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Abstract

Tree-based models such as decision trees and
random forests (RF) are a cornerstone of modern
machine-learning practice. To mitigate overfit-
ting, trees are typically regularized by a variety of
techniques that modify their structure (e.g. prun-
ing). We introduce Hierarchical Shrinkage (HS),
a post-hoc algorithm that does not modify the
tree structure, and instead regularizes the tree by
shrinking the prediction over each node towards
the sample means of its ancestors. The amount
of shrinkage is controlled by a single regulariza-
tion parameter and the number of data points in
each ancestor. Since HS is a post-hoc method,
it is extremely fast, compatible with any tree-
growing algorithm, and can be used synergisti-
cally with other regularization techniques. Ex-
tensive experiments over a wide variety of real-
world datasets show that HS substantially in-
creases the predictive performance of decision
trees, even when used in conjunction with other
regularization techniques. Moreover, we find that
applying HS to each tree in an RF often improves
accuracy, as well as its interpretability by sim-
plifying and stabilizing its decision boundaries
and SHAP values. We further explain the suc-
cess of HS in improving prediction performance
by showing its equivalence to ridge regression
on a (supervised) basis constructed of decision
stumps associated with the internal nodes of a
tree. All code and models are released in a full-
fledged package available on Githubﬂ
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'"HS is integrated into the imodels package
O github.com/csinva/imodels|(Singh et al.,[2021)) with an sklearn-
compatible API. Experiments for reproducing the results here
can be found at € github.com/Yu-Group/imodels-experiments.

1. Introduction

Decision tree models, used for supervised learning since
the 1960s (Morgan & Sonquist, [1963; Messenger & Man-
dell, {1972} |Quinlan, [1986), have recently attained renewed
prominence because they embody key elements of inter-
pretability: shallow trees are easily described and visual-
ized, and can even be implemented by hand. While the
precise definition and utility of interpretability have been
a subject of much debate (Murdoch et al., 2019; [Doshi-
Velez & Kim, [2017; [Rudin, 2019; [Rudin et al., 2021)), all
agree that it is an important notion in high-stakes decision-
making, such as medical-risk assessment and criminal jus-
tice. For this reason, decision trees have been widely ap-
plied in both areas (Steadman et al., [2000; [Kuppermann
et al.,[2009; |Letham et al., 2015 |Angelino et al.| 2017).

By far the most popular decision tree algorithm is Clas-
sification and Regression Trees (CART) (Breiman et al.,
1984)). These can be ensembled to form a Random Forest
(RF) (Breiman, [2001) or used as weak learners in Gradi-
ent Boosting (GB) (Friedman, 2001)); both algorithms have
achieved state-of-the-art performance over a wide class of
prediction problems (Caruana & Niculescu-Mizill, 2006
Caruana et al., 2008; [Fernandez-Delgado et al., 2014; |OI-
son et al.l 2018; Hooker & Mentch, [2021)), and are im-
plemented in popular machine learning packages such as
ranger (Wright et al.| 2017) and scikit-learn (Pe-
dregosa et al.,[2011). Variants of these algorithms, such as
iterative random forest for finding stable interactions (Basu
et al.,[2018)), have found use in scientific applications.

In view of the widespread use of tree-based methods, we
seek to provide a new lens on their regularization. Deci-
sion trees are known to obey traditional statistical wisdom
in that they need to be regularized to prevent overfitting. In
practice, this is carried out by specifying an early stopping
condition for tree growth, such as a maximum depth, or
alternatively, pruning the tree after it is grown (Friedman
et al.| |2001). These procedures, however, only regularize
tree models via their tree structure, and it is usually taken
for granted that the prediction over each leaf should be the
average response of the training samples it contains. We
show that this can be very limiting: shrinking these pre-
dictions in a hierarchical fashion can significantly reduce
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Figure 1. Diagram showing how HS works for a toy tree model. The predictions over each tree node (including internal nodes) gets

shrunk toward the mean responses over each of its ancestors.
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Figure 2. Example of HS for toy univariate regression problems. HS regularizes model predictions to improve estimates in noisy leaves
that have few samples. CART is fit to the data in the blue dots and then HS is applied posthoc (hsCART).

generalization error in both regression and classification
settings (e.g. see Fig[2).

Meanwhile, trees used in an RF are usually not explicitly
regularized and interpolate the data by being grown to pu-
rity (e.g. see the default settings of scikit-learn and
ranger). Instead, RF attempts to prevent overfitting by
relying upon the randomness injected into the algorithm
during tree growth, which acts as a form of implicit regular-
ization (Breiman| [2001}; [Mentch & Zhoul [2019). We show
that apart from this implicit regularization, more regular-
ization, in the form of hierarchical shrinkage, does improve
generalization, and allows us to use a smaller ensemble for
many data sets.

Equally important, regularizing RFs also improves the
quality of their post-hoc interpretations. RFs are usually
interpreted via their feature and interaction importances,
which have been used to provide scientific insight in areas
such as remote sensing and genomics (Svetnik et al.} 2003},

Evans et al 2011} Belgiu & Drigug, 2016}, [Diaz-Uriarte]
[& De Andres| 2006}, Boulesteix et al., 2012} [Chen & Ish-|

waran, 2012 Basu et al 2018} Behr et all, [2020). The

reproducibility and scientific meaning of such interpreta-
tions become questionable when the underlying RF model
has poor predictive performance (Murdoch et all, 2019),
or when they are highly sensitive to data perturbations
[2013). We show that HS improves the interpretability of RF
by both simplifying and stabilizing its decision boundaries

and SHAP values (Cundberg & Lee|, 2017) on a number of

real-world data sets.

Our proposed method, which we call Hierarchical Shrink-
age (HS), is an extremely fast and simple yet effective al-
gorithm for the post-hoc regularization of any tree-based
model. It does not alter the tree structure, and instead re-
places the average response (or prediction) over a leaf in the
tree with a weighted average of the mean responses over
the leaf and each of its ancestors (see Fig[I). The weights
depend on the number of samples in each leaf, and are con-
trolled by a single regularization parameter that can be
tuned efficiently via generalized cross validation. HS is ag-
nostic to the way the tree is constructed and can be applied
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post-hoc to trees constructed with greedy methods such asmulated and real world data sets that illustrate the gains
CART and C4.5[(Quinlan, 2014), as well optimal decisionin prediction accuracy from applying the method. Sec 5
trees grown via dynamic programming or integer optimiza-shows how HS improves the interpretability of RFs.

tion techniqueq (Lin et al., 2020; Aghaei el al., 2021).

A more naive form of shrinkage, which we ciéaf-based 2. The Hierarchical Shrinkage (HS)
shrinkage (LBS), appears as part of XGBoost (Chen &  Algorithm

Guestrin| 2016): whenever a new tree is grown, the average ) i .
response (prediction) over each leaf is shrunk directly to-/ "roughout this paper, we work in the supervised learn-
wards the sample mean of the responses. LBS also Brcurld Setting where we are given a training €8f =

in Bayesian Additive Regression Trees (BART) (Chipmanf (Xi:¥1)gi=1 , from which we learn a tree_modeﬂ for

et al] [ 201D), which grows an ensemble of trees via a backN€ regression function. Given a query pamtlett,

tting MCMC algorithm. Comparing LBS to HS on sev- L 1 to denote its leaf-to-root path, with and

eral real-world datasets shows that HS has uniformly bettefo FéPresenting its leaf node and the root node respectively.
predictive performance than LBS. For any nodd, let N (t) denote the number of samples it

. o contains, and,fyg the mean response. The tree model
We explain the advantages of HS by building on recemprediction can be written as the telescoping sum:
work which uses decision stumps associated to each inte-

rior node of a tree to construct a new (supervised) feature X

representatiori (Klusowgki, 2021). The original tree model f(x) = E,fyg+ E,fyg E, ,fyg:

is recovered as the linear model obtained by regressing the 1=1

responses on the supervised features. We show that HS

is exactly theridge_regressionsolution in _this superyised HS transforms” into a shrunk moddl* via the formula:
feature space, while LBS can also be viewed as ridge re-

gression, but with a different (supervised) feature space (of X g g B

the same dimension) that relies only on the leaf nodes. This  (x) = B,fyg+ 1 1Y9 By yg; 1)
allows us to use ridge regression calculations heuristically =1 1+ =N(t 1)

to partially explain both the reasonableness of the shrink-

age scaling in HS, as well as our empirical evidence thawvhere is a hyperparameter chosen by the user, for ex-
HS achieves consistently better predictive accuracy thaample by cross validation. We emphasize that HS main-
LBS (see Sef]3). tains the tree structure, armhly modi es the prediction
over each leaf node (see Fig 1).

While this paper was under review, we discovered two
other relevant but somewhat obscure papers. Hastie &ince HS continues to make a constant prediction over each
Pregibon|(1990) described a method for shrinking the preleaf node, our method thus comprises a one-off modi ca-
dictions of trees, but proposed to do so in a recursive fashtion of these values. This can be compute®ifm) time,

ion. This scheme is different from the one proposed in ouwherem is the total number of nodes in the tree. No other
paper.] Chipman & McCullo¢h (2000) de ned a hierarchi- aspects of the underlying data structure are modi ed, with
cal prior for a Bayesian CART model, which parameterizestest time prediction occurring in exactly the same way as
the tree model in terms of “mean shifts” (differences be-in the original tree. Moreover, our method HS does not
tween the means of child and parent nodes). This seems &ven need to see the original training data, and only re-
have a closer connection to HS than to LBS, but it is un-quires access to the tted tree model. These features make
clear whether the resulting likelihood (see equation (14) int extremely lightweight and easy to implement, as we have
their paper) has the same form as HS. done in the open-source packdgedels (Singh et al.,
2021). By applying HS to each tree in an ensemble, it can

The rest of the paper is organgd as follows. Sec 2 9VeRe generalized to methods such as RF and gradient boost-
a formal statement of HS, and discusses several computﬁﬁ

tional considerations. Sec 3 discuss the interpretation of =

HS as ridge regression on the supervised features. SecWhile not typically done, itis possible to regularize RFs via
presents the results of extensive numerical experiments opther hyperparameters such as maximum tree depth. Tun-
ing these hyperparameters, however, requires re tting the

2 e .
When conditioned on the structure of a given tree, as well a : ; ; ; .
all other trees in the ensemble, the posterior distribution for theﬁ?F at every value in a grid. This quickly becomes compu

contribution of a leaf node is a product of Gaussian Iikelihoodtationally expensive in _a cross-validatiqn (CV) S_et up, _even
functions centered at the model residuals as well as a GaussidRr moderate dataset siz&#n contrast, since HS is applied

prior. A simple calculation shows that the posterior mean can be37 o )
obtained from the residual mean via LBS. Many popular tree-building algorithms such as CART have a

run time ofO(pn?) for constructing a binary tree.
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post-hocwe only need to tthe RF once per CV foldad- Theorem 1. Let " be the solution to the ridge regression
ing to potentially enormous time savings. In addition, dueproblem

to the connection between our method and ridge regression, ( 0 ) )

it is even possible to get away with tting the RF ordyce min T(x) yi + kK 4)
by using generalized cross-validation (Golub et al., 1879) i=1

We also note the formula for LBS: We have the functional equal'rﬁ/(x) Y ( x).

éthyg étofyg.

100 = Bufye = )

(2) Proof. See Appendix S2. O]
Expanding this into a telescoping sum similar to (1), weSince the decision stumps (3) are orthogonal, we can de-
see that the major difference between the two formulas i§0MPose (4) intan independent univariate ridge regression
that whereas LBS shrinks each term by the same factor, HBroblems, one with respect to each neode

shrinks each term by a different amount, with the amount

of shrinkage controlled by the number of samples in the min ( (xi) yi)2 + 2 (5)
ancestor. This increased exibility leads to better predic- i=1

tion performance for the nal model, as evidenced by our ] ) ) ]
results presented in the next section. Next, we use this connection of HS to ridge regression to

argue heuristically thahe same works well for each re-
. . . gression subprobler(b). This helps to justify our choice
3. HS as Ridge Regression on Supervised of denominator for each term in the HS formula (1) (a dif-

Features ferent choice would have led to a rescaling of the features

Recent work by Klusowski (2021) showed that decision )

tree algorithms can be viewed as a two-step process, wherssume for the moment that the tree structure and hence
the rst step comprises supervised feature learning, and theéhe feature map is independent of the responses, which can
second step ts a linear models on the collection of learntbe achieved via sample splitting. This is known in the liter-
features. ature as the “honesty condition”, and has been widely used
to simplify the analysis of tree-based methods (Athey &

T hi nsider a tree m Iwith a xed indexin
0 see this, consider a tree modieiwith a xed indexing Imbens, 2016). De ne 2 R™ to have the value

to each nodé the decision stump P N (tL )N (tr)

(1) =
_ N(tR)IfX2 1t g N(t)I1fX 2 trg. N ()
t(x) = ¢ N(tON (tr) () for the coordinate associated with each nodeFor any
- R query pointx, ' ( x) gives the mean response over

wheret, andtg denote the left and right children of the leaft(x) containing it. Furthermore, knowing x)
respectively. This is a tri-valued function that is posi- IS €quivalent to knowing the leaf containing Putting
tive on the left child, negative on the right child, and these two facts together show that the population residuals

— T : H —
zero everywhere else. Concatenating the decision stumgs = Yi ( x) satisfyEfri j ( xi)g=0, so that we
together yields a supervised feature map \{iax) = have a generative linear model, in which we can calculate

w(X);i:; 1, ,(x) and a transformed training set that the optimal regularization parameter for (5) is equal to

( Dp) 2 R" ™. One can easily check that these fea- opt(t) = ()= (1)%, where 2(t) is roughly equal to
ture vectors are orthogonal R", and furthermore that the conditional varianceof the residual over.

their squared, norms are the numbezr of samples con-Gjyen the connection between impurity and residual vari-
tained in their corresponding nodés:t k* = N (t). Klu-  gnce, if the tree modé! considered in this section is grown
sowski (2021) showed (see Lemma 3.2 therein) that W§,sing an impurity decrease stopping condition, we should
have functional equality between the tree model and theypect the residual variance to be relatively similar over all
kernel regression model with respect to the supervised fegagyes. so that?(t) also does not vary too much over dif-
. T ’ . :

ture map , or in other Wordsf\(x) =" ( x), where ferent nodes. Meanwhile (see Appendix S2.2)
N . . .

= ( Dp)Yy. An easy extension of his proof yields the Efy i : 2 ; 2 2depti(t)=

) t Efyjt diam(t 2 P p

following result. (Efyitg Yitr9) () )

(Efyjttg Efyjtrg); (6)

“This allows for ef cient computation of leave-one-out cross-
validation error, which can be used to selectwithout re tting

N (t H
the RF. R Varfr jtg.

®More precisely, it is equal toSi{i5lVarfrjtrg +
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where p is the dimension of the original feature space. Name Samples Features
Since the maximum depth is typical@(logn), opt(t) Heart 270 15
also does not vary too much across different nodes, andg Breast cancer 286 9
we do not lose too much by using a common value of £ Haberman 306 3
across all the univariate subproblems (5) corresponding to~ :S’ig%zggsf(es r(;i%igc; Iet i\géé?%) 3;56% 3‘;
different decision stump features. (_("’g German credit ' 1000 20
A more naive (supervised) tree-based feature map is the Juvenile (Osofsky, 1997) 3640 286
one-hot encoding of an original feature vector obtained by Recidivism 6172 20
treating the leaf index as a categorical variable. We de-  Friedmanl (Friedman, 1991) 200 10
note this using . While can be obtained from via g Friedman3 (Friedman, 1991) 200 4
an invertible linear transformation, the two maps result in ﬁ gggg;:géﬁfarmii?” 2004) 13'5492 1113
different kernels, and thus different ridge regression prob- > Red wine 1599 11
lems. Indeed, the ridge regression solution with respect tor  Abalone (Nash et al., 1994) 4177 8
is equivalent to performing LBS on the tree model. The  Satellite image (Romano et al., 2020) 6435 36
leaf indicator features are also orthogonal, so we may sim-___ CA housing (Pace & Barry, 1997) 20640 8

ilarly decompoge this ridge regression problem into inde-taple 1.Real-world datasets analyzed here for classi cation (top
pendent univariate subproblems, one for each leaf. Howpanel) and regression (bottom panel).

ever, in this case, the population regression vectarfor
which T ( x) gives the expected response over each leaf,
has coorldinates equ'al to the population egpectation over thgz. HS Improves Prediction Performance for

I_eaves: (t) = Efyj t_g. As such, the optimal regularlza-_ Commonly Used Tree Methods

tion parameters for different leaf nodes could be very dif-

ferent, and we lose more by having to use a common valug@he prediction performance results for classi cation and
of . regression are plotted in Fig 4A and Fig 4B respectively,

. e with the number of leaves, a measure of model complexity,
In practice, sample splitting is rarely done, and the featur piextty

map depends on the responses. Nonetheless, we belié [ﬁtted on thex-axis. We consider trees grown using four
. . ’ . ’ ren hni . CART, CART with -complexi
that the heuristics detailed above continue to hold to a cer- erent techniques: € , C th cost-complexity

tai tent h . : tal it pruning (CCP), C4.5 (Quinlan, 2014), and GOSDT (Lin
ain extent as shown in our experimental resufts. et al., 2020), a method that grows optimal trees in terms

of the cost-complexity penalized misclassi cation loss. To

4. HS Improves Predictive Performance on reduce clutter, we only display the classi cation results for
Real-World Datasets CART and CART with CCP in Fig 4A/B and defer the re-
) sults for C4.5 (Fig S3) and GOSDT (Appendix S4.2) to the
4.1. Data Overview appendix.

In this section, we study the performance of HS on a colleCfEgor each of the four tree-growing methods, we grow a
tion of classi cation and regression datasets selected as folree to a xed number of leavem ® for several differ-
lows. For classi cation, we consider a number of datasetsnt choices ofm 2 f 2;4: 8: 12: 15; 20; 24; 28; 30; 329 (in
used in the classic Random Forest paper (Breiman, 200kractice,m would be pre-speci ed by a user or selected
Asuncion & Newman, 2007), oneBeast cancemwith  vja cross-validation). For each tree, we compute its pre-
id=13) from the openML repository, as well as tWwau{  diction performance before and after applying HS, where
venileandRecidivism that are commonly used to evaluate the regularization parameter for HS is selected from the set
rule-based models (Wang, 2019). For regression, we con- 2 f 0:1; 1:0; 10.0; 25:0; 50:0; 100.0g via cross-validation.
sider all datasets used by Breiman (2001) with at least 20&esults for each experiment are averaged over 10 random
samples, as well as a variety of data-sets from the PMLRjata splits. We observe that HS (solid lines in Fig 4A,B)
benchmark (Romano et al., 2020) ranging from small togoes not hurt prediction in any of our data sets, and of-
large sample sizes. Table 1 displays the number of samplegn |eads to substantial performance gain§or exam-
and features present in each dataset, with more details Prgte, takingm = 15, we observe an average increase
vided in Appendix S1. In all case&s of the data is used in relative predictive performance (measured by AUC) of
for training (hyperparameters are selected via 3-fold CV ong: 204 6:5%; 8%for HS applied to CART, CART with CCP,
this set) and=s of the data is used for testing. and C4.5 respectively for the classi cation data sets. For
the regression data sets with = 15, we observe an aver-

SFor CART (CCP), we grow the tree to maximum depth, and
tune the regularization parameter to yietdeaves.
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age relative increase R? performance 09:8%and10:1%  4.4. HS Improves Prediction Performance for RF

for CART and CART with CCP respectively. . . . .
w pectively As mentioned earlier, trees in an RF are typically grown

As expected, the improvements are more signi cant forto purity without any constraints on depth or node size.
smaller datasets, and tend to increase with the number ®fonetheless, Mentch & Zhou (2019) argues thatrtitiey

leaves (e.g. the top row of Fig 4A and Fig 4B). For largerparametef, which controls the degree of feature sub-
datasets, we start to see substantial improvements using H&lection, “serves much the same purpose as the shrinkage
at even larger numbers of leaves (Appendix S4.4). penalty in explicitly regularized regression procedures like

The fact that improvements hold for CART (CCP) ShOWSItass%afnd lrt'dg? éegreds_smn.’:[ ;rhlsg)a\rsmeter IS typtlrc]:ally set
that the effect of HS is not entirely replicated by tree 0 a default valus and 1S not tuned. YVe compare the per-

structure regularization, and inste#iuk two regularization formance of regularizing RF via HS against that obtained

methods can be used synergisticallgdeed, applying HS by controlling maximum tree depth entry , tuning the

can lead to the selection of a larger tree. Since tree mode,}yperﬁrr]{in}eter for ezlafjhﬁmethtodhw_a cr;;str\]/alldatl%n. we
are sometimes used for subgroup search, larger trees froFﬁqea _|sth0r;'e:verad eren tCh oIces it € nzg‘ erd
HS could allow for the discovery of otherwise undetected®' €S N € R, and average the results over LU random

subgroups. data splits.

Fig 3 shows a simulation result analyzing the bias-variancérhe results, displayed in Fig 4D, show th# signi cantly

tradeoff for CART with and without HS. Here, data is gen- improves the prediction accuracy of Rieross the datasets

erated from a linear model with Gaussian noise added dur>'S considered. Moreover, HS clearly outperforms the two

. - . : : ther RF regularization methods (usitgpth andmtry )
ing training (see Appendix S3 for experimental details, anq|0n all datasets. This is especially promising because HS

other simulations). While predictive performance curves, . . .
are often U-shaped because of the bias-variance trademLﬁ also the fas_test an_d easiest method to implement, as it
those for HS are monotonic since HS is able to effectivelydoe.S not. require re tting the RF. Mor-eovdnsRF tends to
reduce variance. The optimal regularization parameter aghleve its maximum Performance with fewe”m R'.:
decreases with the total number of leaves; this is corroboWIthOUt regular.lzatlon, as aconsequence, R'.: with HS is of-
rated by our calculations in Sec 3. ten gble to gchleve the same p'erformance Wlth an ensemble
that is ve times smaller, allowing us to achieve large sav-

ings in computational resources.

We also compare hsRF to the predictive performance of
Bayesian Additive Regression Trees (BART) (Chipman
et al., 2010), and observe that hsRF and BART are compa-
rable in terms of prediction performance. However, hsRF is
much faster to tthan BART (typically 10-15 times faster)
and we can also apply HS to BART (see Appendix S4.5).

Additionally, we also investigate the effect of applying
HS to gradient boosted trees. The results, displayed in
Fig S8, indicate that applying HS slightly improves the per-
formance of GBTs for smaller datasets, while performing
similarly for larger datasets. This is unsurprising since the

Figure 3.Test error for CART with HS (hsCART) stays low as the pane t of HS is most pronounced for smaller datasets and
number of leaves increases, whereas CART test error increaswhen growing deeper trees

due to over tting. Data is simulated from a linear model with
Gaussian noise.

5. HS Improves RF Interpretations by
Simplifying and Stabilizing Them

In addition to improving predictive performance, HS re-
4.8. HS Outperforms LBS duces variance and removes sampling artifacts, resulting in
We next compare the performance of HS to that of leaf(i) simpli ed boundaries, and (ii) stabilized feature impor-
based shrinkage (LBS), which is used in XGBoost. Fig4C——— -

Thi ter is denotednt i d
shows that hsCART tends to outperform CART (LBS), maxfe;urgzrarqﬁ g(r:ikilslea;no edniryInrangeran

when repeating the same experiments as in Fig 4A); re- erypically © pfor classi cation andp=3 for regression, where
gression results are pushed to Appendix S4.3 due to spagsds the number of features.
constraints.
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(A) Classi cation

(B) Regression

(C) LBS comparisons

(D) RF Comparisons

Figure 4.Hierarchical Shrinkage (solid lines) often improves predictive performance across various datasets, particularly for small
datasets.(A) Top two rows show results for classi cation datasets (measured by AUC of the ROC curvé} )yt next two rows

show resullts for regression datasets (measuré@?)yHS often signi cantly improves the performance over CART, CART with CCP,
and(C) leaf-based shrinkag¢D) HS even improves results for Random Forests as a function of the number of trees. Across all panels,
errors bars show standard error of the mean computed over 10 random data splits. Note that the y-axis scales differ across plots.
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tance scores, (iii) making it easier to interpret interactiongwo thirds of the remaining samples and train an RF on this

in the model. reduced dataset. For each held-out sample, we measure the
variance of its SHAP values per feature across the 100 iter-
ations. We then average the variance per feature across all
50 held-out samples, with these values plotted in Fig 6 for
RF with HS and without. We observe that the variances of
the SHAP values for RF with HS are substantially smaller
than those for RF without HS. Moreover, these improve-
ments in stability persist even for datasets such as Heart,
Diabetes, and lonosphere, for which HS does not greatly
improve prediction performance (see SHAP stability plots
for all datasets in Fig S13 and Fig S14). When SHAP val-
ues are more stable, we can have more faith that they re ect
true rather than spurious patterns in the data generating pro-
cess.

Figure 5.Comparison of decision boundary learned by RF vs
hsRF on the Diabetes dataset, when tted using only two features.
HS prevents over tting by creating a smoother, simpler decision
boundary, resulting in improved performance and interpretability.
Figure 6.Comparison of SHAP plots learnt by Random Forests
on the breast-cancer dataset before / after applying HS. HS dis-
Fig 5 shows an example of simpli ed decision boundaries.plays lower variability across different data perturbations (without
On the diabetes dataset (Smith et al., 1988), RF can achiewopping in predictive performance), indicating enhanced stabil-
strong performance (AUC 0.733) even when tted to only ity-
two features. When HS is applied to this RF, the perfor-
mance increases (to an AUC of 0.787), but the decision ] )
boundary also becomes considerably smoother and leddq 7 investigates the SHAP values_ for an RF trained on the
fragmented. Since these two features are the only inputs tréast-cancer dataset. After applying HS, the SHAP values
the model, these smooth boundaries enable a user to ideffr €ach feature have tighter clusters. Each cluster com-
tify much clearer regions for high-risk predictions. Ap- Prises a group of samples fo_r which the feature contributes
pendix S5.1 plots decision boundaries for all 8 classi ca-a Similar amount to the predicted response, and hence can

tion datasets, showing that HS consistently makes bound€ interpreted without taking into account feature interac-
aries smoothet. tions, thereby reducing cognitive burden. More globally,

. ] _the clustering effect suggests that HS improves prediction
In models with many features, post-hoc interpretationsyerformance by regularizing some unnecessary interactions
such as SHAP values (Lundberg & Lee, 2017) can be usefh the model, making the tted function closer to being ad-
to understand how the model makes its predictions. Fig §jitive. Appendix S5.2 shows the SHAP plots for all 8 clas-

shows that HS improves the stability of SHAP values withs; cation datasets, showing that HS consistently leads to
respect to resampling of the dataset. In this experiment, Wgore clustered SHAP values.

randomly choose 50 samples in the breast-cancer dataset to
hold out, and for each of 100 iterations, we randomly seleci3 . .
. Discussion

°To obtain these plots, we t an RF on each dataset using . o
only the two most important features, as measured using meartdS is a fast yet powerful regularization procedure that can
decrease-impurity (MDI). be applied to any tree-based model without changing its
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Supplement

S1. Further Details on Datasets Used

Name Samples Features Class0 Class1l Majority class %
Heart 270 15 150 120 55.6
Breast cancer 286 9 196 81 70.8
Haberman 306 3 81 225 73.5
lonosphere (Sigillito et al., 1989) 351 34 126 225 64.1
Diabetes (Smith et al., 1988) 768 8 500 268 65.1
German credit 1000 20 300 700 70.0
Juvenile (Osofsky, 1997) 3640 286 3153 487 86.6
Recidivism 6172 20 3182 2990 51.6

Table S2.Classi cation datasets (extended).

Name Samples Features Mean Std Min Max
Friedmanl (Friedman, 1991) 200 10 143 46 21 252
Friedman3 (Friedman, 1991) 200 4 1.3 0.4 0.0 1.6
Diabetes (Efron et al., 2004) 442 10 152.1 77.0 25.0 346.0
Geographical music 1059 117 0.0 1.0 -15 5.9
Red wine 1599 11 56 08 3.0 8.0
Abalone (Nash et al., 1994) 4177 8 99 3.2 1.0 29.0
Satellite image (Romano et al., 2020) 6435 36 3.7 2.2 1.0 7.0
California housing (Pace & Barry, 1997) 20640 8 2.1 1.2 0.1 5.0

Table S3.Regression datasets (extended).

S2. Theory

In this section, we provide a proof of Theorem 1 and the heuristic arguments discussed in Sec 3.

S2.1. Proof of Theorem 1

Throughout this proof, we denote the left and right children of a nptd ti,. andt;r respectively. Further, we assume
WLOG that the sample mean satis ésbf yg = 0. Then using the well known solution to ridge regression, we have that

=(( Dn)" ( D)+ 1) *( Dn)'y:
Because the feature vectors are orthogonal, the kernel matiix)™ ( D,,) is diagonal with entrie6( D,,)T ( Dpn))ii =
N (t;). Therefore, we have the following expansion for tkté coordinate of'

n o _ by (Dn)yi

! N (ti) +

P
N(tir) xon, ¥ N(in) xou, Vi
D N(GON RN () + )

_ N )N(g) E. fyg E.. fyg

AN

0 N (ti) + |
_ U Nt N (tir) N(t)E fyg | B fyoN(tie)
TN+ Bu g N(tr) = N(tr)
S
N (6)°N (ti ) E.. fyg E.fyg : 8)

N (tir (N (ti) + )2
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Note that a similar formula holds witt, andti.g exchanged.

Consider a query point with leaf-to-root patht,  t. 1 to, assuming WLOG that each descendant is always
the left child of its ancestor. Using (8), the predictiorxatan then be expanded as follows

fx)=( x)""
_ X N(tir)h ¢ (Dn);yi
o NQONER)N()+ )

X YR fyg Eyfyg
- 1+ =N ()

1=0

We see that the equation above is precisely that proposed for HS in (1).

S2.2. Heuristics for Equation(7)

Consider the generative model
y="f(x)+ : 9)

whereEf jxg=0. Suppose for the moment tHatx) = " x is linear, so that
Efyjtg Efyjteg= "(Efxjtig EfxjtrQ): (10)
Now further assume that for somegj, and max , We have
mn i min
for alli. Plugging these into (10) allows us to compute

2, diamt)? (Efyjtg Efyjtrg)® 2. diam(t)%: (12)

Next, for a given node, let its side lengths be denoted hy with corresponding measurgt) = Qip:1 lj. Assuming

that all the side lengths dfare similar, we have that the diameter of the node is roughly djam (t)'*P. Furthermore,
assuming that each notlés split fairly evenly so that its left and right children have roughly equivalent measure, then the
measure of the nodeis approximately2 9Pt (O which implies that diarft) 2 9Pt (V=P Suybstituting this into (11)
gives us the heuristic claimed in (7).

For a more general?® regression functiofi, note that theC! assumption implies thdt is approximately linear locally,
i.e. when the nodes are small enough.

S3. Additional Simulations for Investigating the Bias-Variance Trade-off

In this section, we provide experimental details for our bias-variance trade-off simulation in Fig 3 as well as other simula-
tions settings that we display below. Note that we reproduce Fig 3 in Fig S1 for ease of the reader.

Experimental Design: In Fig S1, we simulate data via a linear moget P1 i- 1 Xj + withx  Unif[0; 1]°° and being

drawn from a Gaussian or a Laplacian distribution for the left and right panel respectively, WIﬂ"j‘IOISG vafian6e01

in both cases. In Fig S2, we simulate responses from a linear model with pairwise mterzg(c*aonsI o1 Xi t X1X2 +

Xs5Xg + X11X12 + , and use the same noise models described above. In both experiments, we used a training set of 500
samples to t CART and hsCART models with a prescribed number of leaves, varying this number across a grid. For
each hsCART model, the regularization parametesas chosen on the training set via 3-fold cross-validation. Finally, we
repeat this entire process 100 times with resampled datasets.

Evaluation: Denote the training set usiig, and the query point using. We de ne the MSE of a moddf as

o, f(X:Dn) f(x)
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and notice that it can be decomposed pointwise into squared bias and variance terms as follows:

n (0]

2 n (0] 2 n 0
Exo, f(x;Dn) f(x) =Ex Ep. f(x;Dn) f(x) + Ex Varp, f(x)

n

Our goal is to plot the approximate values of all three quantities for the CART and hsCART models under the settings
described in the experimental design. To do this, we use a noiseless test set of 500 samples tg compute an approximate

expectation with respect to the query pointFor each test set samplewe approximaté&p f’\(x; Dn) using the mean
n o}

prediction of the 100 models obtained from resampled training sets, and approximsje ¥&x) by taking the variance
of the predictions across the 100 models.

Results: We observe similar behavior in all four experiments: The the MSE curve for CART is U-shaped, whereas that for
hsCART is monotonic. Furthermore, we see that this is due to hsCART being better at controlling its variance term. In all
cases, the optimal regularization parametelecreases with the total number of leaves.

Figure S1ICART (HTS) test error rate for a linear model with gaussian (left)/laplacian (right) noise stays low as the number of leaves
increases, whereas CART test error displays U-shaped bias-variance tradeoff as model complexity increases.

Figure S2CART (HTS) test error rate for a linear model with pairwise interactions and gaussian (left)/laplacian (right) noise stays low
as the number of leaves increases, whereas CART test error displays U-shaped bias-variance tradeoff as model complexity increases.

S4. Further Experimental Results for Predictive Performance
S4.1. C4.5 trees

In this section, we display prediction accuracy results on the classi cation datasets in Table 1 for tree models obtained via
C4.5 (Quinlan, 2014) before/after applying HS post hoc. The experimental details are provided in Sec 4.2. We see that HS
signi cantly improves prediction performance even with very few leaves.
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Figure S3Classi cation results for C4.5. HS signi cantly improves prediction performance even with very few leaves. Errors bars
show standard error of the mean computed over 10 random data splits

S4.2. Generalized Optimal Sparse Decision Trees (GOSDT)

In this section, we display prediction accuracy results on the classi cation datasets in Table 1 for tree models obtained
via GOSDT (Lin et al., 2020) before/after applying HS post hoc. We performed the simulation to show that HS can be
bene cial even for tree models that are obtained using global optimization (rather than greedy) techniques. We use the best
tree found by GOSDT within one hour of running time for the algorithm, since the implementation of GOSDT We used
fails to converge for many datasets within a reasonable timeframe (24 hours). To make the running time more tractable, we
use preprocessed each dataset by selecting the 5 most important features (using RF feature impdrar@®SDT, we

are unable to tune exactly, and instead tune its cost-complexity regularization parameter. Fig S4 shows the results, and
we again see that HS does not hurt prediction performance, although it also does not offer much improvement, possibly
because the tted trees are often very shallow.

%We used code from github.com/Jimmy-Lin/GeneralizedOptimalSparseDecisionTrees.

i this step is omitted then the tted tree is almost always extremely shallow (with 3 leaves or less) or GOSDT may fail to due to a
memory error. In fact, even with this step, GOSDT only outputs the root node for many datasets when the regularization parameter is
set to anything larger than 0. We omit these datasets from our results.
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Figure S4.HS performance across selected datasets. HS is as good as and sometimes slightly improves GOSDT.

S4.3. Comparison between HS and LBS for Regression Datasets

In this section, we investigate the prediction performance of CART with the alternate shrinkage scheme LBS to CART
with HS on the regression datasets in Table 1 with experimental details provided in Sec 4.3. We see that, just like in
classi cation, HS outperforms LBS.

Figure S5HS performs better than LBS for regression datasets in Table 1. Error bars show the standard error of the mean computed
over 10 random data splits.

S4.4. Deeper CART trees

In this section, we investigate the prediction performance of decision tree algorithms: (i) CART, (ii) C4.5, (iii) CART with
CCP before/after applying HS while growing deeper trees for all the datasets in Table 1 and Table 1. We observe that the
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performance of the baselines drop dramatically while the performance of HS continuously improves as the ratio of number
of leaves to samples increases. This is explained by the connection between HS and ridge regression on a supervised basis,
as discussed in Sec 3.

(A) Classi cation

(B) Regression

Figure S6HS is able to improvéA) Classi cation andB) regression predictive performance for both baselines: CART and CART with
CCP for larger data-sets when using deeper trees by preventing over tting. As shown by our connection to ridge regression in Sec 3,
HS is bene cial when the ratio of number of leaves to samples is large. Error bars show standard error of the mean computer over 10
random data splits.

S4.5. Bayesian Additive Regression Trees (BART)

Background on BART: BART is a Bayesian tree ensemble model (Chipman et al., 2010), with the tree structure and
leaf values are modeled as random variables. Conditioned on the tree structure, the leaf values, and a quetheoint
response variablg is assumed to follow a Gaussian distribution. The posterior distribution of the tree structures and leaf
values is used for inference, with samples generated via a back tting MCMC algorithm. Each posterior sample is a sum
of trees function, and the nal prediction is made using the posterior mean, i.e. an average prediction over many such
samples.

BART has become popular in applied statistics research, especially in the eld of causal inference (Hill, 2011). It has
been claimed to obtain state-of-the-art prediction performance on many datasets, once its hyperparameters have been
appropriately tuned (Chipman et al., 2006). As such, it offers both a baseline comparison for RFs regularized using
HS (shown in Fig 4D), as well as an alternate tree ensemble growing method to which we can apply HS. Furtheremore,
BART implicitly applies a form of shrinkage, as discussed in Sec 1.

In this section, we investigate applying HS to a tree ensemble grown using BART.

Experimental design: We used the implementation of BART in thartpy packagé?. First, we t a BART model with
a prescribed number of trees by running a single MCMC chain for a standard number of burn-in iterations, and all other

2Code can be found 4t github.com/JakeColtman/bartpy.
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hyperparameters set to defaults. We extract a tree ensemble from the BART model by drawing a single sample from the
posterior distribution. Note that this gives us both the tree structures as well as the leaf values. We then apply HS to this
model, tuning the regularization parameter via CV as before, to obtain the hsBART model.

Results: The results show that HS does not signi cantly alter prediction performance of BART on both regression and
classi cation datasets. We believe that this can be explained by the tendency of BART to construct relatively small trees
when the recommended parameters are used (Chipman et al., 2010). Furthermore, the raw BART predictions already come
with leaf-based shrinkage, which is somewhat similar to HS for shallow trees.

(A) Classi cation

(B) Regression

Figure S7Hierarchical Shrinkage (solid lines) applied post-hoc to BART trees, shows similar performance for classiéatiand
regressior(B) datasets in terms of AUC arRP respectively

S4.6. Gradient Boosted Trees

In this section, we investigate the effect of applying HS to gradient boosted trees (GBTs). We vary the number of trees
B in the ensemble, constraining each tree to have maximum depth 3. All other experimental details are identical to those

described in Sec 4.4.

The results, displayed in Fig S8, indicate that applying HS slightly improves the performance of GBTs for smaller datasets,
while performing similarly for larger datasets in terms of AUC. This is not entirely unsurprising since the bene ts of HS is
most pronounced for smaller datasets and when growing deeper trees.
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Figure S8HS (solid lines) applied post-hoc to Gradient Boosted Trees. HS slightly improves performance for smaller datasets, and
provides similar performance for larger datasets in terms of AUC.

S5. Further Experimental Results for Interpretability

S5.1. Decision Boundaries

In this section, we further investigate how HS can help to simplify decision boundaries. For each of our classi cation
datasets, we t an RF with 50 trees using only the two most important features, as measured using Mean Decrease in
Impurity (MDI) feature importance. We also apply HS post hoc to the tted RF model to obtain a second model. In Fig S9
and Fig S10, we plot the different decision boundaries of both models for each dataset.
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