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Abstract

Pearl’s do calculus is a complete axiomatic ap-
proach to learn the identifiable causal effects from
observational data. When such an effect is not
identifiable, it is necessary to perform a collec-
tion of often costly interventions in the system
to learn the causal effect. In this work, we con-
sider the problem of designing the collection of
interventions with the minimum cost to identify
the desired effect. First, we prove that this prob-
lem is NP-hard and subsequently propose an al-
gorithm that can either find the optimal solution
or a logarithmic-factor approximation of it. This
is done by establishing a connection between our
problem and the minimum hitting set problem.
Additionally, we propose several polynomial time
heuristic algorithms to tackle the computational
complexity of the problem. Although these algo-
rithms could potentially stumble on sub-optimal
solutions, our simulations show that they achieve
small regrets on random graphs.

1. Introduction
Causal inference plays a key role in many applications such
as psychology (Foster, 2010), econometrics (Hoover, 1990),
education, social sciences (Murnane & Willett, 2010; Gangl,
2010), etc. Causal effect identification, one of the most fun-
damental topics in causal inference, is concerned with esti-
mating the effect of intervening on a set of variables, say X
on another set of variables, say Y denoted by P (Y |do(X)).
The estimation is performed having access to a set of ob-
servational and/or interventional distributions under causal
assumptions that are usually encoded in the form of a causal
graph. The causal graph of a system of variables captures
the interconnection among the variables and can be inferred
from a combination of observations, experiments, and ex-
pert knowledge about the phenomenon under investigation
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(Spirtes et al., 2000). Throughout this work, we assume that
the causal graph is given as a side information.

Given a causal graph, it is known that in the absence of un-
observed (latent) variables, every causal effect is identifiable
from mere observational data (Robins, 1987; Spirtes et al.,
2000). On the other hand, inferring causal effects from data
becomes challenging in the presence of latent variables. In
the setting where only observational data is available, the
do-calculus, introduced by Pearl (Pearl, 1995), has been
shown to be complete. That is, it provides a complete set
of rules to compute a causal effect (if identifiable) given
a causal graph and observational data (Huang & Valtorta,
2006). Moreover, polynomial time algorithms exist that
can determine the identifiability of a causal effect using the
do-calculus (Shpitser & Pearl, 2006).

In recent years, there has been an increase in the effort to
generalize Pearl’s do-calculus to the setting in which data
from both observational and interventional data are available
for identifying a causal effect. For instance, Bareinboim &
Pearl (2012) studied the problem of estimating the causal
effect of intervening on a set of variables X on the out-
come Y when we experiment on a different set Z. This
problem is known as z-identifiability, and (Bareinboim &
Pearl, 2012) provides a complete algorithm for computing
P (Y |do(X)) using information provided by experiments
on all subsets of Z. A slightly more general version of
z-identifiability is called g-identifiability, which considers
the problem of identifying P (Y |do(X)) from an arbitrary
collection of distributions. Lee et al. (2020) studied the g-
identifiability problem and claimed that Pearl’s do-calculus
is also complete in this setting. This was proved by Kivva
et al. (2022). All three of the aforementioned works study
the identifiability of P (Y |do(X)).There are also various
works that consider the more general problem of identify-
ing a conditional causal effect of the form P (Y |do(X),W ).
However, most of these works do not manage to provide
complete results a la Pearl’s do-calculus. See (Tikka et al.,
2019), for a complete review on causal effect identification.

When a causal effect is not identifiable from the observa-
tions, it is necessary to perform a collection of interventions
to infer the effect of interest. However, such interventions
could be costly, impossible, or unethical to perform. There-
fore, naturally we are interested in the problem of designing
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a collection of low cost permitted interventions to identify
a causal effect. This is the focus of our paper. A closely
related work to ours is (Kandasamy et al., 2019), in which,
the authors considered the problem of finding the minimum
number of interventions to identify every possible causal
query. Their approach is based on two limiting assumptions,
namely that all interventions have the same cost and that we
are allowed to intervene on any variable. More importantly,
the result in (Kandasamy et al., 2019) guarantees to render
any causal effect identifiable, which makes the solution sub-
optimal. In other words, a set of interventions that makes
all causal effects identifiable might have higher aggregate
cost than a set of interventions designed for identifying a
specific causal effect.

Designing minimum-cost interventions has also received
attention in causal discovery literature, under the term ex-
perimental design. In causal discovery, the goal is to infer
the causal graph from a dataset. It is known that mere obser-
vational data cannot fully recover the causal graph, and thus
additional interventional data is required to precisely learn
the graph. (Lindgren et al., 2018) considered the problem
of designing a set with minimum number of interventions
to learn a causal graph given the essential graph (assuming
no latent variable), and showed that this problem is NP-
hard. (Addanki et al., 2020) studied a similar problem in
the presence of latent variables. The problem of orienting
the maximum number of edges using a fixed number of
interventions was studied in (Hauser & Bühlmann, 2014;
Ghassami et al., 2018; Agrawal et al., 2019). (Addanki et al.,
2021) studied designing interventions for causal discovery
when the goal is to learn a portion of the edges in the causal
graph instead of all of them.

In this work, we study the problem of designing the set of
minimum cost interventions for identifying a specific causal
effect, where intervening on each variable may have a dif-
ferent cost, and we are not necessarily allowed to intervene
on every variable. Our contributions are as follows.

• We prove that finding a minimum cost intervention set for
identifying a specific causal effect is NP-hard.

• We formulate the minimum cost intervention problem
in terms of a minimum hitting set problem, and propose
an algorithm based on this formulation that can find the
optimal solution to the minimum cost intervention prob-
lem. This algorithm can also be used to approximate the
solution up to a logarithmic-factor1.

• We propose several heuristic algorithms to solve the mini-
mum cost intervention problem in polynomial time, and

1The implementations of all the algorithms proposed
in this work can be found at https://github.com/
SinaAkbarii/min_cost_intervention/tree/main.
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Figure 1. An example of a semi-Markovian graph. In this example,
pa(x) = {v3, s2}, biD(x) = {v3, s1, v1}, and pa↔(x) = {v3}.

through empirical evaluations show that they achieve low-
regret solutions in randomly generated causal graphs.

2. Terminology & Problem Description
We briefly introduce the notations used in this paper2.

We use the structural causal model framework of (Pearl
et al., 2000) in this work. We denote the corresponding
semi-Markovian graph3 over the observable variables V
by G (Pearl et al., 2000; Tian & Pearl, 2002). A semi-
Markovian graph has both directed and bidirected edges. A
bidirected edge between two nodes implies that those nodes
are affected by a hidden confounder. See Figure 1 for an
example.

Since each vertex of G represents a random variable, we use
the terms vertex and variable interchangeably. We use small
letters for variables, capital letters for sets of variables, and
bold letters for collections of subsets of variables, respec-
tively. We utilize common graph-theoretic terms such as
parents of a vertex x denoted by pa(x). The set of vertices
that are connected to x via bidirected edges are denoted by
biD(x), and pa↔(x) = pa(x) ∩ biD(x) denotes the inter-
section of parents of x and biD(x). For a set of variables X ,
pa(X) is defined as pa(X) = ∪x∈Xpa(x) \ X . biD(X)
and pa↔(X) are defined analogously. The induced sub-
graph of G over a subset X ⊆ V is denoted by G[X]. The
connected components of the edge induced subgraph of G
over its bidirected edges are called c-components (aka dis-
tricts) of G, (Tian & Pearl, 2002). For example, the causal
graph in Figure 1 consists of only one c-component. How-
ever, its induced subgraph over {s1, x, v2} consists of two
c-components {x, s1} and {v2}.

We adopt the definition of interventional distributions using
Pearl’s do() operator, i.e., P (Y |do(X)) denotes the causal
effect of intervening on variables X on Y . We also denote
byQ[S] the causal effect of do(V \S) on S, that is,Q[S] :=

2We encourage the interested reader to see Appendix A for
a comprehensive review of the terminology and more detailed
definitions, as well as a few relevant known results in the literature.

3Also referred to as acyclic directed mixed graphs (ADMG)s
in the literature (Evans & Richardson, 2014).
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P (S|do(V \ S)).

Definition 1 (Identifiability). We say a causal effect
P (Y |do(X)) is identifiable in G given an observational
distribution P (V ), if for any positive model M that is
compatible with the causal graph G and PM (V ) = P (V ),
PM (Y |do(X)) is uniquely computable from PM (V ).

Analogously, for a given set of interventional distribu-
tions P = {P (Y1|do(X1)), ..., P (Yk|do(Xk))}, we say
P (S|do(T )) is identifiable in the causal graph G from P,
if for any positive model M that is compatible with G
and PM (Yi|do(Xi)) = P (Yi|do(Xi)) for 1 ≤ i ≤ k,
PM (S|do(T )) is uniquely computable from P.

2.1. Problem Description

Let G be a semi-Markovian graph on the vertex set V along
with a cost function C : V → R≥0, where C(x) for some
x ∈ V denotes the cost of intervening on variable x. With
slight abuse of notation, we denote the cost of intervening on
a set of variablesX ⊆ V by C(X). In this work, we assume
that the intervention cost is additive, i.e., for a set X ⊆ V ,
the cost of intervening on X is C(X) :=

∑
x∈X C(x), and

for a collection X of subsets of V , the cost of intervention
on X is C(X) :=

∑
X∈X C(X). Moreover, we assume that

there is no cost for observing a variable, i.e., C(∅) = 0.
Therefore, when intervening on set X , we have access to
Q[V \X] = P (V \X|do(X)) at the cost of C(X).

Remark 1. In this setting, we can model a non-intervenable
variable x by assigning the cost C(x) =∞.

For a given causal graph G and disjoint subsets S, T ⊆ V ,
our goal is to find a collection A = {A1, A2, ..., Am} of
subsets of V such that P (S|do(T )) is identifiable in G
given {Q[V \A1], ..., Q[V \Am]}, and C(A) is minimum.
More precisely, let IDG(S, T ) denote the set of all collec-
tions of subsets of V , e.g., A = {A1, A2, ..., Am}, where
Ai ⊆ V, 1 ≤ i ≤ m, such that P (S|do(T )) is identifi-
able in G given {Q[V \ A1], ..., Q[V \ Am]}. Note that
|IDG(S, T )| ≤ 22

|V |
. Thus, the min-cost intervention de-

sign problem to identify P (S|do(T )) can be cast as the
following optimization problem,

A∗S,T ∈ arg min
A∈IDG(S,T )

∑
A∈A

C(A). (1)

We say A∗S,T is the min-cost intervention for identifying
P (S|do(T )) in G. Note that additional constraints or regu-
larization terms can be added to target a specific min-cost
intervention set within IDG(S, T ).

It has been shown that P (S|do(T )) is identifiable in G
if and only if Q[AncG\T (S)] is identifiable in G, where
AncG\T (S) are ancestors of S in G after deleting ver-
tices T (Kivva et al., 2022; Lee et al., 2020; Jaber et al.,
2019; Shpitser & Pearl, 2006). That is, IDG(S, T ) =

IDG(AncG\T (S), V \ AncG\T (S)). In other words, any
causal query of the form P (S|do(T )) can be transformed
into a causal query that is in the form of Q[·]. Therefore,
in what follows, we focus on the minimum-cost interven-
tion problem for identifying causal queries of the form
Q[S] = P (S|do(V \ S)). Throughout the rest of this work,
we will assume T = V \S in Equation (1). In Section 3, we
study the above problem when G[S] is a single c-component.
In Section 4, we generalize our results to an arbitrary subset
S. We evaluate our proposed algorithms in terms of runtime
and optimality in Section 5.

3. Single C-component Identification
The main challenge in solving the optimization problem in
Equation (1) is that the number of elements in IDG(S, T )
is possibly super-exponential. Throughout this section, we
assume that S is a subset of variables in G such that G[S] is
a single c-component, unless stated otherwise. Under this
assumption, we first show4 in Theorem 1 that IDG(S, T ) in
Equation (1) can be replaced with a substantially smaller
subset without changing the solution to the problem in (1).
Next, we prove in Theorem 2 that even after this substitution,
the min-cost intervention problem remains NP hard.
Lemma 1. Suppose S is a subset of variables such that
G[S] is a single c-component. Let A = {A1, A2, ..., Am}
be a collection of subsets of V such that A∪ ∩ S=∅, where
A∪ := ∪mi=1Ai. If A ∈ IDG(S, V \ S), then the singleton
collection A∪ = {A∪} also belongs to IDG(S, V \ S).

Remark 2. The cost of A∪ in Lemma 1 is at most C(A),

C(A) =
∑

i

∑
a∈Ai

C(a) ≥
∑

a∈A∪
C(a) = C(A∪).

Next, we prove that for a given subset S where G[S] is a
c-component, the collection A∗S,V \S is singleton, that is, it
contains exactly one intervention set.
Theorem 1. Suppose S is a subset of variables such that
G[S] is a c-component. Let A = {A1, A2, ..., Am} be a
collection of subsets such that A ∈ IDG(S, V \ S) and
m > 1. Then, there exists a subset Ã ⊆ V such that
Ã = {Ã} ∈ IDG(S, V \ S) and C(Ã) ≤ C(A).

Theorem 1 indicates that when G[S] is a c-component, the
min-cost intervention problem in Equation 1 reduces to the
problem of finding a single intervention set A∗ such that
Q[S] is identifiable from Q[V \ A∗]. More formally, the
optimization in (1) reduces to the following problem,

A∗S ∈ arg min
A∈ID1(S)

∑
a∈A

C(a), (2)

where ID1(S) is the set of all subsetsA of V such thatQ[S]
is identifiable from Q[V \A]. Note that |ID1(S)| ≤2|V |.

4All proofs are provided in Appendix B.
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The following lemma states that intervening on the variables
in S does not help in identifying Q[S]. As a result, we
can further reduce the set ID1(S) in (2). That is, we only
consider all subsets A of V , such that Q[S] is identifiable
from Q[V \ A] and A ∩ S = ∅. This new set has at most
2|V |−|S| elements. For the rest of this section, we discuss
the solution to Equation (2).

Lemma 2. Suppose S is a subset of variables such that G[S]

is a c-component. If A ∈ ID1(S), then A ∩ S = ∅.

3.1. Hardness

In this section, we study the complexity of the min-cost in-
tervention design problem in (2). We show that there exists
a polynomial-time reduction from the Weighted Minimum
Vertex Cover (WMVC) problem to the min-cost interven-
tion problem. For the sake of completeness, we formally
define the WMVC problem.

Definition 2 (WMVC). Given an undirected graph H =
(VH, EH) and a weight function ω : VH → R

≥0, a vertex
cover is a subset A ⊆ VH such that A covers all the edges
of H, i.e., for any edge {x, y} ∈ EH, at least one of x or
y is a member of A. The weighted minimum vertex cover
problem’s objective is to find a set A∗ among all vertex
covers that minimizes

∑
a∈A ω(a).

WMVC is known to be NP-hard (Karp, 1972). Even finding
an approximation within a factor of 1.36 to this problem is
NP-hard (Dinur & Safra, 2005). In fact, there is no known
polynomial-time algorithm to approximate WMVC problem
within a constant factor less than two5. Indeed, WMVC
remains NP-hard even for bounded-degree graphs (Garey
et al., 1974). The following theorem shows that all these
statements also hold for the min-cost intervention problem.

Theorem 2. WMVC problem is reducible to a min-cost
intervention problem in polynomial time.

Remark 3. The unweighted version of WMVC problem
(i.e., when the weight function is given by ω(·) = 1) can be
reduced to a minimum-cost intervention problem with the
constant cost function C(·) = 1 in polynomial time.

Theorem 2 states that any algorithm that solves the min-
cost intervention problem, can also solve WMVC with a
polynomial overhead. It immediately follows that min-cost
intervention is NP-hard, and it is hard to approximate within
a constant factor less than 1.36. On the other hand, as
with any other NP-hard problem, certain instances of the
min-cost intervention problem can be solved in polynomial-
time. An interesting group of such instances are discussed
in Appendix C. Despite being restrictive, these special cases
might provide useful insights for finding efficient algorithms

5Factor 2 approximation algorithms appear in (Garey & John-
son, 1979; Papadimitriou & Steiglitz, 1998).

in more general settings. Naturally, Theorem 2 implies that
the algorithms proposed in this paper can aid to solve some
other problems in the NP class.

3.2. Minimum Hitting Set Formulation

In this section, we propose a formulation of the min-cost
intervention problem in terms of yet another NP-hard prob-
lem known as the minimum-weight hitting set (MWHS)
problem. This formulation will allow us to find algorithms
to solve or approximate our problem in the later sections.

Definition 3 (MWHS). Let V = {v1, ..., vn} be a set of
objects along with a weight function ω : V → R≥0. Given
a collection of subsets of V such as F = {F1, ..., Fk}, Fi ⊆
V, 1 ≤ i ≤ k, a hitting set for F is a subset A ⊆ V such A
hits all the sets in F, i.e., for any 1 ≤ i ≤ k,A∩Fi 6= ∅. The
weighted minimum hitting set problem’s objective is to find
a set A∗ among all hitting sets that minimizes

∑
a∈A ω(a).

It is known that special structures, called hedges that are
formed forQ[S] in G prevent the identifiability of the causal
effect Q[S] (Shpitser & Pearl, 2006). On the other hand,
intervening on a vertex of a hedge allows us to eliminate
it from the graph. Hence, the problem of identifying Q[S]
is equivalent to finding a subset of vertices that hits all the
hedges formed for Q[S]. In other words, the min-cost inter-
vention problem can be reformulated as a MWHS problem.
For simplicity, here, we use a slightly modified definition of
a hedge. In Appendix A, we show that it is equivalent to the
original definition in (Shpitser & Pearl, 2006).

Definition 4. (Hedge) Let G be a semi-Markovian graph
and S be a subset of its vertices such that G[S] is a c-
component. A subset F is a hedge formed for Q[S] in
G if S ( F , F is the set of ancestors of S in G[F ], and G[F ]

is a c-component.

As an example, let S = {s1, s2} in the causal graph of Fig-
ure 1. In this case, G[S] is a c-component and {s1, s2, v1, v2}
and {s1, s2, v2} are two hedges formed for Q[S].

Using the result of (Shpitser & Pearl, 2006), the following
Lemma connects the minimum-cost intervention problem
to the minimum-weight hitting set problem.

Lemma 3. Let G be a semi-Markovian graph with vertex
set V , along with a cost function C : V → R≥0. Let S be a
subset of V such that G[S] is a c-component. Suppose the set
of all hedges formed for Q[S] in G is {F1, ..., Fm}. Then
A∗S is a solution to Equation (2) if and only if it is a solution
to the MWHS problem for the sets {F1 \S, ..., Fm \S}, with
the weight function ω(·) := C(·).

Lemma 3 suggests that designing an intervention to identify
Q[S] can be cast as finding a set that intersects (hits) with
all the hedges formed for Q[S]. A brute-force algorithm to
find the minimum-cost intervention (Equation (2)) is then to
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first enumerate all hedges formed for Q[S] in G and solve
the corresponding hitting set problem.

Solving MWHS, which itself is equivalent to the set cover
problem, is known to be NP-hard (Karp, 1972; Bernhard
& Vygen, 2008). However, there exist greedy algorithms
that can approximate the optimal solution up to a logarith-
mic factor (Johnson, 1974; Chvatal, 1979), which has been
shown to be optimum in the sense that they achieve the best
approximation ratio (Feige, 1998). Another approach for
tackling MWHS is via linear programming relaxation which
achieves the similar approximation ratio as the greedy ones
(Lovász, 1975). But even in the case that we use an ap-
proximation algorithm for the hitting set formulation of the
min-cost intervention problem, the task of enumerating all
hedges formed for Q[S] in G requires exponential number
of computations in terms of number of the variables.

3.3. Properties of A∗S
In Section 3.1, we proved that the min-cost intervention
design problem in (2) is NP-hard. Herein, we shall study
certain properties of the solution A∗S that allow us to reduce
the complexity of solving (2). We begin with characterizing
a set of variables that we must intervene upon to identify
Q[S].

Recall that pa↔(S) is the set of parents of S that have a
bidirected edge to a variable in S. Note that for a given set
S, we can construct pa↔(S) in linear time. The following
Lemma indicates that Q[S] is not identifiable unless all of
the variables in pa↔(S) are intervened upon.
Lemma 4. Let G be a semi-Markovian graph with the vertex
set V , and for S ⊆ V , let G[S] be a c-component. For any
subset A ⊆ V , if A ∈ ID1(S), then pa↔(S) ⊆ A.

As a counterpart to Lemma 4, below, we characterize a
subset of vertices that do not belong to A∗S .
Definition 5 (Hedge hull). Let G be a semi-Markovian
graph and S be a subset of its vertices such that G[S] is
a c-component. The union of all hedges formed for Q[S] is
called hedge hull of S and denoted by Hhull(S,G).

If G[S] is not a c-component, it can be uniquely partitioned
into maximal c-components (Tian & Pearl, 2002). Let
S1, ..., Sk be the partition of S such that G[S1], ...,G[Sk] are
the maximal c-components of G[S]. We define Hhull(S,G)

as Hhull(S,G) =
⋃k

i=1Hhull(Si,G).
Lemma 5. Consider A∗S in Equation (2), then A∗S ⊆
Hhull(S,G) \ S.

For a given subset S and a semi-Markovian graph G, Lem-
mas 4 and 5 bound the solution to the min-cost intervention
problem as pa↔(S) ⊆ A∗S ⊆ Hhull(S,G).

In Algorithm 1, we propose a method to construct the hedge

Algorithm 1 Find Hhull(S,G), G[S] is a c-component.

1: Initialize F ← V
2: while True do
3: F1 ← connected component of S via bidirected

edges in G[F ]

4: F2 ← ancestors of S in G[F1]

5: if F2 6= F then
6: F ← F2

7: else
8: break
9: return F

hull of a given subset S. Lines 3 and 4 of this algorithm
can be performed via depth first search (DFS) algorithm,
which is quadratic in the number of vertices in the worst-
case scenario6. On the other hand, the while loop of line
2 can run at most |V | times in the worst case (as long as
F2 6= F , at least one vertex will be eliminated from F .)
Hence, the complexity of this algorithm is7 O(|V |3).

Lemma 6. Given a semi-Markovian graph G over V and a
subset S ⊆ V such that G[S] is a c-component, Algorithm 1
returns Hhull(S,G) in O(|V |3).

Next theorem summarizes the results of this Section.

Theorem 3. Let S be a subset of variables such that G[S]

is a c-component. Then, A∗S is a solution to (2) if and only
if both pa↔(S) ⊆ A∗S and A∗S \ pa↔(S) is a min-cost
intervention to identify Q[S] in G[H], where

H := Hhull(S,G[V \pa↔(S)]). (3)

This result suggests that solving (2) can be done by first
identifying pa↔(S), and then solving a reduced size min-
cost intervention problem to identifyQ[S] in G[H], whereH
is given in Equation (3). Note that all the minimal hedges of
S in G[H] can be enumerated inO(2(|H|−|S|)). Therefore, if
|H| is small, the hedge enumeration task of the brute-force
approach in Section 3.2 can be done efficiently. However,
the performance of this method deteriorates as the size of H
increases. Next, we propose an algorithm that circumvents
the hedge enumeration task to solve the min-cost interven-
tion problem more efficiently.

6Lines 3 and 4 can also be swapped, as the order in which we
execute them does not affect the output.

7To be more precise, DFS takes timeO(|V |+ |E|), where |E|
is the number of edges. Therefore, Alg. 1 runs in time O(|V |2 +
|V | · |E|).
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3.4. Exact Algorithmic Solution to Min-cost
Intervention Problem

In this section, we propose an algorithm that can be used
both to exactly solve the min-cost intervention problem and
to approximate it within a logarithmic factor.

As we discussed earlier, the min-cost intervention problem
can be formulated as a combination of two tasks: enumerat-
ing the hedge structures and solving a minimum hitting set
for the hedges. Although minimum hitting set problem can
be solved with polynomial-time approximation algorithms,
enumerating all hedges requires exponential computational
complexity. To reduce this complexity, we propose Algo-
rithm 2, that avoids enumerating all hedges formed for Q[S]
by utilizing the notion of minimality defined below, and
Theorem 3. We will next explain this.

Definition 6 (Minimal hedge). A hedge F formed for Q[S]
in G is said to be minimal if no subset of F (clearly excluding
F ) is a hedge formed for Q[S] in G.

As an example, in Figure 1, Q[{s1, s2}] has two hedges:
{s1, s2, v1, v2} and {s1, s2, v2}. In this case, {s1, s2, v2}
is a minimal hedge. Clearly, every non-minimal hedge
formed for Q[S] has a subset which is a minimal hedge.
Therefore, hitting all the minimal hedges would suffice to
identifyQ[S]. As a result, for hedge enumeration, whenever
we find a subset F that is a hedge formed for Q[S], it is not
necessary to consider any super-set of F .

Algorithm 2 begins with identifying pa↔(S) and the subset
H given in (3). The main idea of this algorithm is to dis-
cover a subset of the hedges formed for Q[S] in G denoted
by F, such that the minimum hitting set solution for F is
exactly the solution to the original min-cost intervention
problem. It constructs F iteratively. To this end, within
the inner loop (lines 6-12), it selects a vertex a in H \ S
with the minimum cost, and removes a from H (resolves
the hedge H). If this hedge elimination makes Q[S] iden-
tifiable (i.e., Hhull(S,G[H\{a}]) = S), it updates F in line
9. Otherwise, it updates H by Hhull(S,GH\{a}) in line 12
using Algorithm 1. The reason for updating F only when
Q[S] becomes identifiable is that the hedge discovered in
the last step of the inner loop H is a subset of all the hedges
discovered earlier. Therefore, hitting (eliminating) H , also
hits all its super-sets.

At the end of the inner loop, it solves a minimum hitting set
problem for the constructed F to find A in line 13. If A ∪
pa↔(S) ∈ ID1(S), the algorithm terminates and outputs
A ∪ pa↔(S) as the optimal intervention set. Otherwise,
it updates H using Algorithm 1 in line 16 and repeats the
outer loop by going back to line 5 to discover new hedges
formed for Q[S].

In the worst-case scenario, Algorithm 2 requires exponential

Algorithm 2 Min-cost intervention(S,G).

1: F← ∅, H ← Hhull(S,G[V \pa↔(S)])
2: if H = S then
3: return pa↔(S)
4: while True do
5: while True do
6: a← arg mina∈H\S C(a)
7: if Hhull(S,G[H\{a}]) = S then
8: F← F ∪ {H}
9: break

10: else
11: H ← Hhull(S,G[H\{a}])
12: A← solve min hitting set for {F \ S|F ∈ F}
13: if A ∪ pa↔(S) ∈ ID1(S) then
14: return (A ∪ pa↔(S))
15: H ← Hhull(S,G[V \(A∪pa↔(S))])

number of iterations to form F. However, as illustrated in
our empirical evaluations in Appendix F, the algorithm
often finds the solution to the min-cost intervention after
only a few number of iterations. This is to say, in practice,
discovering only a few hedges and solving the hitting set
problem for them suffices to solve the original min-cost
intervention problem.

Lemma 7. Let G be a semi-Markovian graph and S ⊆ V .
Algorithm 2 returns an optimal solution to (2).

It is noteworthy that this result holds even if S is not a c-
component. In other words, Algorithm 2 always returns
an optimal solution in ID1(S). We will use this result in
Section 4 to introduce an algorithm for the general setting
in which S is an arbitrary subset of variables.

Approximation. Note that the minimum hitting set prob-
lem in line 13 can be solved approximately using a greedy
algorithm (Johnson, 1974; Chvatal, 1979), which guaran-
tees a logarithmic-factor approximation8. In this case, if
polynomially many hedges are discovered before the al-
gorithm stops9, Algorithm 2 returns a logarithmic-factor
approximation of the solution in polynomial time.

3.5. Heuristic Algorithms

The algorithm discussed in the previous Section provides
an exact solution for finding the minimum cost intervention.
However, it has an exponential runtime in the worst case.
Herein, we develop and present two heuristic algorithms
to approximate the solution to the min-cost intervention

8See Appendix E for further details.
9We propose a slightly modified version of Algorithm 2 in

Appendix E with lower number of calls to the hitting set solver.
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problem in polynomial time. In Section 5, we evaluate the
performance of these algorithms in terms of their runtimes
and the optimality of their solutions. The detailed analysis
of these heuristic algorithms are provided in Appendix D. It
is noteworthy that these two algorithms utilize the result of
Theorem 3, i.e., they initiate with identifying pa↔(S), H in
(3), and then find a min-cost intervention set that identifies
Q[S] in G[H]. Theses two algorithms approximate the min-
cost intervention problem via a minimum weight vertex cut
(a.k.a. vertex separator) problem.

Definition 7. (Minimum weight vertex cut) Let H be a
(un)directed graph over the vertices V , with a weight func-
tion ω : V → R≥0. For two non-adjacent vertices x, y ∈ V ,
a subset A ⊂ V \ {x, y} is said to be a vertex cut for x− y,
if there is no (un)directed path that connects x to y inHV \A.
The objective of minimum weight vertex cut problem is to
identify a vertex cut for x− y that minimizes

∑
a∈A ω(a).

Min-weight vertex cut problem can be solved in polynomial
time by, for instance, casting it as a max-flow problem10 and
then using algorithms such as Ford-Fulkerson, Edmonds-
Karp, or push-relabel algorithm (Ford & Fulkerson, 1956;
Edmonds & Karp, 1972; Goldberg & Tarjan, 1988).

Heuristic Algorithm 1: For a given graph G and a subset
S ⊆ V , this algorithm builds an undirected graph H with
the vertex set H ∪ {x, y}, where H is given in (3), and x
and y are two auxiliary vertices. For any pair of vertices
{v1, v2} ∈ H , if v1 and v2 are connected with a bidirected
edge in G, they will be connected in H. Vertex x is con-
nected to all the vertices in pa(S) ∩H , and y is connected
to all vertices in S. The output of the algorithm is the mini-
mum weight vertex cut for x− y, with the weight function
ω(·) := C(·). Algorithm 7 in Appendix D presents the
pseudo code for this procedure. Next result shows that inter-
vening on the output set of this algorithm will identify Q[S],
although this set is not necessarily minimum-cost.

Lemma 8. Let G be a semi-Markovian graph on V and S
be a subset of V such that G[S] is a c-component. Heuristic
Algorithm 1 returns an intervention set A in O(|V |3) such
that A ∈ ID1(S).

Heuristic Algorithm 2: Given a graph G and a subset S,
this algorithm builds a directed graph J as follows: the
vertex set is H ∪ {x, y}, where H is given in (3), and x
and y are two auxiliary vertices. For any pair of vertices
{v1, v2} ∈ H , if v1 is a parent of v2 in G, then v1 will be a
parent of v2 in J . Vertex x is added to the parent set of all
vertices in biD(S) ∩H , and all vertices of S are added to
the parent set of y. The output of this algorithm is the mini-
mum weight vertex cut for x− y, with the weight function
ω(·) := C(·). Algorithm 8 in Appendix D summarizes this
procedure. The following result indicates that intervening

10See Appendix D for details.

on the output set of this algorithm identifies Q[S].

Lemma 9. Let G be a semi-Markovian graph on V and S
be a subset of V such that G[S] is a c-component. Heuristic
Algorithm 2 returns an intervention set A in O(|V |3) such
that A ∈ ID1(S).

A major difference between the two heuristic algorithms is
that Algorithm 2 solves a minimum vertex cut on a directed
graph, whereas Algorithm 1 solves the same problem on
an undirected graph. Since the equivalent max-flow prob-
lem is easier to solve on directed graphs, Algorithm 2 is
preferred, unless the directed edges of G are considerably
denser than its bidirected edges. We propose another algo-
rithm which uses a greedy approach to solve the min-cost in-
tervention problem and discuss its complexity in Appendix
D. This greedy algorithm is preferable to the two aforemen-
tioned algorithms in certain special settings. Additionally,
we propose a polynomial-time post-process in Appendix
D to improve the solution returned by our three heuristic
algorithms.

4. General Subset Identification
So far we have discussed the min-cost intervention design
problem for subset S, where the induced subgrah G[S] is a
c-component. In this section, we study the general case in
which S is an arbitrary subset of variables and show that the
min-cost intervention design problem for S requires solving
a set of instances of the problem for single c-component.

The main challenge in the general case is that Theorem
1 is no longer valid. Thus, the min-cost intervention de-
sign problem in (1) cannot be reduced to (2). As an exam-
ple, consider Figure 2. In this causal graph, the minimum-
cost intervention to identify Q[S] for S := {s1, s2, s3}, is
A∗S,V \S = {{s1}, {s2}} with the cost C(s1) + C(s2) = 2.
However, any singleton intervention that can identify Q[S],
i.e.,A ∈ ID1(S) has a cost of at least 10. More importantly,
the union of the sets in A∗S,V \S , i.e., {s1, s2} does not be-
long to ID1(S). In other words, intervening on {s1, s2}
does not identify Q[S] (Lemma 2).

In many applications, it is reasonable to assume that in
order to identify Q[S] = P (S|do(V \ S)), intervening on
elements of S is not desirable. In other words, C(s) =∞,
for all s ∈ S. Under this assumption, we show that instances
similar to Figure 2 cannot occur and results analogous to
Theorem 1 can be established.

Theorem 4. Suppose S is a subset of variables such that
C(s) = ∞ for any s ∈ S. Let A = {A1, A2, ..., Am} be
a collection of subsets such that A ∈ IDG(S, V \ S) and
m > 1. Then there exists a singleton intervention Ã such
that Ã = {Ã} ∈ IDG(S, V \ S) and C(Ã) ≤ C(A).

Theorem 4 implies that the general problem can be solved
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Figure 2. An example where the optimal interventions collection
is not a singleton, i.e., a solution to (2) is not a solution to (1). In
this example, the cost of intervening on each of {s1, s2, s3} is 1,
whereas the cost of intervening on each of {v1, v2, v3, v4} is 5.

exactly analogous to the case where G[S] is a c-component.

We now turn to proposing an exact solution to the min-cost
intervention problem in (1) for general case. Let S1, ..., Sk

be subsets of S such that
⋃

i Si = S and G[S1], ...,G[Sk] are
the maximal11 c-components of G[S]. It is known that Q[S]
is identifiable in G if and only if Q[Si]s are identifiable in
G for all 1 ≤ i ≤ k (Tian & Pearl, 2002). Based on this
observation, we show the following result.

Lemma 10. Let G be a semi-Markovian graph and S be
a subset of its vertices. Suppose A∗S,V \S is a min-cost
interventions collection to identify Q[S] in G. If G[Sj ] is a
maximal c-component of G[S], then there existsA ∈ A∗S,V \S
such that A ∈ ID1(Sj).

According to Lemma 10, for each maximal c-component
of G[S] such as G[Sj ], one intervention set suffices to iden-
tify Q[Sj ]. As a result, we can partition the maximal c-
components of G[S] such that each partition is identified
using a singleton intervention set. Therefore, to solve the
min-cost intervention problem for Q[S], for every possible
partitioning of the maximal c-components of G[S], we find a
collection of singletons that can identify the elements in that
partition. The min-cost intervention collection to identify
Q[S] in G is then the collection with the lowest cost.

More precisely, let S(1), ..., S(t) denote a partitioning of
{S1, ..., Sk}. That is, for each j, S(j) is a subset of set
{S1, ..., Sk}, S(j) ∩S(i)= ∅ for i 6= j, and

⋃t
j=1 S

(j) =
{S1, ..., Sk}. Furthermore, we denote the set of all vertices
in partition S(j) by S(j). As an example, in Figure 2, set
S={s1, s2, s3} consists of two maximal c-components G[S1]

and G[S2], where S1={s1, s3} and S2={s2}. There are two
different ways to partition {S1, S2}. One is S(1) ={S1, S2}.
The other is S(1)={S1} and S(2)={S2}. For the first par-
tition, we have S(1)= {s1, s2, s3}. Similarly, the second
partition will result in S(1)={s1, s3} and S(2)={s2}.

In order to solve the min-cost intervention problem forQ[S],

11See Appendix A for details.

Algorithm 3 General algorithm(S,G).

1: A∗ ← null, minCost←∞
2: {S1, ..., Sk} ← maximal c-components of G[S]

3: for any partition of {S1, ..., Sk} as S(1), ..., S(t) do
4: A← {}, cost← 0
5: for i from 1 to t do
6: Ai ← min-cost intervention set in ID1(S(i))
7: A← A ∪ {Ai}, cost← cost +C(Ai)
8: if cost < minCost then
9: A∗ ← A, minCost← cost

10: return A∗

for every possible partitioning of the maximal c-components
of G[S] such as S(1), ..., S(t), we solve for the min-cost in-
tervention set Aj to identify Q[S(j)] for every 1 ≤ j ≤ t,
and form the intervention collection A = {A1, ..., At}. The
aggregate cost for this collection of interventions is given
by C(A). The min-cost intervention collection to identify
Q[S] in G is the one with minimum aggregate cost. Algo-
rithm 3 summarizes this procedure. Although the number of
partitions of a set, known as the Bell number can grow super-
exponentially, since the number of maximal c-components
of the set S considered in practical problems is small, the
runtime of Algorithm 3 is expected to be manageable.

Having partitioned the maximal c-components of G[S], the
only remaining challenge is to perform line (6) of Algorithm
3, i.e., to find the min-cost singleton intervention set to
identify the maximal c-components within a partition. Note
that the hitting set formulation introduced in Section 3.2,
i.e., Algorithm 2 is a valid approach to find such a singleton
- the soundness of this algorithm was shown in Lemma 7.

Proposition 1. Given a semi-Markovian graph G and a
subset S of its vertices, Algorithm 3 with Algorithm 2 used
as a subroutine in line (6) returns an optimal solution to the
min-cost interventions collection to identify Q[S] in G.

5. Evaluations
For evaluation, we generated the causal graphs using the
Erdos-Renyi generative model (Erdős & Rényi, 1960) as
follows. For a given number of vertices n, we fixed a causal
order over the vertices. Then, directed edges were sam-
pled with probability p = 0.35 and bidirected edges were
sampled with probability q = 0.25 between the vertices,
mutually independently. The set S was selected randomly
among the last 5% of the vertices in the causal order such
that G[S] is a c-component. Intervention costs of vertices
were chosen independently at random from {1, 2, 3, 4}. See
Appendix F for further details of the evaluation setup.
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Figure 3. Evaluation of our algorithms in terms of runtime (Top)
and normalized regret (Bottom). n represents the number of ver-
tices in the causal graph, Alg2-exact and Alg2-approx. solve the
minimum hitting set exactly and approximately, respectively, and
the greedy algorithm is presented in Appendix D. Alg2-exact
obtains zero regret.

For various n, we sampled different causal graphs and dif-
ferent subsets S using the above procedure and ran our
algorithms12 on them to find the min-cost intervention set
for identifying Q[S]. Our performance measures are run-
time and normalized regret. Normalized regret of a given
subsetA is defined by (C(A)−C∗)/C∗, where C∗ denotes
the optimal min-cost solution. The results are depicted in
Figure 3. Each curve and its confidence interval is obtained
by averaging over 40 trials. As illustrated in Figure 3, our
proposed heuristic algorithms achieve negligible regret in
most of the cases while their runtime are considerably faster
than the exact algorithm, i.e., Algorithm 2. It is noteworthy
that the regret is not necessarily a monotone function of n,
and it depends on the structure of the causal graph and inter-
vention costs. For further evaluations of our algorithms (e.g.,
their sensitivities with respect to p and q), see Appendix F.

6. Concluding Remarks
We discussed the problem of designing the minimum cost
intervention for causal effect identification in this paper. We
established the NP-hardness of this problem by relating it
to two well-known NP-hard problems: minimum vertex
cover and hitting set. We proposed an algorithm based on
the hitting set problem to solve the min-cost intervention
problem exactly and proposed several heuristic algorithms

12https://github.com/SinaAkbarii/min_cost_
intervention/tree/main

to design an intervention in polynomial time.

Acknowledgements
This research was in part supported by the Swiss Na-
tional Science Foundation under NCCR Automation,
grant agreement 51NF40 180545 and Swiss SNF project
200021 204355 /1.

References
Addanki, R., Kasiviswanathan, S., McGregor, A., and

Musco, C. Efficient intervention design for causal discov-
ery with latents. In International Conference on Machine
Learning, pp. 63–73. PMLR, 2020.

Addanki, R., McGregor, A., and Musco, C. Intervention
efficient algorithms for approximate learning of causal
graphs. In Algorithmic Learning Theory, pp. 151–184.
PMLR, 2021.

Agrawal, R., Squires, C., Yang, K., Shanmugam, K., and
Uhler, C. Abcd-strategy: Budgeted experimental de-
sign for targeted causal structure discovery. In the 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 3400–3409. PMLR, 2019.

Bareinboim, E. and Pearl, J. Causal inference by sur-
rogate experiments: z-identifiability. arXiv preprint
arXiv:1210.4842, 2012.

Bernhard, K. and Vygen, J. Combinatorial optimization:
Theory and algorithms. Springer, Third Edition, 2005.,
2008.

Chvatal, V. A greedy heuristic for the set-covering problem.
Mathematics of operations research, 4(3):233–235, 1979.

Dinur, I. and Safra, S. On the hardness of approximating
minimum vertex cover. Annals of mathematics, pp. 439–
485, 2005.

Edmonds, J. and Karp, R. M. Theoretical improvements in
algorithmic efficiency for network flow problems. Jour-
nal of the ACM (JACM), 19(2):248–264, 1972.
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This appendix is organized as follows.

• In Section A, we review necessary definitions and known results from the literature.

• In Section B, we provide the proofs for all of our results stated in the main text and the appendix.

• In Section C, we discuss various cases where the min-cost intervention problem can be solved more efficiently (i.e., we
provide polynomial time algorithms) under assumptions on the structure of the causal graph, or the cost function.

• In Section D, we provide the details of our proposed heuristic algorithms.

• Section E includes further details on the approximation algorithm used to solve the hitting set algorithm, as well as a
slight modification to Algorithm 2 to reduce the number of calls to solve the hitting set problem.

• Section F provides further details of the experimental setup of this paper, along with further evaluations of the proposed
algorithms in this work.

A. Preliminaries
We begin with the definition of structural causal model (SCM) (Pearl et al., 2000), which is the framework we have
used throughout this paper. An SCM is a tuple M = (U, V, F, P (U)), where U is the set of exogenous variables which
are not observed but affect the relationship among the variables of the system, V = {v1, ..., vn} is the set of observed
endogenous variables where each vi ∈ V is a function of a subset of V ∪U denoted by pa(vi)∪paU (vi), F = {f1, ..., fn}
is a set of functions where each fi determines the value of vi = fi(pa(vi),pa

U (vi)), and P (U) is the joint probability
distribution over the variables U . An intervention is defined through a mathematical operator do(X = X̂), which replaces
the functions corresponding to variables X in the model M with a constant function f = X̂ . Denoting this model by MX̂ ,
the interventional distribution P (Y |do(X = X̂)) is then given by PMX̂

(Y ), or PX̂(Y ) in short (Pearl, 2012). For a subset
S of variables V , we denote by Q[S] = P (S|do(V \ S)), the interventional distribution of the variables S after intervention
on the rest of the variables.

The causal graph corresponding to the SCM M is a semi-Markovian graph G with one vertex for each vi ∈ V , where there
is a directed edge from vi to vj if the value of vi is a function of vj (vj ∈ pa(vi)), and there is a bidirected edge between
vi and vj if the values of vi and vj are both functions of a common exogenous variable u. We use V to denote the set of
vertices of G throughout the paper. We use the words vertex and variable interchangeably throughout this work, as each
vertex represents a variable. We utilise common graph-theoretic terms such as parents of a vertex x (denoted by pa(x)), as
well as children, ancestors, and descendants of a vertex. We denote by biD(x), the set of vertices that have a bidirected
edge to x. We also denote by pa↔(x) = pa(x) ∩ biD(x) the set of parents of x that have a bidirected edge to x. For a set
X , pa(X) is defined as pa(x) = ∪x∈Xpa(x) \X . The rest of the aforementioned sets are defined analogously for a set of
variables X . For a set of variables X , we denote by G[X] the induced vertex subgraph of G over the vertices X . Following
Pearl’s notation, for two sets of variables X and Y , the graph GXY is defined as the edge subgraph of G, where the edges
going into X and the edges going out of Y are deleted.

Definition 8 (Causal identification). Let G be a semi-Markovian graph. We say the causal effect of the intervention do(Y )
on X (i.e., P (X|do(Y ))) is identifiable in G, if for any two positive models M1 and M2 that induce the causal graph G,
PM1

(V ) = PM2
(V ) implies PM1

(X|do(Y )) = PM2
(X|do(Y )).

A generalization of the definition above, which is used throughout this work is as follows. We say the causal effect
of the intervention do(Y ) on X (i.e., P (X|do(Y ))) is identifiable in G from the set of interventional distributions
P = {P (X1|do(Y1)), ..., P (Xk|do(Yk))}, if for any two positive models M1 and M2 that induce the causal graph
G, PM1(Xi|do(Yi)) = PM2(Xi|do(Yi)) for 1 ≤ i ≤ k implies PM1(X|do(Y )) = PM2(X|do(Y )). Letting P be
P = {P (V |do(∅))}, this generalization reduces to Definition 8. Kivva et al. (2022) prove that Pearl’s do calculus is
complete to test the identifiability of a causal effect from a set of distributions P under this definition.

The definitions of root set, c-component, c-forest and hedge are all adopted from (Shpitser & Pearl, 2006).

Definition 9 (C-component). Let G be a semi-Markovian graph. G is a c-component (confounded-component) if a subset of
its bidirected edges form a spanning tree over all vertices of G.

Remark 4. If G is not a c-component, it can be uniquely partitioned into maximal c-components.



Min-Cost Intervention Design

Definition 10 (Root set). We say R is a root set in G if for every r ∈ R, the set of descendants of r in G is empty.

Definition 11 (C-forest). Let G be a semi-Markovian graph with the maximal root set R. G is a R-rooted c-forest if G is a
c-component and all the observed variables have at most one child.

Definition 12 (Hedge). Let X,Y be two set of vertices in the semi-Markovian graph G. Also let F, F ′ be two R-rooted
c-forests such that F ′ ⊂ F , F ∩X 6= ∅, F ′ ∩X = ∅ and R is a subset of ancestors of Y in GX . Then F, F ′ form a hedge
for P (Y |do(X)) in G.

Theorem 5 ((Shpitser & Pearl, 2006)). If there exists a hedge formed for P (Y |do(X)) in G, then P (Y |do(X)) is not
identifiable in G.

Remark 5. As mentioned in Theorem 6 of (Shpitser & Pearl, 2006), if an edge subgraph of G contains a hedge formed for
P (Y |do(X)), then P (Y |do(X)) is not identifiable in G. In other words, if P (Y |do(X)) is not identifiable in G, it is not
identifiable in any edge super-graph of G either.

For the purposes of this paper where we are predominantly considering interventional distributions of the form Q[S] =
P (S|do(V \ S)), we adapt the definition of hedge and the hedge criterion (Theorem 5) as follows. Let S be a subset of the
vertices of G such that G[S] is a c-component. First note that if F, F ′ form a hedge for P (Y |do(X)), then (F ∪Y ), (F ′ ∪Y )
clearly form a hedge for P (Y |do(X)) by definition. Further, if the two R-rooted c-forests F, F ′ form a hedge for Q[S], the
set R must be S itself, as S has no other ancestors in G

V \S that can be a member of the root set. Consequently, F ′ = R = S,
and F is a subset of G containing S. Also taking Remark 5 into consideration, a hedge formed for Q[S] in G can be thought
of as the following structure, which is the definition used throughout this paper.

Definition 4. (Hedge) Let G be a semi-Markovian graph and S be a subset of its vertices such that G[S] is a c-component. A
subset F is a hedge formed for Q[S] in G if S ( F , F is the set of ancestors of S in G[F ], and G[F ] is a c-component.

Definitions 12 and 4 coincide when G[S] is a c-component, and we used Definition 4 to simplify the text.

Claim 1. A hedge w.r.t. Definition 4 is formed for Q[S] if and only if a hedge w.r.t. Definition 12 is formed for Q[S].

Proof. Let F be a hedge formed for Q[S] w.r.t. Definition 4. Taking F ′ = S, X = V \ S, Y = S, and R = S, the pair
F.F ′ forms a hedge for Q[S] = PX(Y ) w.r.t. Definition 12. Conversely, if the pair F, F ′ is a hedge by definition 12, as
argued above, F ′ = R = S. In this case, by definition of R-rooted c-forest, F is the set of ancestors of S in G[F ], and G[F ]

is a c-component, which means that F forms a hedge for Q[S] w.r.t. Defintion 4.

We also make use of the following theorem along our proofs.

Theorem 6 ((Tian & Pearl, 2002)). Let G be a semi-Markovian graph, and let H be a subset of the observable vertices. Let
H1, ...,Hk denote the maximal c-components of G[H]. Then Q[H] is identifiable in G, if and only if Q[H1], ..., Q[Hk] are
identifiable in G.

A.1. Pearl’s do Calculus

For the sake of completeness, we cite the three rules of Pearl’s do calculus (Pearl, 2012).

Rule 1) Insertion or deletion of observations. If (Y ⊥⊥ Z|X,W )GX , then

P (Y |do(X), Z,W ) = P (Y |do(X),W ).

Rule 2) Action and observation exchange. If (Y ⊥⊥ Z|X,W )GXZ
, then

P (Y |do(X,Z),W ) = P (Y |do(X), Z,W ).

Rule 3) Insertion or deletion of actions. If (Y ⊥⊥ Z|X,W )G
XZ(W )

, where Z(W ) are vertices in Z that have no descendants
in W , then

P (Y |do(X,Z),W ) = P (Y |do(X),W ).
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B. Proofs
Lemma 1. Suppose S is a subset of variables such that G[S] is a single c-component. Let A = {A1, A2, ..., Am} be a
collection of subsets of V such that A∪ ∩ S=∅, where A∪ := ∪mi=1Ai. If A ∈ IDG(S, V \ S), then the singleton collection
A∪ = {A∪} also belongs to IDG(S, V \ S).

Proof. Suppose Bi = V \ Ai for 1 ≤ i ≤ m, and define B∩ = ∩ki=1Bi. Also suppose that Q[S] is identifiable from the
collection {Q[B1], ..., Q[Bm]}. We claim that Q[S] is also identifiable from Q[B∩]. Suppose not. Then there exists two
structural equation models M1 and M2 on the set of variables V such that QM1 [B∩] = QM2 [B∩], but QM1 [S] 6= QM2 [S],
where QMj is the interventional distribution under model Mj .

Now we build two models M ′1 and M ′2 as follows. For any x ∈ B∩, x has the same equation in M ′j as in Mj . Both in M ′1
and M ′2, any x /∈ B∩, x is uniformly distributed in D(x), where D(x) is the domain of the variable x. Since every x /∈ B∩
is drawn independently of every other variable, for 1 ≤ i ≤ m we can write:

QM ′1 [Bi] = QM ′1 [B∩] ·Πx∈Bi\B∩Q
M ′1 [x]

= QM1 [B∩] ·Πx∈Bi\B∩
1

|D(x)|

= QM2 [B∩] ·Πx∈Bi\B∩
1

|D(x)|
= QM ′2 [B∩] ·Πx∈Bi\B∩Q

M ′2 [x]

= QM ′2 [Bi],

(4)

where the second equality follows from the fact that every variable in B∩ has the same model in M1 and M ′1, the third
equality follows from the assumption that QM1 [B∩] = QM2 [B∩], and the fourth one is because every variable in B∩ has
the same model in M2 and M ′2.

With the same line of reasoning as above,

QM ′1 [S] = QM1 [S] 6= QM2 [S] = QM ′2 [S]. (5)

Equations (4) and (5) illustrate that Q[S] is unidentifiable from the collection {Q[B1], ..., Q[Bm]}, which contradicts the
assumption of the lemma. Therefore, Q[S] must be identifiable from Q[B∩], or equivalently, A = {A∪} ∈ IDG(S, V \
S).

Theorem 1. Suppose S is a subset of variables such that G[S] is a c-component. Let A = {A1, A2, ..., Am} be a collection
of subsets such that A ∈ IDG(S, V \S) andm > 1. Then, there exists a subset Ã ⊆ V such that Ã = {Ã} ∈ IDG(S, V \S)
and C(Ã) ≤ C(A).

Proof. Suppose without loss of generality that Ai ∩ S = ∅ for 1 ≤ i ≤ k, and Ai ∩ S 6= ∅ for k < i ≤ m, for some integer
k. We first claim that the following collection is in IDG(S, V \ S).

Â = {A1, ..., Ak} ∈ IDG(S, V \ S).

Suppose this claim does not hold. Then from theorem 1 of (Kivva et al., 2022), Q[S] is not identifiable from any of Q[Ai]s
for 1 ≤ i ≤ k. Since for i > k, we have S 6⊆ Ai, applying Theorem 1 of (Kivva et al., 2022) again, A /∈ IDG(S, V \ S),
which is a contradiction.

Now defining A∪ = (∪ki=1Ai), from Lemma 1, we know that

Ã = {A∪} ∈ IDG(S, V \ S).

It suffices to show that C(Ã) ≤ C(A), which follows from an identical reasoning to Remark 2:

C(Ã) = C(A∪) =
∑
a∈A∪

C(a) ≤
k∑

i=1

∑
a∈Ai

C(a)

=

k∑
i=1

C(Ai) = C(Â) ≤ C(A).
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Figure 4. Reduction from the weighted vertex cover problem to the minimum-cost intervention problem. Each edge {x, y} in the
undirected graphH is represented by a hedge structure in the semi-Markovian graph G.

Lemma 2. Suppose S is a subset of variables such that G[S] is a c-component. If A ∈ ID1(S), then A ∩ S = ∅.

Proof. SupposeA∩S is nonempty, and s ∈ A∩S is an arbitrary variable. Define two modelsM1 andM2 as follows. Every
variable in M1 is uniformly drawn from {0, 1}. Also, every variable in M2 except s is uniformly drawn from {0, 1}, and s is
drawn from {0, 1} with probabilities 0.4 and 0.6, respectively. Let QMi denote the interventional distributions under model
Mi, for i ∈ {1, 2}. Clearly,QM1 [V \A] = QM2 [V \A] = 1

2|V |−|A|
, whereasQM1 [Ss=0] = 1

2|S|
6= 1

0.4∗2|S|−1 = QM2 [Ss=0],
which shows that Q[S] is not identifiable in G[V \A].

Theorem 2. WMVC problem is reducible to a min-cost intervention problem in polynomial time.

Proof. Suppose an undirected graphH = (VH, EH) along with a weight function ω : VH → R≥0 is given. We construct a
semi-Markovian graph G along with a cost function C and prove that the min vertex cover problem inH is equivalent to the
min-cost intervention problem in G for some set S. The construction is as follows.

We first begin with defining the vertex set of G. For any vertex x ∈ VH, add a vertex x in G. For any edge {x, y} ∈ EH, add
two vertices uxy and wxy in G. We will denote the set of all such vertices by U and W , respectively. Finally, add a vertex
s. The number of vertices of G (denoted by V = VH ∪ U ∪W ∪ {s}) is therefore equal to (|VH|+ 2|EH|+ 1). Assume
a random ordering σ on the vertices of H. Now take an edge {x, y} ∈ EH, and assume without loss of generality that x
precedes y in σ. Add the directed edges uxy → x, x→ y, y → wxy, and wxy → s. Also draw a bidirected edge between
uxy and all of the vertices {x, y, wxy, s}. Graph G has therefore 4|EH| directed and 4|EH| bidirected edges (4 edges for
each edge inH). Figure 4 demonstrates the structure corresponding to the the edge {x, y} constructed in G. Finally, the cost
function C is defined as follows. For x ∈ VH, C(x) = ω(x). for every other vertex y ∈ U ∪W ∪ {s}, C(y) = z, where

z = |VH| · max
x∈VH

ω(x) + 1.

First note that constructing the graph G and the cost function C given H and ω can be done in polynomial time, as it
only needs a sweep over the vertices and the edges ofH, which can be performed in time O(VH +EH). To complete the
proof of the theorem, we will show that a subset A ⊆ VH is a weighted minimal vertex cover for H if and only if A is a
minimum-cost intervention to identify Q[{s}] in G. We begin with the following claims.

Claim 1: {VH} ∈ IDG({s}). To see this, we simply provide the identification formula.

Q[{s}] = P (s|do(VH, U,W ))

= P (s|W,do(VH, U)) (do calculus rule 2)
= P (s|W,do(VH)). (do calculus rule 3)

As seen in the expression above, Q[{s}] can be identified by intervening on (fixing) only the variables VH.
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Claim 2: if A is a minimum-cost intervention to identify Q[{s}], then A ⊆ VH. First note that from claim 1, we know that
the cost of the min-cost intervention is at most C(VH) ≤ |VH| ·maxx∈VH C(x) ≤ (z − 1). Since the cost of every variable
in V \ VH is equal to z, the min-cost intervention clearly does not include any such variable.

Claim 3: if A is a min-cost intervention to identify Q[{s}] in G, then A is a vertex cover for H. Take an arbitrary edge
{x, y} ∈ EH. To prove this claim, it suffices to show that either x ∈ A or y ∈ A. The structure G[x,y,uxy,wxy,s] (as depicted
in Figure 4) is a hedge formed for Q[{s}] in G. Since {A} ∈ IDG(S, V \ S), at least one of the variables {x, y, uxy, wxy}
is included in A, as otherwise the aforementioned hedge precludes the identification of Q[{s}]. However, from claim 2 we
know that A ⊆ VH, and therefore at least one of x, y is in A, which completes the proof of the claim.

claim 4: if A is a vertex cover for H, then {A} ∈ IDG({s}, V \ {s}) in G. Again an identification formula based on the
do-calculus rules can be derived. We first begin with the third rule of do calculus to derive Q[{s}] = P (s|do(VH, U,W )) =
P (s|do(A,U,W )). This is based on the fact that s ⊥⊥ (V \A)|A,U,W in the graph where incoming edges to U,W, V \A
are deleted. Now similar to the arguments of claim 1,

Q[{s}] = P (s|do(VH, U,W )) = P (s|do(A,U,W ))

= P (s|W,do(A,U)) (do calculus rule 2)
= P (s|W,do(A)). (do calculus rule 3)

(6)

In the last equality, we used the fact that A is a vertex cover forH, and therefore in every structure like the one shown in
Figure 4, at least one of the vertices x or y is included in A, i.e., non of the vertices in U have a direct path to s in the graph
where the incoming edges to A are deleted. Equation 6 proves claim 4, as intervention on A suffices to identify Q[{s}].

Now suppose A is a minimum vertex cover forH. From claim 4, {A} ∈ IDG({s}, V \ {s}). We claim that this intervention
is a minimum-cost intervention to identify Q[{s}]. Suppose not. Then there exists a min-cost intervention Â and C(Â) <
C(A). From claim 3, Â is a vertex cover for H. By definition of C(·),

∑
a∈Â ω(a) = C(Â) < C(A) =

∑
a∈A ω(a),

which contradicts the assumption that A is the min vertex cover.

Conversely, suppose A is the min-cost intervention to identify Q[{s}] in G. From claim 3, A is also a vertex cover
for H. We claim that this vertex cover is a minimum vertex cover. Suppose not. Then there exists a minimum vertex
cover Â for H and

∑
a∈Â ω(a) <

∑
a∈A ω(a). From claim 4, {Â} ∈ IDG({s}, V \ {s}). By definition of C(·),

C(Â) =
∑

a∈Â ω(a) <
∑

a∈A ω(a) = C(A), which contradicts the assumption that A is the min-cost intervention.

Remark 3. The unweighted version of WMVC problem (i.e., when the weight function is given by ω(·) = 1) can be reduced
to a minimum-cost intervention problem with the constant cost function C(·) = 1 in polynomial time.

Proof. The proof is analogous to the proof of Theorem 2 with slight modifications as follows. The graph G is constructed
exactly in the same manner, but the cost function is forced to the constant C(·) = 1. With the exact same arguments of
the proof of Theorem 2, A is a minimum vertex cover for H only if it is a min-cost intervention to identify Q[{s}] in G.
The other direction does not necessarily hold, as claim 2 of that proof does not hold anymore. However, we show how a
min-cost intervention solution A can be turned into a minimum vertex cover forH. Suppose A is a min-cost intervention to
identify Q[{s}] in G. Substitute any vertex uxy ∈ A ∩ U or wxy ∈ A ∩W with one of the vertices x, y arbitrarily, to form
the set Â. First note that C(Â) ≤ C(A), since the cost of all variables are the same. Also Â ⊆ VH. We claim that Â is a
vertex cover forH. Take an arbitrary edge {x, y} ∈ EH. It suffices to show that at least one of x, y is included in Â, and
follows from the fact that at least one of the variables x, y, uxy, wxy must appear in A, since otherwise {x, y, uxy, wxy, s}
is a hedge formed for Q[{s}] in G after intervention on A, which contradicts the fact that {A} ∈ IDG({s}, V \ {s}).

Note that Â is also a minimum vertex cover forH, since otherwise any vertex cover with smaller weight would also be an
intervention with smaller cost than A to identify Q[{s}], which is a contradiction.

Lemma 3. Let G be a semi-Markovian graph with vertex set V , along with a cost function C : V → R
≥0. Let S be a

subset of V such that G[S] is a c-component. Suppose the set of all hedges formed for Q[S] in G is {F1, ..., Fm}. Then A∗S is
a solution to Equation (2) if and only if it is a solution to the MWHS problem for the sets {F1 \ S, ..., Fm \ S}, with the
weight function ω(·) := C(·).

Proof. First note that if A is an intervention set that makes Q[S] identifiable, it hits all the hedges formed for Q[S] in G, as
otherwise from hedge criterion (Theorem 5) Q[S] would not be identifiable. Conversely, if A hits all the hedges formed for
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Q[S] in G, intervening on A makes Q[S] identifiable. As a result, a set A is an intervention to identify Q[S] in G if and
only if it is a hitting set for {F1 \ S, ..., Fm \ S}. Since the set of interventions and the hitting sets coincide, a minimum
intervention set is a minimum hitting set and vice-versa.

Lemma 4. Let G be a semi-Markovian graph with the vertex set V , and for S ⊆ V , let G[S] be a c-component. For any
subset A ⊆ V , if A ∈ ID1(S), then pa↔(S) ⊆ A.

Proof. First, from Lemma 2 we know that S ∩A = ∅. Now define B = S ∪ (pa↔(S)\A). If B \S 6= ∅, then by definition,
B is a hedge formed for Q[S] in G[V \A], and from Theorem 5, Q[S] is not identifiable in G[V \A], which is a contradiction.
As a result, B \ S = ∅, or equivalently, pa↔(S) \A = ∅.

Lemma 5. Consider A∗S in Equation (2), then A∗S ⊆ Hhull(S,G) \ S.

Proof. By definition of hedge hull, all the hedges formed for Q[S] are a subset of Hhull(S). From Lemma 3, A∗ ⊆
Hhull(S). The result now follows from Lemma 2, which states that A∗ ∩ S = ∅.

Lemma 6. Given a semi-Markovian graph G over V and a subset S ⊆ V such that G[S] is a c-component, Algorithm 1
returns Hhull(S,G) in O(|V |3).

Proof. First note that every time that F2 is always a subset of F throughout the algorithm. Therefore, every time that
F2 6= F , at least one vertex is excluded from F . Hence, the while loop is performed at most |V | times, and the algorithm
ends. Inside every loop, two depth first searches are executed, one to find the connected component of S in the edge-induced
subgraph of G[F ] over its bidirected edges, and the other to find the ancestors of S in G[F ]. DFS is quadratic-time in the
worst case, i.e., each iteration runs in time 2|F |2 ≤ 2|V |2 in the worst case. Therefore, the algorithm ends in time O(|V |3).

Let F̃ be the output of Algorithm 1. Since in the last iteration F̃ = F1 = F2, F̃ is the set of ancestors of S in G[F̃ ], and also
G[F̃ ] is a c-component. By definition, F̃ is a hedge formed for Q[S] in G, and therefore F̃ ⊆ Hhull(S,G). Now suppose F ′

is a hedge formed for Q[S] in G. It suffices to show that F ′ ⊆ F̃ . At the beginning of the algorithm, F = V , that is, F ′

is included in F . At each iteration, since every vertex in F ′ has a bidirected path to S through only the vertices in F ′, it
also has a bidirected path to S in every subgraph of G which includes F ′. As a result, when constructing the connected
component of S in line 3 of Algorithm 1, F ′ ⊆ F1. Further, by definition of hedge, every vertex in F ′ has a directed path to
S that goes through only vertices of F ′. By the same argument, every vertex in F ′ is included in F2 in line 4. Therefore,
F ′ ⊆ F̃ .

Theorem 3. Let S be a subset of variables such that G[S] is a c-component. Then, A∗S is a solution to (2) if and only if both
pa↔(S) ⊆ A∗S and A∗S \ pa↔(S) is a min-cost intervention to identify Q[S] in G[H], where

H := Hhull(S,G[V \pa↔(S)]). (3)

Proof. First note that the set of hedges formed for Q[S] in G can be partitioned into hedges that intersect with pa↔(S), and
the hedges that do not intersect with pa↔(S), denoted by F1 and F2, respectively. The set of hedges formed for Q[S] in
G[H′] is then F2. Using Lemma 3, the lemma is equivalent to the claim that A∗ is a minimum hitting set for the hedges
F1 ∪ F2 if and only if A∗ \ pa↔(S) is a minimum hitting set for hedges F2.

Suppose A∗ is a min-cost intervention to identify Q[S] in G. From Lemma 3, A∗ hits all the hedges formed for Q[S] in
GH′ , i.e., F2. However, since none of these hedges intersect with pa↔(S), A∗ \ pa↔(S) hits all of these hedges. We claim
that A∗ \ pa↔(S) is the minimum hitting set for the hedges F2. Suppose there exists another set Ã such that Ã hits all
the hedges F2, and C(Ã) < C(A∗ \ pa↔(S)). Since all the hedges F1 intersect with pa↔(S), Ã ∪ pa↔(S) hits all the
hedges formed for Q[S] in G, and

C(Ã ∪ pa↔(S)) ≤ C(Ã) + C(pa↔(S))

< C(A∗ \ pa↔(S)) + C(pa↔(S))

= C(A∗),

which contradicts the fact that A∗ is the minimum-cost intervention to identify Q[S] in G.
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Figure 5. Hedges of size 2 must be in the form depicted above. Exactly one vertex a is a member of pa(S) \ biD(S), and the other vertex
b is a member of biD(S) \ pa(S).

Conversely, let A∗ \ pa↔(S) be a minimum hitting set for hedges F2. If A∗ is not the min-cost intervention to identify
Q[S] in G, then there exists Ã such that C(Ã) < C(A∗) and Ã hits the hedges F1 ∪ F2. From Lemma 4, pa↔(S) ⊆ Ã.
Since hedges F2 do not intersect with pa↔(S), Ã \ pa↔(S) hits all the hedges F2, and

C(Ã \ pa↔(S)) = C(Ã)−C(pa↔(S))

< C(A∗)−C(pa↔(S))

= C(A∗ \ pa↔(S)),

which contradicts the fact that A∗ \ pa↔(S) is the minimum-cost intervention to identify Q[S] in G[H′].

Lemma 7. Let G be a semi-Markovian graph and S ⊆ V . Algorithm 2 returns an optimal solution to (2).

Proof. First let G[S] be a c-component. Note that every time that the set A is constructed in line 12 and intervening on A ∪
pa↔(S) does not suffice to identifyQ[S] in G, the algorithm continues on the subgraph of G overHhull(S,GV \(A∪pa↔(S))).
As a result, the newly discovered hedges do not intersect with A, i.e., Algorithm 2 never discovers redundant hedges. Since
every hedge is a subset of the graph and the number of such subsets is finite, the algorithm halts within finite time. At each
iteration (while loop of lines 5-11), a new hedge is added to the set of hedges formed for Q[S] and adds it to the set F. From
the minimum hitting set formulation, it is clear that any min-cost intervention for identifying Q[S] in G must intersect with
all the hedges in F. As a result, the output of Algorithm 2 (A) is always a subset of a min-cost intervention. Further, by
construction A ∈ ID1(S). As a result, A is a min-cost intervention for identifying Q[S] in G.

Now suppose G[S] is not a c-component. G[S] can be uniquely partitioned into its maximal c-components G[S1], ..., .G[Sk].
The arguments above hold for any of the maximal c-components G[Si]. The result follows from the fact that Q[S] is
identifiable in G if and only if all of its maximal c-components are identifiable in G.

Lemma 8. Let G be a semi-Markovian graph on V and S be a subset of V such that G[S] is a c-component. Heuristic
Algorithm 1 returns an intervention set A in O(|V |3) such that A ∈ ID1(S).

Proof. Correctness. Let the output of the algorithm be A. We will utilize the hitting set formulation to show the correctness
of the algorithm. Let F be a hedge formed for Q[S] in G. It suffices to show that F ∩A 6= ∅. If F ∩ pa↔(S) 6= ∅, then the
claim holds since pa↔(S) ⊆ A. Otherwise, F is a hedge formed for Q[S] in G[V \pa↔(S)], i.e., F ⊆ H , where H is given
by Equation (3). Now let a be an arbitrary vertex in (F \ S) ∩ pa(S). Such a vertex exists by definition of hedge. Further,
G[F ] is a c-component, i.e., there exists a path from a to S through bidirected edges in F . As a result, in the undirected
graphH built in heuristic Algorithm 1, there exists a path from x to y that passes only through vertices in F . Any solution
to minimum vertex cut for x− y must include at least one vertex of F . Therefore, F ∩A 6= ∅.

Runtime. Heuristic Algorithm 1 begins with constructing the set pa↔(S), and the set H given by Equation (3), which are
performed in time O(|V |), and O(|V |3) in the worst case. Constructing the graphH requires iterating over the bidirected
edges of G[H], which can be done in time O(|H|2) in the worst case. The reduction from minimum vertex cut to minimum
edge cut discussed in Appendix D is linear-time. The final step of the algorithm is to solve a minimum edge cut, which can
be done in time O(|H|3) using the push-relabel algorithm to solve the equivalent maximum flow problem (Goldberg &
Tarjan, 1988). Noting that |H| ≤ |V |, the runtime of the algorithm is O(|V |3).



Min-Cost Intervention Design

Lemma 9. Let G be a semi-Markovian graph on V and S be a subset of V such that G[S] is a c-component. Heuristic
Algorithm 2 returns an intervention set A in O(|V |3) such that A ∈ ID1(S).

Proof. Correctness. Let the output of the algorithm be A. We will utilize the hitting set formulation to show the correctness
of the algorithm. Let F be a hedge formed for Q[S] in G. It suffices to show that F ∩A 6= ∅. If F ∩ pa↔(S) 6= ∅, then the
claim holds since pa↔(S) ⊆ A. Otherwise, F is a hedge formed for Q[S] in G[V \pa↔(S)], i.e., F ⊆ H , where H is given
by Equation (3). Now let b be an arbitrary vertex in (F \ S) ∩ biD(S). Such a vertex exists by definition of hedge. Further,
F are the ancestors of S in G[F ], i.e., there exists a directed path from b to S through directed edges in G[F ]. As a result, in
the directed graph J built in heuristic Algorithm 2, there exists a path from x to y that passes only through vertices in F .
Any solution to minimum vertex cut for x− y must include at least one vertex of F . Therefore, F ∩A 6= ∅.

Runtime. Heuristic Algorithm 2 begins with constructing the set pa↔(S), and the set H given by Equation (3), which are
performed in time O(|V |), and O(|V |3) in the worst case. Constructing the graph J requires iterating over the directed
edges of G[H], which can be done in time O(|H|2) in the worst case. The reduction from minimum vertex cut to minimum
edge cut discussed in Appendix D is linear-time. The final step of the algorithm is to solve a minimum edge cut, which can
be done in time O(|H|3) using the push-relabel algorithm to solve the equivalent maximum flow problem (Goldberg &
Tarjan, 1988). Noting that |H| ≤ |V |, the runtime of the algorithm is O(|V |3).

Theorem 4. Suppose S is a subset of variables such that C(s) = ∞ for any s ∈ S. Let A = {A1, A2, ..., Am} be a
collection of subsets such that A ∈ IDG(S, V \ S) and m > 1. Then there exists a singleton intervention Ã such that
Ã = {Ã} ∈ IDG(S, V \ S) and C(Ã) ≤ C(A).

Proof. First note that if there exists 1 ≤ i ≤ m such that Ai ∩ S 6= ∅, then C(A) =∞. In this case, Ã = V \ S satisfies
the desired property. Otherwise, we can assume that S ∩ (∪mi=1Ai) = ∅. We claim that Ã = A∪ = ∪mi=1Ai is the desired
intervention set. To prove this claim, first note that

C({Ã}) = C(A∪) =
∑
a∈A∪

C(a) ≤
m∑
i=1

∑
a∈Ai

C(a)

=

m∑
i=1

C(Ai) = C(A).

Therefore, it suffices to show that {Ã} ∈ IDG(S, V \ S). Let S1, ..., Sk denote the maximal c-components of G[S]. From
lemma 2 of (Tian & Pearl, 2002) (restated here as Theorem 6), Q[S] is identifiable in GV \Ã, if and only if Q[S1], ..., Q[Sk]

are identifiable in GV \Ã. Therefore, it suffices to show that {Ã} ∈ IDG(Si, V \ Si), for all 1 ≤ i ≤ k. This result follows
from Lemma 1, since G[Si] is a c-component, {A1, ..., Am} ∈ IDG(Si, V \ Si) (from Theorem 6), and A∪ ∩ Si = ∅.

Lemma 10. Let G be a semi-Markovian graph and S be a subset of its vertices. Suppose A∗S,V \S is a min-cost interventions
collection to identify Q[S] in G. If G[Sj ] is a maximal c-component of G[S], then there exists A ∈ A∗S,V \S such that
A ∈ ID1(Sj).

Proof. Disclaimer: The proof of this result at initial submission (which is included below) was based on (Lee et al., 2020).
Kivva et al. (2022) proved that the results of (Lee et al., 2020) are correct, although their proofs are incomplete. It is worth
mentioning that this lemma immediately follows from Theorem 1 of (Kivva et al., 2022).

Former proof.With the same argument used in the proof of Theorem 1, suppose A∗S = {A1, ..., Am} and suppose without
loss of generality that Ai ∩ Sj = ∅ for 1 ≤ i ≤ k, and Ai ∩ Sj 6= ∅ for k < i ≤ m, for some integer k. We first claim that
the following collection is in IDG(Sj , V \ Sj).

Â = {A1, ..., Ak} ∈ IDG(Sj , V \ Sj). (7)

Suppose this claim does not hold. Then from theorem 3 of (Lee et al., 2020), there exists a thicket J formed for Q[Sj ] with
respect to Â. By definition of thicket (definition 6 of (Lee et al., 2020)), J is also a thicket formed for A, and from theorem
1 of (Lee et al., 2020), Q[Sj ] is not g-identifiable, or equivalently, A /∈ IDG(Sj , V \ Sj), which is a contradiction.
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Now suppose there exists no 1 ≤ i ≤ k such that Ai ∈ IDG(Sj , V \ Sj). From Theorem 5, there exists a hedge formed for
Q[Sj ] in G[V \Ai] for every 1 ≤ i ≤ k. The set of all these k hedges forms a thicket for Q[Sj ] with respect to Â, which is a
contradiction to Equation (7) through theorem 1 of (Lee et al., 2020).

Proposition 1. Given a semi-Markovian graph G and a subset S of its vertices, Algorithm 3 with Algorithm 2 used as a
subroutine in line (6) returns an optimal solution to the min-cost interventions collection to identify Q[S] in G.

Proof. Let A be the output of Algorithm 3. We first claim that A ∈ IDG(S, V \ S). For any maximal c-component of G[S]

such as G[Si], there exists at least one set Aj ∈ A such that Aj ∈ ID1(S). Therefore, A ∈ IDG(Si, V \ Si). Since Q[Si]
is identifiable from interventions on A for any c-component of G[S], by the result form (Tian & Pearl, 2002), Q[S] is also
identifiable, i.e., A ∈ IDG(S, V \ S).

Now suppose A∗S = {A∗1, ..., A∗t } is a min-cost intervention collection to identify Q[S] in G. It suffices to show that
C(A) ≤ C(A∗S). Consider an arbitrary partitioning of the c-components of S to t parts such as S(1), ...S(t), such that
A∗i ∈ ID1(S(i)) for 1 ≤ i ≤ t. Note that such a partitioning is possible due to Lemma 10. Algorithm 3 considers this
partitioning in one of its iterations, and due to optimality of Algorithm 2 (see Lemma 7), it constructs an intervention
collection Ã = {Ã1, ..., Ãt} where Ãi is the optimal intervention set in ID1(S(i)) for 1 ≤ i ≤ t. As a result,

C(Ã) =

t∑
i=1

mathbfC(TildeAi) ≤
t∑

i=1

C(A∗i ) = C(A∗S).

Since Algorithm 3 outputs the minimum cost collection among all constructed intervention collections, clearly C(A) ≤
C(Ã) ≤ C(A∗S).

Lemma 11. Let G be a semi-Markovian graph such that the edge induced subgraphs of G over its directed edges and over
its bidirected edges are trees. For an arbitrary vertex s and a vertex x ∈ Hhull(s) \ {s}, NCs(x) is a hedge formed for
Q[{s}] in G.

Proof. It suffices to show that G[NCs(x)] is a c-component and every vertex in NCs(x) is an ancestor of s in G[NCs(x)].
Take an arbitrary vertex y ∈ NCs(x). By definition of NCs(·), necs(y) ⊆ NCs(x). As a result, y has both a directed and
a bidirected path to s in G[NCs(x)], i.e., y is an ancestor of s in G[NCs(x)], and in the same c-component as s in G[NCs(x)].
Repeating the same argument for every vertex in NCs(x) completes the proof.

Lemma 12. Let G be a semi-Markovian graph over V such that the edge induced subgraphs of G over its directed edges
and over its bidirected edges are trees. For a vertex s in G, Algorithm 4 returns the min-cost intervention to identify Q[{s}]
in G in time O(|V |3).

Proof. First note that from Lemma 11, all the sets in F in line 9 of the algorithm are hedges formed for Q[{s}] in G.
Therefore, any intervention to identify Q[{s}] must hit all of these sets. On the other hand, if all of these sets are hit, by
definition of NCs(·), a hedge formed for Q[{s}] cannot include any of the vertices in Hhull(s), i.e., there does not exist
any hedge formed for Q[{s}] in G[V \A], where A is a hitting set for F. As a result, the solution to min-cost intervention
problem is the solution to minimum hitting set for F in line 9 of the algorithm. Further, we can eliminate any hedge F ′

from F, if there is a hedge F ∈ F such that F ⊆ F ′. This is due to the fact that if F is hit, F ′ is also hit. Observing that if
x ∈ NCs(y) then NCs(x) ⊆ NCs(y), we can eliminate all such sets NCs(y) from F. At the end of this process (after
the for loop of lines 10-13), we claim that for any two sets F, F ′ remaining in F, F ∩ F ′ = {s}. Suppose not. Then there
exists x 6= s such that x ∈ F ∩ F ′. Since F and F ′ are both sets of the Form NCs(·), as mentioned above, NCs(x) ⊆ F
and NCs(x) ⊆ F ′. Now if NCs(x) ∈ F, then both sets F and F ′ (or at least one of them, in the case that one of them is
NCs(x) itself) would be eliminated from F during the for loop of lines 12-13. Otherwise, NCs(x) /∈ F, which means that
there exists a vertex y ∈ H such that NCs(y) ⊆ NCs(x), and therefore NCs(x) has been removed from F. But in this
case, NCs(y) ⊆ NCs(x) ⊆ F, F ′, and in the same iteration where NCs(x) was removed from F, both F and F ′ would
also be eliminated. The contradiction shows that when the algorithm reaches line 14, all the sets {F \ {s}|F ∈ F} are
disjoint. Clearly, the minimum hitting set for disjoint sets includes the minimum-cost member of each of the sets, which is
the output of Algorithm 4, along with pa↔(s) (Lemma 4).

As discussed earlier, constructing the hedge hull of s (Hhull(s)) has a worst-case time complexity of O(|V |3). pa↔(s)
can also be constructed in linear time, using two one-step breadth-first searches. Let H denote the hedge hull of s in the
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graph GV \pa↔(s). Constructing necs(x) for the vertices in H can be performed by solving two all-pair shortest paths, which
requires two breadth-first search from each vertex with time complexity O(|H|3) in the worst case. The while loop of
lines 6-8 is performed at most |H| times, each with linear complexity. As a result, the NCs sets and therefore F are also
constructed in time O(|H|3). The for loop of lines 12-13 requires a sweep over the sets in F, which are at most |H| many
sets, each with at most |H| members; which can be performed in time O(|H|2), and therefore the for loop of lines 10-13
has complexity O(|H|3. Finally, calculating the minimum of a set with at most |H| members can be done in (sub)linear
time. Therefore, the complexity of Algorithm 4 is O(|V |3) in the worst case.

Lemma 13. Let G be a semi-Markovian graph and S be a subset of its vertices such that G[S] is a c-component. Construct
an undirected graphH on the same set of vertices as G \ pa↔(S) as follows. For any hedge of size 2 formed for Q[S] such
as F , connect the two vertices in F \ S with an edge. The resulting graphH is bipartite.

Proof. First, let F = {a, b} ∪ S be a hedge formed for Q[S] in the graph G \ pa↔(S). By definition of hedge, both vertices
a, b are ancestors of S in G[F ]. Therefore, at least one of these vertices must be a parent of S. Without loss of generality,
assume a ∈ pa(S). Since a /∈ pa↔(S), a does not have a bidirected edge to any vertex in S. However, by definition
of hedge, F is a c-component. Therefore, a must have a bidirected edge to b, and b has a bidirected edge to S. Further,
b /∈ pa↔(S), and therefore b /∈ pa(S). Since b must be an ancestor of S in G[F ], b ∈ pa(a). As a result, all hedges of size 2
are in the form depicted in Figure 5, where a ∈ pa(S) \ biD(S) and b ∈ biD(S) \ pa(S). Accordingly, for any edge drawn
in H such as {a, b}, exactly one of them is in biD(S) \ pa(S), and the other one is in pa(S) \ biD(S). Partitioning the
vertices ofH into the aforementioned sets, it is clear thatH is bipartite.

Lemma 15. Given a semi-Markovian graph G on V and a subset of its vertices S such that G[S] is a c-component, Algorithm
9 returns a set A such that {A} ∈ IDG(S, V \ S) in time O(|V |5) in the worst case.

Proof. By construction, Algorithm 9 outputs a set A such that there is no hedge formed for Q[S] in G[V \A]. As a result,
{A} ∈ IDG(S, V \ S). It only suffices to show that the algorithm halts in time O(|V |5). Constructing the hedge hull in line
1 is performed in cubic time in the worst case. The while loop of lines 3-12 can only be executed |H| times in the worst
case, as at each iteration at least one vertex is removed from H . At each iteration of this loop, at most |H| hedge hulls are
constructed, where each of these operations can be done in time O(|H|3). Summing these up, the algorithm runs in time
O(|V |3 + |Hhull(S,G)|5).

Lemma 16. Given a semi-Markovian graph on V and a subset S of its vertices, Algorithms 7, 8 and 9 return a subset A of
the vertices of G such that {A} ∈ IDG(S, V \ S), in time O(|V |3), O(|V |3) and O(|V |5), respectively.

Proof. It is straightforward that the arguments used to prove the correctness of these algorithms for the case where G[S] is
a c-component still hold for any maximal c-component of G[S] for an arbitrary subset S (see the proofs of Lemmas 8, 9
and 15.) Also, Q[S] is identifiable in G if and only if all of its maximal c-components are identifiable (Tian & Pearl, 2002).
The result follows immediately. It is worthy to note that the only overhead in the case that G[S] is not a c-component is to
partition S into its c-components, which can be done using DFS in time O(|V |3) in the worst case, i.e., it does not alter the
computational complexity of any of the heuristic algorithms.

C. Special Cases & Improvements
In this section, we discuss a few special cases of the min-cost intervention problem, and how these cases can be solved
efficiently. We show that under the assumption that the expert has certain knowledge about the structure of the causal graph
G, or the cost function C(·), the problem of designing the minimum-cost intervention can be solved efficiently in polynomial
time. Some of these assumptions might seem restrictive. However, as we shall discuss, they provide useful insight towards
solving the min-cost intervention problem efficiently in more practical settings.

C.1. Tree-like structure of G

We begin with a special structure of the semi-Markovian graph G, where both the edge induced subgraphs of G over the
directed edges and over the bidirected edges are trees. Between any pair of vertices in a tree, there is a unique path. As
a result, for any two vertices a, b in G, there is a unique path using bidirected edges, and if a is an ancestor of b, there is

also a unique path from a to b using directed edges. We denote these unique bidirected and directed paths by a
pu←→ b and
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Algorithm 4 Polynomial time algorithm for tree-like structures.

1: H ← Hhull(S,G[V \pa↔(S)])

2: necs(x)← (a
pu←→ b ∪ a pu−→ b) for every x ∈ H

3: NCs(x)← {x} for every x ∈ H
4: for x ∈ H do
5: updated(y)← false for every y ∈ H
6: while ∃y ∈ NCs(x) s.t. updated(y) = false do
7: NCs(x)← NCs(x) ∪ necs(y)
8: updated(y)← true
9: F← {NCs(x)|x ∈ H}

10: for x ∈ H do
11: if NCs(x) ∈ F then
12: for y ∈ Hhull(s) s.t. x ∈ NCs(y) do
13: F← F \ {NCs(y)}
14: A← {arg minx∈F\{s}C(x)|F ∈ F}
15: return A ∪ pa↔(s)

a
pu−→ b, respectively. Note that a

pu←→ b and a
pu−→ b for every pair of vertices can be found using an all-pair shortest path

algorithm (two separate breadth-first search from each vertex) in time O(|V |3). Now suppose we want to solve the min-cost
intervention set problem for Q[{s}]. Take an arbitrary variable x 6= s from Hhull(s). Let F be a hedge formed for Q[{s}]
such that x ∈ F . Since F is a c-component and x is an ancestor of s in G[F ], all of the variables on both a

pu←→ b and

a
pu−→ b must be members of F . We therefore call the union of all these variables, the necessary set of x to form a hedge for

s, and we denote this set by necs(x). Clearly, if we intervene on at least one vertex from necs(x), then no hedge formed for
Q[{s}] contains x. Further, we observe that if y ∈ necs(x), then with the same arguments, if a hedge formed for Q[{s}]
contains x, it must contain y and therefore all the variables in necs(y) as well. We define the closure of necessary variables
for x to form a hedge for Q[{s}] as follows.

Definition 13 (Necessary closure). Let G be a semi-Markovian graph such that the edge induced subgraphs of G over its
directed edges and over its bidirected edges are trees. We say a subset A of vertices of G is a closure of necessary variables
for x to form a hedge for Q[{s}], if x ∈ A, and for every y ∈ A, necs(y) ⊆ A. We denote the minimum closure of necessary
variables for x by NCs(x).

The following lemma indicates that minimum closure of necessary variables for x is a hedge formed for Q[{s}].
Lemma 11. Let G be a semi-Markovian graph such that the edge induced subgraphs of G over its directed edges and over
its bidirected edges are trees. For an arbitrary vertex s and a vertex x ∈ Hhull(s) \ {s}, NCs(x) is a hedge formed for
Q[{s}] in G.

All of the proofs are provided in Appendix B. One observation is that to solve the min-cost intervention, we can enumerate
NCs(x) for every x ∈ Hhull(s) and solve the hitting set problem for these hedge. Although the number of such hedges is
exactly |Hhull(s)| − 1, the hitting set problem is still complex to solve. However, we can further reduce the complexity
of the problem as follows. First note that if y ∈ NCs(x), by definition of NCs(·), NCs(y) ⊆ NCs(x). Therefore, when
considering the hitting set problem, if NCs(y) is hit, NCs(x) will also be hit. As a result, we can eliminate NCs(x) from
the sets we are considering. Using the same argument, we begin with some random ordering over the variables Hhull(S)
and for every x ∈ Hhull(S), if x appears in NCs(y) for some y ∈ Hhull(S) and the set NCs(x) is not eliminated yet,
we eliminate NCs(y). At the end of this procedure, we are left with a collection of hedges F that satisfies the following
properties.

1. The min-cost intervention to identify Q[{s}] in G is the min-cost hitting set solution to {F \ {s}|F ∈ F}.

2. For any two hedges F, F ′ ∈ F, F ∩ F ′ = {s}.

3. |F| ≤ |Hhull(s)|13.

13For a formal proof of these properties, refer to the proof of Lemma 12.
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Algorithm 5 Polynomial algorithm for bounded hedges.

1: H ← empty undirected graph on V \ pa↔(S)
2: for any pair of vertices {a, b} ⊆ V \ (S ∪ pa↔(S)) do
3: if {a, b} ∪ S is a hedge formed for Q[S] then
4: draw an edge between a and b inH
5: A← the min-weight vertex cover forH
6: return A ∪ pa↔(S)

Now we observe that the collection F of hedges are mutually disjoint, and thus the minimum hitting set is simply the
union of the minimum cost vertex in each hedge. The following result indicates the correctness and the time complexity of
algorithm 4, under the assumption that G has a tree-like structure.

Lemma 12. Let G be a semi-Markovian graph over V such that the edge induced subgraphs of G over its directed edges
and over its bidirected edges are trees. For a vertex s in G, Algorithm 4 returns the min-cost intervention to identify Q[{s}]
in G in time O(|V |3).

There are further considerations to Algorithm 4 that we would like to mention. The first one is that this algorithm together
with the definitions of necs and NCs, suggest an alternative formulation of the min-cost intervention problem, which is
taking into account the set of variables that must be combined together with each variable x to form a hedge for Q[S]. The
definition of necs(x) can be generalized to the case that G is not a tree anymore, although necs(x) will not be a set anymore,
but a collection of sets where if an intervention is made upon at least one vertex of all of these sets, no remaining hedge
formed for Q[{s}] includes x. This indeed suggests a method to enumerate the hedges formed for Q[S] in G. As we saw in
this section, for tree-like structures, this enumeration can be executed in polynomial time. However, in general structures,
this enumeration method would still take exponential time in the worst case. Another point to mention is that one-step
generalizations of the assumption of tree-ness and Algorithm 4 can be thought of, such as the assumption that the number of
paths between each pair of vertices in G is at most 2 (or k, where k is a constant.) Although the tree assumption made in this
section might appear restrictive, such generalizations might yield efficient solutions of the min-cost intervention problem
that can be used in practice.

C.2. Bounded hedge size

Following the hitting set formulation for the min-cost intervention problem, the two main challenges were enumerating the
hedges and solving the hitting set problem afterwards. For a hedge F formed for Q[S] in G, let (|F | − |S|) be the size of
this hedge, which is exactly the size of the set to be hit in the hitting set equivalent. If an upper bound on the size of the
hedges formed for Q[S] such as (|F | − |S|) ≤ k is know where k is a constant, then the task of enumerating the hedges can
be performed in polynomial time, as we only need to check the subsets of up to size k. Note that as discussed in Section
3.2, this argument is still valid if the upper bound works for the set of minimal hedges. However, the hitting set task still
remains exponential in the worst case. On the other hand, for certain values of k, the min-cost intervention problem can
be solved in polynomial time without using the hitting set formulation. For k = 1, the set of minimal hedges formed for
Q[S] reduces to the hedge structures composed of S and one variable in pa↔(S). From lemma 4, we know that in such
a structure, the optimal intervention is A∗ = pa↔(S), and pa↔(S) can be constructed in linear time. In this section, we
show that for k = 2, that is, given that every minimal hedge formed for Q[S] has size at most 2, the min-cost intervention
problem can be solved in polynomial time. We begin with the following property of the formed hedges, which will help us
model the min-cost intervention problem as a maximum matching problem in a bipartite graph through Konig’s theorem
(Konig, 1931).

Lemma 13. Let G be a semi-Markovian graph and S be a subset of its vertices such that G[S] is a c-component. Construct
an undirected graphH on the same set of vertices as G \ pa↔(S) as follows. For any hedge of size 2 formed for Q[S] such
as F , connect the two vertices in F \ S with an edge. The resulting graphH is bipartite.

First, note that for any hedge F formed for Q[S] in G[V \pa↔(S)], there exists an edge between the two vertices F \ S in the
undirected graphH. Since the min-cost intervention to identify Q[S] in G is the union of pa↔(S) and the minimum hitting
set for the sets F \ S (Lemma 3), the min-cost intervention can also be given as the union of pa↔(S) and the minimum
vertex cover for the undirected graph H. Lemma 13 states that H is bipartite. It is known that in bipartite graphs, the
minimum-weight vertex cover problem is equivalent to a maximum matching (when the costs are uniform), or a maximum
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Algorithm 6 Polynomial time algorithm for special C(·).

1: initialize I ← ∅
2: if I ∈ ID1(S) then
3: return I
4: V ′ ← ancestors of S in G, {v1, ..., vk}
5: sort the vertices V ′ s.t. C(vi) < C(vi+1) ∀1 ≤ i < k
6: while true do
7: i← 0
8: I ′ ← I
9: while true do

10: i← i+ 1
11: I ′ ← I ′ ∪ {vi}
12: if I ′ ∈ ID1(S) then
13: break
14: I ← I ∪ {vi}
15: if I ∈ ID1(S) then
16: return I

flow problem (when the costs are not uniform) (Konig, 1931). There are various polynomial time algorithms to solve these
problems, such as Ford-Fulkerson, Edmonds-Karp and push-relabel algorithms to name a few (Ford & Fulkerson, 1956;
Edmonds & Karp, 1972; Goldberg & Tarjan, 1988). Consequently, under the assumption that for any minimal hedge F
formed for Q[S], |F | − |S| ≤ 2, we propose Algorithm 5 to solve the min-cost intervention problem in polynomial time.
Any appropriate algorithm can be used as a subroutine in line (5) of Algorithm 5.

C.3. Special cost functions

We have discussed special graph structures so far. However, in certain cases, knowledge about the form of the cost function
C(·) can help us solve the min-cost intervention problem efficiently. One such case is when the costs of intervening on
variables are far enough from each other. As a concrete example, let the vertices of G be v1, ..., vn, with the cost function
C(vi) = 2i for 1 ≤ i ≤ n. We begin with testing the sets {v1}, {v1, v2}, ..., {v1, v2, ..., vn}, until we reach at the first set
Ij = {v1, ..., vj} ∈ ID1(S). Since the cost of this intervention is C(Ij) =

∑j
i=1 2i < 2j+1, the min-cost intervention does

not include any of the variables vj+1, ..., vn, as the cost of any of these variables is at least 2j+1. Further, as intervening on
more variables cannot induce new hedges, and by definition of Ij , no subset of {v1, ..., vj−1} is in ID1(S). This implies that
if A∗ is a min-cost intervention to identifyQ[S] in G, then vj ∈ A∗ and vl /∈ A∗ for any l > j. We then restart the procedure,
testing the sets {v1}∪{vj}, {v1, v2}∪{vj}, ..., {v1, ..., vj−1}∪{vj} to find the first set Ik = {v1, ..., vk}∪{vj} ∈ ID1(S).
Again with the same arguments, we can conclude that vk ∈ A∗ and vl /∈ A∗ \ {vj} for any l > k. Continuing in the same
manner, we construct the min-cost vertex cover (which is unique in this setting) after O(|V |) iterations in the worst case.
Each iteration tests whether a set is a hedge at most |V | times, which can be performed using two depth-first searches
(O(|V |2)). As a result, the min-cost intervention can be solved in time O(|V |4) in the worst case.

Note that the property we used throughout our reasoning was the fact that having sorted the variables based on their
intervention costs as v1, ..., vn, for any 1 ≤ j < n, C({v1, ..., vi}) < C(vi+1). With such a cost function, Algorithm 6
solves the min-cost intervention problem in time O(|V |4) in the worst case, i.e., regardless of the structure of G. Note
that this algorithm has the same worst-case time complexity for both when G[S] is a c-component and when it is not. Also
note that as an optional step, we can begin with constructing the hedge hull of S in GV \pa↔(S) (denoted by H) if G[S] is a
c-component. In this case, sorting the variables in H based on their cost as h1, ..., hm, we only need the assumption that
C({h1, ..., hi}) < C(hi+1) for 1 ≤ i ≤ m− 1, and the worst-case time complexity would be O(|V |3 + |H|4).

Lemma 14. Let G be a semi-Markovian graph on vertices V , along with a cost function C(·). Let S be subset of vertices
of G, and V ′ = {v1, ..., vk} be the set of ancestors of S in G. If C({v1, ..., vi}) < C(vi+1) for every 1 ≤ i < k, then
Algorithm 6 returns the min-cost intervention to identify Q[S] in G in time O(|V |4).
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Algorithm 7 Heuristic algorithm 1.

1: input: G, S,C(·), output: A ∈ ID1(S)
2: H ← Hhull(S,GV \pa↔(S))
3: BuildH on H ∪ {x, y}: draw an undirected edge between v1, v2 ∈ H \ S if there is a bidirected edge between them in
G. Connect x to pa(S) ∩H and y to S.

4: MC ← minimum weight vertex cut for x− y inH, with weights ω(v) = C(v) for v /∈ S & ω(s) =∞ for s ∈ S
5: A←MC ∪ pa↔(S)
6: return A

Algorithm 8 Heuristic algorithm 2.

1: input: G, S,C(·), output: A ∈ ID1(S)
2: H ← Hhull(S,GV \pa↔(S))
3: Build H on H ∪ {x, y}: for v1, v2 ∈ H \ S, draw v1 → v2 in H if this edge exists in G. Draw the edges from x to

pa(S) ∩H and from S to y
4: MC ← minimum weight vertex cut for x− y inH, with weights ω(v) = C(v) for v /∈ S & ω(s) =∞ for s ∈ S
5: A←MC ∪ pa↔(S)
6: return A

D. Heuristic Algorithms
In this section, we first present the three heuristic algorithms proposed in Section 3.5. We discuss their correctness, their
running times, and how they compare to each other. Later, we propose a polynomial-time improvement that can be utilized
as a post-process to improve the output of these algorithms.

The first heuristic algorithm is depicted as Algorithm 7. We begin with removing pa↔(S) from the graph, as we already
know that this set must be included in the output. We then build an undirected graph H over the vertices of H =
Hhull(S,G[V \pa↔(S)]), along with two extra vertices x and y. For every bidirected edge {v1, v2} in G[H], we draw a
corresponding edge between v1 and v2 in H. Finally, we connect x to pa(S) ∩ H and y to S with an edge. Note that
every undirected path between x and y in H corresponds to a bidirected path that connects a vertex in S to a vertex in
pa(S)∩H in G. If we intervene on a subset of variables A such that no such path exists anymore, the hedge hull of S in the
remaining graph will be S itself, as none of the vertices pa(S) are in the same c-component of S. Consequently, the effect
Q[S] becomes identifiable. With that being said, we solve for the minimum-weight vertex cut for x − y in H in line (4)
of the algorithm. We set the weights of the vertices in S to infinity to ensure that we do not intervene on them. Note that
the min-weight vertex cut in an undirected graph can be turned into an equivalent problem in a directed graph, by simply
substituting every undirected edge with two directed edges in the opposite direction. Further, min-weight vertex cut can be
reduced to min-weight edge cut through a trivial reduction: We replace every vertex v with two vertices v1, v2, add an edge
from v1 to v2 with the same weight as the weight of v in the original graph, and connect every edge that goes into v to v1,
and every edge that goes out of v to v2. The resulting problem can be solved using any of the standard max-flow-min-cut
algorithms. We used the push-relabel algorithm to solve the max-flows throughout our simulations (Goldberg & Tarjan,
1988).

The second heuristic algorithm, depicted as Algorithm 8, relies on similar ideas. Again, we begin with removing pa↔(S)
from the graph, as we already know that this set must be included in the output. We then build a directed graphH over the
vertices of H = Hhull(S,G[V \pa↔(S)]), along with two extra vertices x and y. For every directed edge v1 → v2 in G[H], we
draw a corresponding edge between v1 → v2 inH. Finally, we draw an edge from x to all vertices in biD(S) ∩H and from
all vertices in S to y. Note that every directed path from x to y inH corresponds to a directed path that connects a vertex in
biD(S) to a vertex in S in G. If we intervene on a subset of variables A such that no such path exists anymore, the hedge
hull of S in the remaining graph will be S itself, as none of the vertices biD(S) have a directed path to S. Consequently,
the effect Q[S] becomes identifiable. With that being said, we solve for the minimum-weight vertex cut for x− y inH in
line (4) of the algorithm. We set the weights of the vertices in S to infinity to ensure that we do not intervene on them. As
mentioned above, we reduce the min-weight vertex cut to min-weight edge cut, and then use max-flow algorithms to solve it.

Finally, we proceed to our third heuristic algorithm, which is based on a greedy approach. First, note that if we intervene on
every variable in the hedge hull of S except S, Q[S] becomes identifiable. That is, defining H = Hhull(S,G[V \pa↔(S)]),
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one trivial set in IDG(S, V \ S) is {(H \ S) ∪ pa↔(S)}. Similarly, if we intervene on a set of variables A, then
A ∪Hhull(S,G[V \A] \ S) is a trivial solution. In our greedy approach, we minimize the cost of this trivial solution at each
iteration. We proceed as follows. We maintain an intervention set A, which is initialized as pa↔(S). At each iteration, we
find the vertex x ∈ Hhull(S,G[V \A]) \ S that minimizes the objective function

f(x) = C(x) + C(Hhull(S,G[V \(A∪{x})])),

and add this vertex to A. Note that the function f(x) is exactly the cost of the trivial solution in graph G \ (A ∪ {x}). We
add one vertex in each iteration until we reach a point where Q[S] becomes identifiable. The following result indicates the
correctness of Algorithm 9 along with its computational complexity.

Lemma 15. Given a semi-Markovian graph G on V and a subset of its vertices S such that G[S] is a c-component, Algorithm
9 returns a set A such that {A} ∈ IDG(S, V \ S) in time O(|V |5) in the worst case.

Algorithm 9 Heuristic greedy algorithm.

1: H ← Hhull(S,G[V \pa↔(S)])
2: initialize A← pa↔(S)
3: while H 6= S do
4: cmin ← C(H)
5: i← null
6: for v ∈ H do
7: H ′ ← Hhull(S,G[H\{v}])
8: if C(H ′) + C(v) ≤ cmin then
9: cmin ← C(H ′) + C(v)

10: i← v
11: H ← Hhull(S,G[H\{i}])
12: A← A ∪ {i}
13: return A

General subset identification using heuristic algorithms. The heuristic algorithms proposed in this work are devised
under the assumption that G[S] is a c-component. However, as claimed in the main text, all of the three heuristic algorithms
return a valid intervention set to identify Q[S] in G, even if G[S] is not a c-component. This follows from the result that Q[S]
is identifiable in G, if and only if Q[S1], ..., Q[Sk] are identifiable in G, where S1, ..., Sk are the maximal c-components of
G[S] (Tian & Pearl, 2002). The following result formalizes this claim.

Lemma 16. Given a semi-Markovian graph on V and a subset S of its vertices, Algorithms 7, 8 and 9 return a subset A of
the vertices of G such that {A} ∈ IDG(S, V \ S), in time O(|V |3), O(|V |3) and O(|V |5), respectively.

Note that we Lemma 16 does not require that G[S] be a c-component, unlike Lemmas 8 and 9. As a result, all of these
algorithms can also be utilized as a subroutine in line (6) of Algorithm 3, the general algorithm proposed in this work.

Post-process. In many cases, when the output of the proposed heuristic algorithms is not optimal, it is a super-set of the
optimal intervention. As a result, we propose greedily deleting such extra variables from the intervention set A while Q[S]
remains identifiable. That is, assuming A is the output of one of the Algorithms 7,8,9, we start with the vertex a ∈ A with
the highest cost, and while there exists a ∈ A \ pa↔(S) such that {A \ {a}} ∈ IDG(S, V \ S), we remove a from A.
Testing whether a set is in IDG(S, V \ S) requires time O(|V |3) in the worst case. As a result, the proposed post-process
does not alter the worst-case complexity of the algorithms.

Discussion. The proposed algorithms have no theoretical guarantee of how well they can approximate the solution to the
min-cost intervention problem. However, their performances as well as their runtimes are dependent on the structure of the
graph G[H], where H = Hhull(S,G[V \pa↔(S)]). For instance, if the edge-induced subgraph of G[H] on its bidirected edges
is much more dense than the edge-induced subgraph of G[H] on its directed edges, Algorithm 7 will need to solve a more
complex min-weight vertex cover problem compared to Algorithm 8. It will also add potentially many extra vertices that are
not needed in the intervention set. Since G[H] is constructed as a pre-process of all three algorithms, we propose choosing
the heuristic algorithm after constructing G[H] as follows. Algorithm 8 is preferred over the other two, as it solves a min
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vertex cut in a directed graph rather than an undirected graph. However, if the graph G[H] is dense on its directed edges,
we choose Algorithm 7. In certain cases, as shown by our empirical evaluation, the greedy approach achieves lower regret
despite the higher time complexity.

E. Hitting Set & Algorithm 2
E.1. Greedy approach for minimum hitting set

In this section, we present the greedy weighted minimum hitting set algorithm mentioned in the main text (Johnson, 1974).
This greedy approach is depicted in Algorithm 10. Let V , F, and ω(·) be the universe of objects, the collection of sets for
which we want to find a hitting set, and the weight function respectively. For an object v ∈ V , we denote by N(v) the
number of sets F ∈ F such that v ∈ F , that is, the number of sets v hits. We begin with an empty hitting set A. At each
iteration, we choose the variable v ∈ V that maximizes N(v)

ω(v) , and add it to A. We then remove all the sets F that include v
from F. The algorithm runs until F becomes empty. The resulting set A is a hitting set for F. It has been shown that this
greedy algorithm achieves a logarithmic-factor approximation of the optimal hitting set in the worst case (Johnson, 1974;
Chvatal, 1979). Note that using certain data structures, we can avoid recalculating N(v) at each iteration in line (4).

Algorithm 10 Greedy weighted minimum hitting set algorithm.

1: input: universe V , collection of sets F, weights ω(v) for v ∈ V , output: a hitting set for F
2: while F 6= ∅ do
3: for all v ∈ V do
4: N(v)← |{F ∈ F|v ∈ F}|
5: v ← arg minv∈V

N(v)
ω(v)

6: A← A ∪ {v}
7: F← F \ {F ∈ F|v ∈ F}
8: return A

E.2. On Algorithm 2

In this section, we provide a slight modification of Algorithm 2. One caveat to Algorithm 2 is that it might call numerous
times as a subroutine, a solution to the minimum hitting set problem (line (13)). Although we propose using the greedy
approach mentioned above as the subroutine, we also provide a modification, depicted as Algorithm 11, which reduces the
number of calls to this subroutine as follows. At the end of each iteration (inner loop, that is, lines (7-13)), instead of solving
the minimum hitting set problem, we simply add the vertex a found in the last step to a set of interventions A. We postpone
the call to minimum hitting set to when A grows large enough so that {A} ∈ IDG(S, V \ S). Through this modification,
we discover more hedges and add them to F before calling for the solution of the minimum hitting set problem. Therefore,
this modification reduces the number of calls to the subroutine of solving the min hitting set in certain cases.

F. Further Empirical Evaluation
In this section, we provide further details of the experimental setup of the paper. We also provide complementary evaluations
of our proposed algorithms.

Setup. We have evaluated our algorithms in two different settings. In Appendix F.1, we evaluate our algorithms on a set of
well-known graphs, which are the benchmark causal graphs in the causality literature. These graphs are obtained under the
assumption of no latent variables. However, often the observed variables of a system are confounded by a hidden variable.
We added a common confounder for each pair of variables in these graphs with probability q. We then ran our algorithms to
find the min-cost intervention for identifying Q[S], where S is the last vertex in the causal order. We assumed that the cost
of intervening on each variable is uniformly sampled from {1, 2, 3, 4}.

In the second setting considered throughout our evaluations, we generated random graphs based on Erdos-Renyi generative
model. The directed and bidirected edges of the graph in this model are sampled mutually independently, with probabilities
p and q respectively. We then assigned a random cost of intervening to each variable, sampled from the uniform distribution
over {1, 2, 3, 4}. Set S in these set of evaluations is randomly chosen among the last 5% vertices of the graph, such that G[S]
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Algorithm 11 Modified algorithm to reduce the calls to minimum hitting set.

1: F← ∅, A← ∅
2: H ← Hhull(S,G[V \pa↔(S)])
3: if H = S then
4: return pa↔(S)
5: while True do
6: while True do
7: while True do
8: a← arg mina∈H\S C(a)
9: if Hhull(S,G[H\{a}]) = S then

10: F← F ∪ {H}
11: break
12: else
13: H ← Hhull(S,G[H\{a}])
14: A← A ∪ {a}
15: if {A ∪ pa↔(S)} ∈ IDG(S, V \ S) then
16: break
17: H ← Hhull(S,G[V \(A∪pa↔(S))])
18: A← min hitting set for {F \ S|F ∈ F}
19: if {A ∪ pa↔(S)} ∈ IDG(S, V \ S) then
20: return A ∪ pa↔(S)

is a c-component. Appendix F.2 provides empirical results of our algorithms on the randomly generated graphs. Finally, an
evaluation of the hedge enumeration task of Algorithm 2 is given in Figure 10.

F.1. Benchmark Structures

In this section, we evaluate our algorithms on graphs corresponding to real-world problems, namely the Barley (Kristensen
& Rasmussen, 1997), Water (Jensen et al., 1989) and Mehra (Vitolo et al., 2018) structures 14. These structures are
formed as causal DAGs under the assumption of no hidden confounder. However, often hidden variables confound
observed variables. In our experiments, we randomly added a latent confounder for every pair of variables with probability
q ∈ {0.05, 0.15, 0.25, 0.35}, and evaluated the performance of our algorithms. The intervention costs are assigned uniformly
at random from {1, 2, 3, 4}, and the set S is chosen to be the last vertex in the causal ordering. The results are depicted in
Figure 6.

F.2. Randomly Generated Graphs

Figure 7 illustrates the runtime and the normalized regret (as defined in Section 5) of our algorithms on randomly generated
graphs, with different values of p and q over random graphs of size n = 10 to n = 200. Figure 8 shows the effect of the
density of the bidirected edges on the performance of the algorithms. Random graphs of size n = 30 are generated with
different values of p. Figure 9 shows the effect of the density of the directed edges on the performance of the algorithms.
Random graphs of size n = 30 are generated with different values of the parameter q. An important observation in all of
these figures is that the normalized regret is not necessarily a monotone function of the graph size. This measure depends on
the structure of the graph, size and location of the desired set S, and the random cost assignments. Another observation is
that the runtime of the algorithms is not a monotone funciton of the graph density. This is due to the fact that the denser the
graph becomes, the larger the set pa↔(S) grows. As a result, the set H defined in Equation 3 becomes smaller and after a
certain threshold, the problem becomes even simpler for denser graphs.

Figure 10 demonstrates how Algorithm 2 circumvents the hedge enumeration task by enumerating only a small portion of
them. We have plotted the number of hedges formed for Q[S] in random graphs of different sizes generated with parameters
p = 0.35 and q = 0.25, as opposed to the number of hedges that Algorithm 2 discovers before finding the optimal min-cost
intervention solution. The number of hedges formed for Q[S] is counted after removing pa↔(S).

14See https://www.bnlearn.com/bnrepository/ for details.



Min-Cost Intervention Design

0.05 0.10 0.15 0.20 0.25 0.30 0.35
q

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Re

gr
et

Greedy
Alg2 - exact
Alg2 - approx.
Heuristic1
Heuristic2

0.05 0.10 0.15 0.20 0.25 0.30 0.35
q

10 2

Ti
m

e 
(s

)
(a) Barley structure

0.05 0.10 0.15 0.20 0.25 0.30 0.35
q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d 
Re

gr
et

Greedy
Alg2 - exact
Alg2 - approx.
Heuristic1
Heuristic2

0.05 0.10 0.15 0.20 0.25 0.30 0.35
q

10 3

10 2

10 1

Ti
m

e 
(s

)

(b) Water structure

0.05 0.10 0.15 0.20 0.25 0.30 0.35
q

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d 
Re

gr
et

Greedy
Alg2 - exact
Alg2 - approx.
Heuristic1
Heuristic2

0.05 0.10 0.15 0.20 0.25 0.30 0.35
q

10 3

10 2

Ti
m

e 
(s

)

(c) Mehra structure

Figure 6. The performance of the proposed algorithms on three real-world structures.
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Figure 7. Evaluation of the proposed algorithms on random graphs with various parameters.
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Figure 8. The effect of the density of bidirected edges. Random graphs of size n = 30 are generated with different densities of directed
edges.
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Figure 9. The effect of the density of directed edges. Random graphs of size n = 30 are generated with different densities of bidirected
edges.
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Figure 10. Number of the total hedges formed for Q[S] vs the number of hedges Algorithm 2 discovers until finding the optimal solution.


