Variance Reduction in Frequency Estimators via Control Variates Method (Supplementary Materials)

Rameshwar Pratap

Raghav Kulkarni ${ }^{2}$

${ }^{1}$ Indian Institute of Technology (IIT), Mandi H.P., India.
${ }^{2}$ Chennai Mathematical Institute (CMI) Chennai, India.

A MISSING PROOFS:

PROOF OF THEOREM 5:

Proof. We restate the the random variable X is as follows: $X=\sum_{j \in[n]} f_{j} Y_{j}$, where Y_{j} denotes an indicator random variable of the event " $h(j)=h(a)$ " for $j \in[n]$. By 2-universality of the family from which h is drawn we have $\mathbb{E}\left[Y_{j}\right]=1 / k$. Thus, by linearity of expectation we have

$$
\begin{align*}
\mathbb{E}[X] & =\mathbb{E}\left[f_{a}+\sum_{j \in[n] /\{a\}} f_{j} Y_{j}\right] \\
& =f_{a}+\sum_{j \in[n] /\{a\}} \frac{f_{j}}{k}=f_{a}+\frac{\|\mathbf{f}\|_{1}-f_{a}}{k} \tag{1}
\end{align*}
$$

where $\|\mathbf{f}\|_{1}=\sum_{i \in[n]} f_{i}$. We now calculate the variance of the random variable X.

$$
\begin{align*}
\operatorname{Var}[X] & =\operatorname{Var}\left(f_{a}+\sum_{j \in[n] /\{a\}} f_{j} Y_{j}\right) \\
& =\operatorname{Var}\left(\sum_{j \in[n] /\{a\}} f_{j} Y_{j}\right) \tag{2}\\
& =\sum_{j \in[n] /\{a\}} \operatorname{Var}\left[f_{j} Y_{j}\right]+\sum_{i \neq j, i, j \in[n] /\{a\}} \operatorname{Cov}\left[f_{i} Y_{i}, f_{j} Y_{j}\right] \tag{3}\\
& =\sum_{j \in[n] /\{a\}}\left(\mathbb{E}\left[f_{j}^{2} Y_{j}^{2}\right]-\mathbb{E}\left[f_{j} Y_{j}\right]^{2}\right)+\sum_{i \neq j, i, j \in[n] /\{a\}}\left(\mathbb{E}\left[f_{i} Y_{i} f_{j} Y_{j}\right]-\mathbb{E}\left[f_{i} Y_{i}\right] \mathbb{E}\left[f_{j} Y_{j}\right]\right) . \\
& =\sum_{j \in[n] /\{a\}} f_{j}^{2}\left(\mathbb{E}\left[Y_{j}\right]-\mathbb{E}\left[Y_{j}\right]^{2}\right)+\sum_{i \neq j, i, j \in[n] /\{a\}} f_{i} f_{j}\left(\mathbb{E}\left[Y_{i} Y_{j}\right]-\mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right]\right) \\
& =\sum_{j \in[n] /\{a\}} f_{j}^{2}\left(\frac{1}{k}-\frac{1}{k^{2}}\right)+\sum_{i \neq j, i, j \in[n] /\{a\}} f_{i} f_{j}\left(\frac{1}{k^{2}}-\frac{1}{k^{2}}\right) . \tag{4}\\
& =\left(\frac{1}{k}-\frac{1}{k^{2}}\right) \sum_{j \in[n] /\{a\}} f_{j}^{2}+0 . \\
& =\frac{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}{k}\left(1-\frac{1}{k}\right) . \tag{5}
\end{align*}
$$

Equations (2), and (3) hold due to Fact 4. Equation (4) holds as $h($.$) is 2-universal hash function, which gives \mathbb{E}\left[Y_{i} Y_{j}\right]=$ $\mathbb{E}\left[Y_{i}\right] \mathbb{E}\left[Y_{j}\right]=1 / k^{2}$. Equations (1), and 5 complete a proof of the theorem.

PROOF OF THEOREM 6:

Proof. We recall our random variable for our estimate as follows:

$$
\begin{align*}
X & =g(a) \sum_{j=1}^{n} f_{j} g(j) Y_{j} . \\
& =g(a)^{2} f_{a} Y_{a}+\sum_{j \in[n] /\{a\}} f_{j} g(a) g(j) Y_{j} . \tag{6}\\
& =f_{a}+g(a) \sum_{j \in[n] /\{a\}} f_{j} g(j) Y_{j} . \tag{7}
\end{align*}
$$

For each $j \in[n] /\{a\}$ we have the following two equalities, which we will repeatedly use.

$$
\begin{align*}
& \mathbb{E}[g(j)]=0 \\
& \mathbb{E}\left[Y_{j}^{2}\right]=\mathbb{E}\left[Y_{j}\right]=\operatorname{Pr}[h(j)=h(a)]=1 / k \tag{8}
\end{align*}
$$

Equation (8) holds as $g($.$) is from 2-universal family and can take sign between \{-1,+1\}$ each with probability $1 / 2$. Equation 8 holds since g and h are independent. Thus, we have

$$
\begin{equation*}
\mathbb{E}\left[g(j) Y_{j}\right]=\mathbb{E}[g(j)] \mathbb{E}\left[Y_{j}\right]=0 \times \mathbb{E}\left[Y_{j}\right]=0 \tag{9}
\end{equation*}
$$

Due to Equations (77, (9), we have

$$
\begin{equation*}
\mathbb{E}[X]=f_{a}+g(a) \sum_{j \in[n] /\{a\}} f_{j} \mathbb{E}\left[g(j) Y_{j}\right]=f_{a} \tag{10}
\end{equation*}
$$

Thus, the output $X=\hat{f}_{a}$ is an unbiased estimator for the desired frequency f_{a}. We now give a variance analysis on the estimate.

$$
\begin{align*}
& \operatorname{Var}[X]=\operatorname{Var}\left[f_{a}+\sum_{j \in[n] /\{a\}} f_{j} g(a) g(j) Y_{j}\right] \\
& =\operatorname{Var}\left[\sum_{j \in[n] /\{a\}} f_{j} g(a) g(j) Y_{j}\right] . \tag{11}\\
& =g(a)^{2} \operatorname{Var}\left[\sum_{j \in[n] /\{a\}} f_{j} g(j) Y_{j}\right] . \\
& =\operatorname{Var}\left[\sum_{j \in[n] /\{a\}} f_{j} g(j) Y_{j}\right] . \tag{12}\\
& =\mathbb{E}\left[\left(\sum_{j \in[n] /\{a\}} f_{j} g(j) Y_{j}\right)^{2}\right]-\mathbb{E}\left[\sum_{j \in[n] /\{a\}} f_{j} g(j) Y_{j}\right]^{2} \\
& =\mathbb{E}\left[\left(\sum_{j \in[n] /\{a\}} f_{j} g(j) Y_{j}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j \in[n] /\{a\}} f_{j}^{2} g(j)^{2} Y_{j}^{2}+\sum_{j \neq l} f_{j} f_{l} g(j) g(l) Y_{j} Y_{l}\right] . \tag{13}
\end{align*}
$$

$$
\begin{equation*}
=\mathbb{E}\left[\sum_{j \in[n] /\{a\}} f_{j}^{2} Y_{j}\right]=\sum_{j \in[n] /\{a\}} \frac{f_{j}^{2}}{k}=\frac{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}{k} . \tag{14}
\end{equation*}
$$

Equation (11) and (12) hold due to Fact 4 , and $g(a)^{2}=1$. Equation (13) hold due to Equation (8). Equations (10) and (14) completes a proof of the theorem.

PROOF OF COROLLARY 7:

Proof. The random variable X mentioned in Theorem 5 captures the estimated frequency (an overestimate indeed). Due to Theorem 5, we have $\mathbb{E}[X]=f_{a}+\frac{\|\mathbf{f}\|_{1}-f_{a}}{k}$, and $\operatorname{Var}[X]=\frac{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}{k}\left(1-\frac{1}{k}\right)$. For a random variable R with mean $\mathbb{E}[R]$ and variance $\operatorname{Var}[R]$ satisfies the following concentration guarantee

$$
\operatorname{Pr}\left[|R-\mathbb{E}[R]| \geq \epsilon^{\prime} \sqrt{\operatorname{Var}[R]}\right] \leq \frac{1}{{\epsilon^{\prime}}^{2}}
$$

We obtain the following by putting R as our random variance X, and $\epsilon^{\prime}=\frac{\varepsilon \sqrt{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}}{\sqrt{\operatorname{Var}[X]}}$ in the above equation.

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\hat{f}_{a}-\left(f_{a}+\frac{\|\mathbf{f}\|_{1}-f_{a}}{k}\right)\right| \geq \varepsilon \sqrt{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}\right] & \leq \frac{k-1}{\varepsilon^{2} k^{2}} \\
& \leq \frac{1}{\varepsilon^{2} k}=\frac{1}{3}
\end{aligned}
$$

The last equality holds due to our choice of the parameter k. Due to Theorem 1, the variance of our CV estimator is given as follows:

$$
\begin{align*}
\operatorname{Var}(X+\hat{c}(Z-\mathbb{E}[Z])) & =\operatorname{Var}(X)-\frac{\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1) k}\left(1-\frac{1}{k}\right) \tag{15}\\
& =\left(\frac{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}{k}-\frac{\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1) k}\right) \cdot\left(1-\frac{1}{k}\right) \tag{16}\\
& =\left(\frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1) k}\right) \cdot\left(1-\frac{1}{k}\right) \tag{17}
\end{align*}
$$

Further, due to Chebyshev's inequality, for the query item a its estimated frequency \tilde{f}_{a} outputted by our CV estimate satisfies the following:

$$
\begin{align*}
\operatorname{Pr}\left[\left|\tilde{f}_{a}-\left(f_{a}+\frac{\|\mathbf{f}\|_{1}-f_{a}}{k}\right)\right| \geq \varepsilon \sqrt{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}\right] & \leq \frac{\operatorname{Var}(X+\hat{c}(Z-\mathbb{E}[Z]))}{\varepsilon^{2}\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)} \tag{18}\\
& =\left(\frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{\varepsilon^{2} k(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)}\right) \cdot\left(1-\frac{1}{k}\right) \tag{19}\\
& \leq \frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{\varepsilon^{2} k(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)} \tag{20}\\
& =\frac{1}{3} \tag{21}
\end{align*}
$$

The last equality follows by putting

$$
k=\frac{3}{\varepsilon^{2}} \cdot\left(\frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)}\right)
$$

in Equation 21.

PROOF OF COROLLARY 8:

Proof. The random variable X mentioned in Theorem 6 captures the estimated frequency. Due to Theorem 6, we have

$$
\mathbb{E}[X]=f_{a}, \text { and } \operatorname{Var}[X]=\frac{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}{k}
$$

We now apply Chebyshev's inequality on the above expression which gives us the desired concentration guarantee

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\hat{f}_{a}-f_{a}\right| \geq \varepsilon \sqrt{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}\right] & =\operatorname{Pr}\left[|X-\mathbb{E}[X]| \geq \varepsilon \sqrt{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}\right] \\
& \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2}\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)} \\
& =\frac{1}{k \varepsilon^{2}}=\frac{1}{3}
\end{aligned}
$$

The last equality holds due to our choice of the parameter k. Due to Theorem 2, the variance of our CV estimator is given as follows:

$$
\begin{align*}
\operatorname{Var}(X+\hat{c}(Z-\mathbb{E}[Z])) & =\operatorname{Var}(X)-\frac{\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1) k} \tag{22}\\
& =\frac{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}{k}-\frac{\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1) k} \tag{23}\\
& =\frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1) k} \tag{24}
\end{align*}
$$

The equality follows after some simple algebraic calculations. Further, due to Chebyshev's inequality, for the query item a its estimated frequency \tilde{f}_{a} outputted by CV satisfies the following:

$$
\begin{align*}
\operatorname{Pr}\left[\left|\tilde{f}_{a}-f_{a}\right| \geq \varepsilon \sqrt{\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}}\right] & \leq \frac{\operatorname{Var}(X+\hat{c}(Z-\mathbb{E}[Z]))}{\varepsilon^{2}\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)} \tag{25}\\
& =\frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{\varepsilon^{2} k(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)} \tag{26}\\
& =\frac{1}{3} \tag{27}
\end{align*}
$$

The last equality follows by putting

$$
k=\frac{3}{\varepsilon^{2}} \cdot\left(\frac{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)-\left(\|\mathbf{f}\|_{1}-f_{a}\right)^{2}}{(n-1)\left(\|\mathbf{f}\|_{2}^{2}-f_{a}^{2}\right)}\right)
$$

in Equation 27).

