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A THE DNCB DISTRIBUTION

The DNCB distribution is defined in definition 1 of the main paper. It can take the same set of shapes over the (0, 1) interval
as the beta distribution (see fig. 1a), as well as tri-modal shapes when the shape parameters €1, €2 < 1 (see fig. 1b).

Ongaro and Orsi [2015] provide a general formula for the moments of the DNCB distribution. Its first moment is

E[f] = =% [1F1 (€os€atLiAe) + 021 1 (e.+1;e.+2;A.)]

where 1 F (+; -; -) denotes Kummer’s confluent hypergeometric function. The second moment is more involved, but also does
not involve any special functions beyond 1 F (+; -; -).

Computing the mean and variance of the DNCB is easy because there are many efficient open-source implementations of
1F1(;+; -)—e.g., in the Python library scipy [Virtanen et al., 2020]. On the other hand, computing the DNCB density, which
we need to assess out-of-sample predictive performance (see section 5 of the main paper), requires computing Humbert’s
confluent hypergeometric function W¥s[-; -, -; -, -] for which we know of no open-source implementations. We therefore
implemented the algorithm of Orsi [2017] in Cython. We have released our code for this, along with our implementations
of DNCB-MF and BG-NMF and the real and synthetic datasets that we used for our experiments.'
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(a) With €1, €2 > 1, the DNCB distribution takes uni-modal or bi- (b) The DNCB distribution can additionally take tri-modal shapes
modal shapes over (0, 1), similar to the beta distribution; with A; = whene; < lores < 1.
A2 =0, the DNCB distribution coincides with the beta distribution.

'https://github.com/aschein/dncb-mf
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B POSTERIOR INFERENCE

Here, we provide a complete summary of our entire Gibbs sampler. As we described in section 4 of the main paper, the first
step is to sample the gamma-distributed auxiliary variables:
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The Poisson-distributed auxiliary variables are then conditionally independent Bessel random variables—i.e.,
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for r € {1, 2}. Conditioned on these auxiliary counts, the updates for the latent factors follow from gamma—Poisson matrix
factorization. First, we represent each count as the sum of K subcounts—i.e., yz(;) = Zszl yZ(;L By Poisson additivity,
each of these subcounts is Poisson distributed and their complete conditional is a multinomial distribution:
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By Poisson—gamma conjugacy, the complete conditionals of the latent factors, conditioned on the subcounts, are
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Equations (1) to (6) summarize the entire Gibbs sampler for DNCB-MF. Iteratively following these steps is asymptotically
guaranteed to sample from the exact posterior.
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