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Abstract
Deep models are designed to operate on huge
volumes of high dimensional data such as im-
ages. In order to reduce the volume of data these
models must process, we propose a set-based two-
stage end-to-end neural subsampling model that
is jointly optimized with an arbitrary downstream
task network (e.g. classifier). In the first stage,
we efficiently subsample candidate elements us-
ing conditionally independent Bernoulli random
variables by capturing coarse grained global infor-
mation using set encoding functions, followed by
conditionally dependent autoregressive subsam-
pling of the candidate elements using Categorical
random variables by modeling pair-wise interac-
tions using set attention networks in the second
stage. We apply our method to feature and in-
stance selection and show that it outperforms the
relevant baselines under low subsampling rates
on a variety of tasks including image classifica-
tion, image reconstruction, function reconstruc-
tion and few-shot classification. Additionally, for
nonparametric models such as Neural Processes
that require to leverage the whole training data
at inference time, we show that our method en-
hances the scalability of these models.

1. Introduction
Deep models operate on large volumes of high-dimensional
dense inputs such as the pixels of an image (Deng et al.,
2009; Krizhevsky et al., 2009; Liu et al., 2015). Train-
ing or evaluating models with such data is computationally
expensive and several works (Balın et al., 2019; Huijben
et al., 2019; Yoon et al., 2019) have proposed subsampling
techniques to subsample such dense inputs. Subsampling
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methods have the potential to drastically reduce the data ac-
quisition effort and reduce the inference time of algorithms
that operate on dense inputs. Additionally, subsampling
techniques have found applications in medical research for
the purpose of interpretation (Ribeiro et al., 2016).

However, these methods have a major drawback in that they
require a fixed input structure. For instance, some of these
methods are only applicable when each feature (e.g. a pixel)
of the input is 1-dimensional. This restriction is imposed by
the way the subsampling methods are designed: the input
(e.g. an image) is flattened to a single vector and a model
predicts a binary mask for each feature (e.g. pixels). This
becomes problematic when we consider a 3-channel image.
Flattening out the image results in ambiguities as to which
pixels to select since channels are treated independently. For
instance, in order to perform subsampling on CIFAR10 im-
ages, INVASE (Yoon et al., 2019) and DPS (Huijben et al.,
2019) convert the images into single channel images (e.g.
grey-scaled images) before subsampling pixels. In more
extreme cases such as subsampling of training instances
(different from instance-wise feature selection), each feature
is itself an image (each possibly multi-channel) and hence
those subsampling techniques are inapplicable. Finally, we
show in our experiments that most of these methods fail un-
der extremely low subsampling rates and their performance
is similar to random sampling in this setting.

In order to tackle these limitation, we propose to consider
each feature or instance as an element of a set. We formulate
the subsampling problem as selecting a subset of features or
instances that minimizes the performance degradation of an
arbitrary model on an arbitrary task such as image classifi-
cation, regression or instance subsampling for target tasks
such as few-shot classification. As a result, there are several
advantages compared to the previous works. First, we can
handle arbitrary input structure using set functions (Zaheer
et al., 2017; Lee et al., 2019) parameterized with expressive
neural networks. Second, a subsampling model with set
functions can process arbitrary number of elements. As a
result, the model is robust to a wide range of subsampling
rates at test time even when trained with a fixed sampling
rate. Lastly, the set-based formulation unifies the feature
and instance subsampling tasks under a single framework.

However, it is prohibitively expensive to process all the
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Figure 1. Concept: Two-stage set-based stochastic subsampling process. (a) In the first stage, we screen out less important samples to
construct the candidate subset. (b) In the second stage, we autoregressively subsample from the candidate subset.

set elements (e.g. all the pixels in an image) with expres-
sive set function such as Set Transformer (Lee et al., 2019)
due to the self-attention among elements. Hence we pro-
pose an efficient two-stage subsampling method. In the
first stage, as shown in Fig. 1-(a), we learn the sampling
rate for individual samples and efficiently screen out less
important ones resulting in a subset which we call the can-
didate set. The second stage is more fine-grained and de-
signed to select a smaller subset from the candidate set by
considering the relative importance of the samples in the
candidate set using a conditionally dependent Categorical
distribution through an autoregressive procedure as shown
in Fig. 1-(b). Once optimized, the resulting subsampling
model can perform stochastic subsampling of a given input
with linear time complexity. We call the resulting model
Set based Stochastic Subsampling (SSS) which is a general
subsampling framework that is applicable to both feature
and instance selection.

We validate SSS on multiple datasets and tasks such as 1D
function regression, 2D image reconstruction and classifica-
tion for both feature and instance selection. The experimen-
tal results show that SSS is able to subsample with minimal
degradation on the target task performance under extremely
low subsampling rates, largely outperforming the relevant
baselines. We summarize our contribution as follows.

• We reformulate the feature and instance subsampling
problem by treating all the features or instances as
members of a set. This allows us to apply set based
functions to the subsampling problem and extend its
range of applicability.

• We propose a set based two-stage stochastic subsam-
pling method that learns to efficiently subsample a set
with minimal performance degradation on a target task.

• We verify the efficacy and generality of our method on
various datasets for feature selection in the input space
(e.g. pixels) and instance selection from a dataset,
and show that it significantly outperforms the relevant
baselines.

2. Related Work
Set Functions Recently, extensive research efforts have
been made in the area of set representation learning with the
goal of obtaining order-invariant (or equivariant) and size-
invariant representations. Many propose simple methods to
obtain set representations by applying non-linear transforma-
tions to each element before a pooling layer (Ravanbakhsh
et al., 2016; Qi et al., 2017b; Zaheer et al., 2017; Sannai
et al., 2019). However, these models have limited expres-
sive power. Other approaches such as Set Transformer (Lee
et al., 2019) consider the pairwise interactions among set
elements and hence can capture more complex statistics of
set distributions. For large sets, the computational cost is
expensive due to the self-attention operation.

Deep Learning Based Subsampling Interest in deep
learning based subsampling methods has produced many
works mostly applied to feature selection. In Balın et al.
(2019), continuous approximation of the Concrete Distri-
bution (Maddison et al., 2017) is used for global feature
selection where a fixed set of features are sampled across an
entire dataset. In Chen et al. (2018), instance-wise feature
selection is used for interpretation of deep learning models
applied to medical data. Dovrat et al. (2019) propose learn-
ing to subsample by generating virtual points, then matching
them back to the original input. Several works (Qi et al.,
2017a;c; Li et al., 2018b; Eldar et al., 1997; Moenning &
Dodgson, 2003) also propose farthest point sampling, which
selects k points from an input by ensuring that the selected
samples are far from each other on a metric space. However
our work is most similar to the recent works of Yoon et al.
(2019) and Huijben et al. (2019) which learn a subsampling
model conditioned on an given task. However these models
have limitations both in terms of their range of applicability
and poor performance under extremely low subsampling
rates. Our method on the other hand is flexible, performs
well under extremely low subsampling rates, and applicable
to a wide range of subsampling problems.

Image Compression Due to the huge demand for data trans-
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fer over the internet, some works attempt to compress im-
ages with minimal distortion. These models (Toderici et al.,
2017; Rippel & Bourdev, 2017; Mentzer et al., 2018; Li
et al., 2018a) typically consist of an encoder and decoder,
where the encoder transforms the image with a compact ma-
trix and the decoder reconstructs the image. These methods,
while highly successful for the image compression problem,
are less flexible than ours. Our model can be applied to ar-
bitrary set structured data while the aforementioned models
mainly work for images represented in tensor form.

Active Learning Active learning aims to select data points
for labeling given a small labeled set. This domain is dif-
ferent from ours since active learning does not consider the
label information for the selected data points but our method
does utilize label information. Also, our motivation is quite
different. We focus on optimal subsampling conditioned on
an arbitrary task and this greatly differs from the goal of
active learning. Methods such as (Sener & Savarese, 2018;
Coleman et al., 2020; Wei et al., 2015) all tackle the data
selection problem in the active learning setting.

Core-set Selection Core-set (Feldman, 2020) methods aim
at selecting a small weighted subset of a given dataset that
approximates the full dataset with theoretical guarantees.
They are mostly targeted at instance selection and not, in
generally, applicable to feature selection. Although we can
utilize our subsampling method, SSS, for some instance
selection tasks, our subsamplimg method, as well as those
of Huijben et al. (2019) and Yoon et al. (2019), is not a
core-set selection method. Ours is based on a data driven
approach, where we leverage expressive neural networks
to learn to subsample the most representative subset for
various downstream tasks.

3. Approach
3.1. Preliminaries

We consider a set D = {di}ni=1 as an input where each di
either represents an instance-label pair (xi, yi) or a feature
such as the pixel value of an image. We cast the subsampling
problem as the selection of a subset Ds = {sj}kj=1 ⊂ D
with k ≪ n such that ℓ(·, D) ≈ ℓ(·, Ds) for an arbitrary
loss function ℓ(·, D) over the full set D. In order to ap-
ply set functions to the subsampling problem, we need to
properly design the neural network components to have
some symmetrical properties such as permutation invari-
ance (Definition 3.2), equivariance (Definition 3.3), and
exchangeability (Definition 3.4).

Definition 3.1 (Permutation). We say a function π is a
permutation iff π ∈ Sn = {f : [n]→ [n] | f is bijective}.
Definition 3.2 (Permutation Invariance). We say a function
f : Xn → Y is permutation invariant iff f(π(x)) = f(x)
for all π ∈ Sn and for all x ∈ Xn.

Definition 3.3 (Permutation Equivariance). We say f :
Xn → Y n is permutation equivariant iff π(f(x)) =
f(π(x)) for all π ∈ Sn and for all x ∈ Xn.

Definition 3.4 (Exchangeability). A distribution for a set of
random variables X = {xi}ni=1 is exchangeable iif p(X) =
p(π(X)) for all π ∈ Sn

In the following sections, we propose a two-stage Set based
Stochastic Subsampling (SSS) method that leverages permu-
tation invariant and equivariant set functions parameterized
by θ to learn the conditional distribution pθ(Ds|D). The
first stage, candidate selection, and the second stage, autore-
gressive subset selection, are illustrated in Fig. 1. In general,
we estimate the parameters of the subsamping model θ by
minimizing the following loss: Ep(D)[Epθ(Ds|D)[ℓ(·, Ds)]],
where p(·) denotes some unknown data distribution.

3.2. Set based Stochastic Subsampling

To select Ds, we propose to model the pairwise interactions
among the elements of D and then choose a few representa-
tive elements in D based on the relative sample importance
computed from the interaction scores. However, when the
cardinality of D is large, modeling pairwise interactions
becomes computationally infeasible since we need to com-
pare each element in D with all the other elements. This
computational bottleneck motivates the first stage of SSS of
which the goal is to construct a smaller subsetDc, which we
refer to as the candidate set, at a coarse level without consid-
ering pairwise interaction. We call the first stage candidate
selection and the second stage, which is more fine-grained,
autoregressive subset selection and selects Ds from Dc.

3.3. Candidate Selection

We formulate the candidate selection problem as a random
Bernoulli process where the parameters of the Beronulli
distribution are conditioned on the set representation of D
and the individual elements di ∈ D. Specifically, we first
encode the set D to a single representation De with a set
encoding function (see Fig. 1-(a)) as follows:

De =
1

n

n∑
i=1

g(di), n = |D| (1)

where g is a neural network which projects each element
in D independently to a lower dimension. De captures
coarse-grained global information in D with computational
efficiency. This encoding scheme is similar to DeepSets (Za-
heer et al., 2017) except that we do not perform message-
passing, which is computationally expensive, between the
set elements.

Proposition 3.5. Given the set D and the affine transfor-
mation with non-linearity g, the set encoding De in Eq. 1 is
permutation invariant.
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We then concatenate every g(di) with De, denoted as di.
That is, di = [di, De], where [ ] is the concatenation opera-
tion. This ensures that each element of D has a global view
of all the other elements in the set at a coarse level. For each
di ∈ D, we sample a mask zi ∼ pθ(zi|di, D) with

pθ(zi|di, D) = Ber(zi; ρ(di)), ρ(di) = σ(h(di)) (2)

where h is a neural network that outputs the logits for the
probability that di is in the candidate set Dc and σ(·) is the
sigmoid function, and Ber denotes the Bernoulli distribu-
tion. zi is a binary random variable where zi = 1 indicates
that di is an element in Dc. We concatenate all zi’s to
obtain a single vector Z = [z1, . . . , zn]. Since sampling
from the Bernoulli distribution is not differentiable, during
training, we use the continuous relaxations of the Bernoulli
distribution (Maddison et al., 2017; Jang et al., 2017; Gal
et al., 2017) to sample zi for each di. This is illustrated as
Mask Sampling in Fig. 1-(a). Although pairwise interactions
are not considered in this stage, the ablation studies (Ap-
pendix D) show that learning pθ(zi|di, D) leads to selecting
highly informative samples compared to random selection
of the candidate set Dc.

Constraining the size of Dc For computational efficiency,
we want to restrict the size of Dc to save computational
cost when constructing Ds. Hence we introduce a sparse
Bernoulli prior p(Z) =

∏n
i=1 Ber(zi; r) with small r > 0

and minimize the KL divergence along with a target down-
stream task loss ℓ(·, Ds) w.r.t θ as follows:

Ep(D)

[
Epθ(Ds|D)[ℓ(·, Ds)] + βKL[pθ(Z|D)||p(Z)]

]
(3)

where pθ(Z|D) =
∏n
i=1 pθ(zi|di, D) and β > 0 is a hyper-

parmeter used to control the sparsity level in Z.
Proposition 3.6. The candidate selection function which
outputs the probability for each element D is permutation
equivariant and the probability pθ(Z|D) is exchangeable.

3.4. Autoregressive Subset Selection

At this stage in the pipeline, we have a set Dc with m =
|Dc| ≪ |D|, which is small enough to perform fine-grained
subset selection through pairwise modeling. To select a
subset with k elements from Dc, we require k iterative
steps. As shown in Fig. 1-(b), at time step t, we have the
subset D(t−1)

s constructed from the previous iteration with
D

(0)
s = ∅ and D

(t)
c = {s(t)1 , . . . , s

(t)
mt} = Dc \ D(t−1)

s .
Assuming we have a function φ ◦ f (Set Attention in Fig 1-
(b)) for modeling pairwise interactions between the elements
of an input set, we autoregressively compute the interaction
scores at time step t as follows:

π̃(t) = (π̃
(t)
1 , . . . , π̃(t)

mt) = σ(φ ◦ f(D(t)
c , D(t−1)

s )) (4)

where σ(·) denotes the sigmoid function and φ ◦ f is a
composition of two neural networks: f computes interaction

scores between elements in D(t)
c and φ outputs element-

wise logits using the interaction scores. Further, π̃(t) is the
vector of interaction scores for all elements in D(t)

c at the
current time step t. Given π̃(t)

i > 0 for all i = 1, . . . ,mt,
we can compute the probability of an element s(t)i being
selected from D

(t)
c as:

pθ(s
(t)
i |D

(t)
c , D(t−1)

s ) = π
(t)
i , π

(t)
i =

π̃
(t)
i∑mt

j=1 π̃
(t)
j

, (5)

where mt = |D(t)
c |. That is, we normalize π̃(t) over all the

elements in D(t)
c at time step t to obtain a valid probability

distribution. The key to avoiding redundant elements in
Ds lies in the fact that for each element added to Ds, its
selection is conditioned on both the candidate set D(t)

c and
all the elements in the subset D(t−1)

s as described in Eq. 4
& 5. For the choice of the function f , we use a MultiHead
Attention Block (MAB) (Lee et al., 2019) which we describe
in detail in Appendix I. Additionally, we can stack multiple
MABs for the function f to model higher level interactions.

Proposition 3.7. The functions φ and f , and the pairwise
interaction score π̃t are permutation equivariant for all time
steps t in the autoregressive subset selection stage.

With Eq. 5, we can sample an element s(t) ∼
Cat(π(t)

1 , . . . , π
(t)
mt) from the candidate subset D(t)

c and con-
struct D(t)

s = D
(t−1)
s ∪ {s(t)}, where Cat is the Categorical

distribution. During training, it can be expensive to sample
k times from the Categorical distribution since it involves
computing Eq. 4 k times. We remedy this by selecting l
elements from D

(t)
c at once, which reduces the number of

iterations to k/l for selecting k elements. We may also
sample l elements from the multinomial distribution with
probability π(t) without replacement. However, this sam-
pling procedure is non-differentiable, and hence it cannot
be trained with backpropagation. Instead, we independently
sample l elements from the continuous relaxation of Cat-
egorical distributions (Maddison et al., 2017; Jang et al.,
2017) using the same probabilities in Eq. 5 to approximate
sampling from the multinomial distribution as shown in
Fig. 1-(b). Since we want to simulate sampling without re-
placement, we discard all elements sampled more than once.
This sampling procedure guarantees that we get at most l
elements at each iteration. A similar sampling procedure is
adopted in previous works (Balın et al., 2019; Chen et al.,
2018). We detail this training algorithm in Appendix B.

Proofs of Propositions 3.5, 3.6 & 3.7 are in Appendix E.

Time Complexity The time complexity of SSS depends
heavily on the choice of the function f . Using MAB as f ,
the time complexity of SSS is O(n) + O(k2m/l) where
n,m, k correspond to |D|, |Dc| and |Ds| respectively.
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Figure 2. Target Tasks: (a) Feature selection for reconstruction. (b) Feature selection for prediction. (c) Selection of representative
instances. (d) Instance selection for few-shot classification.

3.5. Tasks

Set Classification & Prediction As shown in Fig. 2-(a),
we train a neural network parmeterized with ϕ to predict a
single target value yD for the subset Ds of the given full
set D, where D is a collection of the features from a single
instance such as the pixels of an image. For instance, the
target yD is either the class of an image for classification or
the attributes of a face in an image. Here, our goal is learning
to select the most representative subset Ds ⊂ D such that
we can maximize the log likelihood log pϕ(yD|Ds) with
computational efficiency. In order to achieve this goal, we
jointly train the SSS model and the neural network which
predicts the target value yD for Ds to minimize the negative
log-likelihood, the loss function ℓ(·, Ds) described in Eq. 3
and KL divergence to enforce sparsity in Z (the selection
masks for the candidate set) as follows:

Ep(D)[Epθ(Ds|D)[− log pϕ(yD|Ds)]

+ βKL[pθ(Z|D)||p(Z)]]
(6)

where p(Z) =
∏n
i=1 Ber(zi; r) with small r > 0. We pro-

vide experimental results in Section 4.2 and a corresponding
graphical model in Appendix F.

Set Reconstruction Given a full set D = {X,Y } consist-
ing of 2d coordinates X = {xi ∈ R2}ni=1 and correspond-
ing pixel values Y = {yi ∈ R3}ni=1, we want to select the
most representative subset Ds = {Xs, Ys | Xs ⊂ X,Ys ⊂
Y } to reconstruct all pixel values yi ∈ Y for each xi ∈ X ,
as shown in Fig. 2-(b). We jointly train the SSS model and
a neural network with parameters ϕ predicting pixel values
to minimize the loss function w.r.t θ and ϕ as follows:

Ep(D)[Epθ(Ds|D)[− log pϕ(Y |X,Ds)]

+ βKL[pθ(Z|D)||p(Z)]]
(7)

We enforce sparsity on the subset Ds by minimizing the
KL-divergence between the mask probability pθ(Z|D) and
sparse prior p(Z) =

∏n
i=1 Ber(zi; r) with small r > 0.

Moreover, minimizing the negative log likelihood, which
corresponds to ℓ(·, Ds) in Eq. 3, ensures that the constructed
Ds is the most representative for the downstream tasks. We
implement pθ(Y |X,Ds) as an Attentive Neural Process
(ANP) (Kim et al., 2019). The ANP takes Ds as input

and predicts a distribution of the elements in the original
set D. It mimics the behaviour of a Gaussian Process but
with reduced inference complexity. We present experimen-
tal results for this task in Section 4.3 and a corresponding
graphical model depiction in Appendix F.

Dataset Distillation: Instance Selection In this task, we
are given a collections of datasets D = {D(1), . . . , D(m)}
with D(i) ∩ D(j) = ∅ for i ̸= j and D(i) iid∼ p(D). The
goal is to select the most representative subset D(i)

s with
|D(i)

s | ≪ |D(i)| for each dataset D(i) = {d(i)1 , . . . , d
(i)
n } ∈

D, where d(i)i is a data point uniformly sampled from the
entire datasets D. Using CelebA dataset as an illustrative
example, shown in Fig. 2-(c), D(i) consists of n randomly
sampled faces from the entire dataset and the task is to
construct a subset, D(i)

s , most representative of D(i).

In order to learn to select the subset Ds from each D ∈ D
with unsupervised learning, we jointly train the SSS model
and a generative model such that the SSS model chooses
the most representative subset so that the generative model
can reconstruct all the images di ∈ D from the subset.
Naı̈vely, we can minimize the sum of negative log-likelihood∑
di∈D − log pϕ(di|Ds) for the loss function ℓ(·, Ds) and

KL divergence in Eq. 3. However, we find that the genera-
tive model outputs mean images for all di. To capture varia-
tions of different images, we introduce three latent variables
αi, ci, and wi which both depend on di. We provide graphi-
cal model illustration of this task in the Appendix F. Since
it is intractable to compute the log likelihood log pϕ(di|Ds)
by marginalizing over all the latent variables, we derive the
upper bound of the marginal negative log likelihood using
variational inference and plug the upper bound into the loss
function ℓ(·, Ds) in Eq. 3 as follows:

Ep(D)

[
Epθ(Ds|D)

[ ∑
di∈D

[Eqψ(wi,ci|di,Ds) [− log pϕ(di|wi, ci)]

+ KL[qψ(wi|di)||pξ(wi)] + KL[qψ(αi|di)||pξ(αi)]

+ KL[qψ(ci|Ds, αi)||pξ(ci)]]
]
+ βKL[pθ(Z|D)||p(Z)]

]
(8)

where pξ(·) are priors on their respective latent variables,
p(Z) =

∏n
i=1 Ber(zi; r) is sparse prior with small r > 0
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over the mask for candidate set selection in SSS, pϕ(·) is
the decoder to reconstruct di, and all variational posteriors
qψ(·) are parameterized with neural networks. All priors
are the standard normal distribution.

In summary, we jointly train both the SSS and generative
model to minimize the objective in Eq. 8 w.r.t θ, ϕ, and ψ
for all D ∈ D and leverage the optimized SSS to select a
few representative instances of the dataset, which results in
distilled dataset. Experimental results are in Section 4.4.

Dataset Distillation: Classification Finally for the dataset
distillation task, we consider the problem of selecting proto-
types for few-shot classification as shown in Fig. 2-(d). We
adopt Prototypical Networks (Snell et al., 2017) and deploy
the SSS model for selecting representative prototypes from
the support set for each class. We minimize the objective
in Eq. 3, where we use the distance loss induced by the
metric space from Prototypical Networks for the target task
loss ℓ(·, Ds), to jointly train the Prototypical Networks and
SSS. Note that we use Ds, the subset of the support set, for
computing loss and prediction. By learning to select the
prototypes, we can remove outliers that would otherwise
change the decision boundaries in the classification task
where we need to predict the label y∗ for an unseen instance
x∗. Experimental results for this task are in Section 4.4 and
its graphical model description is in Appendix F.

4. Experiments
An extensive Ablation on SSS can be found in Appendix D.

4.1. Baselines

Feature Selection for Classification We compare SSS with
the following models on MNIST. 1) Random Selection:
it randomly subsamples features. 2) DPS (Huijben et al.,
2019): this model jointly optimizes the sampling param-
eters along with the parameters of a task model. 3) IN-
VASE (Yoon et al., 2019): this model uses actor-critic (Pe-
ters & Schaal, 2008) to optimize the parameters of a sam-
pling network and target task model (Section 4.2).

Additionally, we perform attribute classification on the
CelebA dataset using the selected features from a given
image. However, we cannot apply DPS and INVASE to this
experiment. Since each feature is a tuple of 3-d RGB pixels,
flattening these features results in ambiguities as to which
features to select with INVASE or DPS. For instance, apply-
ing these methods to a 3-channel image can result in some
channels being selected by the models, while others are
zeroed out. It might lead to the entire pixel being preserved
and hence violate the subsampling objective.

Feature Selection for Reconstruction In Section 4.3 we
compare SSS against the followings. 1) Random Selection.

2) LTS (Dovrat et al., 2019): a model that learns to generate
k virtual elements which can be matched to elements in D
and optimized for the downstream task. We use LTS for both
the function reconstruction and the image reconstruction
tasks. DPS and INVASE are not applicable for these tasks
since each feature is multi-dimensional. Note that LTS is not
applicable for the classification tasks since the virtual points
generated by LTS cannot be converted back into image form
to serve as input to an image classifier.

Instance Selection In Section 4.4, we compare SSS with
1) k-Center-Greedy: this algorithm iteratively selects el-
ements in D closest to a set of centroids and 2) FPS: this
algorithm iteratively selects the most distant elements to a
randomly initialized Ds and 3) Random Selection on the
instance selection tasks. Here also, DPS, INVASE, and LTS
are all inapplicable.

Multiple Subsampling Rates For all the neural network
based baselines (DPS, INVASE, LTS), we train a separate
model for every subsampling rate. For instance, to select
15, 20, 25, 30, 50 and 100 pixels from MNIST images in
Section 4.2, we need to train 6 different models for DPS,
INVASE and LTS each with the corresponding target sub-
sampling rate. However for SSS, we train a single model and
vary the sampling rate on each iteration. During evaluation,
we use this single model for all the different sampling rates.
We find that applying a similar training technique to the
baselines result in drastic performance degradation. Thus
the set formulation of SSS makes it generalize to varying
subsampling rates at test time with train time efficiency.

(a) (b) (c) (d) (e)

Figure 5. (a) Full-image, (b) Random, (c) DPS, (d) INVASE, (e)
SSS. All models select 15 pixels of the original image. Note that
under these low subsampling rates, the baseline models end up
selecting background pixels as shown in (c) and (d).

4.2. Feature Selection for Classification

In this subsection, we validate our model on the image
classification task with feature selection as illustrated in
Fig. 2-(a). The goal is to select a subset of pixels of an
image and predict the label using the chosen subset.

MNIST Given an MNIST image with 784 pixels, the task
is to subsamlpe 15, 20, 25, 30, 50 and 100 pixels to be used
as input to train and evaluate two classification models, a
MLP and a ConvNet. We detail the exact architectures in
Appendix I.2. Since images in the MNIST dataset have
single channel, each feature is of dimension 1 and thus we
can train a classifier with DPS or INVASE. We keep the
pixels values for the selected pixels and set all the other
pixels to zero. Note that we set the subsampling rates to be
much lower than the experimental setup in Huijben et al.
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Figure 3. (a) MNIST Classification. (b) CelebA classification. (c) 1D Function Reconstruction. (d) Image Reconstruction on CelebA.
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Figure 4. Visualization of 1D function reconstruction with three different subset selection models.

(2019) and Yoon et al. (2019).

As shown in Fig. 3a, SSS significantly outperforms all the
baselines with large margin on both the MLP and ConvNet
architectures. The MLP is the same architecture used in
Huijben et al. (2019). However, we test on the full MNIST
test set instead of reserving half the test set for validation as
done in Huijben et al. (2019). SSS reaches 89% accuracy
using only 15 pixels and shows better performance than
the baselines with 100 pixels. Moreover under these low
subsampling rates, the performance on the baselines are
on par with random selection as shown by the ConvNet
results in Fig. 3a. Crucially, the performance of SSS is
consistent across both the MLP and ConvNet architectures.
DPS, which performs relatively well using the MLP shows
poor performance on the same dataset using the ConvNet
architecture and we observe similar drop in performance as
well for INVASE.

Lastly, we provide qualitative results in Fig. 5 where we
visualize the 15 selected pixels by all the baselines and SSS.
Again we find that SSS selects representative pixels (Fig. 5-
(e)) so that the classifier can predict the correct label of
the input image. However, all the baselines tend to select
background pixels under these extremely low subsampling
rates, which are uninformative for the classification task.

CelebA The CelebA dataset consists of high-quality images
of size 218 × 178. Like the previous experiment, the task
is to subsample 100, 200, 300, 400, and 500 pixels from
the full 38804 pixels and perform binary classification for
40 attributes of a face. We use the ConvNet architecture
described in Appendix I.3 as the classification network.

We report the mean AUC score on all 40 attributes for vary-
ing sizes of Ds. Fig. 3b shows that using only 500 pixels

(∼1.3% of total pixels in an image), SSS achieves a mean
AUC of 0.9093 (99.3% of the accuracy obtained with the
full image). SSS achieves a significantly higher AUC score
than Random Selection, showing the effectiveness of our
subset selection method. We also include another baseline,
namely SSS-rec. This is the SSS model trained for im-
age reconstruction in the Section 4.3, but then later used
for classification without any finetuning. Our model also
outperforms this variant, showing the effectiveness of train-
ing with the target task. Note that we cannot apply LTS,
INVASE, or DPS to this experiment. During training, the
virtual points generated by LTS cannot be converted back to
an image in matrix form due to the virtual coordinate, thus
we cannot train the LTS model with CNN-based classifica-
tion for this task. For DPS and INVASE, they require the
dimension of each feature to be 1, thus it is not applicable
to multi-channel images.

4.3. Feature Selection for Regression

Function Reconstruction Suppose that we have a function
f : [a, b]→ R. We first construct a set of data points with
D = {(x1, y1 = f(x1)), . . . , (xn, yn = f(xn))}, where
(x1, . . . , xn) are uniformly sampled from the interval [a, b]
and f is a Gaussian process. We sample (y

(i)
1 , . . . , y

(i)
n )

iid∼
N (0,KXX + σ2

yIn) for i = 1, . . . , N where KXX is a
squared-exponential kernel with the set of inputs X =
{x1, . . . , xn} and σ2

y is variance for small likelihood noise.
This leads to a collection of sets (D(1), . . . , D(N)). We
train our model which consists of the subset selection model
pθ(Ds|D) and a task network pϕ(Y |X,Ds), which is an
Attentive Neural Process (ANP) (Kim et al., 2019) on this
dataset and report the negative log-likelihood (NLL).
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Table 1. FID Score (the lower is the better) with varying the number of instances

#Instances 2 5 10 15 20 30

K-Greedy 8.8800 ± 5.5857 4.4306 ± 1.3313 4.2199 ± 1.4214 3.7160 ± 1.1314 3.2431 ± 1.3881 2.7554 ± 0.8554
FPS 6.5014 ± 4.3502 4.5098 ± 2.3809 3.0746 ± 1.0979 2.7458 ± 0.6201 2.7118 ± 1.0410 2.2943 ± 0.8010

Random 3.7309 ± 1.1690 1.1575 ± 0.6532 0.8970 ± 0.4867 0.3843 ± 0.2171 0.3877 ± 0.1906 0.1980 ± 0.1080
SSS 2.5307 ± 1.3583 1.0186 ± 0.1982 0.5922 ± 0.3181 0.3331 ± 0.1169 0.2381 ± 0.1153 0.1679 ± 0.0807

Table 2. Accuracy on miniImageNet

#Instances 1 2 5

FPS 0.432±0.005 0.501±0.002 0.598±0.000
Random 0.444±0.003 0.525±0.005 0.618±0.003

K-Greedy 0.290±0.006 0.413±0.005 0.570±0.002
SSS 0.475±0.006 0.545±0.011 0.625±0.006

Fig. 3c shows the performance (NLL) of SSS compared
to the baselines, Random Selection and LTS. As shown in
Fig. 3c, SSS outperforms the baselines, verifying that the
subset selection model pθ(Ds|D) learns a meaningful distri-
bution over subsets. We visualize a reconstructed function
and the selected points by each models in Fig. 4. As shown
in the rightmost figure (Fig. 4), SSS tends to pick out more
elements (red dots) in the drifting parts of the curve, which
is reasonable since those are harder to reconstruct than the
others. However, the other baselines sometimes fail to do
that, which leads to inaccurate reconstructions.

CelebA Image Reconstruction Given an image, we learn
to select a representative subset of pixels that best recon-
structs the original image. Here, xi is the 2d pixel coor-
dinates and yi ∈ R3 is the RGB pixel value. We use an
ANP to reconstruct the remaining pixels from the subset
Ds = {xil , yil}kl=1 constructed by each subsampling model.
We conduct the experiment on the CelebA dataset (Liu et al.,
2018). Fig. 3d shows that our model significantly outper-
forms Random Selection and LTS in terms of NLL. We
provide qualitative examples in Appendix G.2.

Note that LTS performs worse than random selection. We
find that the generated coordinates values by LTS are im-
precise. This makes matching the virtual points with the
original pixel values extremely difficult. Such inaccurate
coordinate values result in poor performance as the subsam-
pling rate increases even compared to random subsampling
as depicted in Figure 3d. We observe similar pattern in the
CIFAR10 reconstruction task presented in Figure 15a in Ap-
pendix J. On the other hand, for the function reconstruction
task in Section 4.3, the point matching stage in LTS is fairly
easy and hence the LTS model shows better performance
than random subsampling.

Efficiency in Nonparametric models In all the experiments
where we used an ANP, we greatly improve the inference
time complexity. By design, these models need to leverage
the full training data at inference time. However by subsam-
pling few highly informative instances, we can efficiently

perform inference with little degradation in accuracy. Simi-
lar gains can be obtained for models in the Neural Process
family of models (Garnelo et al., 2018a;b).

4.4. Dataset Distillation

Instance Selection The goal is to select only a few rep-
resentative images from a given dataset as described in
Section 3.5 and Fig. 2. We split the CelebA dataset into
m disjoint sets D = {D(1), . . . , D(m)} and jointly train
SSS and the generative model to minimize the objective
in Eq. 8 with D. After training, we discard the generative
model and leverage the subsampling model to choose a few
representative images from the full CelebA dataset.

We evaluate the selected subset with the Fréchet Inception
Distance (FID) (Heusel et al., 2017), which measures simi-
larity and diversity between two datasets and compare SSS
to k-Center-Greedy, FPS and Random Selection. We re-
port the experimental results in Table 1 where SSS achieves
the lowest FID score for all selection sizes. Specifically,
SSS outperforms all the baselines for selecting very few
instances since SSS is able to model the interactions within
the dataset and hence selects the most representative subset.
Additionally, given that the dataset is highly imbalanced,
k-Center-Greedy and FPS perform worst since by selecting
extreme or similar elements in the given set and cannot cap-
ture the true representation of the full dataset. We provide
selected images by SSS from the full dataset in Appendix H.

Classification In this task, we perform few-shot classifica-
tion with the miniImageNet dataset (Vinyals et al., 2016)
where the models select 1, 2, or 5 instances from the support
set with size 20. As shown in Table 2, we compare SSS
against Random Selection, FPS, and k-Center-Greedy. SSS
learns to select more representative prototypes than the oth-
ers especially for small Ds where the choice of prototypes
matters more. Notably, the K-Greedy method performs
poorly for small subset sizes given that the model overfits to
a few samples and does not generalize to unseen examples.
We show samples of selected prototypes in Appendix H.1.

5. Conclusion
In this paper, we reformulated the subsampling problem
as the selection of a subset from a set (e.g features and
instances). Based on this reformulation, we proposed a
Set based Stochastic Subsampling method that can han-
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dle arbitrary input structure as well as variable input set
sizes. Additionally, to reduce the cost of modeling pairwise-
interactions for large sets, we devised a two-stage subsam-
pling algorithm where we utilize set encoding functions to
obtain coarse grained global information in the candidate
selection stage followed by a more expressive set interaction
network in the autoregressive subset selection stage. We
validated the efficacy and generality of our model on vari-
ous tasks such as feature selection for classification and set
reconstruction, instance selection for few shot classification
and dataset distillation. We demonstrated that SSS works
well and outperforms the relevant baselines.
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A. Organization
Organization The Appendix is organized as follows: first,
we describe the pseudo-code for the Training Algorithm,
then provide ablation for each components of our method
and proofs for propositions described in Section 3. Finally,
we illustrate the generative process of each task using graph-
ical models and and additional experimental results with
detailed elaboration on experimental setups.

Algorithm 1 Greedy Training Algorithm

Input k (max subset size)
m (mini-batch size)
p(D) (distribution of sets)
α (learning rate)
ℓ(·, Ds) (loss function)

Output trained models with θ and ϕ
1: Randomly initialize parameter of SSS θ and down-

stream task model ϕ.
2: while not converged do
3: Sample m sets D(1), . . . , D(m) from p(D)

4: Sample Z(j) = {z(j)1 , . . . , z
(j)
n } ∼ pθ(Z|D(j)) for

j = 1, . . . ,m

5: Construct D(j)
c = {d(j)i ∈ D(j) : z

(j)
i = 1} for

j = 1, . . . ,m
6: Sample integer l ∼ Unif[1, k]
7: D

(j)
s ← select l-elements from D

(j)
c (with the auto-

regressive model)
8: θ ← θ − α∇θ 1

m

∑m
j=1 ℓ(·, D

(j)
s )

9: ϕ← ϕ− α∇ϕ 1
m

∑m
j=1 ℓ(·, D

(j)
s )

10: end while

B. Training Algorithm
In order to reduce the computational cost at training time,
we use a greedy training algorithm with stochastic gradient
descent as described in Algorithm 1. First, we uniformly
sample an integer l from {1, . . . , k}, which is the subset
size for a given mini-batch. Then we select l elements for
DS from the candidate set at once using the autoregressive
selection model. Finally, we perform gradient descent with
respect to the parameters of SSS model θ and target task
network ϕ to minimize the target task loss on the selected
subset Ds. As a result, we do not have to run the auto-
regressive model k time during training, which significantly
reduces the computational cost during training.

C. Fixed-size Subset Selection
At test time, we run the fixed size subset selection algorithm
to choose the most task relevant elements from the set D
as described in Algorithm 2. We do not use the greedy
training algorithm. Instead, we autoregressively select k

Algorithm 2 Fixed Size Subsampling. k is the subset size.
l is the number of elements to select at each iteration. D
is the full set and Ds ⊂ D is the final subset after running
SSS.

1: Input: k, l, D = {d1, . . . , dn}
2: Output: Ds = {s1, . . . , sk}
3: function SSS(k, l,D)
4: De ← 1

n

∑n
i=1 g(di)

5: di ← Concat(g(di), De)
6: zi ∼ Ber(zi; ρ(di) for i = 1, . . . , n
7: Dc ← {di ∈ D | zi = 1, 1 ≤ i ≤ n}
8: Ds ← ∅
9: for t = 1 to k/l do

10: Ds ← Ds ∪ AUTOSELECT(l,Ds, Dc)
11: end for
12: end function
13: function AUTOSELECT(l,D(t−1)

s , Dc)

14: D
(t)
c = {s(t)1 , . . . , s

(t)
mt} ← Dc \D(t)

s

15: π̃
(t)
i ← σ(φ ◦ f(si, D(t−1)

s ))

16: (π
(t)
1 , . . . , π

(t)
mt)← 1∑mt

j=1 π̃
(t)
j

(π̃
(t)
1 , . . . , π̃

(t)
mt)

17: Q← Sample l elements from D
(t)
c

with the probability π(t)

18: return Q
19: end function

elements from the candidate set Dc as described in line 13
from Algorithm 2 to construct the representative subset Ds.

D. Ablation
We perform extensive ablation studies on the two-stage Set
based Stochastic Susbsampling method using the function
reconstruction tasks presented in Section 4.3. First, we
explore the contribution of the candidate selection and au-
toregressive subset selection stages. Then, we verify the
importance of stochasticity in SSS.

Random Selection with Autoregressive Subset Selection
To show the importance of the candidate selection stage of
SSS, we replace it with random selection (labelled Random
+ Stage 2 in Fig. 2). As shown in Fig. 6, we find that
while this model performs better than the model with only
candidate selection, it performs worse than SSS (red line in
Fig. 6) and the autoregressive subset selection stage used
alone (green line in Fig. 6). We provide visualizations of
the reconstructed functions in the second column of Fig. 8.
Random selection in place of the candidlate selection can
ignore elements from certain parts of the function and hence
the autoregressive selection model cannot select elements
from those regions for reconstruction. In short, filtering
elements with candidate selection helps the autoregressive
selection model to choose more informative instances from
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Figure 6. Ablation on SSS.

Table 3. CelebA Attributes Classification.
Model # Pixels Storage mAUC

Full Image All 38804 114KB 0.9157
RS 500 5KB 0.8471

SSS(rec) 500 5KB 0.8921
SSS(MC) 500 5*5KB 0.9132
SSS(ours) 500 5KB 0.9093

the input set than random selection.

AutoRegressive Subset Selection Only As shown in
Fig. 6 we observe that the autoreressive subset selection
model (labelled Stage 2 Only in Fig. 6) performs signifi-
cantly better than the SSS model with candidate selection
and autoregressive selection stage. Qualitative results are
provided in third column of Fig. 8. While this model per-
forms well, it is not very practical due to the high computa-
tional cost when the size of the set becomes large.

Candidate Selection Only In order to validate the impor-
tance of the autoregressive selection stage, we construct a
subset using only the candidate selection stage. As shown in
Fig. 6 (labelled Stage 1 Only), removing the autoregressive
selection stage significantly degrades the performance of the
SSS model. In the first column of Fig. 8, the model without
autoregressive selection significantly underperforms com-
pared to SSS since it heavily focuses on the drifting parts
of the function and ignores the other parts of curve. In sum,
it is not always desirable to select only highly activating
samples in the set without considering any dependencies
among the others since it may choose redundant elements.

Generally, we find that SSS performs better than the variants
considered here and provide a better tradeoff between model
performance and computational requirements.

Stochasticity of SSS Since our method is stochas-
tic with the following predictive distribution:
Epθ(Ds|D)[pϕ(yD|Ds)], we approximate it with Monte
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Figure 7. Accuracy with varying subset size and the number of
particles for MCMC.

Carlo sampling as follows:

Epθ(Ds|D)[pϕ(yD|Ds)] ≈
1

n

n∑
i=1

pϕ(yD|D(i)
s ),

where D(i)
s

i.i.d.∼ pθ(Ds|D),

(9)

However in all experiments, we only report the result with
one sampled subset, since it gives the best trade-off between
computational cost and accuracy. We compare SSS against
another variant, SSS-MC, which use 5 sampled subsets for
MC sampling. As shown in Fig. 3b, it obtains a mean AUC
of 91.32%, which is slightly better than SSS which achieves
90.93%. Note SSM-MC increases the computational cost
(inference) and memory requirement up to 5 times as shown
in Table 3. The result justifies the inference procedure of
SSS which achieves good performance for the target tasks
with memory and computational efficiency.

Additionally, in Figure 7 we show how the uncertainty of
SSS decreases as we increases the subset size. For each sub-
set size, we draw 5 different subsets from the subsampling
model trained on the MNIST classification task described
in Section 4.2 and average the predictions of the sampled
subsets. This requires 5 forward pass of the model. At a sub-
sampling rate of 50, the model with a single subset shows
similar performance with the one with multiple draws of
subsets.

Cost of Running SSS We report the cost of running SSS
for pixel subsampling, which has the largest set size (38804
pixels). In this experiment, we select 500 pixels in total
with l = 20, i.e., we select 20 pixels at once in the second
stage described in Section 3.4. We measure the FLOPS and
memory requirements for the forward pass of SSS. We find
that the computational cost of running SSS is 8.38 GMac
(40% of the FLOPS for the full model which is 20 GMac)
with 217.09k memory requirement (compared to 958.85k
for the full model) which shows that SSS is computationally
cheap to run.
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Figure 8. Ablation: Visualization of 1D function reconstruction. In the ablation studies, we compare the first stage (CAND) and
the second stage (AUTO) with SSS. Additionally, we replace the Candidate Selection stage (Stage 1) in SSS with random selection
(RANAUTO) and compare the performance of these models. As can be seen from the visualized reconstructed outputs, the combination
of the Candidate Seletion stage with the Autoregressive stage results in the best subset selection for the reconstruction task.
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E. Proofs
Definition E.1. Let Sn := {g : [n]→ [n] | g is bijective}
be a set of all permutation on n, where [n] := {1, . . . , n}.
We say f : Xn → Y is permutation invariant if and only
if for any permutation π ∈ Sn, f(π(x)) = f(x) for all
x ∈ Xn.

Definition E.2. Let Sn := {g : [n]→ [n] | g is bijective}
be a set of all permutation on n, where [n] := {1, . . . , n}.
We say f : Xn → Y n is permutation equivariant if and
only if for any permutation π ∈ Sn, π(f(x)) = f(π(x))
for all x ∈ Xn.

Proposition E.3. Let D = {di ∈ Rd | i = 1, . . . , n} be
a finite set and let g be an affine transformation with non-
linearity. Define a function k(d1, . . . , dn) := 1

n

∑n
i=1 g(di).

Then the set encoding De = k(d1, . . . , dn) is permutation
invariant.

Proof. Let a permutation π ∈ Sn be given.

k(d1, . . . , dn) =
1

n

n∑
i=1

g(di)

=
1

n

n∑
i=1

g(dπ(i))

= k(dπ(1), . . . , dπ(n))

(10)

Proposition E.4. Let f : Xn → Y n and g : Y n → Zn be
permutation equivarant functions. Then the composition of
two function g ◦ f is permutation equivariant function.

Proof. Suppose that f and g are permutation equivariant.
Let π ∈ Sn be permutation. We want to show π((g ◦
f)(x)) = (g ◦ f)(π(x)) for all x ∈ Xn. Let x ∈ Xn be
given.

(g ◦ f)(π(x)) = g(f(π(x)))

= g(π(f(x)))

= π(g(f(x)))

= π((g ◦ f)(x))

(11)

The second and third equality holds since f and g are per-
mutation equivariant.

Proposition E.5. Let ζ : Xn → Y n be a function, mapping
(d1, . . . , dn) 7→ (ρ(d1), . . . , ρ(dn)) for candidate selection.
Then ζ is permutation equivariant.

Proof. Let a permutation π ∈ Sn be given and let x =

(d1, . . . , dn) be given.

ζ(π(x)) =
(
ρ(dπ(1)), . . . , ρ(dπ(n))

)
=

(
σ(h(dπ(1))), . . . , σ(h(dπ(n)))

)
=

(
σ(h(dπ(1);De)), . . . , σ(h(dπ(n);De))

)
= π (σ(h(d1;De)), . . . , σ(h(dn;De)))

= π (ζ(x))

(12)

where ; denotes concatenation of two vectors and De =
1
n

∑n
i=1 g(di). g(·) and h(·) affine transformation followed

by non-linear activation. Since element-wise operations
h(·), σ(·) are permutation equivariant and (d1, . . . , dn) 7→
(d1;De, . . . , dn;De) is permutation equivariant, composi-
tion of those functions is also permutation equivariant by
Proposition E.4. Therefore, fourth equality holds, i.e., ζ is
permutation equivariant.

Proposition E.6. The probability pθ(Z|D) induced by can-
didate selection function is exchangeable.

Proof. Let a permutation π ∈ Sn be given.

pθ(Z|D) =

n∏
i=1

pθ(zi|di, D) (13)

=

n∏
i=1

ρ(di;De) (14)

=

n∏
i=1

ρ(dπ(i);De) (15)

=

n∏
i=1

pθ(zπ(i)|dπ(i), D) (16)

= pθ(π(Z)|D) (17)

where De =
1
n

∑n
i=1 g(di) and ; denotes concatenation of

two vectors. Equality in 15 holds since De is permutation
invariant and ρ is element-wise operation.

Proposition E.7. Let f be a stack of multi-head attention
blocks from Set Transformer (Lee et al., 2019) and let φ be
affine transformation. For all time step t in autoregressive
selection, the functions f, φ, and σ ◦ φ ◦ f are permutation
equivariant, where σ is sigmoid function.

Proof. Since each multi-head attention block in f is per-
mutation equivariant, a stack of the blocks is also permu-
tation equivariant by Proposition E.4. Since we apply φ
independently to each element in a set, φ is permutation
equivariant. Similarly, σ is permutation equivariant since
it is an element-wise operation. As a result, σ ◦ φ ◦ f is
permutation equivariant again by Proposition E.4.
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(a) (b) (c) (d)

Figure 9. Graphical Models: (a) Feature selection for reconstruction. (b) Feature Selection for prediction task. (c) Instance selection for
representative data points. (d) Instance selection for few-shot classification.

F. Graphical Model
In Figure 9, we illustrate the generative process using graph-
ical models for each tasks — (a) feature selection for set re-
construction, (b) feature selection for prediction (c) Instance
selection for representative data points and (d) instance se-
lection for few-shot classification. The shaded circles denote
observed variables and the others latent variables.

G. Instance Selection Samples
In this section, we show more qualitative examples for the
1D and CelebA experiments on how the models subsamples
elements of the given set for the target task.

G.1. 1D Function - Reconstruction

Figure 10 shows the reconstruction samples of our model
on the 1D function dataset, where SSS clearly outperforms
Learning to Sample (LTS) and Random Subset (RS). Since
RS selects the points randomly, it can leave out important
part of the 1D curve leading to wrong reconstructions. Sim-
ilarly, LTS also miss some parts of the curves, resulting in
suboptimal reconstructions.

G.2. CelebA

Figure 11 shows samples of reconstructed images while
varying the number of selected pixels. Additionally in Fig-
ure 12, we show the selected pixels of our model for both
the classification and reconstruction task. For the attribute
classification task, the model tends to select pixels mainly
from the face, since the task is to classify characteristics of
the person. For reconstruction, the selected pixels are more
evenly distributed, since the background also contributes
significantly to the reconstruction loss.

H. Dataset Distillation: Instance Selection
For the instance selection experiments, we construct a set
by randomly sampling 200 face images from the full dataset.
To evaluate the model, we create multiple such datasets and
run the baselines (Random Sampling, K-Center Greedy and

FPS) and SSS on the same datasets. We compute the FID
metric (Heusel et al., 2017) on the instances and averaged
on all the randomly constructed datasets. For FPS, we use
the open-source implementation in https://github.
com/rusty1s/pytorch_cluster. Further, we pro-
vide qualitative results on a single dataset in Figure 13
where our model picks 5 instances from the full set of 200
face images.

H.1. Dataset Distillation: Classification

In Figure 14 we provide visualizations for the instance se-
lection problem as applied to the few-shot classification
task. Here, we go from a 20-shot to a 1-shot classification
problem where the prototype is selected from the support
using SSS. The selected subset is then used in place of the
support set and used to classify new query instances.

I. Model Specifications
In this section, we describe the main components of our Set
based Stochastic Sumbsampling models — g(d), ρ(d) and
φ ◦ f(D(t)

c , D
(t−1)
s ).

For all the experiments, we design g as feedforward neural
network with ReLU to project each instance d to lower
dimension and average them to obtain the set representation
De, following DeepSets (Zaheer et al., 2017).

We parameterize ρ(·) with a 3 layered feedforward neu-
ral network h followed by sigmoid function as described
in Equation 2 from Section 3.3. For f , we use the func-
tion g in Eq. 1 to extract feature map for each instances in
D

(t)
c , D

(t−1)
s and feed it to set transformer (Lee et al., 2019)

for set classification as follows:

f(D(t)
c , D(t−1)

s ) = MAB(D(t)
c , D(t−1)

s )

MAB(D(t)
c , D(t−1)

s ) = LayerNorm(H + rFF(H))

H = LayerNorm(D(t)
c + Multihead(D(t)

c , D(t−1)
s , D(t−1)

s ))
(18)

where rFF is a row-wise feedfoward layer which processes
each instance independently and Multihead denotes Mul-

https://github.com/rusty1s/pytorch_cluster
https://github.com/rusty1s/pytorch_cluster
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Figure 10. Visualization of 1D function reconstruction with three different subset selection models. Each method selects 15 out of 400
elements. As can be seen, SSS selects elements that result in better reconstructed functions.
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Figure 11. Visualization of reconstructed images for the CelebA dataset. Each model selects 40, 60, 80, and 100 pixels from a 218× 178
image and reconstruct the full image using only the selected pixels.

Figure 12. Zoom-In for best view. Selected pixels for different tasks on CelebA. As can be seen from the selected pixels, SSS adaptively
selects different pixels for both reconstruction and classification. Pixels for reconstruction are more spread out to include the background
since this contributes to the reconstruction loss. For classification, almost all the pixels are focused on the face since most of the attributes
can be found there.
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Figure 13. Visualization of a set with 200 images for instance selection. The two stage selection method in SSS is visualized as Candidate
Set and Subset. A subset of size 5 is visualized.
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Figure 14. Sample visualization of prototype selection for the miniImagenet dataset on the few-shot classification task. Each row represents
a set that corresponds to the support from which a prototype is selected for the few-shot classification task.

tihead Attention (Vaswani et al., 2017) with each slot of
Multihead(·, ·, ·) representing query, key, and value, respec-
tively. We use linear layer for φ to output logits for each
element in D(t−1)

c .

I.1. Attention

We further elaborate the details of Attention and Multihead
Attention for completeness. For a more thorough exposition,
we refer the reader to Vaswani et al. (2017) and Lee et al.
(2019).

An attention module computes the following interactions
using the dot product:

Att(Q,K, V ;ω) = ω(QK⊤)V (19)

where Q ∈ Rnq×dq are the nq query vectors each with of
dimension dq. K ∈ Rnv×dq and V ∈ Rnv×dq are the keys
and values respectively. Interactions are modelled through
QK⊤ and ω is an activation function such as softmax or
sigmoid.

Multihead attention projects Q,K, V to h different vectors
each with dMq , d

M
q , d

M
v dimensions and computes h differ-

ent attention modules according to the following:

Multihead(Q,K, V ;λ, ω) = concat(O1, . . . , Oh)W
O

(20)

where

Oj = Att(QWQ
j ,KW

K
j , V W

V
j ;ωj) (21)

The leanarble parameters for Multihead Attention are
λ = {WQ

j ,W
K
j ,W

V
j }hj=1, where WQ

j ,W
K
j ∈ Rdq×d

M
q ,

WV
j ∈ Rdv×dMv and WO ∈ RhdMv ×d. In all our experi-

ments, we use sigmoid as the activation function.

I.2. Architectures for MNIST Classification

MLP We use an architecture with 5 layers with outputs 784,
256, 128, 128 and 10 respectively. With the exception of the
last layer, all layers are followed by a LeakyReLU activation
function. The 3rd linear layer is also followed by a dropout
layer with p = 0.2. This is the same architecture used in
Huijben et al. (2019). However, we test on the full MNIST
test set instead of using half for validation and the remaining
for testing as done in Huijben et al. (2019).

ConvNet We use two convolutions with output channels 32
and 64 respectively. All convolutions have kernel size of
3 with stride 1 and are followed by ReLU activation. The
final convolution layer is followed by a Maxpooling layer
with kernel size 2. This is followed by two linear layers
with output sizes of 128 and 10 and the first linear layer is
followed by the ReLU activation function.
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I.3. Architecture for CelebA Attribute Classification

ConvNet We use 4 convolutions each with outputs 64, 128,
256 and 512 respectively. Each convolution is followed by a
batch normalization layer, ReLU activation and a Maxpool-
ing layer with kernel size 2. This is followed by 3 linear
layers with outputs 1024, 256 and 40 respectively. The
first two linear layers are followed by the ReLU activation
function and the last by the Sigmoid function.

I.4. Architecture for Regression Problems

For all the regression problems, we use the ANP model of
Kim et al. (2019).

J. Experiments on CIFAR10 Dataset
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Figure 15. (a) CIFAR10 Reconstruction. (b) CIFAR10 Classifica-
tion.

We provide further experimental results on the CIFAR10
dataset in which we subsample pixels for both image re-
construction and image classification. In order to compare
with both Huijben et al. (2019) and Yoon et al. (2019), we
convert all the images to grayscale, following Huijben et al.
(2019) (see Section 4.3).

The experimental result of the CIFAR10 reconstruction task
is presented in Figure 15a, where for the same subsampling
rates, SSS outperforms the competing baselines (DPS, IN-
VASE, LTS and Random Sampling) in terms of the negative
log-likelihood. For this task, we use ANP model as we have
done in CelebA and function reconstruction tasks in Sec-
tion 4.3. We do not compare with INVASE since INVASE
requires two copies of the reconstruction model and requires
more GPU memory.

In Figure 15b, we present the results for the CIFAR10 clas-
sification task. Again we observe that for the same sub-
sampling rate, SSS performs better than DPS, INVASE and
Random Sampling and the performance of the same classifi-
cation model trained on the full input image is 0.70± 0.02.
Note that we cannot compare with LTS for the same reasons
given in Section 4.1.

K. Experiments on OCT Dataset

Table 4. Acc. with 200 out
of 1024 pixels on OCT.

Random INVASE DPS SSS Full
38.80 41.80 76.70 85.90 95.50

We also provide additional re-
sults on the Optical Coherence
Tomography dataset where we
need to select the most infor-
mative features from tomographic images for prediction and
interpretation of diseases in the retina. As shown in Fig. 16,
SSS selects bumpy regions of the retina crucial for diagnosis
of Diabetic Macular Edema. The quantitative result from
Table 4 further confirms the effectiveness of our method.

(a) Full (b) Random (c) INVASE (d) DPS (e) SSS
Figure 16. Visualization of selected 100 pixels.

https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2

