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Abstract
The recent availability of Electronic Health
Records (EHR) has allowed for the development
of algorithms predicting inpatient risk of deteriora-
tion and trajectory evolution. However, prediction
of disease progression with EHR is challenging
since these data are sparse, heterogeneous, multi-
dimensional, and multi-modal time-series. As
such, clustering is regularly used to identify sim-
ilar groups within the patient cohort to improve
prediction. Current models have shown some
success in obtaining cluster representations of pa-
tient trajectories. However, they i) fail to obtain
clinical interpretability for each cluster, and ii)
struggle to learn meaningful cluster numbers in
the context of imbalanced distribution of disease
outcomes. We propose a supervised deep learning
model to cluster EHR data based on the identifica-
tion of clinically understandable phenotypes with
regard to both outcome prediction and patient tra-
jectory. We introduce novel loss functions to ad-
dress the problems of class imbalance and cluster
collapse, and furthermore propose a feature-time
attention mechanism to identify cluster-based phe-
notype importance across time and feature dimen-
sions. We tested our model in two datasets corre-
sponding to distinct medical settings. Our model
yielded added interpretability to cluster formation
and outperformed benchmarks by at least 4% in
relevant metrics.

1. Introduction
A variety of medical settings are characterised by the exis-
tence of multiple distinct patient subgroups, largely distin-
guished by differences in pathology, response to treatment
and medical interventions, etc. Identifying and characteris-
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ing such subgroups is key to better understand underlying
disease(s) and improve the delivery of medical care. For in-
stance, the management of highly impactful chronic diseases
such as Chronic Obstructive Pulmonary Disease (COPD)
and Cardiovascular Disease (CVD), (Adeloye et al., 2015),
has improved with the identification of subgroups with dif-
ferent exacerbation profiles, (Turner et al., 2015; Vogelmeier
et al., 2018).

Electronic Health Records (EHR) time-series data are typi-
cally used to determine clinically relevant subgroups, and
have been applied, e.g., to detect the risk of deterioration.
However, modelling disease progression and risk predic-
tion is challenging due to the extreme data heterogeneity
nature of EHRs. Firstly, EHR data contains a mixture of
demographic or static variables (such as age and sex), and
multi-dimensional time-series (e.g Heart Rate, HR, and lab-
oratory measurements, such as blood tests). Secondly, EHR
time-series are multi-modal as different features are col-
lected from different devices, representing distinct clinical
properties of relevance. Similarly, time-series features are
sampled at different times and have low and distinct sam-
pling rates, as well as different missing value properties.
Furthermore, each feature is associated with different noise
and evolution patterns.

Recent advances in deep learning (DL) approaches have
shown promising results in EHR modelling due to their
capacity to handle complex data (Rajkomar et al., 2018).
Nonetheless, DL approaches typically lack relevant inter-
pretability frameworks which are key to scaling and deploy-
ing such tools in hospital settings. Several models have
since been proposed to tackle this issue (Mayhew et al.,
2018), however, most of them focus on a subset of EHR
features (usually vital signs only), consider one-dimensional
input data and fail to provide a clinically-focused phenotypic
analysis of learnt patient subgroups (via clustering).

This work builds on previous research by introducing a
cluster-based feature-time attention mechanism to improve
the prediction of patient outcomes through EHR data. Our
method also leverages phenotypic information to aid in
clinical interpretability, not only making use of demographic
and vital-sign information, but also of relevant laboratory
measurements (all present in the EHR) to provide a more
complete patient physiological status. Our contributions
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include the following:

• An end-to-end DL supervised model to cluster EHR
patient data based on the identification of clinically
meaningful cluster phenotypes with regard to both out-
come prediction and patient trajectory in a multi-class
setting;

• A weighted loss to address target outcome imbalance
for both tasks of clustering and prediction, a common
issue in the medical domain;

• The incorporation of a novel loss mechanism to ad-
dress the issue of cluster collapse and promote sample
assignment to all available clusters;

• Finally, the inclusion of a novel interpretability frame-
work, derived from a cluster-based feature-time atten-
tion layer, which aims to identify relevant timestamps
and feature variables pairs to represent the patient phys-
iology, cluster assignment and, ultimately, outcome
prediction.

This paper is structured as follows. In Section 2, we describe
previous research in EHR time-series modelling, clustering
and attention methods. Section 3 introduces both datasets
we used in our analysis, while section 4 describes our pro-
posed model. The experimental setup and results of our
analysis are consequently presented in Section 5 and discus-
sion takes place in Section 6. Finally, concluding remarks
and ideas for future work are available in Section 7.

2. Related Work
EHR data comprise complex time-series data, being high-
dimensional, multi-modal and heterogeneous, and thus pre-
senting challenges when used in machine learning models
(Keogh & Kasetty, 2003; Rani & Sikka, 2012). An im-
portant goal in a medical setting is to identify phenotyp-
ically separable clusters with distinct phenotypic profiles
(which we denote as phenotypic clustering hereafter). For
the purposes of this work, cluster phenotypes result from
the combination of two distinct components: a) the evolu-
tion of patient feature trajectories’ within the cluster, and
b) the characterisation of the cluster with regard to clinical
variables of interest. The latter may include features not
used for clustering and may provide information about the
underlying or future health status.

Traditional clustering models such as K-Means or hierarchi-
cal clustering have been shown to fail to capture the exist-
ing time-dependent feature relationships when modelling
EHR. As such, variants have been proposed to mitigate this
problem. A temporal version of the K-Means algorithm,
Time-Series K-Means (TSKM, Tavenard et al. (2020)), con-
siders different distances in time-series space, including a

temporal Euclidean distance (which is equivalent to consid-
ering all feature temporal observations as an independent
feature value for the corresponding patient admission), and
other alignment strategies such as Dynamic-Time Warp-
ing (DTW, Berndt & Clifford (1994)) and a differentiable
approximation, soft-DTW (Cuturi & Blondel, 2017).

Recent DL architectures, ranging from Auto-Encoders (AE,
Ma et al. (2019)), Convolutional Neural Networks (CNN,
Munir et al. (2019)) and others, have shown great promise
when applied to time-series data across a variety of do-
mains. Fortuin et al. (2019) proposed a Self-Organising
Map - Variational Auto-Encoder (SOM-VAE) model, which
represents a state-of-the-art, unsupervised, DL clustering
algorithm. SOM-VAE extends a variational auto-encoder
architecture (Kingma & Welling, 2014) to represent ob-
servations through the addition of a Markov model (Gag-
niuc, 2017) to infer temporal evolution within the latent
space. Clustering is performed in the low dimensional em-
beddings with a SOM (Kohonen, 1982) to obtain a discrete,
topologically-interpretable latent representation of the learnt
clusters. Alternatively, through the usage of supervised out-
come labels, AC-TPC (Lee & Schaar, 2020) serves as the
current state-of-the-art for identifying phenotypically sepa-
rable clusters in patient trajectories in EHR data. AC-TPC
maps EHR data into a latent space via an encoder, and uses
an actor-critic framework (Konda & Tsitsiklis, 2003) which
leverages clinical outcomes to aid in cluster formation. Nei-
ther SOM-VAE and AC-TPC provide clinically meaningful
interpretation of feature-time importance, i.e. at what time
and what feature is driving cluster assignment, or outcome
of interest.

Attention mechanisms have recently been proposed to pro-
vide greater interpretability to Recurrent Neural Networks
(RNN) and to aid in dealing with long-term dependencies
(Vaswani et al., 2017; Xu et al., 2015). They have also been
used in modelling EHR time-series (Schwab et al., 2017;
Shashikumar et al., 2018). RETAIN (Choi et al., 2016) pro-
poses a two-level reverse attention mechanism to mimic a
physician’s decision process and predict a future diagno-
sis. In other recent works, attention mechanisms based on
bi-directional RNN and CNN outperformed standard clas-
sification models in predicting high risk vascular diseases
with the addition of medication information as input data
(Kim et al., 2017). A drawback of such attention mecha-
nisms is the focus on temporal interpretability only, and the
inability to look at individual features, which is key in a
medical setting. To solve this issue, (Shamout et al., 2020)
considered independent RNN per feature, with a concatena-
tion of the resulting latent vectors. However, the latter does
not allow the joint modelling across both feature and time
dimensions. Alternatively, (Kaji et al., 2019; Gandin et al.,
2021) proposed learning attention weights directly on the
original inputs, prior to being transformed by a RNN, which
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does not allow modelling of the resulting latent representa-
tions. To the best of our knowledge, no existing models have
been proposed that jointly leverage both feature and time
dimensions (feature-time) to determine clinical observation
relevance for clustering EHR data.

3. Dataset and Pre-Processing
To validate the usefulness of our model, we consider 2
distinct medical datasets, corresponding to different envi-
ronments within the healthcare system. We first discuss
a proprietary, secondary care dataset in section 3.1 which
was the main motivation behind our modelling innovations.
Afterwards, in order to be able to provide further validation
of our methods, as well as assess their reproducibility, we
present a freely-available dataset of an emergency ward en-
vironment in section 3.2, which also provides support to our
claims of generalisability of our model to other healthcare
settings.

3.1. HAVEN

We first consider HAVEN, a dataset retrieved from a retro-
spective database of routinely collected observations from
concluded hospital admissions between March 2014 and
March 2018 (HAVEN project, REC reference: 16/SC/0264
and Confidential Advisory Group reference 08/02/1394).
The database includes EHR measurements of adult patients
admitted to four hospitals from the Oxford University Hos-
pitals NHS Foundation Trust. Note that the HAVEN dataset
does not include data from Intensive Care Units (ICU), and
we have excluded observations taken in the Emergency De-
partment (ED). Key characteristics of HAVEN cohort data
include a) heterogeneity, b) multi-modality, and difference
in: c) noise distributions, d) sampling rates, e) missing val-
ues. Such properties are common across EHR settings, and
are challenging with respect to learning useful representa-
tions and predictions.

We used the protocol defined in (Pimentel et al., 2019) to
subset the cohort to those patients at risk of developing
Type-II Respiratory Failure (T2RF) in hospital (a diagram
of the data selection steps can be found in Figure A.1 in
the Appendix). Four patient outcomes were considered in
our analysis: i) no event during the hospital stay, leading to
successful discharge from the hospital, or the first instance
of one of three possible events, ii) unplanned entry to ICU,
iii) cardiac arrest (also named ‘Cardiac’ hereafter) and iv)
‘Death’. Outcome groups data features are not clearly sep-
arable (see Tables A.2, A.3 in the Appendix), so patient
clusters will naturally contain a mix of different admission
outcomes. In this setting, the clinically relevant component
of a cluster phenotype (henceforth denoted as cluster out-
come propensity or cluster propensity) is represented as a
categorical distribution indicating the corresponding likeli-

hood for cluster-assigned patients to have the corresponding
outcome. This can be the empirical outcome proportion dis-
tribution over a cluster, but can also be any other categorical
distribution learnt by models.

For each admission, observational data were averaged into
4 hour-window blocks, based on the time to outcome (or
time to discharge, in the case of no event during stay). Fol-
lowing the literature validating Early Warning Score (EWS)
systems (baseline models used by UK NHS staff to track
inpatient physiology, (RCP, 2017)) and clinical input, only
observations within 24 and 72 hours before the outcome
were considered, such that the target phenotype represents
the patient status in the subsequent 24 hours. Features were
transformed according to min-max normalization due to
skewness and heterogeneity in their distributions. Patient
admissions were randomly split into train, validation and
test sets. Missing values were imputed based on the previ-
ously observed time block - all remaining missing observa-
tions were imputed according to the feature median from
the aggregated validation and test data (see Section 5 for
the description of train-test data split). Imputed values were
flagged in a three-dimensional mask matrix.

After processing, input data contained over 100,000 patient
trajectories corresponding to 4,266 unique hospital admis-
sions (only the last admission of each patient was considered
in our analysis). Original trajectories for the patient cohort
are shown in the Appendix in Figures A.4, A.5, A.6 for
different variables/features. A lack of clear outcome group
separability can be observed across temporal and static vari-
ables. Furthermore, we note the high degree of imbalance in
the data - admissions with no event account for over 86.8%
of the total number of admissions, while event classes corre-
spond to 10.3% Death, 1.8% ICU and 1.1% Cardiac.

3.2. MIMIC-IV ED

In order to test the validity of our model in a different setting,
as well as improve the reproducibility of our work, we also
considered a dataset representing admissions to an emer-
gency department, MIMIC-IV-ED (Johnson et al., 2021;
Goldberger et al., 2000), abbreviated simply as MIMIC.
MIMIC is a large, freely available database of ED admis-
sions at the Beth Israel Deaconess Medical Center between
2011 and 2019, containing 448,972 ED admissions (‘stays’).
For each admission, MIMIC contains information on vital-
sign data, triage information, medications and hospital jour-
ney.

We followed a similar pre-processing method as to HAVEN.
We disregarded admissions related to psychiatry and/or
childbirth as these represent significantly distinct cohorts of
the general population. We applied temporal aggregation
into 1 hour blocks, and we considered only observations
at most 6 hours before ED discharge time. We decided
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on these values based on data distribution and clinical in-
put. We defined four outcomes for each patient admission
based on their journey throughout the following 12 hours:
a) whether the patient died (‘Death’), b) whether the pa-
tient was admitted to ICU (‘ICU’), c) whether the patient
remained at a hospital ward (‘Discharge’), and d) whether
the patient was discharged (‘Ward’). After processing, the
event classes were distributed as 0.30% Death, 16.53% ICU,
2.11% Discharge and 81.06% Ward, which shows the high
level of imbalance in this dataset.

4. Methods
4.1. Proposed model

We propose a novel model, which we denote by Cluster-
bAsed iMportancE Learning fOr Time-series (CAMELOT).
Our proposed methodology is displayed in Figure 11. Our
model improves on previous literature on 3 key items: a)
a modified loss function to target the multi-class imbal-
ance, b) a novel loss function to ensure cluster exploration
and representative clustering, and c) a novel feature-time
attention-level framework to boost representation and intro-
duce feature-time interpretability for cluster assignment.

Attention

RNN

Encoder

Identifier

(MLP) Categorical

Sampling

Input Representation Cluster Selection

Outcome Prediction

Set of cluster 

representation vectors

Predictor

(MLP)

𝒙𝒕−𝟏

𝒙𝒕

𝒙𝒕+𝟏

…
…

𝝅𝟏

𝝅𝑲

𝒄𝟏 𝒄𝟐 𝒄𝑲
𝒄𝒔𝒂𝒎𝒑

𝒚𝒑𝒓𝒆𝒅

Probability of assignment to Cluster 

Representation vector for Cluster 

Input observation at time t

Latent representation

Predicted outcome

Neural network

𝒛

𝒙𝒕

𝝅𝒊

𝒄𝒊

𝒚𝒑𝒓𝒆𝒅

𝑖

𝑖

…

Figure 1. Diagram of proposed model. MLP - Multilayer Percep-
tron neural network blocks; RNN - Recurrent Neural Network.

Let N denote the number of patients and Df the number
of input features. Input data consists of a set of patient tra-
jectories X = {{xn,t}Tn

t=1}Nn=1, where Tn is the maximum
number of temporal observations for patient n, and a set of
patient outcomes Y = {yn}Nn=1. Input trajectory data for
the n-th patient is represented as Xn = [xn,1, ...,xn,Tn ],
where each xn,t ∈ RDf is referred to as an observation
(vector), with a maximum of observed Df feature values.
The corresponding patient outcome is a one-hot encoded
vector yn ∈ R4 (more generally, the dimension of yn equals
to the number of possible outcomes).

Our DL model can be decomposed into 3 neural network

1Code for our model can be found on the github repository
CAMELOT-ICML

blocks: an Encoder, Identifier and Predictor. We refer the
action of each network respectively as E, I and P (for ex-
ample, I(x) denotes the output of the Identifier given some
input vector x). Both the Identifier and Predictor are Multi-
layer Perceptrons (MLP), networks of stacked feed-forward
dense layers. On the other hand, the Encoder block can be
further sub-divided into a) a stack of RNN layers and b) our
proposed custom attention layer (see Section 4.2 for further
details). Separately, we also consider a set of trainable clus-
ter representation vectors, C = {c1, ..., cK}. We assign the
outcome for cluster i as P (ci).

A model call is as follows: Given the n-th patient input
trajectory data Xn, the Encoder network returns a latent
representation zn := E(Xn) ∈ Rl. Consequently, the Iden-
tifier network computes cluster assignment probabilities,
πn := I(zn) ∈ RK . Each element of πn, πi

n, represents
the probability assignment of zn to cluster i, given a total
of K clusters. A cluster, knsamp is selected according to cate-
gorical sampling (knsamp ∼ Cat(πn)), and the corresponding
cluster representation, cnsamp := ckn

samp
is then selected from

C. The output of the model is ypred := P (cnsamp) ∈ R4.
We note that knsamp is only sampled during a training phase;
at prediction stage, cluster selection follows the equation
knpred = argmax

i=1,...,K
πi
n.

4.2. Encoder Network and a Custom Attention Layer
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Figure 2. Diagram of the Encoder network composed of an LSTM
Encoder and a custom attention layer.

The diagram of our proposed Encoder network is presented
in Figure 2. The Encoder contains (i) a Recurrent Neural
Network (RNN) block of stacked Long Short-Term Memory
(LSTM) layers, and (ii) a customised attention layer, which
computes a latent representation by comparing input data
with the sequence of output states from the RNN block.
We use the same notation as above, and write the sequence
of output states of the final LSTM layer as on,1, ...,on,Tn

,
with on,i ∈ Rl. Theoretically, each on,t corresponds to
a representative summary of input patient information up
until time t. We propose to approximate on,t as a linear

https://github.com/hrna-ox/camelot-icml
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combination of latent representations of each individual
feature, thereby allowing the separation of output states into
contributions from each feature. Note that it is important
for the feature transformations to be time-independent in
order to avoid over-parametrising and over-fitting the model,
and to ensure feature representation maps are similar across
time.

Our attention layer behaves as a set of Df feed-forward neu-
ral network layers, U1, ...,UDf

, jointly represented by: (i)
a matrix of learnable kernel weights D ∈ Rl×Df

. We write
D = [D1, ...,DDf

]; (ii) a matrix of learnable bias vectors
B ∈ Rl×Df

. Similarly, we can write B = [B1, ...,BDf
];

and (iii) an activation function, σ which matches the output
activation of the RNN block.

Input data for patient n, Xn is fed as input to the RNN block,
which outputs a sequence of latent output states (on,t)

Tn
t=1.

For t = 1, ..., Tn, we compute Df feature representations
in latent space as:

Rn,t := σ(D ⊙ xn,t +B) (1)

where Rn,t = [R1
n,t, ...,R

Df

n,t ] is our collection of
feature representations, σ is applied element-wise and
A := D ⊙ xn,t is a matrix satisfying Ai,j = Di,j(xn,t)j .
Equivalently, Ri

n,t is the output of a dense layer, Ui with
kernel Di, bias Bi, activation σ and input (xn,t)i. We
approximate on,t ≈

∑Df

i=1 α
i
tR

i
n,t = Rn,tαt. This approx-

imation is minimised following a least squares criterion,
which has a well-known solution, α̂t, and corresponding
optimal approximation ôn,t = Rn,tα̂t.

Given, ôn,t, we compute a context vector as
z :=

∑
t βtôn,t, where weights β are learned to

provide a more representative context vector. This is the
latent representation of patient n and output of the Encoder
network.

4.3. Attention Map Visualisation

Given cluster representation vectors, ck, we can compute
a cluster-wise feature-time attention visualisation map as
follows. First, we normalise feature-weights α̂t according
to a softmax function, st = σ(α̂t) ∈ RDf , where σ is the
softmax function: σ(x) = exp |x|

∥ exp |x|∥1
. Note we take the

absolute value inside the softmax function - consequently,
we extract importance from the magnitude of linear approx-
imation weights, as opposed to simply prefering the largest
values.

Secondly, we compute cluster-wise weights, γk
t ac-

cording to a temporal least-square approximation of
ck ≈

∑Tn

t=1 ôn,tγ
k
n,t, and solved as before. We sim-

ilarly normalise γk
n,t to obtain cluster temporal scores,

ekn,t = σ(γk
n,t). Finally, we can compute K scoring ma-

trices, M1
n, ...,M

K
n ∈ RTn×Df

:
(
Mk

n

)
t,f

= ekn,ts
f
t . Note

that: ∥Mk
n∥1 =

∑
t e

k
n,t

∑
f s

f
t =

∑
t e

k
n,t = 1. Given that

matrices Mk
n are normalised we visualise them as a nor-

malised feature-time map for cluster assignment relevance,
which we use to provide further model interpretability.

4.4. Loss optimisation

The model is optimised through consideration of three dis-
tinct loss functions. We introduce a weighted cross-entropy
loss function:

Lpred(ytrue, ypred) = −
C∑

c=1

wcy
c
true log

(
ycpred

)
This loss is equivalent to L = −wc′ log(ypred)c′ , where c′

is the true outcome for a particular patient. We propose
inversely proportional normalised weights:

∑C
c=1 wc = 1

and wc is inversely proportional to the class distribution,
i.e., wc ∝ N

Nc
with N being the number of patients and Nc

being the number of patients with outcome label c. Class
weighting penalises misclassification more heavily on less
sampled classes.

We also propose a novel distribution loss function,
Ldist(π). Define the average cluster probability of as-
signment as πC := 1

N

∑
n πn. Then we introduce

Ldist(π) = −H(πC), where H denotes information en-
tropy. Note that Ldist is minimised when πC is uniform,
ensuring all clusters are ‘explored’ and have comparable
number of samples. Finally, to separate cluster represen-
tation vectors, we define the cluster separation loss as
Lclus(C) = − 1

K(K−1)

∑
i,j ∥ci − cj∥2.

Both Ldist and Lclus are important to address an issue we call
cluster collapse, a phenomenon observed during training
where clusters may tend to collapse. This can result from
either i) sample assignment to a small subset of clusters
(thus not exploring further phenotypes) and ii) convergence
of learnt cluster embeddings (so that cluster representations
are largely indistinguishable).

To optimise our model, iterative gradients are applied ac-
cording to weighted combinations of the above loss func-
tions with hyper-parameter weights α, β:

1. Firstly, the Predictor is updated according to Lpred;

2. After, the Encoder and Identifier are trained according
to Lpred + αLdist;

3. Finally, cluster representation vectors are updated with
regards to Lpred + βLclus.

4.5. Initialisation

Our proposed model also follows a set of initialisation pre-
training procedures. Firstly, the Encoder and Outcome
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Predictor are pre-trained according to a classification task
(ỹ = P (E(x))), with corresponding loss Lpred. Latent
state representations E(x) are clustered through a K-means
algorithm with K clusters across the whole training set.
Cluster representation vectors are initialised as given by the
resulting cluster centroids, and finally the Cluster Identifier
network is pre-trained to identify clusters as predicted by
the K-Means algorithm with categorical cross-entropy loss.
We also tested our models with other non-K-means clus-
tering initialisation of embeddings, but did not observe a
significant difference in results.

Model implementation was completed in Python, with Ten-
sorFlow 2, scikit-learn and NumPy. All experiments were
run with 1 Tesla v100 GPU, and 8 CPUs Intel(R) Xeon(R)
Gold 6246 @ 3.30GHz.

5. Results
5.1. Setup

In order to compare our models against other approaches,
we consider a set of clustering benchmarks. We compare
with TSKM as a classic clustering method (with Euclidean,
DTW and soft-DTW distances considered), and SOM-VAE
and AC-TPC as state-of-the-art phenotypic clustering meth-
ods. AC-TPC receives as input temporal subsequences of a
complete patient set of observations - for comparison pur-
poses, we consider only the model output for the complete
patient sequence. For simplicity, we present results with all
input features considered, except where indicated otherwise.

All models were trained on the same training set (60% of the
complete input data) and evaluated against the same test set
(remaining 40%). For DL models, we further split the train-
ing set into a purely training and validation sets. All sets con-
sidered contain data corresponding to distinct patients. All
experiments with varying hyper-parameters were repeated
10 times with a fixed set of 10 distinct seeds, and results
are reported according to average metric performance and
standard deviation. A complete list of the hyper-parameters
considered for each model is included in Table A7 in the
Appendix. In bold, top-performing hyper-parameters are
indicated. Optimal integer hyper-parameters (K, l) were
selected according to an “Occam’s Razor” approach - for
each parameter, we assign it the highest value such that in-
creasing this amount does not lead to a significant increase
in performance according to the mean AUROC and a Fried-
man’s hypothesis test. Neural network size parameters were
kept consistent across all DL models where applicable. All
other optimal hyper-parameters were selected according to
the highest AUROC performance conditional on the model
predicting at least a sample for each class (e.g. not simply
separating, say, non-Death and Death classes).

We evaluated clustering performance through standard clus-

tering metrics, including Silhouette score (SIL, (Rousseeuw,
1987)), Davies-Bouldin Index (DBI, (Davies & Bouldin,
1979)), Variance Ratio Criterion (VRI, (Calinski &
Harabasz, 1974)). Results on HAVEN for all clustering
models are displayed in Table 3, with a similar trend ob-
served in MIMIC. We also consider the predictive ability
of our clustering framework. In Tables 5 and 4 , we evalu-
ated the (multi-class) prediction performance with regards
to Area-under-the-Receiver-Operating-Curve (AUROC), un-
weighted mean F1-score, unweighted mean Recall, and
Normalised Mutual Information (NMI). For purely unsuper-
vised models (SOM-VAE and TSKM), an outcome predic-
tive pipeline was constructed by assigning patient admis-
sions to clusters, and consequently to the empirical outcome
distribution in the corresponding cluster.

Metric TSKM SOM-VAE AC-TPC CAMELOT

SIL 0.35 (±0.01) 0.25 (± 0.08) 0.04 (± 0.01) 0.11 (±0.04)
DBI 1.19 (±0.08) 1.89 (± 0.63) 4.34 (± 0.80) 3.12 (±0.53)
VRI 554.6 (±2.50) 12.8 (± 9.32) 66.5 (± 18.7) 216.7 (±6.2)

Table 3. Clustering separability results on HAVEN dataset by the
different clustering methodologies given input data with all avail-
able features (static, vital-signs, serum and haematological vari-
ables). For each metric and model, the average score and standard
deviation are returned. The best values for each metric are indi-
cated in bold.

Metric AUROC F1-score Recall NMI

SVM 0.68 (± 0.00) 0.25 (± 0.00) 0.27 (± 0.00) 0.05 (± 0.00)
XGB 0.73 (±0.01) 0.29 (± 0.00) 0.28 (± 0.00) 0.08 (± 0.001)

TSKM 0.64 (± 0.03) 0.22 (± 0.00) 0.20 (± 0.00) 0.00 (± 0.00)
SOM-VAE 0.62 (± 0.03) 0.21 (±0.01) 0.20 (± 0.00) 0.02 (± 0.00)
AC-TPC 0.58 (± 0.02) 0.23 (±0.01) 0.25 (± 0.01) 0.02 (± 0.00)

CAMELOT 0.72 (±0.02) 0.34 (±0.02) 0.36 (±0.02) 0.11 (±0.03)

Table 4. Outcome prediction scores across all models on MIMIC
dataset, displayed with an average and standard deviation of a set
of 10 seeds. Note that NEWS2 is not applicable on the MIMIC
Emergency Department setting. The best values for each metric
are indicated in bold. For clustering algorithms, cluster outcome
distributions were taken to be the empirically observed distribution
in each cluster.

Metric AUROC F1-score Recall NMI

SVM 0.59 (± 0.02) 0.23 (± 0.00) 0.25 (± 0.00) 0.01 (± 0.02)
XGB 0.65 (± 0.01) 0.23 (± 0.00) 0.22 (± 0.00) 0.03 (± 0.04)

NEWS2 0.61 0.29 0.34 0.01
TSKM 0.55 (± 0.01) 0.24 (± 0.03) 0.26 (± 0.02) 0.01 (± 0.03)

SOM-VAE 0.61 (± 0.09) 0.27 (± 0.05) 0.27 (± 0.03) 0.05 (± 0.03)
AC-TPC 0.68 (± 0.01) 0.38 (±0.01) 0.36 (± 0.01) 0.17 (± 0.02)

CAMELOT 0.73 (±0.02) 0.36 (±0.01) 0.38 (±0.02) 0.20 (±0.03)

Table 5. Outcome prediction scores across all models on HAVEN
dataset, displayed with an average and standard deviation of a
set of 10 seeds (except NEWS2, which is deterministic). The
best values for each metric are indicated in bold. For clustering
algorithms, cluster outcome distributions were taken to be the
empirically observed distribution in each cluster.

This prediction task was also benchmarked against other
classifiers for outcome prediction in EHR data, namely Sup-
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port Vector Machines (SVM), XGBoost (XGB) and NEWS2
(i.e., the National Early Warning Score used in the UK hos-
pitals). Given that these algorithms are naturally derived
from tabular data, we consider slight modifications to apply
them to time-series data in order to act as faithful predictive
benchmarks. NEWS2 considers only a fixed set of obser-
vations - as such, for each patient we output the score of
the latest input observation. For SVM and XGB, we con-
sider 2 alternative solutions to build a temporal classifier.
The first approach concatenates temporal time-series into a
large, single feature vector of size Tn ×Df , which is then
passed as input. Separately, we also considered an ensem-
ble model where SVM/XGB were independently trained on
univariate time-series data (i.e. for a single feature), and
consequently aggregated to obtain a predictive score for the
multi-dimensional temporal input. This is so that temporal
variation can be modelled by the benchmarks for a fair com-
parison. Finally, note that the complete NEWS Score is not
applicable on the MIMIC Emergency Department setting.

5.2. Ablation Studies

We also conducted ablation studies on our proposed model
on the predictive task. We use the following notation: a)
CAMELOT denotes the original model; b) ABL1 (or AT-
TEP), where we replace the proposed Ldist, with sample-
wise entropy loss proposed in AC-TPC; c) ABL2 (or
ENC-PRED), which removes the clustering component of
CAMELOT, leaving only the Encoder and Predictor. To
evaluate the relevance of our loss functions and attention
layer, we also consider d) ABL3 as CAMELOT with α = 0
(i.e. no Ldist), e) ABL4 as CAMELOT with β = 0 (no Lclus),
f) ABL5 as CAMELOT with α = β = 0 and g) ABL6 as
CAMELOT without the attention layer. Ablation results are
presented in Tables 6 (HAVEN) and 7 (MIMIC).

Metric AUROC F1-score Recall NMI

ABL1 0.67 (± 0.02) 0.36 (±0.02) 0.36 (± 0.02) 0.16 (± 0.03)
ABL2 0.57 (± 0.02) 0.25 (±0.02) 0.26 (± 0.02) 0.06 (± 0.03)
ABL3 0.65 (± 0.01) 0.30 (±0.02) 0.32 (± 0.02) 0.15 (± 0.01)
ABL4 0.65 (± 0.02) 0.28 (±0.01) 0.30 (± 0.00) 0.15 (± 0.01)
ABL5 0.61 (± 0.04) 0.25 (±0.02) 0.27 (± 0.01) 0.10 (± 0.03)
ABL6 0.69 (± 0.01 ) 0.36 (±0.01) 0.36 (± 0.01) 0.18 (± 0.01)

CAMELOT 0.73 (±0.02) 0.36 (±0.01) 0.38 (±0.02) 0.20 (±0.03)

Table 6. Outcome prediction scores on HAVEN across ablation
models. Results report mean and standard deviation over a fixed
set of 5 seeds.

Metric AUROC F1-score Recall NMI

ABL1 0.69 (± 0.01) 0.25 (±0.01) 0.33 (± 0.02) 0.07 (± 0.01)
ABL2 0.65 (± 0.03) 0.23 (±0.01) 0.26 (± 0.01) 0.04 (± 0.00)
ABL3 0.70 (± 0.01) 0.30 (±0.01) 0.34 (± 0.00) 0.07 (± 0.00)
ABL4 0.70 (± 0.02) 0.24 (±0.03) 0.31 (± 0.04) 0.05 (± 0.02)
ABL5 0.67 (± 0.03) 0.30 (±0.01) 0.33 (± 0.01) 0.06 (± 0.00)
ABL6 0.65 (± 0.05) 0.24 (±0.01) 0.30 (± 0.02) 0.04 (± 0.01)

CAMELOT 0.72 (±0.02) 0.34 (±0.02) 0.36 (±0.02) 0.11 (±0.03)

Table 7. Outcome prediction scores on MIMIC across ablation
models. Results report mean and standard deviation over a fixed
set of 5 seeds.

5.3. Phenotyping and Characterisation

On top of performance evaluation with regards to cluster-
ing separability and outcome prediction, we display the
learnt phenotypes by our proposed model in comparison
with the learnt cluster phenotypes of the phenotypic cluster-
ing benchmark AC-TPC. For each cluster, the correspond-
ing outcome propensity P (c) is shown as a bar plot over
the 4 possible outcomes with a corresponding probability
value. For completeness, we also display cluster outcome
propensity plots for both TSKM and SOM-VAE in the Ap-
pendix (Figures A.8 and A.9). Note that the cluster outcome
propensity distributions learnt by CAMELOT (learnt as
part of model training and without any computation involv-
ing the patients’ true outcome) also align with the empir-
ical outcome relevance in the learnt clusters (Table A.12).
Lastly, we also display feature-time cluster relevance atten-
tion maps in Figure 9. For a given cluster j ∈ {1, ...,K},
we consider all patients assigned to cluster j, denoted by
Cj , and compute the average attention matrix for the cluster
M j = 1

|C|k

∑
patn∈Cj

M j
n (refer also to Section 4.3). We

then display it as a normalised heatmap across clusters. For
simplicity and due to the motivation of this work, we dis-
play these results on the HAVEN dataset for vital-signs and
static variables, but this work can naturally be extended to
different temporal sets of features.

AC-TPCProposed Model

Figure 8. Comparison of bar plots of cluster outcome propensity
distributions for the proposed model and benchmark AC-TPC. On
the left (blue), distributions are displayed for each cluster (out of a
total of 6), and each phenotype corresponds to the probability of an
outcome. Similar results are shown on the right (yellow) for AC-
TPC. The title of each sub-plot indicates the cluster considered, as
well as the number of patients assigned to a given cluster. Cluster
sizes are also indicated. It can be observed that AC-TPC learnt
phenotypes are less diverse than those learnt by our proposed
model.

6. Discussion
Our proposed model shows an improvement in clustering
performance (see Table 3) when compared to the current
phenotypic clustering benchmark (AC-TPC), and outper-
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Figure 9. Average attention feature maps for each cluster on
HAVEN dataset. Given cluster c, we compute the average cluster
attention matrix for patients in this cluster. Maps are represented
as a normalised heatmap across all clusters. The horizontal axis
represents the time to outcome, in hours, while the vertical axis
indicates vital-sign feature.

forms SOM-VAE according to VRI. Although the cluster
separability metrics are superior in the case of TSKM, this
is expected given a metric bias towards convex clusters, and
the convexity resulting from TSKM being a K-Means based
algorithm. Furthermore, DL clustering occurs in a latent
space, which, unfortunately, is not easily comparable with
an algorithm targeting the input space (such as K-Means).
We argue clusters learnt by TSKM are less relevant than
those learnt from our model. Using HAVEN results as an
example, TSKM clusters are extremely hard to distinguish
with regards to outcome propensity (as evidenced by very
low performance on a prediction task (see Tables 4 and 5)).
Furthermore, TSKM clusters are less separable with regard
to trajectory evolution, as there is less separation of mean
HR trajectories, and less cluster separation when data are
projected to a two-dimensional domain with t-stochastic
neighbour embedding (tSNE) (see Figures A10 and A11 in
the Appendix).

Concerning predictive power, which was used to select
hyper-parameters as the most important task, our model
performed much better than all benchmarks with two excep-
tions (where competitive performance is attained). On the
HAVEN dataset, it can be seen in Tables 4 and 5 that our
model outperforms both standard classifiers (at least 8%)
and benchmarking clustering methods (at least 5%) accord-
ing to mean AUROC. A similar increase can be seen in other
classification metrics, with the exception of F1-score, where
model performance is slightly below (but very comparable)
to that of AC-TPC. On the other hand, on MIMIC we outper-
form all models by 4% on mean AUROC, with the exception
of XGB (which has a similar confidence interval compared
to CAMELOT). However, we are significantly better (5% in
F1-score, 8% in Recall and 3% in NMI) than other methods
over the other scores. Given that other metrics are more

class-sensitive than average AUROC, our model is better at
identifying smaller sample-sized classes than other models,
which was observed empirically as XGB and SVM could
not identify the two smaller sampled classes.

Our model is able to more accurately determine patterns in
the data than the previously proposed models, as EHR data
is extremely complex and heterogeneous. It is particularly
promising that the model obtains good predictive task results
despite a clustering bottleneck (i.e. predicted outcomes for
a given patient are done through the assigned cluster, as
opposed to tailored to the precise input data). While it is
possible that other models could show better performance
on the direct task of outcome prediction given EHR input,
such models can potentially be associated with a lack of
robustness or input sensitivity difficulties. Furthermore,
it is likely they would struggle with identifying relevant
trends and properties of clinical interest. As such, for new
admissions, these models could provide a prediction for the
overall outcome, but no robust understanding of how this
outcome will occur, and how to prevent potential risks of
deterioration, let alone the ability to pool data from other
similar patients.

Figure 8 shows the advantage of two key aspects of our
methodology (we show results on the HAVEN dataset for
simplicity). Our model identifies clear, separable cluster
outcome distributions and provides a useful layer of inter-
pretability for clinicians to understand a potential risk of
deterioration. CAMELOT also identifies a more diverse set
of cluster outcomes than AC-TPC, which only picks up 3
different cluster outcome distributions, and doesn’t iden-
tify the presence of the “ICU” and “Cardiac” classes. With
regards to clusters learnt by CAMELOT, clusters 0 and 3
are the clusters with the most ill cohort - they are largely
representative of death and cardiac events on the subsequent
24 hours. On the other hand, clusters 2, 5 are healthier, with
a smaller chance of adverse events. Clusters 1 and 4 are
largely “healthy” clusters, with reduced risks of the most
intense adverse events. We note cluster outcome propensity
distributions learnt by AC-TPC are unable to provide this
level of detailed information. Furthermore, the propensity
distribution learnt by our model largely matches the empiri-
cal number of outcome events observed in each cluster (dis-
played in Appendix Table A12). Moreover, the model man-
aged to successfully resolve a heavy class-imbalance setting
and identify the much smaller classes. Representative clus-
ters are able to capture different-sized sub-populations, yet
still identify potential risks of deterioration. We also show
other cluster-phenotype benchmark results in Appendix A.8
and A.9., and it can be seen the phenotypes identified here
are not as clinically meaningful.

Learnt cluster attention maps shown in Figure 9 introduce
yet another layer of interpretability to our proposed cluster-
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ing model. The average attention maps highlight the relevant
feature-time pairs driving patient cluster assignment, and
can be used to identify the most important clinical variables.
For instance, analysis of Figure 8 suggests clusters with the
highest propensity for either Death or Cardiac Arrest events
are Clusters 0, 3 (and 2 to a slightly smaller extent). This
reflects in the resulting attention maps, where RR, FIO2 and
SpO2 are highlighted as key clinical variables for cluster
assignment. This conclusion is further corroborated when
considering descriptive statistics of CAMELOT clusters (Ta-
ble A14), as the three are some of the few variables with
some significant separation across clusters, and also consid-
ering trajectory evolution (Figure A13). Lastly, note that
feature-time weights are also relevant if potential deteriora-
tion events did not take place - so that we are more confident
about a patient’s health status. As an example, attention
maps for clusters 1 and 4 (reasonably healthy clusters) indi-
cate SpO2 as very relevant throughout the admission - this
is likely due to these patients not showing a worsening of
blood oxygenation. Thus, the learnt attention maps can be
very versatile.

7. Conclusion and Future Work
In this work, we propose a novel deep learning model for the
task of identification of phenotypically separable clusters ap-
plied to EHR data. As part of our model, we consider 2 loss
functions over previous SOTA and introduce a novel feature-
time attention layer to better represent patient data and to
introduce a feature-time relevance map for each cluster. Our
experiments show promising results with the addition of
both methodological tools above, on both cluster separabil-
ity and outcome prediction performance. The addition of the
feature-time layer has the added benefit of introducing key
interpretability tools for researchers to understand relevant
regions for good patient physiology representation as well
as an indication of what can lead to patient deterioration.

There are multiple interesting avenues of investigation build-
ing on this work. On the one hand, the current attention
layer mechanisms could potentially be improved with the
addition of temporal weight smoothness, or, alternatively,
weight regularization to encourage smooth exploration of
the complete feature-time space. Similarly, this layer could
be extended to work well with missing data to ensure that
temporal features that were sampled at different rates cap-
ture the attention of the model differently. The observed
issue of cluster collapse warrants further exploration, both in
terms of the development of theoretical frameworks for this
phenomenon, but also with regard to introducing statistical
guarantees to address it. Furthermore, our methodological
improvements will also benefit from more extensive testing
across other diverse imbalanced datasets and other potential
areas of application.
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Appendix
Data

A description of the complete pipeline of data pre-processing, following the protocol defined in (Pimentel et al., 2019), is
shown in Figure A.1.

A.1. HAVEN data pre-processing steps.

A total of 26 input features were considered. Firstly, 4-hourly vital-sign sets which included 8 features: Heart Rate (HR),
Respiratory Rate (RR), Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), peripheral Oxygen Saturation
(SpO2), Temperature (TEMP), level of consciousness via the AVPU scale - Alert, Verbal, Pain, Unresponsive - and estimated
Fraction of Inspired Oxygen (FiO2, available when an oxygen mask is applied to the patient). Each set consisted of
a timestamp and the vital-sign numerical values. Secondly, 4 demographic variables were selected (modelled as static
variables): age, sex, and admission type (elective or surgical). Thirdly, we included 6 features resulting from biochemistry
blood tests, denoted as ’Serum’: Serum levels of urea, albumin, creatinine, sodium, potassium and C-reactive protein
concentrations. Finally, 8 haematological blood test features were also included: white and haemaglobin cell counts,
concentration of eosinophils, basophils, neutrophils, and lymphocytes, as well as eosinophil-to-basophil and neutrophil-to-
lymphocyte ratios. These features were selected based on domain knowledge of features related to severity in the prognosis
and outcome of inpatients at risk of T2RF.

Descriptive statistics for all input variables is described in Table A.2. Median and inter-quartile range (IQR) is displayed for
continuous and categorical variables, while binary variables are shown according to number of counts in the dataset and
corresponding cohort proportion. Statistics are displayed for the complete data (”All”), but also for each sub-cohort defined
by the overall outcome. We can observe that these sub-cohorts are not clearly separable and are hard to identify solely from
this information.

A summary of the patient cohort in relation to outcomes and target phenotypes can be seen in Table A.3. Challenges with
regards to obtaining phenotypically separable clusters can similarly be observed - there is no clear significant difference
between the target outcome sub-cohorts with regards to demographic input variables. With regards to outcome distribution,
we also note the high degree of imbalance in the dataset - the large majority of the patients in our dataset suffered from no
adverse events (over 86%), while only 48 had a Cardiac event, and 76 were re-directed to the ICU.

The lack of outcome sub-cohort separability can be further observed in a temporal domain. Figures A.4, A.5, A.6 plot
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A.2. Descriptive statistics and information of all input data features. Variables are displayed with type, description, units and average
statistics. We separate all features according to medical literature, including vital-sign, static, serum and haematological variables, and we
also display statistics per outcome sub-cohort, defined as a cohort with those patients assigned to a given outcome.
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A.3. Descriptive demographic variable information for each outcome sub-cohort.

No Event Death ICU Cardiac
N 3701 441 76 48

Age (IQR) 71 (61 - 80) 81 (74 - 88) 69 (61 - 74) 76 (69 - 82)
Gender, M 1810 (48.9%) 247 (56.0%) 38 (50.0%) 28 (58.33%)
CCI (IQR) 4 (3 - 13) 14 (4 - 21) 7 (4 - 17) 15 (4 - 23)

Elective 1126 (30.4%) 3 (0.7%) 8 (10.5%) 2 (4.2%)
Surgical 1054 (28.5%) 48 (10.1%) 22 (29.0%) 6 (12.5%)

the mean trajectories of different temporal variables sets for each outcome sub-cohort, respectively, according to vital
signs, haematological and serum features. Mean is calculated based on the time to outcome, and missing observations are
disregarded and ignored.

A.4. Plot of mean vital-sign trajectories (median with respect to SpO2) in solid line as given by the 4 outcome groups: admissions with a)
Cardiac-, b) Death- , or c) ICU-, and d) No-events. The corresponding feature units are: HR (bpm), RR (breaths-per-minute), SBP and
DBP (mmHg), SPO2 and FIO2 (%), TEMP (C) and AVPU is unitless. The respective standard errors are represented by the dashed lines.
We visualised trajectories from up to 7 days prior to an outcome event or discharge - the black lines represent the time window (72 - 24
hours prior to an event or discharge) considered for input to all models.

Model Training

A list indicating the grid-search range of hyper-parameters considered in our experiments are indicated in Table A.7. For
simplicity, we define P := {0.001, 0.01, 0.1, 1, 10}, L := {32, 64, 128, 256} and K := {3, ..., 20}. In bold, top-performing
hyper-parameters according to target metrics defined in Section 5 are highlighted.

Results Comparison

In Figures A.8 and Figures A.9 we display cluster outcome propensity distributions for some of our experiments with
benchmark clustering models SOM-VAE and TSKM, respectively. Both models do not naturally associate clusters with a
distribution - we estimate the cluster outcome as the empirical outcome distribution for the patient cohort assigned to the
corresponding cluster.
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A.5. Plot of mean haematological trajectories in solid line as given by the 4 outcome groups: admissions with a) Cardiac-, b) Death- , or c)
ICU-, and d) No-events. The y− axis representations concentration in g/L (ALB), µ mol/L (CR), mmol/L (POT, SOD), mg/L (CRP) and
mL (UR). The respective standard errors are represented by the dashed lines. We visualised trajectories from up to 7 days prior to an
outcome event or discharge - the black lines represent the time window (72 - 24 hours prior to an event or discharge) considered for input
to all models.

A.6. Plot of mean serum trajectories in solid line as given by the 4 outcome groups: admissions with a) Cardiac-, b) Death- , or c) ICU-,
and d) No-events. The y− axis denotes concentration in g/L (HGB) or 109/L (all other features). The respective standard errors are
represented by the dashed lines. We visualised trajectories from up to 7 days prior to an outcome event or discharge - the black lines
represent the time window (72 - 24 hours prior to an event or discharge) considered for input to all models.
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A.7. Parameter range used for Grid-search hyper-parameter optimisation. For each model, the list of parameter values tested is indicated.
In bold, the optimum set of hyper-parameters is indicated for each model.

Parameter TSKM SOM-VAE AC-TPC CAMELOT SVM XGB

seeds {1001, 1012, 1134, 2475, 6138, 7415, 1663, 7205, 9253, 1782}
α - P (0.1) P (0.01) P (0.01) - -
β - P (0.1) P (0.01) P (0.001) - -
γ - - - - - {0.1,0.2, 0.6}

latent dim - L (64) L (128) L (128) - -
SOM dim - L2(4,4) - - - -

K K(7) - K (6) K (6) - -
kernel {’DTW’, ’eucl’} - - - {’pol’, ’rbf’} -

C - - - - P (10) -
n-estimators - - - - - {100,200, 300}

depth - - - - - {1, 3,5, 10}
min-child-weight - - - - - {1, 2, 3,5}

A.8. Bar plots of learnt cluster phenotypes for SOM-VAE with optimal hyper-parameters. Each plot represents a cluster - its phenotype is
the corresponding empirical outcome distribution in its cluster-assigned patient cohort.
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A.9. Bar plots of learnt cluster phenotypes for TSKM with K = 6. Each plot represents a cluster - its phenotype is the corresponding
empirical outcome distribution in its cluster-assigned patient cohort.

We note that clusters learnt by both clustering benchmark models have identical outcomes, which provides no useful
clinical interpretability to the cluster-defined populations, as well as likely not assisting models in learning relevant cluster
representations.

We go further in comparing clusters learnt by TSKM and by our proposed model. We argue clusters learnt by CAMELOT
are much more relevant towards our goal. We show this through two distinct plots. Firstly, in Figure A10, we display a
scatter plot of patients in each cluster (CAMELOT on the right and TSKM clusters on the left) after projection to two
dimensions. Projection was completed through a principal component analysis reduction to 50 dimensions, followed by
t-stochastic neighbour embedding dimensionality projection to two.

Furthermore, we also demonstrated that TSKM does not learn as separable cluster trajectory evolution profiles as CAMELOT.
This is shown in Figure A11, where Heart-Rate mean trajectories for each cluster (i.e., average HR observations aligned
to the same time until end of observations for patients in the clusters) are displayed. It is clear that CAMELOT cluster
trajectories are easier to separate.

A complete description of the number of patient admissions with a given outcome per learnt cluster in our proposed model
can be seen in Table A.12.

A.12. Table with empirical number of outcome admissions observed for each cluster learnt by the proposed model.

Outcome Healthy Death ICU Cardiac
Cluster 0 149 44 10 7
Cluster 1 739 28 5 5
Cluster 2 579 15 6 2
Cluster 3 93 92 12 5
Cluster 4 373 2 2 0
Cluster 5 288 84 10 10

We also computed summary statistics for the learnt CAMELOT clusters. For each of the resulting clusters, median, and
quartile values were computed and plotted, except on the case of binary variables, where only the number of positive
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A.10. Scatter plot of cluster patient data after projection to 2 dimensions.

A.11. Plot of mean Heart-Rate (HR) trajectory in solid line as given by the TSKM learnt clusters (top) and CAMELOT (bottom). The
respective standard errors are represented by the dashed lines. We visualised trajectories from up to 7 days prior to an outcome event or
discharge - the black lines represent the time window (72 - 24 hours prior to an event or discharge) considered for input to all models.
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occurrences (and the corresponding proportion in the cluster) are shown. Lastly, we plot the mean cluster trajectory evolution
for SBP and FiO2 to present supportive evidence for the personalised attention maps in Figure 9. These two features were
selected from attention map analysis.

A.13. Plot of mean Respiratory Rate (in breaths-per-minute) trajectories in solid line as given by the clusters learnt by our model (top). In
the bottom, mean SPO2 trajectories (in %) are displayed. The respective standard errors are represented by the dashed lines. We visualised
trajectories from up to 7 days prior to an outcome event or discharge - the black lines represent the time window (72 - 24 hours prior to an
event or discharge) considered for input to all models.
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A.14. Descriptive statistics and information of all input data features. Variables are displayed with type, description, units and average
statistics. We separate all features according to medical literature, including vital-sign, static, serum and haematological variables.
Statistics are shown for each cohort as learnt by our model.
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