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Abstract
Tree-based models such as decision trees and
random forests (RF) are a cornerstone of modern
machine-learning practice. To mitigate overfit-
ting, trees are typically regularized by a variety of
techniques that modify their structure (e.g. prun-
ing). We introduce Hierarchical Shrinkage (HS),
a post-hoc algorithm that does not modify the
tree structure, and instead regularizes the tree by
shrinking the prediction over each node towards
the sample means of its ancestors. The amount
of shrinkage is controlled by a single regulariza-
tion parameter and the number of data points in
each ancestor. Since HS is a post-hoc method,
it is extremely fast, compatible with any tree-
growing algorithm, and can be used synergisti-
cally with other regularization techniques. Ex-
tensive experiments over a wide variety of real-
world datasets show that HS substantially in-
creases the predictive performance of decision
trees, even when used in conjunction with other
regularization techniques. Moreover, we find that
applying HS to each tree in an RF often improves
accuracy, as well as its interpretability by sim-
plifying and stabilizing its decision boundaries
and SHAP values. We further explain the suc-
cess of HS in improving prediction performance
by showing its equivalence to ridge regression
on a (supervised) basis constructed of decision
stumps associated with the internal nodes of a
tree. All code and models are released in a full-
fledged package available on Github.1
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1HS is integrated into the imodels package
� github.com/csinva/imodels (Singh et al., 2021) with an sklearn-
compatible API. Experiments for reproducing the results here
can be found at � github.com/Yu-Group/imodels-experiments.

1. Introduction
Decision tree models, used for supervised learning since
the 1960s (Morgan & Sonquist, 1963; Messenger & Man-
dell, 1972; Quinlan, 1986), have recently attained renewed
prominence because they embody key elements of inter-
pretability: shallow trees are easily described and visual-
ized, and can even be implemented by hand. While the
precise definition and utility of interpretability have been
a subject of much debate (Murdoch et al., 2019; Doshi-
Velez & Kim, 2017; Rudin, 2019; Rudin et al., 2021), all
agree that it is an important notion in high-stakes decision-
making, such as medical-risk assessment and criminal jus-
tice. For this reason, decision trees have been widely ap-
plied in both areas (Steadman et al., 2000; Kuppermann
et al., 2009; Letham et al., 2015; Angelino et al., 2017).

By far the most popular decision tree algorithm is Clas-
sification and Regression Trees (CART) (Breiman et al.,
1984). These can be ensembled to form a Random Forest
(RF) (Breiman, 2001) or used as weak learners in Gradi-
ent Boosting (GB) (Friedman, 2001); both algorithms have
achieved state-of-the-art performance over a wide class of
prediction problems (Caruana & Niculescu-Mizil, 2006;
Caruana et al., 2008; Fernández-Delgado et al., 2014; Ol-
son et al., 2018; Hooker & Mentch, 2021), and are im-
plemented in popular machine learning packages such as
ranger (Wright et al., 2017) and scikit-learn (Pe-
dregosa et al., 2011). Variants of these algorithms, such as
iterative random forest for finding stable interactions (Basu
et al., 2018), have found use in scientific applications.

In view of the widespread use of tree-based methods, we
seek to provide a new lens on their regularization. Deci-
sion trees are known to obey traditional statistical wisdom
in that they need to be regularized to prevent overfitting. In
practice, this is carried out by specifying an early stopping
condition for tree growth, such as a maximum depth, or
alternatively, pruning the tree after it is grown (Friedman
et al., 2001). These procedures, however, only regularize
tree models via their tree structure, and it is usually taken
for granted that the prediction over each leaf should be the
average response of the training samples it contains. We
show that this can be very limiting: shrinking these pre-
dictions in a hierarchical fashion can significantly reduce

https://github.com/csinva/imodels
https://github.com/Yu-Group/imodels-experiments
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Figure 1. Diagram showing how HS works for a toy tree model. The predictions over each tree node (including internal nodes) gets
shrunk toward the mean responses over each of its ancestors.
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Figure 2. Example of HS for toy univariate regression problems. HS regularizes model predictions to improve estimates in noisy leaves
that have few samples. CART is fit to the data in the blue dots and then HS is applied posthoc (hsCART).

generalization error in both regression and classification
settings (e.g. see Fig 2).

Meanwhile, trees used in an RF are usually not explicitly
regularized and interpolate the data by being grown to pu-
rity (e.g. see the default settings of scikit-learn and
ranger). Instead, RF attempts to prevent overfitting by
relying upon the randomness injected into the algorithm
during tree growth, which acts as a form of implicit regular-
ization (Breiman, 2001; Mentch & Zhou, 2019). We show
that apart from this implicit regularization, more regular-
ization, in the form of hierarchical shrinkage, does improve
generalization, and allows us to use a smaller ensemble for
many data sets.

Equally important, regularizing RFs also improves the
quality of their post-hoc interpretations. RFs are usually
interpreted via their feature and interaction importances,
which have been used to provide scientific insight in areas
such as remote sensing and genomics (Svetnik et al., 2003;
Evans et al., 2011; Belgiu & Drăguţ, 2016; Dı́az-Uriarte
& De Andres, 2006; Boulesteix et al., 2012; Chen & Ish-

waran, 2012; Basu et al., 2018; Behr et al., 2020). The
reproducibility and scientific meaning of such interpreta-
tions become questionable when the underlying RF model
has poor predictive performance (Murdoch et al., 2019),
or when they are highly sensitive to data perturbations (Yu,
2013). We show that HS improves the interpretability of RF
by both simplifying and stabilizing its decision boundaries
and SHAP values (Lundberg & Lee, 2017) on a number of
real-world data sets.

Our proposed method, which we call Hierarchical Shrink-
age (HS), is an extremely fast and simple yet effective al-
gorithm for the post-hoc regularization of any tree-based
model. It does not alter the tree structure, and instead re-
places the average response (or prediction) over a leaf in the
tree with a weighted average of the mean responses over
the leaf and each of its ancestors (see Fig 1). The weights
depend on the number of samples in each leaf, and are con-
trolled by a single regularization parameter � that can be
tuned efficiently via generalized cross validation. HS is ag-
nostic to the way the tree is constructed and can be applied
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post-hoc to trees constructed with greedy methods such as
CART and C4.5 (Quinlan, 2014), as well optimal decision
trees grown via dynamic programming or integer optimiza-
tion techniques (Lin et al., 2020; Aghaei et al., 2021).

A more naive form of shrinkage, which we callleaf-based
shrinkage(LBS), appears as part of XGBoost (Chen &
Guestrin, 2016): whenever a new tree is grown, the average
response (prediction) over each leaf is shrunk directly to-
wards the sample mean of the responses. LBS also occurs2

in Bayesian Additive Regression Trees (BART) (Chipman
et al., 2010), which grows an ensemble of trees via a back-
�tting MCMC algorithm. Comparing LBS to HS on sev-
eral real-world datasets shows that HS has uniformly better
predictive performance than LBS.

We explain the advantages of HS by building on recent
work which uses decision stumps associated to each inte-
rior node of a tree to construct a new (supervised) feature
representation (Klusowski, 2021). The original tree model
is recovered as the linear model obtained by regressing the
responses on the supervised features. We show that HS
is exactly theridge regressionsolution in this supervised
feature space, while LBS can also be viewed as ridge re-
gression, but with a different (supervised) feature space (of
the same dimension) that relies only on the leaf nodes. This
allows us to use ridge regression calculations heuristically
to partially explain both the reasonableness of the shrink-
age scaling in HS, as well as our empirical evidence that
HS achieves consistently better predictive accuracy than
LBS (see Sec 3).

While this paper was under review, we discovered two
other relevant but somewhat obscure papers. Hastie &
Pregibon (1990) described a method for shrinking the pre-
dictions of trees, but proposed to do so in a recursive fash-
ion. This scheme is different from the one proposed in our
paper. Chipman & McCulloch (2000) de�ned a hierarchi-
cal prior for a Bayesian CART model, which parameterizes
the tree model in terms of “mean shifts” (differences be-
tween the means of child and parent nodes). This seems to
have a closer connection to HS than to LBS, but it is un-
clear whether the resulting likelihood (see equation (14) in
their paper) has the same form as HS.

The rest of the paper is organized as follows. Sec 2 gives
a formal statement of HS, and discusses several computa-
tional considerations. Sec 3 discuss the interpretation of
HS as ridge regression on the supervised features. Sec 4
presents the results of extensive numerical experiments on

2When conditioned on the structure of a given tree, as well as
all other trees in the ensemble, the posterior distribution for the
contribution of a leaf node is a product of Gaussian likelihood
functions centered at the model residuals as well as a Gaussian
prior. A simple calculation shows that the posterior mean can be
obtained from the residual mean via LBS.

simulated and real world data sets that illustrate the gains
in prediction accuracy from applying the method. Sec 5
shows how HS improves the interpretability of RFs.

2. The Hierarchical Shrinkage (HS)
Algorithm

Throughout this paper, we work in the supervised learn-
ing setting where we are given a training setDn =
f (x i ; yi )g

n
i =1 , from which we learn a tree model̂f for

the regression function. Given a query pointx, let tL �
tL � 1 � � � � � t0 denote its leaf-to-root path, withtL and
t0 representing its leaf node and the root node respectively.
For any nodet, let N (t) denote the number of samples it
contains, and̂Et f yg the mean response. The tree model
prediction can be written as the telescoping sum:

f̂ (x) = Êt 0 f yg +
LX

l =1

�
Êt l f yg � Êt l � 1 f yg

�
:

HS transformŝf into a shrunk model̂f � via the formula:

f̂ � (x) := Êt 0 f yg +
LX

l =1

Êt l f yg � Êt l � 1 f yg
1 + �=N (t l � 1)

; (1)

where� is a hyperparameter chosen by the user, for ex-
ample by cross validation. We emphasize that HS main-
tains the tree structure, andonly modi�es the prediction
over each leaf node (see Fig 1).

Since HS continues to make a constant prediction over each
leaf node, our method thus comprises a one-off modi�ca-
tion of these values. This can be computed inO(m) time,
wherem is the total number of nodes in the tree. No other
aspects of the underlying data structure are modi�ed, with
test time prediction occurring in exactly the same way as
in the original tree. Moreover, our method HS does not
even need to see the original training data, and only re-
quires access to the �tted tree model. These features make
it extremely lightweight and easy to implement, as we have
done in the open-source packageimodels (Singh et al.,
2021). By applying HS to each tree in an ensemble, it can
be generalized to methods such as RF and gradient boost-
ing.

While not typically done, it is possible to regularize RFs via
other hyperparameters such as maximum tree depth. Tun-
ing these hyperparameters, however, requires re�tting the
RF at every value in a grid. This quickly becomes compu-
tationally expensive in a cross-validation (CV) set up, even
for moderate dataset sizes.3 In contrast, since HS is applied

3Many popular tree-building algorithms such as CART have a
run time ofO(pn2) for constructing a binary tree.
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post-hoc,we only need to �t the RF once per CV fold, lead-
ing to potentially enormous time savings. In addition, due
to the connection between our method and ridge regression,
it is even possible to get away with �tting the RF onlyonce
by using generalized cross-validation (Golub et al., 1979)4.

We also note the formula for LBS:

f̂ l
� (x) := Êt 0 f yg +

Êt L f yg � Êt 0 f yg
1 + �=N (tL )

: (2)

Expanding this into a telescoping sum similar to (1), we
see that the major difference between the two formulas is
that whereas LBS shrinks each term by the same factor, HS
shrinks each term by a different amount, with the amount
of shrinkage controlled by the number of samples in the
ancestor. This increased �exibility leads to better predic-
tion performance for the �nal model, as evidenced by our
results presented in the next section.

3. HS as Ridge Regression on Supervised
Features

Recent work by Klusowski (2021) showed that decision
tree algorithms can be viewed as a two-step process, where
the �rst step comprises supervised feature learning, and the
second step �ts a linear models on the collection of learnt
features.

To see this, consider a tree modelf̂ , with a �xed indexing
of its interior nodesf t0; t1; : : : ; tm � 1g. We �rst associate
to each nodet the decision stump

 t (x) =
N (tR )1f x 2 tL g � N (tL )1f x 2 tR g

p
N (tL )N (tR )

; (3)

where tL and tR denote the left and right children oft
respectively. This is a tri-valued function that is posi-
tive on the left child, negative on the right child, and
zero everywhere else. Concatenating the decision stumps
together yields a supervised feature map via	( x) =�
 t 0 (x); : : : ;  t m � 1 (x)

�
and a transformed training set

	( Dn ) 2 Rn � m . One can easily check that these fea-
ture vectors are orthogonal inRn , and furthermore that
their squared̀ 2 norms are the number of samples con-
tained in their corresponding nodes:k t i k

2 = N (t i ). Klu-
sowski (2021) showed (see Lemma 3.2 therein) that we
have functional equality between the tree model and the
kernel regression model with respect to the supervised fea-

ture map	 , or in other words,f̂ (x) = �̂
T

	( x), where
�̂ = 	( Dn )yy . An easy extension of his proof yields the
following result.

4This allows for ef�cient computation of leave-one-out cross-
validation error, which can be used to select� , without re�tting
the RF.

Theorem 1. Let �̂ � be the solution to the ridge regression
problem

min
�

(
nX

i =1

�
� T 	( x i ) � yi

� 2
+ � k� k2

)

: (4)

We have the functional equalitŷf � (x) = �̂
T
� 	( x).

Proof. See Appendix S2.

Since the decision stumps (3) are orthogonal, we can de-
compose (4) intom independent univariate ridge regression
problems, one with respect to each nodet:

min
�

(
nX

i =1

(� t (x i ) � yi )
2 + �� 2

)

: (5)

Next, we use this connection of HS to ridge regression to
argue heuristically thatthe same� works well for each re-
gression subproblem(5). This helps to justify our choice
of denominator for each term in the HS formula (1) (a dif-
ferent choice would have led to a rescaling of the features
 t i .)

Assume for the moment that the tree structure and hence
the feature map is independent of the responses, which can
be achieved via sample splitting. This is known in the liter-
ature as the “honesty condition”, and has been widely used
to simplify the analysis of tree-based methods (Athey &
Imbens, 2016). De�ne� � 2 Rm to have the value

� � (t) :=

p
N (tL )N (tR )

N (t)
(Ef y j tL g � Ef y j tR g); (6)

for the coordinate associated with each nodet. For any
query point x, � T

� 	( x) gives the mean response over
the leaf t(x) containing it. Furthermore, knowing	( x)
is equivalent to knowing the leaf containingx. Putting
these two facts together show that the population residuals
r i := yi � � T

� 	( x) satisfyEf r i j 	( x i )g = 0 , so that we
have a generative linear model, in which we can calculate
that the optimal regularization parameter for (5) is equal to
� opt (t) = � 2(t)=� � (t)2, where� 2(t) is roughly equal to
the conditional variance5 of the residual overt.

Given the connection between impurity and residual vari-
ance, if the tree model̂f considered in this section is grown
using an impurity decrease stopping condition, we should
expect the residual variance to be relatively similar over all
leaves, so that� 2(t) also does not vary too much over dif-
ferent nodes. Meanwhile (see Appendix S2.2)

(Ef y j tL g � Ef y j tR g)2 � diam(t)2 � 2� 2depth( t )=p

(7)

5More precisely, it is equal to N ( t L )
N ( t ) Varf r j tR g +

N ( t R )
N ( t ) Varf r j tL g.
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where p is the dimension of the original feature space.
Since the maximum depth is typicallyO(log n), � opt (t)
also does not vary too much across different nodes, and
we do not lose too much by using a common value of�
across all the univariate subproblems (5) corresponding to
different decision stump features.

A more naive (supervised) tree-based feature map is the
one-hot encoding of an original feature vector obtained by
treating the leaf index as a categorical variable. We de-
note this using� . While � can be obtained from	 via
an invertible linear transformation, the two maps result in
different kernels, and thus different ridge regression prob-
lems. Indeed, the ridge regression solution with respect to
� is equivalent to performing LBS on the tree model. The
leaf indicator features are also orthogonal, so we may sim-
ilarly decompose this ridge regression problem into inde-
pendent univariate subproblems, one for each leaf. How-
ever, in this case, the population regression vector� l

� , for
which� lT

� �( x) gives the expected response over each leaf,
has coordinates equal to the population expectation over the
leaves:� l

� (t) = Ef y j tg. As such, the optimal regulariza-
tion parameters for different leaf nodes could be very dif-
ferent, and we lose more by having to use a common value
of � .

In practice, sample splitting is rarely done, and the feature
map depends on the responses. Nonetheless, we believe
that the heuristics detailed above continue to hold to a cer-
tain extent as shown in our experimental results.

4. HS Improves Predictive Performance on
Real-World Datasets

4.1. Data Overview

In this section, we study the performance of HS on a collec-
tion of classi�cation and regression datasets selected as fol-
lows. For classi�cation, we consider a number of datasets
used in the classic Random Forest paper (Breiman, 2001;
Asuncion & Newman, 2007), one (Breast cancerwith
id=13) from the openML repository, as well as two (Ju-
venileandRecidivism) that are commonly used to evaluate
rule-based models (Wang, 2019). For regression, we con-
sider all datasets used by Breiman (2001) with at least 200
samples, as well as a variety of data-sets from the PMLB
benchmark (Romano et al., 2020) ranging from small to
large sample sizes. Table 1 displays the number of samples
and features present in each dataset, with more details pro-
vided in Appendix S1. In all cases,2=3 of the data is used
for training (hyperparameters are selected via 3-fold CV on
this set) and1=3 of the data is used for testing.

Name Samples Features

C
la

ss
i�c

at
io

n

Heart 270 15
Breast cancer 286 9
Haberman 306 3
Ionosphere (Sigillito et al., 1989) 351 34
Diabetes (Smith et al., 1988) 768 8
German credit 1000 20
Juvenile (Osofsky, 1997) 3640 286
Recidivism 6172 20

R
eg

re
ss

io
n

Friedman1 (Friedman, 1991) 200 10
Friedman3 (Friedman, 1991) 200 4
Diabetes (Efron et al., 2004) 442 10
Geographical music 1059 117
Red wine 1599 11
Abalone (Nash et al., 1994) 4177 8
Satellite image (Romano et al., 2020) 6435 36
CA housing (Pace & Barry, 1997) 20640 8

Table 1.Real-world datasets analyzed here for classi�cation (top
panel) and regression (bottom panel).

4.2. HS Improves Prediction Performance for
Commonly Used Tree Methods

The prediction performance results for classi�cation and
regression are plotted in Fig 4A and Fig 4B respectively,
with the number of leaves, a measure of model complexity,
plotted on thex-axis. We consider trees grown using four
different techniques: CART, CART with cost-complexity
pruning (CCP), C4.5 (Quinlan, 2014), and GOSDT (Lin
et al., 2020), a method that grows optimal trees in terms
of the cost-complexity penalized misclassi�cation loss. To
reduce clutter, we only display the classi�cation results for
CART and CART with CCP in Fig 4A/B and defer the re-
sults for C4.5 (Fig S3) and GOSDT (Appendix S4.2) to the
appendix.

For each of the four tree-growing methods, we grow a
tree to a �xed number of leavesm,6 for several differ-
ent choices ofm 2 f 2; 4; 8; 12; 15; 20; 24; 28; 30; 32g (in
practice,m would be pre-speci�ed by a user or selected
via cross-validation). For each tree, we compute its pre-
diction performance before and after applying HS, where
the regularization parameter for HS is selected from the set
� 2 f 0:1; 1:0; 10:0; 25:0; 50:0; 100:0g via cross-validation.
Results for each experiment are averaged over 10 random
data splits. We observe that HS (solid lines in Fig 4A,B)
does not hurt prediction in any of our data sets, and of-
ten leads to substantial performance gains. For exam-
ple, taking m = 15, we observe an average increase
in relative predictive performance (measured by AUC) of
6:2%; 6:5%; 8%for HS applied to CART, CART with CCP,
and C4.5 respectively for the classi�cation data sets. For
the regression data sets withm = 15, we observe an aver-

6For CART (CCP), we grow the tree to maximum depth, and
tune the regularization parameter to yieldm leaves.
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age relative increase inR2 performance of9:8%and10:1%
for CART and CART with CCP respectively.

As expected, the improvements are more signi�cant for
smaller datasets, and tend to increase with the number of
leaves (e.g. the top row of Fig 4A and Fig 4B). For larger
datasets, we start to see substantial improvements using HS
at even larger numbers of leaves (Appendix S4.4).

The fact that improvements hold for CART (CCP) shows
that the effect of HS is not entirely replicated by tree
structure regularization, and instead,the two regularization
methods can be used synergistically. Indeed, applying HS
can lead to the selection of a larger tree. Since tree models
are sometimes used for subgroup search, larger trees from
HS could allow for the discovery of otherwise undetected
subgroups.

Fig 3 shows a simulation result analyzing the bias-variance
tradeoff for CART with and without HS. Here, data is gen-
erated from a linear model with Gaussian noise added dur-
ing training (see Appendix S3 for experimental details, and
other simulations). While predictive performance curves
are often U-shaped because of the bias-variance tradeoff,
those for HS are monotonic since HS is able to effectively
reduce variance. The optimal regularization parameter�
decreases with the total number of leaves; this is corrobo-
rated by our calculations in Sec 3.

Figure 3.Test error for CART with HS (hsCART) stays low as the
number of leaves increases, whereas CART test error increases
due to over�tting. Data is simulated from a linear model with
Gaussian noise.

4.3. HS Outperforms LBS

We next compare the performance of HS to that of leaf-
based shrinkage (LBS), which is used in XGBoost. Fig 4C
shows that hsCART tends to outperform CART (LBS),
when repeating the same experiments as in Fig 4A); re-
gression results are pushed to Appendix S4.3 due to space
constraints.

4.4. HS Improves Prediction Performance for RF

As mentioned earlier, trees in an RF are typically grown
to purity without any constraints on depth or node size.
Nonetheless, Mentch & Zhou (2019) argues that themtry
parameter7, which controls the degree of feature sub-
selection, “serves much the same purpose as the shrinkage
penalty in explicitly regularized regression procedures like
lasso and ridge regression.” This parameter is typically set
to a default value8, and is not tuned. We compare the per-
formance of regularizing RF via HS against that obtained
by controlling maximum tree depth ormtry , tuning the
hyperparameter for each method via cross validation. We
repeat this for several different choices ofB , the number
of trees in the RF, and average the results over 10 random
data splits.

The results, displayed in Fig 4D, show thatHS signi�cantly
improves the prediction accuracy of RFacross the datasets
we considered. Moreover, HS clearly outperforms the two
other RF regularization methods (usingdepth andmtry )
in all datasets. This is especially promising because HS
is also the fastest and easiest method to implement, as it
does not require re�tting the RF. Moreover,hsRF tends to
achieve its maximum performance with fewer treesthan RF
without regularization; as a consequence, RF with HS is of-
ten able to achieve the same performance with an ensemble
that is �ve times smaller, allowing us to achieve large sav-
ings in computational resources.

We also compare hsRF to the predictive performance of
Bayesian Additive Regression Trees (BART) (Chipman
et al., 2010), and observe that hsRF and BART are compa-
rable in terms of prediction performance. However, hsRF is
much faster to �t than BART (typically 10-15 times faster)
and we can also apply HS to BART (see Appendix S4.5).

Additionally, we also investigate the effect of applying
HS to gradient boosted trees. The results, displayed in
Fig S8, indicate that applying HS slightly improves the per-
formance of GBTs for smaller datasets, while performing
similarly for larger datasets. This is unsurprising since the
bene�t of HS is most pronounced for smaller datasets and
when growing deeper trees.

5. HS Improves RF Interpretations by
Simplifying and Stabilizing Them

In addition to improving predictive performance, HS re-
duces variance and removes sampling artifacts, resulting in
(i) simpli�ed boundaries, and (ii) stabilized feature impor-

7This parameter is denotedmtry in ranger and
max features in scikit-learn .

8Typically
p

p for classi�cation andp=3 for regression, where
p is the number of features.
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Figure 4.Hierarchical Shrinkage (solid lines) often improves predictive performance across various datasets, particularly for small
datasets.(A) Top two rows show results for classi�cation datasets (measured by AUC of the ROC curve) and(B) the next two rows
show results for regression datasets (measured byR2). HS often signi�cantly improves the performance over CART, CART with CCP,
and(C) leaf-based shrinkage.(D) HS even improves results for Random Forests as a function of the number of trees. Across all panels,
errors bars show standard error of the mean computed over 10 random data splits. Note that the y-axis scales differ across plots.
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tance scores, (iii) making it easier to interpret interactions
in the model.

Figure 5.Comparison of decision boundary learned by RF vs
hsRF on the Diabetes dataset, when �tted using only two features.
HS prevents over�tting by creating a smoother, simpler decision
boundary, resulting in improved performance and interpretability.

Fig 5 shows an example of simpli�ed decision boundaries.
On the diabetes dataset (Smith et al., 1988), RF can achieve
strong performance (AUC 0.733) even when �tted to only
two features. When HS is applied to this RF, the perfor-
mance increases (to an AUC of 0.787), but the decision
boundary also becomes considerably smoother and less
fragmented. Since these two features are the only inputs to
the model, these smooth boundaries enable a user to iden-
tify much clearer regions for high-risk predictions. Ap-
pendix S5.1 plots decision boundaries for all 8 classi�ca-
tion datasets, showing that HS consistently makes bound-
aries smoother.9

In models with many features, post-hoc interpretations
such as SHAP values (Lundberg & Lee, 2017) can be used
to understand how the model makes its predictions. Fig 6
shows that HS improves the stability of SHAP values with
respect to resampling of the dataset. In this experiment, we
randomly choose 50 samples in the breast-cancer dataset to
hold out, and for each of 100 iterations, we randomly select

9To obtain these plots, we �t an RF on each dataset using
only the two most important features, as measured using mean-
decrease-impurity (MDI).

two thirds of the remaining samples and train an RF on this
reduced dataset. For each held-out sample, we measure the
variance of its SHAP values per feature across the 100 iter-
ations. We then average the variance per feature across all
50 held-out samples, with these values plotted in Fig 6 for
RF with HS and without. We observe that the variances of
the SHAP values for RF with HS are substantially smaller
than those for RF without HS. Moreover, these improve-
ments in stability persist even for datasets such as Heart,
Diabetes, and Ionosphere, for which HS does not greatly
improve prediction performance (see SHAP stability plots
for all datasets in Fig S13 and Fig S14). When SHAP val-
ues are more stable, we can have more faith that they re�ect
true rather than spurious patterns in the data generating pro-
cess.

Figure 6.Comparison of SHAP plots learnt by Random Forests
on the breast-cancer dataset before / after applying HS. HS dis-
plays lower variability across different data perturbations (without
dropping in predictive performance), indicating enhanced stabil-
ity.

Fig 7 investigates the SHAP values for an RF trained on the
breast-cancer dataset. After applying HS, the SHAP values
for each feature have tighter clusters. Each cluster com-
prises a group of samples for which the feature contributes
a similar amount to the predicted response, and hence can
be interpreted without taking into account feature interac-
tions, thereby reducing cognitive burden. More globally,
the clustering effect suggests that HS improves prediction
performance by regularizing some unnecessary interactions
in the model, making the �tted function closer to being ad-
ditive. Appendix S5.2 shows the SHAP plots for all 8 clas-
si�cation datasets, showing that HS consistently leads to
more clustered SHAP values.

6. Discussion

HS is a fast yet powerful regularization procedure that can
be applied to any tree-based model without changing its
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structure. In our experiments, HS never hurts prediction
performance, and often leads to substantial gains in both
predictive performance and interpretability. HS is partly
motivated by previous non-minimax-optimal generaliza-
tion lower bounds for decision trees that predict using av-
erage responses over each leaf (Tan et al., 2021), pointing
to a possible limitation of averaging. HS allows us to break
this inferential barrier by pooling information from multi-
ple leaves.

The work here naturally suggests many exciting future di-
rections regarding the regularization of trees and RFs. First,
replacing ridge regression with more sophisticated linear
methods such as lasso or elastic net can result in diverse,
promising regularization methods. In addition, HS could
improve other structured rule-based models, such as rule
lists and tree sums (Tan et al., 2022; Nasseri et al., 2022).

Meanwhile, we have only scratched the surface of the re-
lationships between regularization, robustness, and inter-
pretability. Indeed, recent work showed that ridge regres-
sion helps with robust generalization (Donhauser et al.,
2021). The connection between HS and ridge regression
suggests that HS could also operate similarly, and this is
supported by our observation that HS results in simpler and
smoother decision boundaries. Hence, we conjecture that
HS could improve the predictive performance of RF with
respect to covariate perturbations such as adversarial exam-
ples or covariate shift. Moreover, the improved clustering
and stability of SHAP values after applying HS suggest that
regularization via HS could stabilize other popular feature
importance measures, and thus support better feature selec-
tion.
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Supplement
S1. Further Details on Datasets Used

Name Samples Features Class 0 Class 1 Majority class %

Heart 270 15 150 120 55.6
Breast cancer 286 9 196 81 70.8
Haberman 306 3 81 225 73.5
Ionosphere (Sigillito et al., 1989) 351 34 126 225 64.1
Diabetes (Smith et al., 1988) 768 8 500 268 65.1
German credit 1000 20 300 700 70.0
Juvenile (Osofsky, 1997) 3640 286 3153 487 86.6
Recidivism 6172 20 3182 2990 51.6

Table S2.Classi�cation datasets (extended).

Name Samples Features Mean Std Min Max

Friedman1 (Friedman, 1991) 200 10 14.3 4.6 2.1 25.2
Friedman3 (Friedman, 1991) 200 4 1.3 0.4 0.0 1.6
Diabetes (Efron et al., 2004) 442 10 152.1 77.0 25.0 346.0
Geographical music 1059 117 0.0 1.0 -1.5 5.9
Red wine 1599 11 5.6 0.8 3.0 8.0
Abalone (Nash et al., 1994) 4177 8 9.9 3.2 1.0 29.0
Satellite image (Romano et al., 2020) 6435 36 3.7 2.2 1.0 7.0
California housing (Pace & Barry, 1997) 20640 8 2.1 1.2 0.1 5.0

Table S3.Regression datasets (extended).

S2. Theory

In this section, we provide a proof of Theorem 1 and the heuristic arguments discussed in Sec 3.

S2.1. Proof of Theorem 1

Throughout this proof, we denote the left and right children of a nodet i by t i;L andt i;R respectively. Further, we assume
WLOG that the sample mean satis�esÊt 0 f yg = 0 . Then using the well known solution to ridge regression, we have that

�̂ � = (	( Dn )T 	( Dn ) + �I ) � 1	( Dn )T y :

Because the feature vectors are orthogonal, the kernel matrix	( Dn )T 	( Dn ) is diagonal with entries(	( Dn )T 	( Dn )) ii =
N (t i ). Therefore, we have the following expansion for thei -th coordinate of̂� �

�̂ �;i =
h t i (Dn ); y i
N (t i ) + �

=
N (t i;R )

P
x i 2 t i;L

yi � N (t i;L )
P

x i 2 t i;R
yi

p
N (t i;L )N (t i;R )(N (t i ) + � )

=

p
N (t i;L )N (t i;R )

N (t i ) + �

�
Êt i;L f yg � Êt i;R f yg

�

=

p
N (t i;L )N (t i;R )

N (t i ) + �

 

Êt i;L f yg �
N (t i )Êt i f yg

N (t i;R )
+

Êt i;L f ygN (t i;L )
N (t i;R )

!

=

s
N (t i )2N (t i;L )

N (t i;R )(N (t i ) + � )2

�
Êt i;L f yg � Êt i f yg

�
: (8)
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Note that a similar formula holds witht i;L andt i;R exchanged.

Consider a query pointx with leaf-to-root pathtL � tL � 1 � � � � � t0, assuming WLOG that each descendant is always
the left child of its ancestor. Using (8), the prediction atx can then be expanded as follows

f̂ � (x) = 	( x)T ^� �

=
L � 1X

l =0

N (t l;R )h t l (Dn ); y i
p

N (t l;L )N (t l;R )(N (t l ) + � )

=
L � 1X

l =0

Êt l +1 f yg � Êt l f yg
1 + �=N (t l )

We see that the equation above is precisely that proposed for HS in (1).

S2.2. Heuristics for Equation(7)

Consider the generative model
y = f (x) + �: (9)

whereEf � j xg = 0 . Suppose for the moment thatf (x) = � T x is linear, so that

Ef y j tL g � Ef y j tR g = � T (Ef x j tL g � Ef x j tR g): (10)

Now further assume that for some� min and� max , we have

� min � j � i j � � min

for all i . Plugging these into (10) allows us to compute

� 2
min diam(t)2 � (Ef y j tL g � Ef y j tR g)2 � � 2

max diam(t)2: (11)

Next, for a given nodet, let its side lengths be denoted byl i , with corresponding measure� (t) =
Q p

i =1 l j . Assuming
that all the side lengths oft are similar, we have that the diameter of the node is roughly diam(t) � � (t)1=p. Furthermore,
assuming that each nodet is split fairly evenly so that its left and right children have roughly equivalent measure, then the
measure of the nodet is approximately2� depth ( t ) , which implies that diam(t) � 2� depth ( t )=p. Substituting this into (11)
gives us the heuristic claimed in (7).

For a more generalC1 regression functionf , note that theC1 assumption implies thatf is approximately linear locally,
i.e. when the nodes are small enough.

S3. Additional Simulations for Investigating the Bias-Variance Trade-off

In this section, we provide experimental details for our bias-variance trade-off simulation in Fig 3 as well as other simula-
tions settings that we display below. Note that we reproduce Fig 3 in Fig S1 for ease of the reader.

Experimental Design: In Fig S1, we simulate data via a linear modely =
P 10

i =1 x i + � with x � Unif[0; 1]50 and� being
drawn from a Gaussian or a Laplacian distribution for the left and right panel respectively, with noise variance� 2 = 0 :01
in both cases. In Fig S2, we simulate responses from a linear model with pairwise interactionsy =

P 10
i =1 x i + x1x2 +

x5x6 + x11x12 + � , and use the same noise models described above. In both experiments, we used a training set of 500
samples to �t CART and hsCART models with a prescribed number of leaves, varying this number across a grid. For
each hsCART model, the regularization parameter� was chosen on the training set via 3-fold cross-validation. Finally, we
repeat this entire process 100 times with resampled datasets.

Evaluation: Denote the training set usingDn and the query point usingx. We de�ne the MSE of a model̂f as

Ex ;D n

� �
f̂ (x ; Dn ) � f (x)

� 2
�
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and notice that it can be decomposed pointwise into squared bias and variance terms as follows:

Ex ;D n

� �
f̂ (x ; Dn ) � f (x)

� 2
�

= Ex

� �
ED n

n
f̂ (x ; Dn )

o
� f (x)

� 2
�

+ Ex

n
VarD n

n
f̂ (x)

oo
:

Our goal is to plot the approximate values of all three quantities for the CART and hsCART models under the settings
described in the experimental design. To do this, we use a noiseless test set of 500 samples to compute an approximate

expectation with respect to the query pointx. For each test set samplex, we approximateED n

n
f̂ (x ; Dn )

o
using the mean

prediction of the 100 models obtained from resampled training sets, and approximate VarD n

n
f̂ (x)

o
by taking the variance

of the predictions across the 100 models.

Results:We observe similar behavior in all four experiments: The the MSE curve for CART is U-shaped, whereas that for
hsCART is monotonic. Furthermore, we see that this is due to hsCART being better at controlling its variance term. In all
cases, the optimal regularization parameter� decreases with the total number of leaves.

Figure S1.CART (HTS) test error rate for a linear model with gaussian (left)/laplacian (right) noise stays low as the number of leaves
increases, whereas CART test error displays U-shaped bias-variance tradeoff as model complexity increases.

Figure S2.CART (HTS) test error rate for a linear model with pairwise interactions and gaussian (left)/laplacian (right) noise stays low
as the number of leaves increases, whereas CART test error displays U-shaped bias-variance tradeoff as model complexity increases.

S4. Further Experimental Results for Predictive Performance

S4.1. C4.5 trees

In this section, we display prediction accuracy results on the classi�cation datasets in Table 1 for tree models obtained via
C4.5 (Quinlan, 2014) before/after applying HS post hoc. The experimental details are provided in Sec 4.2. We see that HS
signi�cantly improves prediction performance even with very few leaves.
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Figure S3.Classi�cation results for C4.5. HS signi�cantly improves prediction performance even with very few leaves. Errors bars
show standard error of the mean computed over 10 random data splits

S4.2. Generalized Optimal Sparse Decision Trees (GOSDT)

In this section, we display prediction accuracy results on the classi�cation datasets in Table 1 for tree models obtained
via GOSDT (Lin et al., 2020) before/after applying HS post hoc. We performed the simulation to show that HS can be
bene�cial even for tree models that are obtained using global optimization (rather than greedy) techniques. We use the best
tree found by GOSDT within one hour of running time for the algorithm, since the implementation of GOSDT we used10

fails to converge for many datasets within a reasonable timeframe (24 hours). To make the running time more tractable, we
use preprocessed each dataset by selecting the 5 most important features (using RF feature importance).11 For GOSDT, we
are unable to tunem exactly, and instead tune its cost-complexity regularization parameter. Fig S4 shows the results, and
we again see that HS does not hurt prediction performance, although it also does not offer much improvement, possibly
because the �tted trees are often very shallow.

10We used code from‡ github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees.
11If this step is omitted then the �tted tree is almost always extremely shallow (with 3 leaves or less) or GOSDT may fail to due to a

memory error. In fact, even with this step, GOSDT only outputs the root node for many datasets when the regularization parameter is
set to anything larger than 0. We omit these datasets from our results.
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Figure S4.HS performance across selected datasets. HS is as good as and sometimes slightly improves GOSDT.

S4.3. Comparison between HS and LBS for Regression Datasets

In this section, we investigate the prediction performance of CART with the alternate shrinkage scheme LBS to CART
with HS on the regression datasets in Table 1 with experimental details provided in Sec 4.3. We see that, just like in
classi�cation, HS outperforms LBS.

Figure S5.HS performs better than LBS for regression datasets in Table 1. Error bars show the standard error of the mean computed
over 10 random data splits.

S4.4. Deeper CART trees

In this section, we investigate the prediction performance of decision tree algorithms: (i) CART, (ii) C4.5, (iii) CART with
CCP before/after applying HS while growing deeper trees for all the datasets in Table 1 and Table 1. We observe that the
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performance of the baselines drop dramatically while the performance of HS continuously improves as the ratio of number
of leaves to samples increases. This is explained by the connection between HS and ridge regression on a supervised basis,
as discussed in Sec 3.
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Figure S6.HS is able to improve(A) Classi�cation and(B) regression predictive performance for both baselines: CART and CART with
CCP for larger data-sets when using deeper trees by preventing over�tting. As shown by our connection to ridge regression in Sec 3,
HS is bene�cial when the ratio of number of leaves to samples is large. Error bars show standard error of the mean computer over 10
random data splits.

S4.5. Bayesian Additive Regression Trees (BART)

Background on BART: BART is a Bayesian tree ensemble model (Chipman et al., 2010), with the tree structure and
leaf values are modeled as random variables. Conditioned on the tree structure, the leaf values, and a query pointx, the
response variabley is assumed to follow a Gaussian distribution. The posterior distribution of the tree structures and leaf
values is used for inference, with samples generated via a back�tting MCMC algorithm. Each posterior sample is a sum
of trees function, and the �nal prediction is made using the posterior mean, i.e. an average prediction over many such
samples.

BART has become popular in applied statistics research, especially in the �eld of causal inference (Hill, 2011). It has
been claimed to obtain state-of-the-art prediction performance on many datasets, once its hyperparameters have been
appropriately tuned (Chipman et al., 2006). As such, it offers both a baseline comparison for RFs regularized using
HS (shown in Fig 4D), as well as an alternate tree ensemble growing method to which we can apply HS. Furtheremore,
BART implicitly applies a form of shrinkage, as discussed in Sec 1.

In this section, we investigate applying HS to a tree ensemble grown using BART.

Experimental design: We used the implementation of BART in thebartpy package12. First, we �t a BART model with
a prescribed number of trees by running a single MCMC chain for a standard number of burn-in iterations, and all other

12Code can be found at‡ github.com/JakeColtman/bartpy.
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hyperparameters set to defaults. We extract a tree ensemble from the BART model by drawing a single sample from the
posterior distribution. Note that this gives us both the tree structures as well as the leaf values. We then apply HS to this
model, tuning the regularization parameter via CV as before, to obtain the hsBART model.

Results: The results show that HS does not signi�cantly alter prediction performance of BART on both regression and
classi�cation datasets. We believe that this can be explained by the tendency of BART to construct relatively small trees
when the recommended parameters are used (Chipman et al., 2010). Furthermore, the raw BART predictions already come
with leaf-based shrinkage, which is somewhat similar to HS for shallow trees.
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Figure S7.Hierarchical Shrinkage (solid lines) applied post-hoc to BART trees, shows similar performance for classi�cation(A), and
regression(B) datasets in terms of AUC andR2 respectively

S4.6. Gradient Boosted Trees

In this section, we investigate the effect of applying HS to gradient boosted trees (GBTs). We vary the number of trees
B in the ensemble, constraining each tree to have maximum depth 3. All other experimental details are identical to those
described in Sec 4.4.

The results, displayed in Fig S8, indicate that applying HS slightly improves the performance of GBTs for smaller datasets,
while performing similarly for larger datasets in terms of AUC. This is not entirely unsurprising since the bene�ts of HS is
most pronounced for smaller datasets and when growing deeper trees.
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Figure S8.HS (solid lines) applied post-hoc to Gradient Boosted Trees. HS slightly improves performance for smaller datasets, and
provides similar performance for larger datasets in terms of AUC.

S5. Further Experimental Results for Interpretability

S5.1. Decision Boundaries

In this section, we further investigate how HS can help to simplify decision boundaries. For each of our classi�cation
datasets, we �t an RF with 50 trees using only the two most important features, as measured using Mean Decrease in
Impurity (MDI) feature importance. We also apply HS post hoc to the �tted RF model to obtain a second model. In Fig S9
and Fig S10, we plot the different decision boundaries of both models for each dataset.
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