Dynamic visualization for L1 fusion convex clustering in near-linear time (Supplementary material)

Bingyuan Zhang1
Jie Chen1
Yoshikazu Terada1,2

1 Graduate School of Engineering Science, Osaka University, Japan.
2 RIKEN Center for Advanced Intelligence Project (AIP)

1 AN EXAMPLE N = 3

Consider the case \(n = 3 \), given \(x_1 \leq x_2 \leq x_3 \), we want to minimize the following problem to obtain \(\hat{a}_1 \leq \hat{a}_2 \leq \hat{a}_3 \).

\[
(\hat{a}_1, \hat{a}_2, \hat{a}_3) = \arg \min_{(a_1, a_2, a_3)} \left\{ \frac{1}{2} [(x_1 - a_1)^2 + (x_2 - a_2)^2 + (x_3 - a_3)^2] + \lambda_1 |a_1 - a_2| + \lambda_2 |a_2 - a_3| \right\}
\]

Suppose \(\hat{a}_2 \) is known, by definition \(\hat{a}_1 \) is equal to:

\[
\hat{a}_1 = \arg \min_b \frac{1}{2} (x_1 - b)^2 + \lambda_1 |b - \hat{a}_2|
\]

\[
= \arg \min_b h_1(b) + \lambda_1 |b - \hat{a}_2|
\]

Since the \(b \) here represents \(\hat{a}_1 \) and is always smaller than \(\hat{a}_2 \). We only need to consider two cases:

- (1) \(b < \hat{a}_2 \). At that case, by KKT condition it is easy to find \(\hat{a}_1 = U_1 \).
- (2) \(b = \hat{a}_2 \). In other words, \(\hat{a}_1 = \hat{a}_2 \).

From that we get

\[
\hat{a}_1 = \arg \min_b h_1(b) + \lambda_1 |b - \hat{a}_2| = \max(\hat{a}_2, U_1)
\]

Similarly for \(\hat{a}_2 \), we suppose \(\hat{a}_3 \) is known:

\[
\hat{a}_2 = \arg \min_b \frac{1}{2} [(x_1 - \phi_1(b))^2 + (x_2 - b)^2] + \lambda_1 |\phi_1(b) - b| + \lambda_2 |b - \hat{a}_3|
\]

\[
= \arg \min_b h_2(b) + \lambda_2 |b - \hat{a}_3| = \max(\hat{a}_3, U_2)
\]

Next we need to find \(U_1, U_2 \) and \(\hat{a}_3 \), with whom \(\hat{a}_1 \) and \(\hat{a}_2 \) can be obtained immediately. We solve it in the following order:

\[
U_1 \rightarrow U_2 \rightarrow \hat{a}_3 \rightarrow \hat{a}_2 \rightarrow \hat{a}_1.
\]

For \(U_1 \), it is straightforward that \(U_1 = x_1 + \lambda_1 \). Then for \(U_2 \), the \(U_2 \) satisfies \(g_2(U_2) = \lambda_2 \), and \(g_2(b) \) is a continuous piecewise linear function shown in the figure:

\[
g_2(b) = \begin{cases}
 g_1(b) & b \leq U_1 \n \lambda_1 \mathbb{I}[b > U_1] + (b - x_2) & \text{otherwise}
\end{cases}
\]

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).
Because g_2 is composed of two lines, the key is to locate which line is (U_2, λ_2) on. According to the algorithm 2, we first search from the right by assuming the (U_2, λ_2) is on the right line, and get $\beta = \lambda_2 - \lambda_1 + x_2$ which makes (β, λ_2) the intersection point of $y = \lambda_2$ with the right line. Next we compare the β with U_1 in figure 1. If $\beta \geq U_1$, (U_2, λ_2) is indeed on the right part of the line, then we have $U_2 = \beta$; otherwise we update the slope and intercept to be those of the left line and let $U_2 = \beta_{\text{new}} = \lambda_2 + (x_1 + x_2)/2$.

Figure 1: An image of $g_2(b)$: the solid line is an example of $g_2(b)$ with a branch point U_1. The search starts to find the β first and if β does not qualify $\beta > U_1$, then we go to find the β_{new}.

This search process is efficient enough but is still not linear. To make the search from left to right more efficient, some care need to be taken.

Here we illustrate the erase step in the line 11 of the algorithm 2, we consider the case when $U_2 < U_1$. And now we want to find \hat{a}_3, and we also search from the right part of the g_3 function. The only difference between searching U_2 and \hat{a}_3 is we let β satisfy $g_3(\beta) = 0$. We first compare the β with U_2, and if $\beta < U_2$, the comparison between β and U_1 is not necessary any more because we already know $U_2 < U_1$. Thus we can delete the U_1 after obtaining a U_2 that is smaller than U_1. In the end, all the U_i can be deleted at most once: once a U_j, $j > i$ is found such that $U_j < U_i$, the former U_i can be deleted immediately and never used again. By doing this the DP algorithm becomes much more efficiently and finally takes linear time.

2 SIMULATION DETAILS

Both standard errors and means over 30 replications are reported in the following table. When the sample size becomes larger, C-PAINT becomes faster than FUSION.

<table>
<thead>
<tr>
<th>Sample size n</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>5000</th>
<th>10000</th>
<th>50000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARPl1</td>
<td>0.32(2.7e-3)</td>
<td>232.3(69)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>FLSA</td>
<td>0.04(5.2e-4)</td>
<td>3.4(4.8e-2)</td>
<td>35.6(0.4)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ADMM</td>
<td>0.07(9.3e-4)</td>
<td>4.9(4.8e-2)</td>
<td>50.8(20)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>AMA</td>
<td>0.07(1.1e-3)</td>
<td>3.3(2.7e-2)</td>
<td>42.7(15)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>FUSION</td>
<td>5e-4(9.2e-5)</td>
<td>4e-3(1.1e-4)</td>
<td>1.2e-2(2.0e-4)</td>
<td>0.33(3.1e-3)</td>
<td>1.1(7.4e-3)</td>
<td>27.7(2.8e-2)</td>
</tr>
<tr>
<td>C-PAINT</td>
<td>9.7e-4(2.6e-4)</td>
<td>3.8e-3(1.2e-4)</td>
<td>8.9e-3(1.5e-4)</td>
<td>0.15(7.5e-3)</td>
<td>0.41(1.1e-2)</td>
<td>5.6(4.2e-2)</td>
</tr>
</tbody>
</table>

Table 1: Run times Comparison. The means and standard errors of each method over 30 replications are reported. Here * means we cannot obtain the solutions within a reasonable time.