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Abstract
The K-armed dueling bandit problem, where the
feedback is in the form of noisy pairwise compar-
isons, has been widely studied. Previous works
have only focused on the sequential setting where
the policy adapts after every comparison. How-
ever, in many applications such as search ranking
and recommendation systems, it is preferable to
perform comparisons in a limited number of par-
allel batches. We study the batched K-armed
dueling bandit problem under two standard set-
tings: (i) existence of a Condorcet winner, and
(ii) strong stochastic transitivity and stochastic
triangle inequality. For both settings, we obtain
algorithms with a smooth trade-off between the
number of batches and regret. Our regret bounds
match the best known sequential regret bounds
(up to poly-logarithmic factors), using only a log-
arithmic number of batches. We complement
our regret analysis with a nearly-matching lower
bound. Finally, we also validate our theoretical
results via experiments on synthetic and real data.

1. Introduction
The K-armed dueling bandits problem has been widely
studied in machine learning due to its applications in search
ranking, recommendation systems, sports ranking, etc. (Yue
& Joachims, 2011; Yue et al., 2012; Urvoy et al., 2013;
Ailon et al., 2014; Zoghi et al., 2014; 2015a;b; Dudik et al.,
2015; Jamieson et al., 2015; Komiyama et al., 2015; 2016;
Ramamohan et al., 2016; Chen & Frazier, 2017). It is a vari-
ation of the traditional stochastic bandit problem in which
feedback is obtained in the form of pairwise preferences.
This problem falls under the umbrella of preference learning
(Wirth et al., 2017), where the goal is to learn from relative
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feedback (in our case, given two alternatives, which of the
two is preferred). Designing learning algorithms for such
relative feedback becomes crucial in domains where quali-
tative feedback is easily obtained, but real-valued feedback
would be arbitrary or not interpretable. We illustrate this
using the web-search ranking application.

Web-search ranking is an example of a complex information
retrieval system, where the goal is to provide a list (usually
ranked) of candidate documents to the user of the system
in response to a query (Radlinski et al., 2008; Joachims,
2002; Yue & Joachims, 2009; Hofmann et al., 2013). Mod-
ern day search engines comprise hundreds of parameters
which are used to output a ranked list in response to a query.
However, manually tuning these parameters can sometimes
be infeasible, and online learning frameworks (based on
user feedback) have been invaluable in automatically tuning
these parameters (Liu, 2009). These methods do not affect
user experience, enable the system to continuously learn
about user preferences, and thus continuously adapt to user
behavior. For example, given two rankings ℓ1 and ℓ2, they
can be interleaved and presented to the user in such a way
that clicks indicate which of the two rankings is more prefer-
able to the user (Radlinski et al., 2008). The availability
of such pairwise comparison data motivates the study of
learning algorithms that exploit such relative feedback.

Previous learning algorithms have focused on a fully adap-
tive setting; in the web-ranking application this corresponds
to the learning algorithm updating its parameters after each
query. Such updates might be impractical in large systems.
For example, if the parameters are fine-tuned for each user
and a user makes multiple queries in a short time, such con-
tinuous updates require a lot of computational power. Even
if users are assigned to a small number of classes (and pa-
rameters are fine-tuned for each user-class), multiple users
from the same class may simultaneously query the system,
making it impractical to adapt after each interaction.

Motivated by this, we introduce the batched K-armed du-
eling bandits problem (or, batched dueling bandits), where
the learning algorithm is only allowed to adapt a limited
number of times. Specifically, the algorithm uses at most
B adaptive rounds and in each round it commits to a fixed
batch of pairwise comparisons. The feedback for a batch is
received simultaneously, and the algorithm chooses the next
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batch based on this (and previous) feedback.

1.1. Contributions

• We design three algorithms, namely PCOMP, SCOMP,
and SCOMP2, for batched dueling bandits under a finite
time-horizon T . We analyze the regret of PCOMP un-
der the Condorcet assumption, and that of SCOMP and
SCOMP2 under the strong stochastic transitivity (SST)
and stochastic triangle inequality (STI) assumptions.
In all cases, we obtain a smooth trade-off between the
expected regret and the number of batches, B.

• Specifically, in log(T )+1 batches, SCOMP has expected
regret nearly matching the instance-dependent regret
bound due to Yue et al. (2012), up to a

√
K factor (K

is the number of arms).

• Furthermore, in O(log(T )) batches, SCOMP2 achieves
a worst-case regret matching the best known result in
the sequential setting (Yue & Joachims, 2011) up to a
logarithmic factor.

• To complement our upper bound results, we provide
a lower bound that shows that a T 1/B factor in the
expected regret is necessary, where B is the number of
batches.

• Finally, we run computational experiments to validate
our theoretical results.

1.2. Preliminaries

The K-armed dueling bandits problem (Yue et al., 2012) is
an online optimization problem, where the goal is to find
the best among K bandits B = {b1, . . . , bK} using noisy
pairwise comparisons with low regret. In the traditional
multi-armed bandit problem (Auer et al., 2002), an arm (or
equivalently, bandit) bj can be pulled at each time-step t,
which generates a random reward from an unknown sta-
tionary distribution with expected value µj . However, in
the K-armed dueling bandits problem, each iteration com-
prises a noisy comparison between two bandits (possibly
the same), say (bi, bj). The outcome of the comparison is
an independent random variable, and the probability of pick-
ing bi over bj is a constant denoted Pi,j = 1

2 + ϵi,j where
ϵi,j ∈ (− 1

2 ,
1
2 ). Here ϵi,j can be thought of as a measure

of distinguishability between the two bandits, and we use
bi ≻ bj when ϵi,j > 0. We also refer to ϵi,j as the gap
between bi and bj .

Throughout the paper, we let b1 refer to the best bandit. To
further simplify notation, we define ϵj = ϵ1,j ; that is, the
gap between b1 and bj . We define the regret per time-step as
follows: suppose bandits bt1 and bt2 are chosen in iteration t,
then the regret r(t) = ϵt1+ϵt2

2 . The cumulative regret up to

time T is R(T ) =
∑T

t=1 r(t), where T is the time horizon,
and it’s assumed that K ≤ T . The cumulative regret can
be equivalently stated as R(T ) = 1

2

∑K
j=1 Tjϵj , where Tj

denotes the number comparisons involving bj . We define
ϵmin = minj:ϵj>0 ϵj to be the smallest non-zero gap of any
bandit with b1. We say that bandit bi is a Condorcet winner
if, and only if, Pi,j ≥ 1

2 for all j ∈ B \ {i}. Furthermore,
we say that the probabilistic comparisons exhibit strong
stochastic transitivity (SST) if there exists a total ordering,
denoted by⪰, over arms such that for every triple bi ⪰ bj ⪰
bk, we have ϵi,k ≥ max{ϵi,j , ϵj,k}, and exhibits stochastic
triangle inequality (STI) if for every triple bi ⪰ bj ⪰ bk,
ϵi,k ≤ ϵi,j + ϵj,k.

1.3. Batch Policies

In traditional bandit settings, actions are performed sequen-
tially, utilizing the results of all prior actions in determining
the next action. In the batched setting, the algorithm must
commit to a round (or batch) of actions to be performed in
parallel, and can only observe the results after all actions
in the batch have been performed. More formally, in round
r = 1, 2, . . ., the algorithm must decide the comparisons to
be performed; afterwards all outcomes of the comparisons
in batch r are received. The algorithm can then, adaptively,
select the next batch of comparisons. However, it can use at
most a given number, B, of batches.

The batch sizes can be chosen non-adaptively (fixed upfront)
or adaptively. In an adaptive policy the batch sizes may
even depend on previous observations of the algorithm. An
adaptive policy is more powerful than a non-adaptive policy,
and may suffer a smaller regret. In this paper, we focus
on such adaptive policies. Furthermore, note that the total
number of comparisons (across all batches) must sum to T .
We assume that the values of T and B are known. Observe
that when T = B, we recover the fully sequential setting.

1.4. Results and Techniques

We provide a summary of our results in Table 1. Our first
result is as follows.

Theorem 1.1. For any integer B > 1, there is an algorithm
for batched dueling bandits that uses at most B rounds,
and if the instance admits a Condorcet winner, the expected
regret is bounded by

E[R(T )] ≤ 3KT 1/B log
(
6TK2B

) ∑
j:ϵj>0

1

ϵj
.

The above bound is an instance-dependent bound. To ob-
tain an instance-independent bound, recall that ϵmin =
minj:ϵj>0 ϵj . We get that the expected worst-case regret
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Table 1: A summary of our results

Setting
Fully Adaptive Our Algorithms Our Lower Bound

(prior work) Regret Rounds (for B rounds)

Condorcet O
(

K log T
ϵmin

)
+O

(
K2

ϵ2min

)
O
(

K2T 1/B log(T )
ϵmin

)
B Ω

(
KT 1/B

B2ϵmin

)
SST + STI O

(
K log(T )

ϵmin

)
O
(

KBT 1/B log(T )
ϵmin

)
2B + 1 Ω

(
KT 1/B

B2ϵmin

)

is bounded by

E[R(T )] ≤
3K2T 1/B log

(
6TK2B

)
)

ϵmin
.

In the sequential setting, existing algorithms achieve a worst-
case expected regret of O

(
K log T
ϵmin

)
+ O

(
K2

ϵ2min

)
(Zoghi

et al., 2014; Komiyama et al., 2015). When B = log(T ),
our worst-case regret is at most

E[R(T )] ≤ 3K2 log(6TK2B)/ϵmin = O(K2 log(T )/ϵmin),

which nearly matches the best-known bound in the sequen-
tial setting. Our algorithm in Theorem 1.1 proceeds by
performing all pairwise comparisons in an active set of ban-
dits, and gradually eliminating sub-optimal bandits. This
algorithm is straightforward, and its analysis follows that
of (Esfandiari et al., 2021a) for batched stochastic multi-
armed bandits. Although this is a simple result, it is an
important step for our main results, described next.

Our main results are when the instance satisfies the SST and
STI conditions. These conditions impose a structure on the
pairwise preference probabilities, and we are able to exploit
this additional structure to obtain improved bounds.

Theorem 1.2. For any integer B > 1, there is an algorithm
for batched dueling bandits that uses at most B + 1 rounds,
and if the instance satisfies the SST and STI assumptions,
the expected regret is bounded by

E[R(T )] =
∑

j:ϵj>0

O

(√
KT 1/B log(T )

ϵj

)
.

The idea behind this algorithm is to first sample a “suffi-
ciently small” seed set, and then to perform all pairwise
comparisons between the seed set and the active set to elimi-
nate sub-optimal arms. The idea is to exploit the structure of
pairwise probabilities so that we do not need to perform all
pairwise comparisons. Additionally, if the seed set is found
to be sub-optimal, we can construct a much smaller active
set; thus allowing us to switch to the pairwise comparison
policy. In the sequential setting, (Yue et al., 2012) obtain

instance-dependent regret bounded by
∑

j:ϵj>0O
(

log(T )
ϵj

)
.

Our result nearly matches this sequential bound (with an
extra multiplicative factor of

√
K) when B = log(T ). Ob-

serve that the worst-case regret of (Yue & Joachims, 2011)
in the sequential setting is bounded by O

(
K log(T )

ϵmin

)
, while

we obtain E[R(T )] ≤ O
(

K
√
KT 1/B log(T )

ϵmin

)
.

Next, we improve the worst-case regret by reducing the com-
parisons performed as follows. We first perform pairwise
comparisons amongst bandits in the seed set, and pick a
candidate bandit. This candidate bandit is used to eliminate
sub-optimal arms from the active set. Although selecting
a candidate bandit each time requires additional adaptivity,
we get a better bound on the worst-case expected regret by
exploiting the fact that there can be at most B candidate
bandits.
Theorem 1.3. For any integer B > 1, there is an algorithm
for batched dueling bandits that uses at most 2B+1 rounds,
and if the instance satisfies the SST and STI assumptions,
the expected worst-case regret is bounded by

E[R(T )] = O

(
KBT 1/B log(T )

ϵmin

)
.

Thus, inB = log(T ) rounds, our expected worst-case regret
is bounded byE[R(T )] ≤ O

(
K log2(T )

ϵmin

)
matching the best

known result in the sequential setting up to an additional
logarithmic factor.

Finally, we complement our upper bound results with a
lower bound for the batched K-armed dueling bandits prob-
lem, even under the SST and STI assumptions.
Theorem 1.4. Given an integer B > 1, and any algorithm
that uses at most B batches, there exists an instance of the
K-armed batched dueling bandit problem that satisfies the
SST and STI condition such that the expected regret

E[R(T )] = Ω

(
KT 1/B

B2ϵmin

)
.

The above lower bound shows that the T 1/B dependence in
our upper bounds is necessary. Note that the above lower
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bound also applies to the more general Condorcet winner set-
ting. The proof is similar to the lower bound proof in (Gao
et al., 2019) for batched multi-armed bandits. The main nov-
elty in our proof is the design of a family of hard instances
with different values of ϵmin’s that satisfy the SST and STI
conditions. We defer further discussion and the proof of
Theorem 1.4 to Appendix C.

2. Related Work
The dueling bandits problem has been widely studied in
recent years; we mention the most relevant works here and
refer the reader to (Sui et al., 2018) for a more compre-
hensive survey. This problem was first studied by (Yue
et al., 2012) under the SST and STI setting. The authors
gave a worst-case regret upper bound of Õ(K log T/ϵmin)
and provided a matching lower bound. (Yue & Joachims,
2011) considered a slightly more general version of the
SST and STI setting and achieved an instance-wise opti-
mal regret upper bound of

∑
j:ϵj>0O

(
log(T )

ϵj

)
. (Urvoy

et al., 2013) studied this problem under the Condorcet win-
ner setting and proved a O(K2 log T/ϵmin) regret upper
bound, which was improved by (Zoghi et al., 2014) to
O(K2/ϵ2min) +

∑
j:ϵj>0O(log T/ϵ2j ). (Komiyama et al.,

2015) achieved a similar but tighter KL divergence-based
bound, which is shown to be asymptotically instance-wise
optimal (even in terms constant factors). There are also other
works that improve the dependence onK in the upper bound,
but suffer a worse dependence on ϵjs (Zoghi et al., 2015b).
This problem has also been studied under other noise mod-
els such as utility based models (Ailon et al., 2014) and
other notions of regret (Chen & Frazier, 2017). Alternate
notions of winners such as Borda winner (Jamieson et al.,
2015), Copeland winner (Zoghi et al., 2015a; Komiyama
et al., 2016; Wu & Liu, 2016), and von Nuemann winner
(Dudik et al., 2015) have also been considered. There are
also several works on extensions of dueling bandits that al-
low multiple arms to be compared at once (Sui et al., 2017;
Agarwal et al., 2020; Saha & Gopalan, 2019).

All of the aforementioned works on the dueling bandits
problem are limited to the sequential setting. To the best
of our knowledge, ours is the first work that considers
the batched setting for dueling bandits. However, batched
processing for the stochastic multi-armed bandit problem
has been investigated in the past few years. A special
case when there are two bandits was studied by (Perchet
et al., 2016). They obtain a worst-case regret bound of

O

((
T

log(T )

)1/B
log(T )
ϵmin

)
. (Gao et al., 2019) studied the

general problem and obtained a worst-case regret bound of
O
(

K log(K)T 1/B log(T )
ϵmin

)
, which was later improved by (Es-

fandiari et al., 2021a) to O
(

KT 1/B log(T )
ϵmin

)
. Furthermore,

(Esfandiari et al., 2021a) obtained an instance-dependent
regret bound of

∑
j:ϵj>0 T

1/BO
(

log(T )
ϵj

)
. Our results for

batched dueling bandits are of a similar flavor; that is, we
get a similar dependence on T and B. (Esfandiari et al.,
2021a) also give batched algorithms for stochastic linear
bandits and adversarial multi-armed bandits.

Adaptivity and batch processing has been recently studied
for stochastic submodular cover (Golovin & Krause, 2017;
Agarwal et al., 2019; Esfandiari et al., 2021b; Ghuge et al.,
2021), and for various stochastic “maximization” problems
such as knapsack (Dean et al., 2008; Bhalgat et al., 2011),
matching (Bansal et al., 2012; Behnezhad et al., 2020), prob-
ing (Gupta & Nagarajan, 2013) and orienteering (Guha &
Munagala, 2009; Gupta et al., 2015; Bansal & Nagarajan,
2015). Recently, there have also been several results exam-
ining the role of adaptivity in (deterministic) submodular
optimization; e.g. (Balkanski & Singer, 2018a; Balkanski
et al., 2018; Balkanski & Singer, 2018b; Balkanski et al.,
2019; Chekuri & Quanrud, 2019).

3. Algorithms for Batched Dueling Bandits
In this section, we present three algorithms, namely PCOMP,
SCOMP and SCOMP2, for the K-armed batched dueling ban-
dits problem. Recall that given a set of K bandits (or arms)
B = {b1, . . . , bK}, and a positive integer B ≤ T , we wish
to find a sequence of B batches of noisy comparisons with
low regret. Given bandits bi and bj , Pi,j = 1

2 + ϵi,j de-
notes the probability of bi winning over bj . The first al-
gorithm, termed PCOMP, proceeds by performing all-pairs
comparisons amongst bandits in an active set, and gradually
eliminating sub-optimal bandits. The other two algorithms,
termed SCOMP and SCOMP2, first select a (sufficiently small)
seed set S ⊂ B, and eliminate bandits in an active set
by successively comparing them to (all or few) bandits in
S. If the seed set S is itself found to be sub-optimal in a
subsequent round, then these algorithms call the all-pairs
algorithm PCOMP over the remaining active arms.

Before describing our algorithms in detail we will set up
some basic notation. We will denote by A the set of active
arms, i.e. arms that have not been eliminated. We will use
index r for rounds or batches. At the end of each round
r, our algorithms compute a fresh estimate of the pairwise
probabilities based on the feedback from comparisons in
round r as:

P̂i,j =
#bi wins against bj in round r

#comparisons of bi and bj in round r
. (1)

If a pair (bi, bj) is compared in round r, it is compared cr =

⌊qr⌋ times. In round r, the parameter γr =
√
log
(
1
δ

)
/2cr

is used to eliminate bandits from the active set (the specific
elimination criteria depends on the algorithm).
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Algorithm 1 PCOMP(ALL PAIRS COMPARISONS)

1: Input: Bandits B, time-horizon T , rounds B, compari-
son parameters q and τ

2: K ← |B|, δ ← 1
6TK2B , active bandits A ← B, cr ←

⌊qr+τ−1⌋, γr ←
√
log(1/δ)/2cr, r ← 1

3: while number of comparisons ≤ T do
4: for all (bi, bj) ∈ A2, perform cr comparisons and

compute P̂i,j using Eq(1).
5: if ∃ bi, bj such that P̂i,j >

1
2 + γr then

6: A ← A \ {bj}
7: end if
8: r ← r + 1
9: end while

3.1. All Pairs Comparisons

We first describe the PCOMP algorithm. This algorithm takes
as input the set of bandits B, time-horizon T , rounds B and
comparison parameters q and τ . We will set the parameters
q = T 1/B and τ = 1, unless otherwise specified.1 In round
r ∈ [B], this algorithm compares each pair (bi, bj) ∈ A2 for
cr times. It then computes fresh estimates of the pairwise
probabilities P̂i,j for all (bi, bj) ∈ A2. If, for some bandit
bj , there exists bandit bi such that P̂i,j >

1
2+γr, then bandit

bj is eliminated from A. We provide the pseudo-code in
Algorithm 1.

The following theorem (see Appendix B for proof) describes
the regret bound obtained by PCOMP under the Condorcet
assumption, and formalizes Theorem 1.1.

Theorem 3.1. Given any set B of K bandits, time-horizon
T , roundsB, parameters q = T 1/B and τ = 1, the expected
regret of PCOMP for the batched K-armed dueling bandits
problem under the Condorcet assumption is at most

E[R(T )] ≤ 3KT 1/B log
(
6TK2B

) ∑
j:ϵj>0

1

ϵj
.

Setting ϵmin := minj:ϵj>0 ϵj , we get

E[R(T )] ≤
3K2T 1/B log

(
6TK2B

)
ϵmin

.

3.2. Seeded Comparisons Algorithms

In this section, we present two algorithms for the batched
dueling bandits problem, namely SCOMP and SCOMP2. The
algorithms work in two phases:

• In the first phase, the algorithms sample a seed set S
by including each bandit from B independently with

1We allow general parameters q and τ in order to allow PCOMP
to be used in conjunction with other policies.

probability 1/
√
K. This seed set is used to eliminate

bandits from the active set A.

• Under certain switching criteria, the algorithms enter
the second phase which involves running algorithm
PCOMP on some of the remaining bandits.

The algorithms differ in how the candidate set is used to
eliminate active bandits in the first phase.

In SCOMP, all pairwise comparisons between S (seed set)
and A (active bandits) are performed. Specifically, in round
r, every active bandit is compared with every bandit in S
for cr times. If, for some bandit bj , there exists bandit
bi such that P̂i,j >

1
2 + 3γr, then bandit bj is eliminated

(from A as well as S); note that the elimination criteria
here is stricter than in PCOMP. If, in some round r, there
exists bandit bj such that bj eliminates all bandits bi ∈
S, then the algorithm constructs a set A∗ = {bj ∈ A |
P̂j,i >

1
2+γr for all bi ∈ S}, and invokes PCOMP on bandits

A∗ with starting batch r. This marks the beginning of the
second phase, which continues until time T . We provide the
pseudocode in Algorithm 2.

Algorithm 2 SCOMP(SEEDED COMPARISONS)

1: Input: Bandits B, time-horizon T , rounds B
2: q ← T 1/B , δ ← 1

6TK2B , active bandits A ← B, cr ←
⌊qr⌋, γr ←

√
log(1/δ)/2cr, r ← 1

3: S ← add elements from B into S w.p. 1/
√
K

4: while number of comparisons ≤ T do
5: for all (bi, bj) ∈ S × A, compare bi and bj for cr

times and compute P̂i,j

6: if ∃bi ∈ S, bj ∈ A, P̂i,j >
1
2 + 3γr then

7: A ← A \ {bj}, S ← S \ {bj}
8: end if
9: if ∃bj such that P̂j,i >

1
2 + 3γr for all bi ∈ S then

10: construct set A∗ = {bj ∈ A | P̂j,i > 1
2 +

γr for all bi ∈ S}
11: r∗ ← r, T ∗ ← # comparisons until round r∗,

break
12: end if
13: r ← r + 1
14: end while
15: run PCOMP(A∗, T − T ∗, q, r∗)

We obtain the following result, which formalizes Theo-
rem 1.2, when the given instance satisfies SST and STI.

Theorem 3.2. Given any set B of K bandits, time-horizon
T , parameter B, SCOMP uses at most B + 1 batches, and
has expected regret bounded by

E[R(T )] =
∑

j:ϵj>0

O

(√
KT 1/B log(T )

ϵj

)
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under the strong stochastic transitivity and stochastic trian-
gle inequality assumptions.

Observe that this gives a worst-case regret bound of
O
(

K
√
KT 1/B log(T )

ϵmin

)
for SCOMP under SST and STI. We

can improve this by sampling each bandit from B indepen-
dently into the seed set with probability K−2/3: this gives
us the following result.

Theorem 3.3. Given any set B of K bandits, time-horizon
T , parameter B, there is an algorithm that uses at most
B + 1 batches, and has worst-case regret bounded by

E[R(T )] = O

(
K4/3T 1/B log(T )

ϵmin

)
under the strong stochastic transitivity and stochastic trian-
gle inequality assumptions.

To further improve this worst-case bound, we add more
rounds of adaptivity in SCOMP to obtain SCOMP2. Specif-
ically, each round r in the first phase is divided into two
rounds of adaptivity.

• In the first round r(1), pairwise comparisons among
the bandits in S are performed, and an undefeated bi∗r
is selected as a candidate. We say that bi defeats bj if
P̂i,j >

1
2 + γr

• In the second round r(2), the candidate bi∗r is used to
eliminate active bandits. A bandit bj is eliminated if
P̂i∗r ,j

> 1
2 + 5γr.

The switching criterion in SCOMP2 is different from that
of SCOMP. Here, if in some round r, there is a bandit bj
such that bj eliminates bi∗r , then the algorithm constructs
set A∗ = {bj ∈ A | P̂j,i∗r

> 1
2 + 3γr}, and invokes PCOMP

on bandits A∗ with starting batch r. See Algorithm 3 for a
formal description.

We show that SCOMP2 obtains an improved worst-case re-
gret bound (at the cost of additional adaptivity) over SCOMP
when the given instance satisfies SST and STI, thus proving
Theorem 1.3.

Theorem 3.4. Given any set B of K bandits, time-horizon
T and parameter B, SCOMP2 uses at most 2B + 1 batches,
and has worst-case expected regret bounded by

E[R(T )] = O

(
KBT 1/B log(T )

ϵmin

)
under strong stochastic transitivity and stochastic triangle
inequality, where ϵmin := minj:ϵj>0 ϵj .

The proofs of Theorems 3.2 and 3.4 can be found in Ap-
pendix B.

Algorithm 3 SCOMP2 (SEEDED COMPARISONS 2)

1: Input: Bandits B, time-horizon T , rounds B
2: q ← T 1/B , δ ← 1

6TK2B , active bandits A ← B, cr ←
⌊qr⌋, γr ←

√
log(1/δ)/2cr, r ← 1

3: S ← add elements from B into S w.p. 1/
√
K

4: while number of comparisons ≤ T do
5: r(1): compare all pairs in S for cr times; get P̂i,j .
6: candidate bi∗r ← any bandit i ∈ S with

maxj∈S P̂j,i ≤ 1
2 + γr.

7: r(2): for all bj ∈ A, compare bi∗r and bj for cr times
and compute P̂i∗r ,j

.
8: if ∃bj ∈ A, P̂i∗r ,j

> 1
2 + 5γr then

9: A ← A \ {bj}, S ← S \ {bj}
10: end if
11: if ∃bj such that P̂j,i∗r

> 1
2 + 5γr then

12: construct set A∗ = {bj ∈ A | P̂j,i∗r
> 1

2 + 3γr}
13: r∗ ← r, T ∗ ← # comparisons until round r∗,

break
14: end if
15: r ← r + 1
16: end while
17: run PCOMP(A∗, T − T ∗, q, r∗)

4. Regret Analysis
We present a sketch of the regret analysis for the algorithms
described in §3 in this section. Refer to Appendix B for
complete proofs.

The following lemma follows from a direct application of
Hoeffding’s inequality.

Lemma 4.1. For any batch r ∈ [B], and for any pair bi, bj
that are compared cr times, we have

P
(
|Pi,j − P̂i,j | > γr

)
≤ 2δ,

where γr =
√
log( 1δ )/2cr.

We analyze the regret of our algorithms under a good event,
G. We show that the G occurs with high probability; in the
event that G does not occur (denoted G), we incur a regret
of T . Towards defining G, we say that an estimate P̂i,j at
the end of batch r is correct if |P̂i,j − Pi,j | ≤ γr. We say
that G occurs if every estimate in every batch is correct.

Lemma 4.2. The probability that every estimate in every
batch of PCOMP, SCOMP, and SCOMP2 is correct is at least
1− 1/T .

Proof. Applying Lemma 4.1 and taking a union bound over
all pairs and batches (note SCOMP2 has at most 2B+1 ≤ 3B
batches), we get that the probability that some estimate
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is incorrect is at most K2 × 3B × 2δ = 1
T where δ =

1/6K2BT . Thus, P(G) ≤ 1
T .

Using Lemma 4.2, the expected regret (of any algorithm)
can be written as follows:

E[R(T )] = E[R(T ) | G] ·P(G) + E[R(T ) | G] ·P(G)

≤ E[R(T ) | G] + T · 1
T

= E[R(T ) | G] + 1 (2)

The proof of Theorem 3.1 can be found in Appendix B.

4.1. Proofs of Theorems 3.2, 3.3 and 3.4

In this section, we discuss the proofs of Theorems 3.2, 3.3
and 3.4. Henceforth, we assume the SST and STI properties.
We need the following definition. For a bandit bj , let Ej =
{bi ∈ B : ϵi,j > 0}; that is, the set of bandits superior to
bandit bj . We define rank(bj) = |Ej |. 2

As before, we analyze the regret of SCOMP and SCOMP2
under event G. By Lemma 4.2 and (2), we only need to
bound the expected regret under G; that is, we need to
bound E[R(T ) | G]. Conditioned on event G, the following
Lemmas 4.3,4.4 and 4.5 hold for both SCOMP and SCOMP2.

Lemma 4.3. The best bandit b1 is never deleted from A in
the elimination step of phase I.

Lemma 4.4. When the algorithm switches to PCOMP on set
A∗, we have b1 ∈ A∗ and |A∗| ≤ rank(bi∗S ) where bi∗S is
the best bandit in S.

Lemma 4.5. We have E[rank(bi∗S )] ≤
√
K and

E[rank(bi∗S )
2] ≤ 2K.

Using Lemmas 4.3, 4.4 and 4.5, we complete the proof of
Theorem 3.2.

Proof of Theorem 3.2. We bound the expected regret of
SCOMP conditioned on G. Let R1 and R2 denote the re-
gret incurred in phase I and II respectively.

Bounding R1. Fix a bandit bj . Let r denote the last round
such that bj ∈ A and switching does not occur (at the
end of round r). Let bi∗S be the best bandit in S. As j is
not eliminated by bi∗S , we have P̂i∗S ,j ≤ 1

2 + 3γr, which
implies (by event G) Pi∗S ,j ≤ 1

2 + 4γr. Moreover, as
switching doesn’t occur, we have mini∈S P̂1,i ≤ 1

2 + 3γr
(by Lemma 4.3, b1 is never deleted from A). We now
claim that P1,i∗S

≤ 1
2 + 4γr. Otherwise, by SST we have

mini∈S P1,i = P1,i∗S
> 1

2 + 4γr, which (by event G) im-
plies mini∈S P̂1,i >

1
2 + 3γr, a contradiction! It now fol-

2Note that SST and STI imposes a linear ordering on the
bandits. So, we can assume b1 ⪰ b2 ⪰ · · · ⪰ bK . Thus,
rank(bj) ≤ j and is at most the number of bandits strictly pre-
ferred over bj .

lows that ϵi∗S ,j ≤ 4γr and ϵ1,i∗S ≤ 4γr. Consider now two
cases:

1. b1 ⪰ bi∗S ⪰ bj . Then, by STI, ϵ1,j ≤ 8γr, and

2. b1 ⪰ bj ⪰ bi∗S . Then, by SST ϵ1,j ≤ ϵi∗S ,j ≤ 4γr.

In either case, we have ϵj = ϵ1,j ≤ 8γr, which implies
cr ≤ log(1/δ)

2γ2
r
≤ 32 log(1/δ)

ϵ2j
.

Now, let Tj be a random variable denoting the number of
comparisons of bj with other bandits before switching. By
definition of round r, bandit bj will participate in at most
one round after r (in phase I). So, we have

Tj ≤
{
|S| ·

∑r+1
τ=1 cτ if bj ̸∈ S

K ·
∑r+1

τ=1 cτ if bj ∈ S

Taking expectation over S, we get

E [Tj ] ≤ E

[
K

r+1∑
τ=1

cτ | bj ∈ S

]
·P(bj ∈ S)

+ E

[
|S|

r+1∑
τ=1

cτ | bj ̸∈ S

]
·P(bj /∈ S)

≤

(
K

r+1∑
τ=1

cτ

)
· 1√

K
+ E[|S| | bj ̸∈ S] ·

r+1∑
τ=1

cτ

≤ 2
√
K

r+1∑
τ=1

cτ ,

where the third inequality uses E[|S| | bj ̸∈ S] ≤
√
K.

Moreover,

r+1∑
τ=1

cτ ≤ 2T 1/B · cr = O

(
T 1/B log(1/δ)

ϵ2j

)
.

Thus, E[R1] =
∑
j

E [Tj ] · ϵj

=
∑

j:ϵj>0

O

(
T 1/B

√
K log(6K2TB)

ϵj

)
(3)

Bounding R2. We now bound the regret after switching.
From Lemmas 4.3 and 4.4, we know that b1 is never deleted,
b1 ∈ A∗, and |A∗| ≤ rank(bi∗S ). For any A∗, applying
Theorem 3.1 we get,

R2 ≤ 3|A∗|T 1/B log(6T |A∗|2B)
∑

j∈A∗:ϵj>0

1

ϵj
(4)

≤ 3|A∗|T 1/B log(6TK2B)
∑

j∈B:ϵj>0

1

ϵj
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By Lemma 4.5, E[|A∗|] ≤
√
K, hence

E[R2] ≤ 3
√
KT 1/B log(6TK2B)

∑
j:ϵj>0

1

ϵj
(5)

Combining (3) and (5), we get

E[R(T )|G] =
∑

j:ϵj>0

O

(
T 1/B

√
K log(6K2TB)

ϵ21,j

)
,

and by (2), this concludes the proof.

Proof of Theorem 3.3. To prove Theorem 3.3, we use
SCOMP with sampling probability (for sampling a bandit
into the seed set) equal to K−2/3. Note that Lemmas 4.3
and 4.4 continue to hold. The following lemma can be
proved exactly as Lemma 4.5, where the sampling probabil-
ity p = K−2/3.

Lemma 4.6. We have E[rank(bi∗S )] ≤ K2/3 and
E[rank(bi∗S )

2] ≤ K4/3.

We can bound R1, as in the proof of Theorem 3.2, to obtain:

E[R1] ≤ O
(
K4/3T 1/B log(6K2TB)

ϵmin

)
(6)

From (4), we have

R2 ≤ 3|A∗|T 1/B log(6TK2B) · |A
∗|

ϵmin

which gives

E[R2] ≤
3 E[|A∗|2] T 1/B log(6TK2B)

ϵmin
.

Using Lemma 4.6, we get

E[R2] ≤ O
(
K4/3T 1/B log(6TK2B)

ϵmin

)
. (7)

Combining (6) and (7) completes the proof.

The proof of Theorem 3.4 follows along the same lines but
requires additional ideas, and is deferred to Appendix B.

5. Experimental Results
We provide a summary of computational results of our al-
gorithms for the batched dueling bandits problem. We con-
ducted our computations using C++ and Python 2.7 with
a 2.3 Ghz Intel Core i5 processor and 16 GB 2133 MHz
LPDDR3 memory.

Experimental Setup. We compare all our algorithms,
namely PCOMP, SCOMP, and SCOMP2 to a representative set
of sequential algorithms for dueling bandits. Specifically,
we use the dueling bandit library due to (Komiyama et al.,
2015), and compare our algorithms to RUCB (Zoghi et al.,
2014), RMED1 (Komiyama et al., 2015), and BEAT-THE-
MEAN (Yue & Joachims, 2011). Henceforth, we refer to
BEAT-THE-MEAN as BTM. We plot the cumulative regret
R(t) incurred by the algorithms against time t. Furthermore,
to illustrate the dependence on B, we run another set of ex-
periments on SCOMP2 and plot the cumulative regret R(t)
incurred by SCOMP2 against time t for varying values of B.3

We perform these experiments using both real-world and
synthetic data. We use the following datasets:

Six rankers. This real-world dataset is based on the 6
retrieval functions used in the engine of ArXiv.org.

Sushi. The Sushi dataset is based on the Sushi preference
dataset (Kamishima, 2003) that contains the preference data
regarding 100 types of Sushi. A preference dataset using
the top-16 most popular types of sushi is obtained.

BTL-Uniform. We generate synthetic data using the
Bradley-Terry-Luce (BTL) model. Under this model, each
arm bi ∈ B is associated with a weight wi > 0 (sam-
pled uniformly in the interval (0, 1]), and we set Pi,j =
wi/(wi + wj). We set the number of arms K = 100.
Note that the data generated in this way satisfies SST and
STI (Yue et al., 2012). We refer to this data as SYN-BTL.

Hard-Instance. The last dataset is a synthetic dataset in-
spired by the hard instances that we construct for proving
our lower bound (see Theorem 1.4). Again, we setK = 100,
and pick ℓ ∈ [K] uniformly at random as the Condorcet win-
ner. We select ∆ uniformly in (0, 0.5), and set Pℓ,i =

1
2 +∆

for i ̸= ℓ. Furthermore, for all i, j ̸= ℓ, we set Pi,j = 1/2.
We refer to this data as SYN-CD.

Note that there exists a Condorcet winner in all datasets.
Moreover, the SYN-BTL dataset satisfies SST and STI. We
repeat each experiment 10 times and report the average re-
gret. In our algorithms, we use the KL-divergence based
confidence bound (as in RMED1) for elimination as it per-
forms much better empirically (and our theoretical bounds
continue to hold). In particular, we replace lines 5, 6
and 8 in PCOMP, SCOMP and SCOMP2, respectively, with
KL-divergence based elimination criterion that eliminates
an arm i if there exists another arm j if P̂ij < 1

2 and
Nij · DKL(P̂ij ,

1
2 ) > log(Tδ) where Nij is the number

of times arm i and j are played together. We report the
average cumulative regret at each time step.

Comparison with sequential dueling bandit algorithms.
3We also conducted these experiment for PCOMP and SCOMP

and the conclusions were similar.
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Figure 1: Regret v/s t plots of algorithms

As mentioned earlier, we compare our algorithms against a
representative set of sequential dueling bandits algorithms
(RUCB (Zoghi et al., 2014), RMED1 (Komiyama et al.,
2015), and BTM (Yue & Joachims, 2011)). Note that the
purpose of these experiments is to perform a sanity check to
ensure that our batched algorithms, using a small number of
batches, perform well when compared with sequential algo-
rithms. We set α = 0.51 for RUCB, and f(K) = 0.3K1.01

for RMED1, and γ = 1.3 for BTM. We chose these param-
eters as they are known to perform well both theoretically
and empirically (Komiyama et al., 2015). We set T = 105,
δ = 1/TK2 and B = ⌊log(T )⌋ = 16. We plot the results
in Figure 1. We observe that SCOMP2 performs comparably
to RMED1 in all datasets, even outperforms RUCB in 3 out
of the 4 datasets, and always beats BTM. Notice that both
PCOMP and SCOMP considerably outperform BTM on the six
rankers and sushi data; however their performance degrades
on the synthetic data demonstrating the dependence on K.

Trade-off with number of batches B. We study the trade-
off of cumulative regret against the number of batches using
SCOMP2. We set T = 105, and varyB ∈ {2, 8, 16}. We also
plot the regret incurred by RMED1 as it performs the best
amongst all sequential algorithms (and thus serves as a good
benchmark). We plot the results in Figure 2 in Appendix A.
We observe that as we increase the number of batches, the
(expected) cumulative regret decreases. Furthermore, we
observe that on the synthetic datasets (where K = 100), the

regret of SCOMP2 approaches that of RMED1; in fact, the
regret incurred is almost identical for SYN-BTL dataset.

6. Conclusion
We introduced and studied the batched dueling bandit prob-
lem, where the learning algorithm is only allowed to adapt
a limited number of times. Our main contribution was an
algorithm for this problem under the SST and STI setting.
This algorithm’s regret (in a logarithmic number of batches)
nearly matches the regret of the best known sequential algo-
rithms. We also provided a lower bound demonstrating the
dependence of the regret on the number of batches.

An avenue for future work is to obtain batched algorithms
(with logarithmic number of batches) that exactly match the
regret bounds of the best sequential algorithms for dueling
bandits under SST and STI. Another direction concerns the
batched dueling bandits problem under the more general
Condorcet setting. Although we obtained a batched algo-
rithm (PCOMP) for this setting, its regret (in a logarithmic
number of batches) is still not asymptotically tight compared
to known sequential algorithms.
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A. Additional Plots
In this section, we provide the missing plots from §5.
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Figure 2: Regret v/s B for SCOMP2.

B. Regret Analysis
We present the regret analysis for the algorithms described in §3 in this section. We first prove the following lemma which
will be used in the analysis of all three algorithms.

Lemma B.1. For any batch r ∈ [B], and for any pair bi, bj that are compared cr times, we have

P
(
|Pi,j − P̂i,j | > γr

)
≤ 2δ,

where γr =
√
log( 1δ )/2cr.

Proof. Note that E[P̂i,j ] = Pi,j , and applying Hoeffding’s inequality gives

P
(
|P̂i,j − Pi,j | > γr

)
≤ 2 exp

(
−2cr · γ2r

)
= 2δ.
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We analyze the regret of our algorithms under a good event, G. We show that the G occurs with high probability; in the
event that G does not occur (denoted G), we incur a regret of T . Towards defining G, we say that an estimate P̂i,j at the end
of batch r is correct if |P̂i,j − Pi,j | ≤ γr. We say that G occurs if every estimate in every batch is correct.
Lemma B.2. The probability that every estimate in every batch of PCOMP, SCOMP, and SCOMP2 is correct is at least 1− 1/T .

Proof. Applying Lemma B.1 and taking a union bound over all pairs and batches (note SCOMP2 has at most 2B + 1 ≤ 3B
batches), we get that the probability that some estimate is incorrect is at most K2 × 3B × 2δ = 1

T where δ = 1/6K2BT .
Thus, P(G) ≤ 1

T .

Using Lemma B.2, the expected regret (of any algorithm) can be written as follows:

E[R(T )] = E[R(T ) | G] ·P(G) + E[R(T ) | G] ·P(G)

≤ E[R(T ) | G] + T · 1
T

= E[R(T ) | G] + 1 (8)

Proof of Theorem 3.1. First, recall that in each batch of PCOMP every pair of active arms is compared cr times where
cr = ⌊qr⌋ with q = T 1/B . Since, qB = T , PCOMP uses at most B batches.

Following Lemma B.2 and (8), we only need to bound E[R(T ) | G]. Given G, whenever Pi,j >
1
2 +2γr (that is ϵi,j > 2γr),

we have P̂i,j >
1
2 + γr: so bandit bj will be eliminated by bi. Furthermore, given bandits bi and bj such that bi ⪰ bj , bi will

never be eliminated by bj under event G. This implies that b1 is never eliminated: this is crucial as we use b1 as an anchor to
eliminate sub-optimal bandits. Recall that the regret can be written as follows:

R(T ) =
1

2

K∑
j=1

Tjϵ1,j

where Tj is the number of comparisons that bj partakes in. We proceed by bounding Tj . Towards this end, let T1,j be a
random variable denoting the number of comparisons performed between b1 and bj . As b1 is never eliminated, Tj ≤ K ·T1,j .
Let r denote the last round such that bj survives round r, i.e., bj ∈ A at the end of round r. We can then conclude that
ϵj := ϵ1,j ≤ 2γr (else b1 would eliminate bj in round r). We get

ϵj ≤ 2 ·

√
log( 1δ )

2cr

which on squaring and re-arranging gives:

cr ≤
2 log

(
1
δ

)
ϵ2j

(9)

Now, note that bj could have been played for at most one more round. Thus, we have

T1,j =

r+1∑
τ=1

cτ ≤ q
r∑

τ=0

cτ ≤ 2q · cr

where the final inequality follows from summing up
∑r−1

τ=1 cτ , and using B ≤ log(T ). Then, we have Tj ≤ 2Kq · cr. Using
9, and plugging in q = T 1/B and δ = 1/6TK2B we have

E[R(T ) | G] ≤ 1

2

∑
j

(
2KT 1/B ·

2 log
(
6TK2B

)
ϵ2j

)
· ϵj

=
∑

j:ϵj>0

KT 1/B log
(
6TK2B

)
ϵj

= 2KT 1/B log
(
6TK2B

) ∑
j:ϵj>0

1

ϵj
.
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Note that when ϵj = 0 for bj ∈ B, we exclude the corresponding term in the regret bound. Combining this with (8) gives
the first bound of Theorem 3.1. Plugging in ϵmin = minj:ϵj>0 ϵj completes the proof.

B.1. Proofs of Theorems 3.2 and 3.4

In this section, we provide the proofs of Theorem 3.2 and Theorem 3.4. Henceforth, we assume the SST and STI properties.
We need the following definition. For a bandit bj , let Ej = {bi ∈ B : ϵi,j > 0}; that is, the set of bandits superior to bandit
bj . We define rank(bj) = |Ej |. 4

As before, we analyze the regret of SCOMP and SCOMP2 under event G. By Lemma B.2 and (8), we only need to bound the
expected regret under G; that is, we need to bound E[R(T ) | G]. Conditioned on event G, the following Lemmas B.3,B.4
and B.5 hold for both SCOMP and SCOMP2.

Lemma B.3. The best bandit b1 is never deleted from A in the elimination step of phase I.

Proof. In SCOMP, bi deletes bj in batch r if P̂i,j >
1
2 + 3γr, and in SCOMP2 if P̂i,j >

1
2 + 5γr. If b1 is deleted due to some

bandit bj , then by applying Lemma B.1 (in either case), we get Pj,1 >
1
2 + 2γr, a contradiction.

Lemma B.4. When the algorithm switches to PCOMP on set A∗, we have b1 ∈ A∗ and |A∗| ≤ rank(bi∗S ) where bi∗S is the
best bandit in S.

Proof. We first consider algorithm SCOMP. Here, the switching occurs when, in some batch r, there exists bj∗ ∈ A such
that P̂j∗,i >

1
2 + 3γr for all bi ∈ S, Moreover, A∗ = {bj ∈ A | P̂j,i >

1
2 + γr for all bi ∈ S}. Consider any bi ∈ S.

Given G, P̂j∗,i >
1
2 + 3γr implies that Pj∗,i >

1
2 + 2γr. By SST, P1,i ≥ Pj∗,i, and again using event G, P̂1,i >

1
2 + γr.

Thus, b1 ∈ A∗. We now bound |A∗|. Let bi∗S be the best bandit in S, i.e., the bandit of smallest rank. Consider any bandit
bj ∈ A∗. We have P̂j,i∗S

> 1
2 + γr, which implies (by event G) that Pj,i∗S

> 1
2 . So, we must have bj ≻ bi∗S . Consequently,

A∗ ⊆ {bj ∈ B : bj ≻ bi∗S}, which implies |A∗| ≤ rank(bi∗S ).

We now consider SCOMP2. Here, we select an undefeated candidate bandit bi∗r in batch r, and the algorithm switches
if there exists bj∗ ∈ A such that P̂j∗,i∗r

> 1
2 + 5γr. Moreover, A∗ = {bj ∈ A | P̂j,i∗r

> 1
2 + 3γr}. Given G, we

have Pj∗,i∗r
> 1

2 + 4γr. By SST and again applying G, we obtain P̂1,i∗r
> 1

2 + 3γr. So, b1 ∈ A∗. We now argue that
|A∗| ≤ rank(bi∗S ). Again, let bi∗S be the best bandit in S. As bi∗r is undefeated after round r(1), we have P̂i∗S ,i∗r

≤ 1
2 + γr,

which implies Pi∗S ,i∗r
≤ 1

2 +2γr (by event G). Now, consider any bandit bj ∈ A∗. We have P̂j,i∗S
> 1

2 +3γr, which implies
(by event G) that Pj,i∗S

> 1
2 + 2γr. It follows that bj ≻ bi∗S for all bj ∈ A∗. Hence, |A∗| ≤ rank(bi∗S ).

Lemma B.5. We have E[rank(bi∗S )] ≤
√
K and E[rank(bi∗S )

2] ≤ 2K.

Proof. Let R be a random variable denoting rank(bi∗S ). Note that R = k if, and only if, the first k − 1 bandits are not
sampled into S, and the kth bandit is sampled into S. Thus, R is a geometric random variable with success probability
p := 1√

K
.5 Recall that the mean and variance of a geometric random variable are 1

p and 1
p2 − 1

p respectively. So,

E[R] ≤ 1
p =
√
K. Moreover, E[R2] ≤ 2

p2 = 2K.

Using Lemmas B.3, B.4 and B.5, we complete the proofs of Theorems 3.2 and 3.4.

Proof of Theorem 3.2. We bound the expected regret of SCOMP conditioned on G. Let R1 and R2 denote the regret incurred
in phase I and II respectively.

4 Note that SST and STI imposes a linear ordering on the bandits. So, we can assume b1 ⪰ b2 ⪰ · · · ⪰ bK . Thus, rank(bj) < j; that
is, it is at most the number of bandits strictly preferred over bj .

5Strictly speaking, R is truncated at K.
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Bounding R1. Fix a bandit bj . Let r denote the last round such that bj ∈ A and switching does not occur (at the end of
round r). Let bi∗S be the best bandit in S . As bj is not eliminated by bi∗S , we have P̂i∗S ,j ≤ 1

2 + 3γr, which implies (by event
G) Pi∗S ,j ≤ 1

2 + 4γr. Moreover, as switching doesn’t occur, we have mini∈S P̂1,i ≤ 1
2 + 3γr (by Lemma B.3, b1 is never

deleted from A). We now claim that P1,i∗S
≤ 1

2 + 4γr. Otherwise, by SST we have mini∈S P1,i = P1,i∗S
> 1

2 + 4γr, which
(by event G) implies mini∈S P̂1,i >

1
2 + 3γr, a contradiction! It now follows that ϵi∗S ,j ≤ 4γr and ϵ1,i∗S ≤ 4γr. Consider

now two cases:

1. b1 ⪰ bi∗S ⪰ bj . Then, by STI, ϵ1,j ≤ 8γr, and

2. b1 ⪰ bj ⪰ bi∗S . Then, by SST ϵ1,j ≤ ϵi∗S ,j ≤ 4γr.

In either case, we have ϵj = ϵ1,j ≤ 8γr, which implies cr ≤ log(1/δ)
2γ2

r
≤ 32 log(1/δ)

ϵ2j
.

Now, let Tj be a random variable denoting the number of comparisons of bj with other bandits before switching. By
definition of round r, bandit bj will participate in at most one round after r (in phase I). So, we have

Tj ≤
{
|S| ·

∑r+1
τ=1 cτ if bj ̸∈ S

K ·
∑r+1

τ=1 cτ if bj ∈ S

Taking expectation over S, we get

E [Tj ] ≤ E

[
K

r+1∑
τ=1

cτ | bj ∈ S

]
·P(bj ∈ S) + E

[
|S|

r+1∑
τ=1

cτ | bj ̸∈ S

]
·P(bj /∈ S)

≤

(
K

r+1∑
τ=1

cτ

)
· 1√

K
+ E[|S| | bj ̸∈ S] ·

r+1∑
τ=1

cτ ≤ 2
√
K

r+1∑
τ=1

cτ ,

where the third inequality uses E[|S| | bj ̸∈ S] ≤
√
K. Moreover,

r+1∑
τ=1

cτ ≤ 2T 1/B · cr = O

(
T 1/B log(1/δ)

ϵ2j

)
.

Thus,

E[R1] =
∑
j

E [Tj ] · ϵj =
∑

j:ϵj>0

O

(
T 1/B

√
K log(6K2TB)

ϵj

)
(10)

Bounding R2. We now bound the regret after switching. From Lemmas B.3 and B.4, we know that b1 is never deleted,
b1 ∈ A∗, and |A∗| ≤ rank(bi∗S ). For any A∗, applying Theorem 3.1 we get,

R2 ≤ 3|A∗|T 1/B log(6T |A∗|2B)
∑

j∈A∗:ϵj>0

1

ϵj
≤ 3|A∗|T 1/B log(6TK2B)

∑
j∈B:ϵj>0

1

ϵj

By Lemma B.5, E[|A∗|] ≤
√
K, hence

E[R2] ≤ 3
√
KT 1/B log(6TK2B)

∑
j:ϵj>0

1

ϵj
(11)

Combining (10) and (11), we get

E[R(T )|G] =
∑

j:ϵj>0

O

(
T 1/B

√
K log(6K2TB)

ϵj

)
,

and by (8), this concludes the proof.

Proof of Theorem 3.4. We bound the expected regret conditioned on G. Let R1 and R2 denote the regret incurred in phase I
and II respectively.
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Bounding R1. Fix a bandit bj . Let r denote any round such that bj ∈ A and switching does not occur (at the end of round

r). As in the proof of Theorem 3.2, we first show that cr = O
(

log(1/δ)
ϵ2j

)
. Recall that bi∗r is the candidate in round r. As bj

is not eliminated by bi∗r , we have P̂i∗r ,j ≤
1
2 + 5γr, which implies (by event G) Pi∗S ,j ≤ 1

2 + 6γr. Moreover, as switching
doesn’t occur, we have P̂1,i∗r

≤ 1
2 + 5γr (by Lemma B.3, b1 is never deleted from A). By event G, we get P1,i∗r

≤ 1
2 + 6γr.

It now follows that ϵi∗r ,j ≤ 6γr and ϵ1,i∗r ≤ 6γr. Consider now two cases:

1. b1 ⪰ bi∗r ⪰ bj . Then, by STI, ϵ1,j ≤ 12γr, and

2. b1 ⪰ bj ⪰ bi∗S . Then, by SST ϵ1,j ≤ ϵi∗r ,j ≤ 6γr.

In either case, we have ϵj = ϵ1,j ≤ 12γr, which implies cr ≤ log(1/δ)
2γ2

r
= O

(
log(1/δ)

ϵ2j

)
.

We further divide R1 into two kinds of regret: R(c)
1 and R(n)

1 where R(c)
1 refers to the regret incurred by candidate arms and

R
(n)
1 is the regret incurred by non-candidate arms.

Bounding R(n)
1 . For any bandit bj , let Tj be a random variable denoting the number of comparisons of bj (in phase I)

when bj is not a candidate. Also, let r be the last round such that bj ∈ A and switching doesn’t occur. So, bj will participate
in at most one round after r, and

Tj ≤
{ ∑r+1

τ=1 cτ if bj ̸∈ S
|S| ·

∑r+1
τ=1 cτ if bj ∈ S

Taking expectation over S, we get

E [Tj ] ≤ E

[
|S|

r+1∑
τ=1

cτ | bj ∈ S

]
·P(bj ∈ S) + E

[
r+1∑
τ=1

cτ | bj ̸∈ S

]
·P(bj /∈ S)

≤
r+1∑
τ=1

cτ ·
(

1√
K
· E[|S| | bj ∈ S] + 1

)
≤ (2 +

1√
K

) ·
r+1∑
τ=1

cτ ,

where the third inequality uses E[|S| | bj ∈ S] ≤ 1 +
√
K.

Moreover, using cr = O
(

log(1/δ)
ϵ2j

)
, we have

∑r+1
τ=1 cτ = O

(
T 1/B log(1/δ)

ϵ2j

)
. Thus,

E[R(n)
1 ] =

∑
j

E [Tj ] · ϵj ≤
∑

j:ϵj>0

O

(
T 1/B log

(
1
δ

)
ϵ1,j

)
≤ O

(
T 1/BK log

(
1
δ

)
ϵmin

)
(12)

Bounding R
(c)
1 . Observe that if bj is a candidate in round r, then the regret incurred by bj in round r is at most

Kcr · ϵ1,j . Also, cr−1 ≤ O
(

log( 1
δ )

ϵ2j

)
because bj ∈ A and switching hasn’t occurred at end of round r − 1. Thus, we have

cr = T 1/Bcr−1 ≤ O
(

T 1/B log( 1
δ )

ϵ2j

)
. We can thus write

R
(c)
1 =

B∑
r=1

∑
j

Kcr · ϵj · I [i∗r = j] ,

where I [i∗r = j] is an indicator random variable denoting whether bj was the candidate bandit in round r. Observe that there
is exactly one candidate bandit, bi∗r , in each round. So,

R
(c)
1 = K

B∑
r=1

crϵi∗r ≤ K
B∑

r=1

O

(
T 1/B log

(
1
δ

)
ϵ2i∗r

)
· ϵi∗r

= K

B∑
r=1

O

(
T 1/B log

(
1
δ

)
ϵi∗r

)
≤ O

(
T 1/BKB log

(
1
δ

)
ϵmin

)
(13)
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Combining (12) and (13), we get

E[R1] ≤ O

(
T 1/BKB log

(
1
δ

)
ϵmin

)
(14)

Bounding R2. Finally, we bound the regret in phase II where we only have bandits A∗. From Lemmas B.3 and B.4, we
know that b1 ∈ A∗, and |A∗| ≤ rank(bi∗S ). For any A∗, applying Theorem 3.1 we get,

R2 ≤ 3|A∗|T 1/B log(6T |A∗|2B)
∑

j∈A∗:ϵj>0

1

ϵj
≤ 3|A∗|2 · T 1/B log(6TK2B) · 1

ϵmin

By Lemma B.5, E[|A∗|2] ≤ 2K, and so:

E[R2] ≤
6T 1/BK log(6TK2B)

ϵmin
(15)

Finally, combining (14) and (15) completes the proof.

C. Lower Bound
In this section, we present a lower bound for the batched dueling bandits problem under the SST and STI setting. Note that
this lower bound also applies to the more general Condorcet winner setting. The main result of this section is the following:

Theorem C.1. Given an integer B > 1, and any algorithm that uses at most B batches, there exists an instance of the
K-armed batched dueling bandit problem that satisfies the SST and STI conditions such that the expected regret

E[RT ] = Ω

(
KT 1/B

B2ϵmin

)
,

where ϵmin is defined with respect to the particular instance.

In order to prove this theorem, we will construct a family of instances such that any algorithm for batched dueling bandits
cannot simultaneously beat the above regret lower bound over all instances in the family. We exploit the fact that the
algorithm is unaware of the particular instance chosen from the family at run-time, and hence, is unaware of the gap ϵmin

under that instance.

Family of Instances :

• Let F be an instance where Pi,j =
1
2 for all i, j ∈ B.

• For j ∈ [B], let ∆j =
√
K

24B · T
(j−1)/2B . For j ∈ [B] and k ∈ [K], let Ej,k be an instance where bandit bk is the

Condorcet winner such that Pk,l =
1
2 +∆j for all l ∈ [K] \ {k} and Pl,m = 1

2 for all l,m ∈ [K] \ {k}.

• The family of instances := {Ej,k}j∈[B],k∈[K] ∪ {F}.

C.1. Proof of Theorem C.1

Let us fix an algorithm A for this problem. Let Tj = T j/B for j ∈ [B]. Let tj be the total (random) number of comparisons
until the end of batch j during the execution ofA. We will overload notation and denote by It the distribution of observations
seen by the algorithm when the underlying instance is I . We will sometimes use Pi,j(I) for the probability of i beating j
under an instance I to emphasize the dependence on I . We will also write ϵmin(I) to emphasize the dependence on the
underlying instance I .

We define event Aj as follows:
Aj = {tj′ < Tj′ ,∀j′ < j and tj ≥ Tj},
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and denote by Ej,k(Aj) the event that Aj occurs given that the instance selected is Ej,k. Similarly, F (Aj) denotes the event
that Aj occurs when the instance selected is F . Now, define

pj =
1

K

K∑
l=1

P(Ej,l(Aj)).

Observe that pj is the average probability of event Aj conditional on the instance having gap ∆j .

Lemma C.2.
∑B

j=1 pj ≥
1
2 .

Proof. Note that the event Aj is determined by observations until Tj−1. This is because tj−1 < Tj−1, and once the
observations until tj−1 are seen: the next batch j determines whether or not Aj occurs. Hence, in order to bound the
probability of Aj under two different instances F and Ej,l we use the Pinsker’s inequality as

|P(F (Aj))−P(Ej,l(Aj))| ≤
√

1

2
DKL(FTj−1 ||ETj−1

j,l )

for l ∈ [K]. Let τl be the random variable for the number of times arm l is played until Tj−1. We first bound
DKL(F

Tj−1 ||ETj−1

j,l ) as

DKL(F
Tj−1 ||ETj−1

j,l )
(a)
=

Tj−1∑
t=1

DKL
(
Pt1,t2(F ) || Pt1,t2(Ej,l)

)
(b)

≤
Tj−1∑
t=1

Pr
F
(arm l is played in trial t) ·DKL

(
1

2
|| 1
2
+ ∆j

)
(c)

≤ EF [τl] · 4∆2
j , (16)

where (a) follows from the fact that, given F , the outcome of comparisons are independent across trials, (b) follows from
the fact that the KL-divergence between Pt1,t2(F ) and Pt1,t2(Ej,k) is non-zero only when arm l is played in trial t, and (c)

follows from the fact that DKL(p||q) ≤ (p−q)2

q·(1−q) . Using the above bounds, we have that

1

K

K∑
l=1

|P(F (Aj))−P(Ej,l(Aj))| ≤
1

K

K∑
l=1

√
1

2
DKL(FTj−1 ||ETj−1

j,l )

≤ 1

K

K∑
l=1

√
1

2
· 4∆2

jEF [τl] =
1

K

K∑
l=1

√
2∆2

jEF [τl]

(a)

≤

√
2∆2

jEF [
∑K

l=1 τl]

K

(b)

≤

√
2∆2

j · 2Tj−1

K
=

1

2B
,

where (a) follows from the concavity of
√
x and Jensen’s inequality, and (b) follows from the fact that

∑K
l=1 τl ≤ Tj−1.

We thus have

|P(F (Aj))− pj | = |P(F (Aj))−
1

K

K∑
l=1

P(Ej,l(Aj))|

≤ 1

K

K∑
l=1

|P(F (Aj))−P(Ej,l(Aj))| ≤
1

2B
.



Batched Dueling Bandits

Finally, we can write

B∑
j=1

pj ≥
B∑

j=1

(P(F (Aj))−
1

2B
) ≥

B∑
j=1

P(F (Aj))−
1

2
≥ 1

2
.

As a consequence of this lemma, we can conclude that there exists some j ∈ [B] such that pj ≥ 1
2B . We focus on the event

where gap is ∆j , and prove that when pj ≥ 1
2B , A must suffer a high regret leading to a contradiction. The next lemma

formalizes this.

Lemma C.3. If, for some j, pj ≥ 1
2B , then

sup
I:ϵmin(I)=∆j

E[RT (I)] ≥ Ω

(
KT 1/B

B2∆j

)

Proof. Fix k ∈ [K]. We will construct a family of instances {Qj,k,l}l ̸=k where Qj,k,l is defined as:

Instance Qj,k,l: Arm l is the Condorcet winner and the pairwise preferences are defined as:

Plm =
1

2
+ 2∆j ,∀m ∈ [K] \ {l}; Pkm =

1

2
+∆j ,∀m ∈ [K] \ {l, k};

and Pmm′ = 1
2 for remaining pairs (m,m′).

We also let Qj,k,k := Ej,k. Note that the regret is ≥ ∆j if the underlying instance is Qj,k,l and the pair played is not (bl, bl).
We have that

sup
I:ϵmin(I)=∆j

E[RT (I)] ≥ ∆j

T∑
t=1

1

K

∑
l ̸=k

Qt
j,k,l ((bt1 , bt2) ̸= (bl, bl)) ,

where Qt
j,k,l denotes the distribution of observations available at time t under instance Qj,k,l and Qt

j,k,l ((bt1 , bt2) ̸= (bl, bl))

is the probability that the algorithm does not play arm (bl, bl) at time t under Qt
j,k,l. In order to bound the above quantity we

will need the following lemma from (Gao et al., 2019).

Lemma C.4 (Lemma 3 of (Gao et al., 2019)). Let Q1, · · ·QK be probability measures on some common probability space
(Ω,F), and ψ : Ω→ [K] be any measurable function (i.e., test). Then, for any tree T = ([K], E) with vertex set [K] and
edge set E,

1

K

K∑
i=1

Qi(ψ ̸= i) ≥ 1

K

∑
(l,l′)∈E

∫
min{dQl, dQl′} .
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Using the above lemma for the star graph centered at k, we have that

sup
I:ϵmin(I)=∆j

E[RT (I)] ≥ ∆j

T∑
t=1

1

K

∑
l ̸=k

∫
min{dQt

j,k,k, dQ
t
j,k,l}

(a)

≥ ∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
min{dQt

j,k,k, dQ
t
j,k,l}

(b)

≥ ∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
min{dQTj

j,k,k, dQ
Tj

j,k,l}

≥∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
Aj

min{dQTj

j,k,k, dQ
Tj

j,k,l}

(c)

≥ ∆j

Tj∑
t=1

1

K

∑
l ̸=k

∫
Aj

min{dQTj−1

j,k,k , dQ
Tj−1

j,k,l } ,

where (a) follows because Tj ≤ T , (b) follows due to the fact that
∫
min{dP, dQ} = 1 −DTV(P,Q) and the fact that

DTV(Q
Tj

j,k,k, Q
Tj

j,k,l) is at least DTV(Q
t
j,k,k, Q

t
j,k,l) as the sigma algebra FQt

j,k,k
of Qt

j,k,k is a subset of the sigma algebra

F
Q

Tj
j,k,k

of QTj

j,k,k, (c) follow from the fact that the event Aj is determined by observations until Tj−1 as explained in the

proof of Lemma C.2. We then have that∫
Aj

min{dQTj−1

j,k,k , dQ
Tj−1

j,k,l } =
∫
Aj

dQ
Tj−1

j,k,k + dQ
Tj−1

j,k,l − |dQ
Tj−1

j,k,k − dQ
Tj−1

j,k,l |
2

=
Q

Tj−1

j,k,k(Aj) +Q
Tj−1

j,k,l (Aj)

2
−
∫
Aj

|dQTj−1

j,k,k − dQ
Tj−1

j,k,l |
2

(a)

≥ Q
Tj−1

j,k,k(Aj)−
1

2
DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
−DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
= Q

Tj−1

j,k,k(Aj)−
3

2
DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
,

where (a) follows from the fact that DTV(P,Q) = supA |P (A)−Q(A)|. Let us define τl to be the random variable for the
number of times arm l is played until Tj−1 We also have that

1

K

∑
l ̸=k

DTV

(
Q

Tj−1

j,k,k , Q
Tj−1

j,k,l

)
≤ 1

K

∑
l ̸=k

√
1

2
DKL(Q

Tj−1

j,k,k ||Q
Tj−1

j,k,l )

(a)

≤ 1

K

∑
l ̸=k

√
1

2
· 16∆2

jEEj,k
[τl] =

1

K

∑
l ̸=k

√
8∆2

jEEj,k
[τl]

(b)

≤

√
8∆2

jEEj,k
[
∑

l ̸=k τl]

K

(c)

≤

√
8∆2

j

K
2Tj−1 =

1

6B
,

where (a) follows from a similar calculation as Equation (16) in the proof of Lemma C.2, (b) follows from the concavity of√
x and Jensen’s inequality, and (c) follows from the fact that

∑K
l=1 τl ≤ Tj−1.

Combining ?????? we have that

sup
I:ϵmin(I)=∆j

E[RT (I)] ≥ ∆jTj

(
P(Ej,k(Aj))−

1

4B

)
.
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Since the above inequality holds for all k ∈ [K], by averaging we get

sup
I:ϵmin(I)=∆j

E[RT (I)] ≥ ∆jTj

(
1

K

K∑
k=1

P(Ej,k(Aj))−
1

4B

)

= ∆jTj

(
pj −

1

4B

)
≥ ∆jTj

1

4B
.

Substituting the value of ∆jTj we get

sup
I:ϵmin(I)=∆j

E[RT (I)] ≥ ∆jTj
1

4B
=

√
K

24B
T−(j−1)/2BT j/B 1

4B

=

√
K

24B
T (j−1)/2BT 1/B 1

4B
= Ω

(
KT 1/B

B2∆j

)
.

Finally,
∑B

j=1 pj ≥
1
2 implies that there exists j ∈ [B] with pj ≥ 1/2B. Combining the two lemmas above, we get that

there exists j ∈ [B] with pj ≥ 1/2B such that the algorithm incurs a regret of Ω
(

KT 1/B

B2∆j

)
. In this case, there must exist an

instance Ej,k with gap ϵmin(Ej,k) = ∆j such that the regret of the algorithm under Ej,k is Ω
(

KT 1/B

B2∆j

)
. This completes

the proof of our lower bound.


