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A THE DNCB DISTRIBUTION

The DNCB distribution is defined in definition 1 of the main paper. It can take the same set of shapes over the (0, 1) interval
as the beta distribution (see fig. 1a), as well as tri-modal shapes when the shape parameters ε1, ε2 < 1 (see fig. 1b).

Ongaro and Orsi [2015] provide a general formula for the moments of the DNCB distribution. Its first moment is

E[β] = ε1
ε•eλ•

[
1F1 (ε•; ε•+1;λ•) + ε•λ1

ε1(ε•+1)1
F1 (ε•+1; ε•+2;λ•)

]
where 1F1(·; ·; ·) denotes Kummer’s confluent hypergeometric function. The second moment is more involved, but also does
not involve any special functions beyond 1F1(·; ·; ·).

Computing the mean and variance of the DNCB is easy because there are many efficient open-source implementations of
1F1(·; ·; ·)—e.g., in the Python library scipy [Virtanen et al., 2020]. On the other hand, computing the DNCB density, which
we need to assess out-of-sample predictive performance (see section 5 of the main paper), requires computing Humbert’s
confluent hypergeometric function Ψ2[·; ·, ·; ·, ·] for which we know of no open-source implementations. We therefore
implemented the algorithm of Orsi [2017] in Cython. We have released our code for this, along with our implementations
of DNCB-MF and BG-NMF and the real and synthetic datasets that we used for our experiments.1
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(a) With ε1, ε2 ≥ 1, the DNCB distribution takes uni-modal or bi-
modal shapes over (0, 1), similar to the beta distribution; with λ1=
λ2=0, the DNCB distribution coincides with the beta distribution.
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(b) The DNCB distribution can additionally take tri-modal shapes
when ε1 < 1 or ε2 < 1.

1https://github.com/aschein/dncb-mf
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B POSTERIOR INFERENCE

Here, we provide a complete summary of our entire Gibbs sampler. As we described in section 4 of the main paper, the first
step is to sample the gamma-distributed auxiliary variables:(

γ(•)
ij | −

)
∼ Gam

(
ε(•)0 + y(•)

ij , 1
)
, (1)

γ(1)

ij = βγ(•)
ij and γ(2)

ij = (1− β)γ(•)
ij . (2)

The Poisson-distributed auxiliary variables are then conditionally independent Bessel random variables—i.e.,

(y(r)

ij |−) ∼ Bess

ε(r)0 −1, 2

√√√√γ(r)

ij

K∑
k=1

θ(r)

ik φkj

 (3)

for r ∈ {1, 2}. Conditioned on these auxiliary counts, the updates for the latent factors follow from gamma–Poisson matrix
factorization. First, we represent each count as the sum of K subcounts—i.e., y(r)

ij =
∑K
k=1 y

(r)

ijk. By Poisson additivity,
each of these subcounts is Poisson distributed and their complete conditional is a multinomial distribution:

((
y(r)

ijk

)K
k=1
| −

)
∼ Multi

(
y(r)

ij ,

(
θ
(r)
ik φkj∑K

k′=1
θ
(r)

ik′φkj

)K
k=1

)
. (4)

By Poisson–gamma conjugacy, the complete conditionals of the latent factors, conditioned on the subcounts, are

(
θ(r)

ik | −
)
∼ Gam

a0+

M∑
j=1

y(r)

ijk, b0+

M∑
j=1

φkj

 , (5)

(
φkj | −

)
∼ Gam

(
e0+

N∑
i=1

2∑
r=1

y(r)

ijk, f0+

N∑
i=1

2∑
r=1

θ(r)

ik

)
. (6)

Equations (1) to (6) summarize the entire Gibbs sampler for DNCB-MF. Iteratively following these steps is asymptotically
guaranteed to sample from the exact posterior.
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