∗(1− π∗)

.

9.2 POISSON REGRESSION MODEL

In a Poisson regression model, the predictive distribution is a Poisson distribution. Here, we consider the commonly used
logarithmic link function, where the mean of the predictive distribution is

E[y∗] = exp(x∗β).

In the asymptotic limit of infinite data, the posterior of the regression coefficients concentrates to a point β̂, and the mean of
the predictive distribution is given by the exponential function

E[y∗] = exp(x∗β̂).

The derivative of E[y∗] with respect to x∗d is
∂E[y∗]

∂x∗d
= β̂d exp(x∗β̂).

The Fisher information of the Poisson distribution is
1

E[y∗]
.

In the limit when the number of observations goes to infinity, the R-sens measure thus evaluates to

|β̂d| exp
(

1

2
x∗β̂

)
.
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