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Abstract

Sharpness-Aware Minimization (SAM) is a recent
training method that relies on worst-case weight
perturbations which significantly improves gener-
alization in various settings. We argue that the ex-
isting justifications for the success of SAM which
are based on a PAC-Bayes generalization bound
and the idea of convergence to flat minima are in-
complete. Moreover, there are no explanations for
the success of using m-sharpness in SAM which
has been shown as essential for generalization. To
better understand this aspect of SAM, we theoret-
ically analyze its implicit bias for diagonal linear
networks. We prove that SAM always chooses a
solution that enjoys better generalization proper-
ties than standard gradient descent for a certain
class of problems, and this effect is amplified by
using m-sharpness. We further study the proper-
ties of the implicit bias on non-linear networks
empirically, where we show that fine-tuning a
standard model with SAM can lead to significant
generalization improvements. Finally, we pro-
vide convergence results of SAM for non-convex
objectives when used with stochastic gradients.
We illustrate these results empirically for deep
networks and discuss their relation to the general-
ization behavior of SAM. The code of our exper-
iments is available at https://github.com/
tml-epfl/understanding-sam.

1. Introduction
Understanding generalization of overparametrized deep neu-
ral networks is a central topic of machine learning. Training
objective has many global optima where the training data
are perfectly fitted (Zhang et al., 2017), but different global
optima lead to dramatically different generalization perfor-
mance (Liu et al., 2019). However, it has been observed
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that stochastic gradient descent (SGD) tends to converge
to well-generalizing solutions, even without any explicit
regularization methods (Zhang et al., 2017). This suggests
that the leading role is played by the implicit bias of the opti-
mization algorithms used (Neyshabur et al., 2015): when the
training objective is minimized using a particular algorithm
and initialization method, it converges to a specific solution
with favorable generalization properties. However, even
though SGD has a very beneficial implicit bias, significant
overfitting can still occur, particularly in the presence of
label noise (Nakkiran et al., 2020) and adversarial perturba-
tions (Rice et al., 2020).

Recently it has been observed that the sharpness of the train-
ing loss, i.e., how quickly it changes in some neighborhood
around the parameters of the model, correlates well with the
generalization error (Keskar et al., 2016; Jiang et al., 2019),
and generalization bounds related to the sharpness have
been derived (Dziugaite & Roy, 2018). The idea of minimiz-
ing the sharpness to improve generalization has motivated
recent works of Foret et al. (2021), Zheng et al. (2021),
and Wu et al. (2020) which propose to use worst-case per-
turbations of the weights on every iteration of training in
order to improve generalization. We refer to this method
as Sharpness-Aware Minimization (SAM) and focus mainly
on the version proposed in Foret et al. (2021) that performs
only one step of gradient ascent to approximately solve the
weight perturbation problem before updating the weights.

Despite the fact that SAM significantly improves general-
ization in various settings, the existing justifications based
on the generalization bounds provided by Foret et al. (2021)
and Wu et al. (2020) do not seem conclusive. The main rea-
son is that their generalization bounds do not distinguish the
robustness to worst-case weight perturbation from average-
case robustness to Gaussian noise. However the latter does
not sufficiently improve generalization as both Foret et al.
(2021) and Wu et al. (2020) report. Furthermore, their anal-
ysis does not distinguish whether the worst-case weight
perturbation is computed based on some or on all training
examples. As we will discuss, this feature has a crucial
impact on generalization.

In our paper, we aim to further investigate the reasons for
SAM’s success and make the following contributions:

• We discuss why the current understanding of the suc-
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cess of SAM which is based on a PAC-Bayesian gen-
eralization bound and on convergence to a flatter min-
imum is incomplete.

• We test hypotheses regarding why maximization in
SAM taken over fewer training points can lead to
better generalization and conclude that the benefit is
likely to come from the better objective.

• We study the implicit bias of this objective theoret-
ically for diagonal linear networks. For non-linear
networks, we study the implicit bias empirically and
relate it to the theoretical model.

• We prove convergence of SAM for non-convex objec-
tives in the stochastic setting. We check convergence
empirically for deep networks and relate it to the gen-
eralization behavior of SAM.

2. Background on SAM
Related work. Here we discuss relevant works on ro-
bustness in the weight space and its relation to generaliza-
tion. Works on weight-space robustness of neural networks
date back at least to the 1990s (Murray & Edwards, 1993;
Hochreiter & Schmidhuber, 1995). Random perturbations
of the weights are used extensively in deep learning (Jim
et al., 1996; Graves et al., 2013), and most prominently in
approaches such as dropout (Srivastava et al., 2014). Many
practitioners have observed that using SGD with larger
batches for training leads to worse generalization (LeCun
et al., 2012), and Keskar et al. (2016) have shown that this
degradation of performance is correlated with the sharpness
of the found parameters. This observation has motivated
many further works which focus on closing the generaliza-
tion gap between small-batch and large-batch SGD (Wen
et al., 2018; Haruki et al., 2019; Lin et al., 2020). More
recently, Jiang et al. (2019) have shown a strong correlation
between the sharpness and the generalization error on a large
set of models under a variety of different settings hyperpa-
rameters, beyond the batch size. This has motivated the
idea of minimizing the sharpness during training to improve
standard generalization, leading to Sharpness-Aware Mini-
mization (SAM) (Foret et al., 2021). SAM modifies SGD
such that on every iteration of training, the gradient is taken
not at the current iterate but rather at a worst-case point
in its vicinity. Zheng et al. (2021) concurrently propose a
similar weight perturbation method which also successfully
improves standard generalization on multiple deep learning
benchmarks. Wu et al. (2020) have also proposed an al-
most identical algorithm with the same motivation, but with
the focus on improving robust generalization of adversar-
ial training. On the theoretical side, Mulayoff & Michaeli
(2020) study the sharpness properties of minima of deep
linear network, and Neu (2021); Wang & Mao (2022) study
generalization bounds based on average-case sharpness and

quantities related to the optimization trajectory of SGD.

Sharpness. Let Strain = {xi, yi}ni=1 be the training data
and `i(w) be the loss of a classifier parametrized by weights
w ∈ R|w| and evaluated at point (xi, yi). Then the sharp-
ness on a set of points S ⊆ Strain is defined as:

s(w,S) , max
‖δ‖2≤ρ

1

|S|
∑

i:(xi,yi)∈S

`i(w + δ)− `i(w). (1)

In most of the past literature, sharpness is defined for
S = Strain (Keskar et al., 2016; Neyshabur et al., 2017;
Jiang et al., 2019). However, Foret et al. (2021) recently
introduced the notion of m-sharpness which is the average
of the sharpness computed over all the batches S of size m
from the training set Strain.

Lower sharpness is correlated with lower test error (Keskar
et al., 2016), however, the correlation is not always perfect
(Neyshabur et al., 2017; Jiang et al., 2019). Moreover, the
sharpness definition itself can be problematic since rescaling
of incoming and outcoming weights of a node that leads to
the same function can lead to very different sharpness values
(Dinh et al., 2017). Kwon et al. (2021) suggest a sharpness
definition that fixes this rescaling problem but other prob-
lems still exist such as the sensitivity of classification losses
to the scale of the parameters (Neyshabur et al., 2017).

Sharpness-aware minimization. Foret et al. (2021) theo-
retically base the SAM algorithm on the following objective:

n-SAM: min
w∈R|w|

max
‖δ‖2≤ρ

n∑
i=1

`i(w + δ), (2)

which we denote as n-SAM since it is based on maximiza-
tion of the sum of the losses over the n training points. They
justify this objective via a PAC-Bayesian generalization
bound, although they show empirically (see Fig. 3 therein)
that the following objective leads to better generalization:

m-SAM: min
w∈R|w|

∑
S⊂Strain,
|S|=m

max
‖δ‖2≤ρ

∑
i∈S

`i(w + δ), (3)

which we denote asm-SAM since it is based on maximiza-
tion of the sum of the losses over batches of m training
points and therefore related to the m-sharpness.

To make SAM practical, Foret et al. (2021) propose to mini-
mize the m-SAM objective with stochastic gradients. De-
noting the batch indices at time t by It (|It| = m), this leads
to the following update rule on each iteration of training:

wt+1 = wt −
γt
|It|

∑
i∈It

∇`i
(
wt +

ρt
|It|

∑
j∈It

∇`j(wt)
)
. (4)

Importantly, the same batch It is used for the inner and
outer gradient steps. We note that ρt can optionally include
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ResNet-34 on CIFAR-100
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Figure 1: Comparison of different weight perturbation methods: no perturbations (ERM), random perturbations prior to taking the
gradient on each iteration, n-SAM, and 128-SAM (see Sec. 2 for the notation). All models are trained with standard data augmentation
and small batch sizes (128). We observe that among these methods only m-SAM with a low m (i.e., 128-SAM) substantially improves
generalization.

the gradient normalization suggested in Foret et al. (2021),
i.e., ρt := ρ/‖ 1

|It|
∑
j∈It ∇`j(wt)‖2. However, we show in

Sec. 5 that its usage is not necessary for improving general-
ization, so we will omit it from our theoretical analysis.

Importance of low-m, worst-case perturbations. In or-
der to improve upon ERM, Foret et al. (2021) use SAM
with low-m and worst-case perturbations. To clearly il-
lustrate the importance of these two choices, we show the
performance of the following weight perturbation meth-
ods: no perturbations (ERM), random perturbations (prior
to taking the gradient on each iteration), n-SAM, and 128-
SAM. We use ResNet-18 on CIFAR-10 and ResNet-34 on
CIFAR-100 (Krizhevsky & Hinton, 2009) with standard
data augmentation and batch size 128 and refer to App. D
for full experimental details, including our implementation
of n-SAM. Fig. 1 clearly suggests that (1) the improvement
from random perturbations is marginal, and (2) the only
method that substantially improves generalization is low-m
SAM (i.e., 128-SAM). Thus, worst-case perturbations and
the use of m-sharpness in SAM are essential for the gen-
eralization improvement (which depends continuously on
m as noted by Foret et al. (2021), see Fig. 16 in App. E.1).
We also note that using too low m is inefficient in practice
since it does not fully utilize the computational accelerators
such as GPUs. Thus, using higher m values (such as 128)
helps to balance the generalization improvement with the
computational efficiency. Finally, we note that using SAM
with large batch sizes without using a smaller m leads to
suboptimal generalization (see Fig. 17 in App. E.2).

3. Challenging the Existing Understanding of
SAM

In this section, we show the limitations of the current un-
derstanding of SAM. In particular, we discuss that the gen-
eralization bounds on which its only formal justification
relies on (such as those presented in Foret et al. (2021);

Wu et al. (2020); Kwon et al. (2021)) cannot explain its
success. Second, we argue that contrary to a common be-
lief, convergence of SAM to flatter minima measured in
terms of m-sharpness does not always translate to better
generalization.

The existing generalization bound does not explain the
success of SAM. The main theoretical justification for SAM
comes from the PAC-Bayesian generalization bound pre-
sented, e.g., in Theorem 2 of Foret et al. (2021). How-
ever, the bound is derived for random perturbations of
the parameters, i.e. the leading term of the bound is
Eδ∼N (0,σ)

∑n
i=1 `i(w + δ). The extension to worst-case

perturbations, i.e. max‖δ‖2≤ρ
∑n
i=1 `i(w+ δ), is done post

hoc and only makes the bound less tight. Moreover, we can
see empirically (Fig. 1) that both training methods suggested
by the derivation of this bound (random perturbations and
n-SAM) do not substantially improve generalization. This
generalization bound can be similarly extended to m-SAM
by upper bounding the leading term via the maximum taken
over mini-batches. However, this bound would incorrectly
suggest that 128-SAM should have the worst generalization
among all the three weight-perturbation methods while it is
the only method that successfully improves generalization.

We note that coming up with tight generalization bounds
even for well-established ERM for overparametrized models
is an open research question (Nagarajan & Kolter, 2019).
One could expect, however, that at least the relative tightness
of the bounds could reflect the correct ranking between the
three methods, but it is not the case. Thus, we conclude
that the existing generalization bound cannot explain the
generalization improvement of low-m SAM.

A flatter minimum does not always lead to better gener-
alization. One could assume that although the generaliza-
tion bound that relies on m-sharpness is loose, m-sharpness
can still be an important quantity for generalization. This is
suggested by its better correlation with the test error com-
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ResNet-34 on CIFAR-100
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Figure 2: m = 128 sharpness computed over different perturba-
tion radii ρ at the minima of ERM and SAM models trained with
large (1024) and small batches (128). All models are trained with
group normalization and achieve zero training error.

pared to the sharpness computed on the whole training set
(Foret et al., 2021). In particular, we could expect that
convergence of SAM to better-generalizing minima can be
explained by a lower m-sharpness of these minima. To
check this hypothesis, we select multiple models trained
with group normalization1 that achieve zero training error
and measure their m-sharpness for m = 128 and different
perturbation radii ρ in Fig. 2. We note that the considered
networks are not reparametrized in an adversarial way (Dinh
et al., 2017) and they all use the same weight decay parame-
ters which makes them more comparable to each other. First
of all, we observe that none of the radii ρ gives the correct
ranking between the methods according to their test error,
although m-sharpness ranks correctly SAM and ERM for
the same batch size. In particular, we see that the minimum
found by SAM with a large batch size (1024) is flatter than
the minimum found by ERM with a small batch size (128)
although the ERM model leads to a better test error: 6.17%
vs. 6.80% on CIFAR-10 and 25.06% vs. 28.31% on CIFAR-
100. This shows that it is easy to find counterexamples
where flatter minima generalize worse.

We further note that there are simple examples that illustrate
that m-sharpness cannot be a universal quantity at distin-
guishing well-generalizing minima. E.g., consider a linear
model fx(w) = 〈w, x〉 and a decreasing margin-based loss
`, then the 1-sharpness has a closed-form solution:

n∑
i=1

max
‖δ‖2≤ρ

` (yi 〈w + δ, xi〉)− ` (yi 〈w, xi〉) =

n∑
i=1

` (yi 〈w, xi〉 − ρ ‖xi‖2)− ` (yi 〈w, xi〉) .

The 1-sharpness is influenced only by the term −ρ ‖xi‖2
1We consider networks with group normalization (Wu & He,

2018) instead of the more common batch normalization (Ioffe &
Szegedy, 2015) since we observed a large discrepancy between
m-sharpness computed with the training-time vs. test-time batch
normalization (see the experiment in Fig. 19 in App. E.4).
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Figure 3: Suboptimality factor of m-sharpness (ρ = 0.1) com-
puted using 100 steps of projected gradient ascent compared to
only 1 step for ERM and SAM models with group normalization.

which does not depend on a specific w. In particular, it
implies that all global minimizers w∗ of the training loss
are equally sharp according to the 1-sharpness which, thus,
cannot suggest which global minima generalize better.

Since (m-)sharpness does not always distinguish better-
from worse-generalizing minima, the common intuition
about sharp vs. flat minima (Keskar et al., 2016) can be
incomplete. This suggests that it is likely that some other
quantity is responsible for generalization which can be cor-
related with (m-)sharpness in some cases, but not always.
This motivates us to develop a better understanding of the
role of m in m-SAM, particularly on simpler models which
are amenable for a theoretical study.

4. Understanding the Generalization Benefits
of SAM

In this section, we first check empirically whether the ad-
vantage of lower m in m-SAM comes from a more accurate
solution of the inner maximization problem or from specific
properties of batch normalization. We conclude that it is not
the case and hypothesize that the advantage comes rather
from a better implicit bias of gradient descent induced bym-
SAM. We characterize this implicit bias for diagonal linear
networks showing that SAM can provably improve general-
ization, and the improvement is larger for 1-SAM than for
n-SAM. Then we complement the theoretical results with
experiments on deep networks showing a few intriguing
properties of SAM.

4.1. Testing Two Natural Hypotheses for Why Lowm
inm-SAM Could be Beneficial

As illustrated in Fig. 1, the success ofm-SAM fully relies on
the effect of low m which is, however, remains unexplained
in the current literature. As a starting point, we could con-
sider the following two natural hypotheses for why low m
could be beneficial.

Hypothesis 1: lower m leads to more accurate maxi-
mization. Since m-SAM relies only on a single step of
projected gradient ascent for the inner maximization prob-
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Figure 4: Test error of SAM models with group normalization
trained with different numbers of projected gradient ascent steps
(10 vs. 1) for m-SAM and different m values (256 vs. 4) using
batch size 256.

lem in Eq. (3), it is unclear in advance how accurately this
problem is solved. One could assume that using a lower
m can make the single-step solution more accurate as intu-
itively the function which is being optimized might become
“simpler” due to fewer terms in the summation. Indeed,
there is evidence towards this hypothesis: Fig. 3 shows the
suboptimality factor between m-sharpness computed using
100 steps vs. 1 step of projected gradient ascent for ρ = 0.1
(the optimal ρ for 256-SAM in terms of generalization) for
ERM and SAM models. We can see that the suboptimality
factor tends to increase over m and can be as large as 10×
for the ERM model on CIFAR-10 for m = 1024. This
finding suggests that the standard single-step m-SAM can
indeed fail to find an accurate maximizer and the value of
m can have a significant impact on it. However, despite
this fact, using multiple steps in SAM does not improve
generalization as we show in Fig. 4. E.g., on CIFAR-10 it
merely leads to a shift of the optimal ρ from 0.1 to 0.05,
without noticeable improvements of the test error. This is
also in agreement with the observation from Foret et al.
(2021) on why including second-order terms can slightly
hurt generalization: solving the inner maximization problem
more accurately leads to the fact that the same radius ρ can
become effectively too large (as on CIFAR-10) leading to
worse performance.

Hypothesis 2: lower m results in a better regularizing
effect of batch normalization. As pointed out in Hoffer
et al. (2017) and Goyal et al. (2017), batch normalization
(BN) has a beneficial regularization effect that depends on
the mini-batch size. In particular, using the BN statistics
from a smaller subbatch is coined as ghost batch normaliza-
tion (Hoffer et al., 2017) and tends to improve generalization.
Thus, it could be the case that the generalization improve-
ment of m-SAM is due to this effect as its implementation
assumes using a smaller subbatch of size m. To test this
hypothesis, in Fig. 4, we show results of networks trained
instead with group normalization that does not lead to any
extra dependency on the effective batch size. We can see
that a significant generalization improvement by m-SAM
is still achieved for low m (m = 4 for batch size 256),
and this holds for both datasets. Thus, the generalization
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Figure 5: Illustration of the hyperbolic entropy φα(β) for β ∈ R2

that interpolates between ‖β‖1 for small α and ‖β‖2 for large α.

improvement of m-SAM is not specific to BN.

We hypothesize instead that low-m SAM leads to a better
implicit bias of gradient descent for commonly used neural
network architectures, meaning that some important com-
plexity measure of the model gets implicitly minimized over
training that may not be obviously linked to m-sharpness.

4.2. Provable Benefit of SAM for Diagonal Linear
Networks

Here we theoretically study the implicit bias of full-batch 1-
SAM and n-SAM for diagonal linear networks on a sparse
regression problem. We show that 1-SAM has a better
implicit bias than ERM and n-SAM which explains its
improved generalization in this setting.

Implicit bias of 1-SAM and n-SAM. The implicit bias of
gradient methods is well understood for overparametrized
linear models where all gradient-based algorithms enjoy the
same implicit bias towards minimization of the `2-norm of
the parameters. For diagonal linear neural networks, where
a linear predictor 〈β, x〉 can be parametrized via β = w2

+ −
w2
−

2 with a parameter vector w =
[ w+
w−

]
∈ R2d, first-order

algorithms have a richer implicit bias. We consider here an
overparametrized sparse regression problem, meaning that
the ground truth β∗ is a sparse vector, with the squared loss:

L(w) :=
1

4n

n∑
i=1

(〈w2
+ − w2

−, xi〉 − yi)2, (5)

where overparametrization means that n� d and there exist
manyw such thatL(w) = 0. We note that in our setting, any
global minimizer w∗ of L(w∗) is also a global minimizer
for the m-SAM algorithm for any m ∈ {1, . . . , n} since all
per-example gradients are zero and hence the ascent step
of SAM will not modify w∗. Thus, any difference in gen-
eralization between m-SAM and ERM has to be attributed
rather to the implicit bias of each of these algorithms.

We first recall the seminal result of Woodworth et al. (2020)
and refer the readers to App. B for further details. Assuming

2See Woodworth et al. (2020) for why this parametrization is
equivalent to a diagonal network β = u� v. Moreover, the signs
of ui and vi will not change throughout training, hence the use of
the notation w+ and w−.
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global convergence, the solution selected by the gradient
flow initialized as w+ = w− = α ∈ Rd>0 and denoted βα∞
solves the following constrained optimization problem:

βα∞ = arg min
β∈Rd s.t. Xβ=y

φα(β), (6)

where the potential φα is given as φα(β) =∑d
i=1 α

2
i q(βi/α

2
i ) with q(z) = 2 −

√
4 + z2 +

z arcsinh(z/2). As illustrated in Fig. 5, φα interpo-
lates between the `1 and the `2 norms of β according to
the initialization scale α. Large α’s lead to low `2-type
solutions, while small α’s lead to low `1-type solutions
which are known to induce good generalization properties
for sparse problems (Woodworth et al., 2020).

Our main theoretical result is that both 1-SAM and n-
SAM dynamics, when considered in their full-batch ver-
sion (see Sec. A for details), bias the flow towards solu-
tions which minimize the potential φα but with effective
parameters α1-SAM and αn-SAM which are strictly smaller
than α for a suitable inner step size ρ. In addition, typically
‖α1-SAM‖1 < ‖αn-SAM‖1 and, therefore, the solution chosen
by 1-SAM has better sparsity-inducing properties than the
solution of n-SAM and standard ERM.

Theorem 1 (Informal). Assuming global convergence, the
solutions selected by the full-batch versions of the 1-SAM
and n-SAM algorithms taken with infinitesimally small step
sizes and initialized at w+ = w− = α ∈ Rd>0, solve the
optimization problem (6) with effective parameters:

α1-SAM = α�e−ρ∆1-SAM+O(ρ2), αn-SAM = α�e−ρ∆n-SAM+O(ρ2),

where ∆1-SAM,∆n-SAM ∈ Rd+ for which typically:

‖∆1-SAM‖1 ≈ d
∫ ∞

0

L(w(s))ds and

‖∆n-SAM‖1 ≈
d

n

∫ ∞
0

L(w(s))ds.

The results are formally stated in Theorem 4 and 5 in App. B.
1-SAM has better implicit bias properties since its effective
scale of α is considerably smaller than the one of n-SAM
due to the lack of the 1

n factor in the exponent. It is worth
noting that the vectors ∆1-SAM and ∆n-SAM are linked with
the integral of the loss function along the flow. Thereby,
the speed of convergence of the training loss impacts the
magnitude of the biasing effect: the slower the convergence,
the better the bias, similarly to what is observed for SGD
in Pesme et al. (2021). Extending this result to stochastic
implementations of 1-SAM and n-SAM algorithms could
be done following Pesme et al. (2021) but is outside of the
scope of this paper.

Empirical evidence for the implicit bias. We compare the
training and test loss of ERM, 1-SAM, and n-SAM in Fig. 6
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Figure 6: Implicit bias of 1-SAM and n-SAM compared to ERM
for a diagonal linear network on a sparse regression problem. We
can see that 1-SAM generalizes significantly better than n-SAM
and ERM.
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Figure 7: The effect of the implicit bias of ERM vs. SAM for a
one hidden layer ReLU network trained with full-batch gradient
descent. Each run is replicated over five random initializations.

for the same perturbation radius ρ, and for different ρ in
App. B.3 (Fig. 14). As predicted, the methods show differ-
ent generalization abilities: ERM and n-SAM achieve ap-
proximately the same performance whereas 1-SAM clearly
benefits from a better implicit bias. This is coherent with the
deep learning experiments presented in Fig. 1 on CIFAR-10
and CIFAR-100. We also note that the training loss of all the
variants is converging to zero but the convergence of 1-SAM
is slower. Additionally, we show a similar experiment with
stochastic variants of the algorithms in App. B.3 (Fig. 13)
where their performance is, as expected, better compared to
their deterministic counterparts.

4.3. Empirical Study of the Implicit Bias in Non-Linear
Networks

Here we conduct a series of experiments to characterize the
implicit bias of SAM on non-linear networks.

The sparsity-inducing bias of SAM for a simple ReLU
network. We start from the simplest non-linear network:
a one hidden layer ReLU network applied to a simple 1D
regression problem from Blanc et al. (2020). We use it to
illustrate the implicit bias of SAM in terms of the geometry
of the learned function. For this, we train ReLU networks
with 100 hidden units using full-batch gradient descent on
the quadratic loss with ERM and SAM3 over five different
random initializations. We plot the resulting functions in

3Since n = 12 for this task, we observed no substantial differ-
ence between 1-SAM and n-SAM.
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Figure 8: Test error of SAM→ ERM and ERM→ SAM when the
methods are switched at different % of epochs. For example, for
SAM→ ERM, 0% corresponds to ERM and 100% corresponds to
SAM. We observe that a method which is run at the beginning of
training has little influence on the final performance.

Fig. 7. We observe that SAM leads to simpler interpolations
of the data points than ERM, and it is much more stable
over random initializations. In particular, SAM seems to
be biased toward a sparse combination of ReLUs which is
reminiscent of Chizat & Bach (2020) who show that the
limits of the gradient flow can be described as a max-margin
classifier that favors hidden low-dimensional structures by
implicitly regularizing the F1 variation norm. Moreover,
this also relates to our Theorem 1 where sparsity rather
shows up in terms of the lower `1-norm of the resulting
linear predictor. This further illustrates that there can exist
multiple ways in which one can describe the beneficial effect
of SAM. For deep non-linear networks, however, the effect
of SAM is hard to visualize, but we can still characterize
some of its important properties.

The effect of SAM for deep networks at different stages
of training. To develop a better understanding of the im-
plicit bias of SAM for deep networks, we can analyze at
which stages of training using SAM is necessary to get gen-
eralization benefits. One could assume, for example, that
its effect is important only early in training so that the first
updates of SAM steer the optimization trajectory towards a
better-generalizing minimum. In that case, switching from
SAM to ERM would not degrade the performance. To better
understand this, we train models first with SAM and then
switch to ERM for the remaining epochs (SAM→ ERM)
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Figure 9: Test error over epochs for ERM compared to
ERM → SAM and SAM → ERM training where the methods
are switched only at the end of training. In particular, we can see
that SAM can gradually escape the worse-generalizing minimum
found by ERM.
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Figure 10: Loss interpolations betweenwERM→SAM andwERM
for a ResNet-18 trained on CIFAR-10.

and also do a complementary experiment by switching from
ERM to SAM (ERM→ SAM) and show results in Fig. 8.
Interestingly, we observe that a method that is used at the
beginning of training has little influence on the final perfor-
mance. E.g., when SAM is switched to ERM within the first
70% epochs on CIFAR-100, the resulting model generalizes
as well as ERM. Furthermore, we note a high degree of con-
tinuity of the test error with respect to the number of epochs
at which we switch the methods. This does not support
the idea that the models converge to some entirely distinct
minima and instead suggests convergence to different min-
ima in a connected valley where some directions generalize
progressively better. Another intriguing observation is that
enabling SAM only towards the end of training is sufficient
to get a significant improvement in terms of generalization.
We discuss this phenomenon next in more detail.

The importance of the implicit bias of SAM at the end
of training. We take a closer look on the performance
of ERM → SAM and SAM → ERM when we switch
between the methods only for the last ≈ 10% of epochs
in Fig. 9 where we plot the test error over epochs. First,
we see that for SAM → ERM, once SAM converges to
a well-generalizing minimum thanks to its implicit bias,
then it is not important whether we continue optimization
with SAM or with ERM, and we do not observe significant
overfitting when switching to ERM. At the same time, for
ERM→ SAM we observe a different behavior: the test error
clearly improves when switching from ERM to SAM. This
suggests that SAM (using a higher ρ than the standard value,
see App. D) can gradually escape the worse-generalizing
minimum which ERM converged to. This phenomenon



Towards Understanding Sharpness-Aware Minimization

is interesting since it suggests a practically relevant fine-
tuning scheme that can save computations as we can start
from any pre-trained model and substantially improve its
generalization. Moreover, interestingly, the final point of
the ERM→ SAM model is situated in the same basin as the
original ERM model as we show in Fig. 10 which resembles
the asymmetric loss interpolations observed previously for
stochastic weight averaging (He et al., 2019).

We make very similar observations regarding fine-tuning
with SAM and linear connectivity also on a diagonal linear
network as shown in App. B.3 (Fig. 15). We believe the
observations from Fig. 9 can be explained by our Theorem 1
which shows that for diagonal linear networks, the key quan-
tity determining the magnitude of the implicit bias for SAM
is the integral of the loss over the optimization trajectory
w(s). In the case of ERM→ SAM, the integral is taken only
over the last epochs but this can still be sufficient to improve
the biasing effect. At the same time, for SAM → ERM,
the integral is already large enough due to the first 1000
epochs with SAM and switching back to ERM preserves
the implicit bias. We discuss it in more detail in App. B.3.

5. Understanding the Optimization Aspects of
SAM

The results on the implicit bias of SAM presented above
require that the algorithm converges to zero training error. In
the current literature, however, a convergence analysis (even
to a stationary point) is missing for SAM. In particular,
we do not know what are the conditions on the training
ERM loss, inner step size γt, and perturbation radius ρt so
that SAM is guaranteed to converge. We also do not know
whether SAM converges to a stationary point of the ERM
objective. To fill in this gap, we first theoretically study
convergence of SAM and then relate the theoretical findings
with empirical observations on deep networks.

5.1. Theoretical Analysis of Convergence of SAM

Here we show that SAM leads to convergence guarantees
in terms of the standard training loss. In the following, we
analyze the convergence of the m-SAM algorithm whose
update rule is defined in Eq. (4). We make the following
assumptions on the training loss L(w) = 1

n

∑n
i=1 `i(w):

(A1) (Bounded variance). There exists σ ≥ 0 s.t.
E[‖∇`i(w) − ∇L(w)‖2] ≤ σ2 for all i ∼ U(J1, nK)
and w ∈ Rd.

(A2) (Individual β-smoothness). There exists β ≥ 0 s.t.
‖∇`i(w) − ∇`i(v)‖ ≤ β‖w − v‖ for all w, v ∈ Rd
and i ∈ J1, nK.

(A3) (Polyak-Lojasiewicz). There exists µ > 0 s.t.
1
2‖∇L(w)‖2 ≥ µ(L(w)− L∗) for all w, v ∈ Rd.

Both assumptions (A1) and (A2) are standard in the op-
timization literature and should hold for neural networks
with smooth activations and losses (such as cross-entropy).
The assumption (A2) requires the inputs to be bounded but
this is typically satisfied (e.g., images are all in [0, 1]d).
The assumption (A3) corresponds to easier problems (e.g.,
strongly convex ones) for which global convergence can be
proven. We have the following convergence result:

Theorem 2. Assume (A1) and (A2) for the iterates (4).
Then for any number of iterations T ≥ 0, batch size b,
and step sizes γt = 1√

Tβ
and ρt = 1

T 1/4β
, we have:

1

T
E

[
T−1∑
t=0

‖∇L(wt)‖2
]
≤ 4β√

T
(L(w0)− L∗) +

8σ2

b
√
T
,

In addition, under (A3), with step sizes γt =
min{ 8t+4

3µ(t+1)2 ,
1

2β } and ρt =
√
γt/β:

E [L(wT )]− L∗ ≤
3β2(L(w0)− L∗)

µ2T 2
+

22βσ2

µ2bT
.

We provide the proof in App. C.2 and make several remarks:

• We recover the rates of SGD with the usual condition
on the step size γt (Ghadimi & Lan, 2013; Karimi
et al., 2016).

• The ascent step size ρt, however, has to be O(
√
γt) to

ensure convergence, i.e., it tolerates a slower decrease
than γt. This finding is aligned with the observation
that the ascent step size should not be decreased as
drastically as the descent step size when training neu-
ral networks (see Fig. 21 in App. E.6).

• On the technical side, the proof relies on the
bound 〈∇L(wt + η∇L(wt)),∇L(wt)〉 ≥ (1 −
ηβ)‖∇L(wt)‖2 which shows that SAM-step is well
aligned with the gradient step (see Lemma 16 in
App. C.2).

5.2. Convergence of SAM for Deep Networks

Here we relate the convergence analysis to empirical obser-
vations for deep learning tasks.

Both ERM and SAM converge for deep networks. We
compare the behavior of ERM and SAM by training a
ResNet-18 on CIFAR-10 and CIFAR-100 for 1000 epochs
(see App. D for experimental details) and plot the results
over epochs in Fig. 11. We observe that not only the ERM
model but also the model trained with SAM fits all the
training points and converges to a nearly zero training loss:
0.0013 ± 0.00002 for ERM vs 0.0034 ± 0.0004 for SAM
on CIFAR-10. However, the SAM model has significantly
better generalization performance due to its implicit bias:
4.75% ± 0.14% vs. 3.94% ± 0.09% test error. Moreover,
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Figure 11: Training and test error of ERM, standard SAM, and SAM with a constant step size ρ (i.e., without gradient normalization)
over epochs. We can see that both ERM and SAM converge to zero training error and the gradient normalization is not crucial for SAM.
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Figure 12: Error rates of ERM and SAM over epochs on CIFAR-
10 and CIFAR-100 with 60% label noise. We see that the test error
increases when the models fit the noisy samples.

we observe no noticeable overfitting throughout training:
the best and last model differ by at most 0.1% test error for
both methods. Finally, we note that the behavior of ERM
vs. SAM on CIFAR-100 is qualitatively similar.

Performance of SAM with constant step sizes ρt. Our
convergence proof in Sec. 5.1 for non-convex objectives
relies on constant step sizes ρt. However, the standard SAM
algorithm as introduced in Foret et al. (2021) uses step sizes
ρt inversely proportional to the gradient norm. Thus, one
can wonder if such step sizes are important for achieving
better convergence or generalization. Fig. 11 shows that on
CIFAR-10 and CIFAR-100, both methods converge to zero
training error at a similar speed. Moreover, they achieve
similar improvements in terms of generalization: 3.94%±
0.09% test error for standard SAM vs. 4.15% ± 0.16%
for SAM with constant ρt on CIFAR-10. For CIFAR-100,
the test error matches almost exactly: 19.22%± 0.38% vs.
19.30% ± 0.38%. We also note that the optimal ρ differs
for both formulations: ρt = 0.2/ ‖∇‖2 with normalization
vs. ρt = 0.3 without normalization, so simply removing
the gradient normalization without doing a new grid search
over ρt can lead to suboptimal results.

Is it always beneficial for SAM to converge to zero loss?
Here we consider the setting of uniform label noise, i.e.,
when a fraction of the training labels is changed to random
labels and kept fixed throughout the training. This setting
differs from the standard noiseless case (typical for many
vision datasets such as CIFAR-10) as converging to nearly

zero training loss is harmful for ERM and leads to substan-
tial overfitting. Thus, one could assume that the beneficial
effect of SAM in this setting can come from preventing con-
vergence and avoiding fitting the label noise. We plot test
error and training error on noisy samples for a ResNet-18
trained on CIFAR-10 and CIFAR-100 with 60% label noise
in Fig. 12. We see that SAM noticeably improves general-
ization over ERM, although later in training SAM also starts
to fit the noisy points which is in agreement with the conver-
gence analysis. In App. E.7, we confirm the same findings
for SAM with constant ρt. Thus, SAM also requires early
stopping either explicitly via a validation set or implicitly
via restricting the number of training epochs as done, e.g.,
in Foret et al. (2021). Interestingly, this experiment also sug-
gests that the beneficial effect of SAM is observed not only
close to a minimum but also along the whole optimization
trajectory. Overall, we conclude that SAM can easily overfit
and its convergence in terms of the training loss can be a
negative feature for datasets with noisy labels.

6. Conclusions
We showed why the existing justifications for the success of
m-SAM based on generalization bounds and the idea of con-
vergence to flat minima are incomplete. We hypothesized
that there exists some other quantity which is responsible for
the improved generalization of m-SAM which is implicitly
minimized. We analyzed the implicit bias of 1-SAM and
n-SAM for diagonal linear networks showing that the im-
plicit quantity which is minimized is related to the `1-norm
of the resulting linear predictor, and it is stronger for 1-
SAM than for n-SAM. We further studied the properties of
the implicit bias on non-linear networks empirically where
we showed that fine-tuning an ERM model with SAM can
lead to significant generalization improvements. Finally,
we provided convergence results of SAM for non-convex
objectives when used with stochastic gradient which we
confirmed empirically for deep networks and discussed its
relation to the generalization behavior of SAM.
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Appendix

Organization of the appendix
The appendix is organized as follows:

• Sec. A: implementations in the full-batch setting of 1-SAM and n-SAM.

• Sec. B: proofs related to the implicit bias of 1-SAM and n-SAM.

• Sec. C: proofs related to the convergence of different variants of SAM.

• Sec. D: experimental details for the experiments with deep networks and linear models.

• Sec. E: additional experiments complementary to the experiments in the main part.

A. Implementations of the SAM Algorithm in the Full-Batch Setting
We define here the implementations of the m-SAM algorithm in the full-batch setting for the two extreme values of m we
consider, i.e., m = 1 and m = n. They correspond to the following objectives:

n-SAM: min
w∈R|w|

max
‖δ‖2≤ρ

1

n

n∑
i=1

`i(w + δ), 1-SAM: min
w∈R|w|

1

n

n∑
i=1

max
‖δ‖2≤ρ

`i(w + δ). (7)

The update rule of the SAM algorithm for these objectives amounts to a variant of gradient descent with step size γt where
the gradients are taken at intermediate points wit+1/2, i.e., wt+1 = wt − γt

n

∑n
i=1∇`i(wit+1/2). The updates, however,

differ in how the points wit+1/2 are computed since they approximately maximize different functions with inner step sizes
ρt:

n-SAM: wit+1/2 = wt +
ρt
n

n∑
j=1

∇`j(wt), 1-SAM: wit+1/2 = wt + ρt∇`i(wt). (8)

To make the SAM algorithm practical, Foret et al. (2021) propose to combine SAM with stochastic gradients which
corresponds to the m-SAM algorithm defined in Eq. (4) in the main part.

B. Theoretical Analysis of the Implicit Bias for Diagonal Linear Networks
To understand why m-SAM is generalizing better than ERM, we consider the simpler problem of noiseless regression
with 2-layer diagonal linear network for which we can precisely characterize the implicit bias of different optimization
algorithms.

Optimization algorithms. We consider minimizing the training loss L(w) using the following optimization algorithms:

• Gradient descent with an infinitesimally small step size, i.e., the gradient flow limit:

ẇt = −∇L(wt). (9)

• The n-SAM algorithm from Eq. (8) taken with an infinitesimally small outer step size and inner step size ρ ≥ 0:

ẇt = −∇L(wt + ρ∇L(wt)). (10)

• The 1-SAM algorithm from Eq. (8) taken with an infinitesimally small outer step size and inner step size ρ ≥ 0:

ẇt = − 1

n

n∑
i=1

∇`i(wt + ρ∇`i(wt)). (11)
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Previous work: implicit bias of the gradient flow. We first define the function φα for α ∈ Rd which will be very useful
to precisely characterize the implicit bias of the optimization algorithms we consider:

φα(β) =

d∑
i=1

α2
i q(βi/α

2
i ) where q(z) =

∫ z

0

arcsinh(u/2)du = 2−
√

4 + z2 + z arcsinh(z/2). (12)

Following Woodworth et al. (2020), one can show the following result for the gradient flow dynamics in Eq. (9).

Theorem 3 (Theorem 1 of Woodworth et al. (2020)). If the solution β∞ of the gradient flow (9) started from w+ = w− =
α ∈ Rd>0 for the squared parameter problem in Eq. (5) satisfies Xβ∞ = y, then

β∞ = arg min
β∈Rd

φα(β) s.t. Xβ = y, (13)

where φα is defined in Eq. (12).

It is worth noting that the implicit regularizer φα interpolates between the `1 and `2 norms (see Woodworth et al., 2020,
Theorem 2). Therefore the scale of the initialization determines the implicit bias of the gradient flow. The algorithm, started
from α, converges to the minimum `1-norm interpolator for small α and to the minimum `2-norm interpolator for large
α. The proof follows from (a) the KKT condition for the optimization problem (13): ∇φα(w) = X>ν for a Lagrange
multiplier ν and (b) the closed form solution obtained by integrating the gradient flow, w = b(X>ν) for some function b
and some vector ν. Identifying∇φα(w) = b−1(w) leads to the solution. Considering the same proof technique, we now
derive the implicit bias for the n-SAM and 1-SAM algorithms.

B.1. Implicit Bias of the n-SAM Algorithm.

We start from characterizing the implicit bias of the n-SAM dynamics (10) in the following theorem using the function
φα defined in Eq. (12). We will also make use of this notation: a parameter vector w =

[ w+
w−

]
∈ R2d, a concatenation of

matrices X̃ = [X −X] ∈ Rn×2d and a residual vector r(t) = X̃w(t)2 − y.

Theorem 4. If the solution β∞ of the n-SAM gradient flow (10) started from w+ = w− = α ∈ Rd>0 for the squared
parameter problem in Eq. (5) satisfies Xβ∞ = y, then

β∞ = arg min
β
φαn-SAM(β) s.t. Xβ = y,

where αn-SAM = α� exp
(
− 2ρ
n2

∫∞
0

(X>rs)
2ds+O(ρ2)

)
.

We note that for a small enough ρ, the implicit bias parameter αn-SAM is smaller than α. The scale of the vec-
tor 1

n2

∫∞
0

(X>rs)
2ds which influences the implicit bias effect is related to the loss integral d

n

∫∞
0
L(w(s))ds since

‖rs‖2 = nL(w(s)) (see intuition in Eq. (19)). Thereby the speed of convergence of the loss controls the magnitude of the
biasing effect. However in the case of n-SAM, as explained in Sec. B.3, this effect is typically negligible because of the
extra prefactor d

n and this implementation behaves similarly as ERM as shown in the experiments in Sec. 4.2.

Proof. We follow the proof technique of Woodworth et al. (2020). We denote the intermediate step of n-SAM as wsam(t) =
w(t) +ρ∇L(w(t)) and the residual of wsam(t) as rsam(t) = X̃wsam(t)2− y. We start from deriving the equation satisfied
by the flow

ẇ(t) = −∇L(wsam(t))

= − 1

n
X̃>rsam(t)� wsam(t)

= − 1

n
X̃>rsam(t)�

(
w(t) +

ρ

n

(
X̃>r(t)

)
� w(t)

)
.

Now we can directly integrate this ODE to obtain an expression for w(t):

w(t) = w(0)� exp

(
− 1

n
X̃>

∫ t

0

rsam(s)ds

)
� exp

(
− ρ

n2

∫ t

0

(
X̃>rsam(s)

)
�
(
X̃>r(s)

)
ds

)
.
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Using that the flow is initialized at w(0) = α and the definition of β(t) yields to

β(t) = w+(t)2 − w−(t)2

= α2 � exp

(
− 2

n
X>

∫ t

0

rsam(s)ds

)
� exp

(
−2ρ

n2

∫ t

0

(
X>rsam(s)

)
�
(
X>r(s)

)
ds

)
− α2 � exp

(
2

n
X>

∫ t

0

rsam(s)ds

)
� exp

(
−2ρ

n2

∫ t

0

(
X>rsam(s)

)
�
(
X>r(s)

)
ds

)
= 2α2 � exp

(
−2ρ

n2

∫ t

0

(
X>rsam(s)

)
�
(
X>r(s)

)
ds

)
� sinh

(
− 2

n
X>

∫ t

0

rsam(s)ds

)
.

Recall that we are assuming that β∞ is a global minimum of the loss, i.e., Xβ∞ = y. Thus, β∞ has to simultaneously
satisfy

Xβ∞ = y and β∞ = bαn-SAM(X>ν),

where bα(z) = 2α2 � sinh(z) and ν = − 2
n

∫∞
0
rsam(s)ds, and

αn-SAM = α� exp

(
−2ρ

n2

∫ ∞
0

(X>rsam(s))� (X>r(s))ds

)
. (14)

Next we combine the flow expression b−1
αn-SAM

(β∞) = X>ν with a KKT condition∇φα(w) = X>ν and get that

∇φα(β) = b−1
α (β) = arcsinh

(
1

2α2
� β

)
.

Integration of this equation leads to φα(β) =
∑d
i=1 α

2
i q(βi/α

2
i ) where q(z) =

∫ z
0

arcsinh(u/2)du = 2 −
√

4 + z2 +
z arcsinh(z/2), i.e., exactly the potential function defined in Eq. (12). Thus, we conclude that β∞ satisfies the KKT
conditions Xβ∞ = y and ∇φα(β∞) = X>ν for the minimum norm interpolator problem:

min
β∈Rd

φα(β) s.t. Xβ = y,

which proves the first part of the result.

Now to get the expression for αn-SAM, we apply the definition of rsam(s) and obtain

rsam(t) = X̃wsam(t)2 − y

= X̃
(
w(t) +

ρ

n

(
X̃>r(t)

)
� w(t)

)2

− y

= r(t) +
2ρ

n
X̃
(
X̃>r(t)

)
� w(t) +

ρ2

n2
X̃
(
X̃>r(t)

)2

� w(t)2

= r(t) +
2ρ

n
X
(
X>r(t)

)
� (w+(t) + w−(t)) +

ρ2

n2
X
(
X>r(t)

)2 � (w+(t)2 + w−(t)2).

Thus we conclude that X>rsam(t) = X>r(t) +O(ρ) which we plug in Eq. (14) to obtain the second part of the theorem:

αn-SAM = α� exp

(
−2ρ

n2

∫ ∞
0

(X>rs)
2ds+O(ρ2)

)
.

B.2. Implicit Bias of the 1-SAM Algorithm

We characterize similarly the implicit bias of the 1-SAM dynamics (11) in the following theorem using the function φα
defined in Eq. (12).
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Theorem 5. If the solution β∞ of the 1-SAM gradient flow (11) started from w+ = w− = α ∈ Rd>0 for the squared
parameter problem in Eq. (5) satisfies Xβ∞ = y, then

β∞ = arg min
β
φα1-SAM(β) s.t. Xβ = y,

where α1-SAM = α� exp
(
− 8ρ
n

∫∞
0

∑n
i=1 x

2
i (x
>
i β(s)− yi)2ds+O(ρ2)

)
.

In addition, assume that there exist R,B ≥ 0 such that almost surely (1) the inputs are bounded ‖x‖2 ≤ R and (2) the
trajectory of the flow is bounded ‖β(t)‖2 ≤ B for all t ≥ 0. Then for all ρ ≤ 1

4R2
√
B(B+‖β∗‖2)

, we have that α1-SAM,i ≤ αi
for i ∈ {1, . . . , d}.

Proof. The proof follows the same lines as the proof of Theorem 4. We denote a concatenation of positive and negative
copies of the i-th training example as x̃i = [ xi

−xi ] ∈ R2d, the intermediate step of 1-SAM based on the i-th training
example as w(i)

sam(t) ∈ Rd, the residuals of w(t) and w(i)
sam(t) on the i-th training example as ri(t) = x̃>i w(t)2 − yi and

rsam,i(t) = x̃>i w
(i)
sam(t)2 − yi. Then we have that the dynamics of the flow (11) satisfies

ẇ(t) = − 1

n

n∑
i=1

∇`i(w(i)
sam(t))

= − 1

n

n∑
i=1

rsam,i(t) · x̃i � w(i)
sam(t)

= − 1

n

n∑
i=1

rsam,i(t) · x̃i � w(t)� (1 + 4ρri(t)x̃i) .

Integration of this ODE leads to

w(t) = w(0)� exp

(
− 1

n
X̃>

∫ t

0

rsam(s)ds

)
� exp

(
−4ρ

n

n∑
i=1

x̃2
i

∫ t

0

rsam,i(s)ri(s)ds

)
.

The rest of the proof is similar to the one of Theorem 4 and we directly obtain that

α1-SAM = α� exp

(
−8ρ

n

n∑
i=1

x̃2
i

∫ t

0

rsam,i(s)ri(s)ds

)
. (15)

Using the definition of rsam,i(t) we have

rsam,i(t) = x̃>i wsam(t)2 − yi
= x̃>i w(t)2 � (1 + 4ρri(t)x̃i)

2 − yi
= x̃>i w(t)2 �

(
1 + 8ρri(t)x̃i + 16ρ2ri(t)

2x̃2
i

)
− yi

= ri(t) + 8ρri(t)
(
w+(t)2 + w−(t)2

)>
x2
i + 16ρ2ri(t)

2
(
w+(t)2 − w−(t)2

)>
x3
i

= ri(t) + 8ρri(t)
(
w+(t)2 + w−(t)2

)>
x2
i + 16ρ2ri(t)

2β(t)>x3
i

And therefore

x2
i rsam,i(t)ri(t) = ri(t)

2x2
i �

(
1 + 8ρ

(
w+(t)2 + w−(t)2

)>
x2
i + 16ρ2ri(t)β(t)>x3

i

)
(16)

This leads to the result stated in the theorem

α1-SAM = α� exp

(
−8ρ

n

∫ ∞
0

n∑
i=1

x2
i (x
>
i β(s)− yi)2ds+O(ρ2)

)
. (17)
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Additionally, from Eq. (16) we can conclude that having ρ such that 1 + 16ρ2ri(t)β(t)>x3
i ≥ 0 is sufficient to guarantee

that α1-SAM,i ≤ αi for every i. We can use Cauchy-Schwarz inequality twice to upper bound |ri(t)β(t)>x3
i |:

|ri(t)β(t)>x3
i | = |x>i (β − β∗)β(t)>x3

i | ≤ ‖xi‖2‖β(t)− β∗‖2‖β(t)‖2‖x3
i ‖2

≤ ‖xi‖42(‖β(t)‖2 + ‖β∗‖2)‖β(t)‖2 ≤ R4(B + ‖β∗‖2)B

Thus, we have that ρ2ri(t)β(t)>x3
i ≥ −ρ2R4(B + ‖β∗‖2)B ≥ − 1

16 which leads to the upper bound stated in the theorem
ρ ≤ 1

4R2
√
B(B+‖β∗‖2)

.

B.3. Comparison between 1-SAM and n-SAM

Theoretical comparison. We wish to compare the two leading terms of the exponents in αn-SAM and α1-SAM:

In-SAM(t) =
1

n2

(
X>r(t)

)2
=

1

n2

(
n∑
i=1

xiri(t)

)2

and I1-SAM(t) =
1

n

n∑
i=1

x2
i ri(t)

2,

and relate them to the loss values at w(t).

We first note that using Cauchy-Schwarz inequality can directly imply that I1-SAM,i(t) ≥ In-SAM,i(t). However, we aim at
obtaining a more quantitative result, even though the following derivations will be informal. Comparing the `1-norms of
In-SAM(t) and I1-SAM(t) amounts to compare the following two quantities:

‖In-SAM(t)‖1 = (w(t)− w∗)>
[

1

n

n∑
i=1

xix
>
i

]2

(w(t)− w∗),

‖I1-SAM(t)‖1 = (w(t)− w∗)>
[

1

n

n∑
i=1

‖xi‖22xix>i

]
(w(t)− w∗).

We can compare the typical operator norms of the random matrices that define the two quadratic forms. If we assume
that xi ∼ N (0, Id), then following the Bai-Yin’s law, the operator norm of a Wishart matrix is with high probability
‖ 1
n

∑n
i=1 xix

>
i ‖op ≈ d

n and that with high probability, the squared norm of a Gaussian vector is ‖xi‖22 ≈ d. Therefore we
obtain that ∥∥∥∥∥∥

[
1

n

n∑
i=1

xix
>
i

]2
∥∥∥∥∥∥
op

=

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i

∥∥∥∥∥
2

op

≈ d2

n2
,

∥∥∥∥∥ 1

n

n∑
i=1

‖xi‖2xix>i

∥∥∥∥∥
op

≈ d
∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i

∥∥∥∥∥
op

≈ d2

n
.

Therefore in the overparametrized regime (d >> n), we typically have that ‖I1-SAM(t)‖1
‖In-SAM(t)‖1

≈ n and the biasing effect of 1-SAM
would tend to be O(n) times better compared to n-SAM.

However, this first insight only enables to compare In-SAM(t) and I1-SAM(t). It is not informative on the intrinsic biasing
effect of n-SAM and 1-SAM. With this aim, we would like to relate the quantities In-SAM(t) and I1-SAM(t) to the loss
function evaluated in w(t). Using the concentration of Wishart matrices, i.e., 1

d [XX>] ≈ I for large dimension d, we have
with high probability

‖In-SAM(t)‖1 =
1

n2
(w(t)− w∗)>X>XX>X(w(t)− w∗)

=
d

n2
(w(t)− w∗)>X>

1

d
[XX>]X(w(t)− w∗)

≈ d

n
(w(t)− w∗)>

1

n
[X>X](w(t)− w∗)

=
d

n
L(w(t)). (18)
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Figure 13: Implicit bias of SAM on a sparse regression problem using a diagonal linear network with d = 30, n = 20, xi ∼ N (0, I),
κ = ‖β∗‖0 = 3, yi = x>i β∗. All methods are initialized at α = 0.01 and used with step size γ = 1/d and ρ = 1/d. We can see
that 1-SAM (SumMax) SGD converges to a solution which generalizes better (left plot) and enjoys a different implicit bias from the
other methods. At the same time, all algorithms converge to a global minimum of f at linear rate (right plot). The convergence speed is
inversely proportional to the biasing effect.
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Figure 14: A grid search over ρ for full-batch n-SAM vs. 1-SAM (α = 0.05, γ = 15/d for all methods). We can see that even with the
optimal ρ, n-SAM generalizes much worse than 1-SAM which is coherent with our deep learning experiments in Fig. 1.

And using the concentration of Gaussian vectors, we also have that

‖I1-SAM(t)‖1 = (w(t)− w∗)>
1

n

n∑
i=1

‖xi‖2xix>i (w(t)− w∗)

≈ d(w(t)− w∗)>
1

n

n∑
i=1

xix
>
i (w(t)− w∗)

= dL(w(t)). (19)

These approximations provide some intuition on why the biasing effect of 1-SAM and n-SAM can be related to the integral
of the loss and that typically the difference is on the order of n. We let a formal derivation of these results as future work.

Experiments with stochastic ERM, n-SAM, 1-SAM. We provide an additional experiment to investigate the performance
of stochastic implementations of the ERM, n-SAM and 1-SAM. As explained by Pesme et al. (2021), we observe in Fig. 13
that the stochastic implementations enjoy a better implicit bias than their deterministic counterparts. We note that the fact
that small batch versions generalize better than full batch version is commonly observed in practice for deep networks Keskar
et al. (2016). We let the characterization of the implicit bias of these stochastic implementations as future works.

Grid search over ρ for n-SAM vs. 1-SAM. We note that for Fig. 6 and Fig. 13, we used a fixed ρ which was the same for
both n-SAM and 1-SAM. Tuning ρ for each method separately can help to achieve a better test loss for both methods as
shown in Fig. 14. We can see that 1-SAM still significantly outperforms ERM and n-SAM for the optimally chosen radius ρ
and that n-SAM leads only to marginal improvements.

Connection to the ERM→ SAM and SAM→ ERM experiment. Here we provide further details on the connection
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Figure 15: Test loss (a) and training loss (b) for full-batch ERM compared to ERM→ 1-SAM and 1-SAM→ ERM on a diagonal linear
network where we switch between the methods after 10k iterations. We can see that 1-SAM can quickly escape the worse-generalizing
minimum found by ERM. Moreover, in (c) we show loss interpolations between ERM→ 1-SAM and ERM that show that they are
linearly connected and situated in the same basin.

between Theorem 1 and the empirical results in Fig. 9. First of all, we show in Fig. 15 that the same observations as we
observed for deep networks also hold on a diagonal linear network. In this experiment, we used the initialization scale
α = 0.05, ρ1-SAM = 0.175, and ρGD→1-SAM = 10.0. We note that we had to take ρGD→1-SAM significantly larger than ρ1-SAM
since after running GD, we are already near a global minimum where the gradients (which are also used for the ascent step
of SAM) are very small so we need to increase the inner step size ρGD→1-SAM to observe a difference. In addition, a loss
interpolation between wGD→1-SAM and wGD reveals linear connectivity between the two found minima suggesting that both
minima are situated in the same asymmetric basin, similarly to what we observed for deep networks in Fig. 10.

First we note that Theorem 1 can be trivially adapted to the case where SAM is used with varying inner step size ρt, and would
therefore show that for diagonal linear networks, the key quantity determining the magnitude of the implicit bias for SAM is
the integral of the step size ρs times the loss over the optimization trajectory w(s), i.e., ‖∆1-SAM-ρs‖1 ≈ d

∫∞
0
ρsL(w(s))ds

which leads to a smaller value in the exponent α1-SAM-ρs = αe−ρ∆1-SAM-ρs+O(ρ2), thus decreasing the effective α and biasing
the flow to a sparser solution.

In the case of ERM→ 1-SAM, it amounts to consider a step size ρs = 0 if s < t and ρs = ρ after the switch. Therefore the
integral is taken only over the last epochs, and ‖∆1-SAM-t-∞‖1 ≈ d

∫∞
t
L(w(s))ds where the integral starts at the time step t.

The resulting ‖∆1-SAM-t-∞‖1 is smaller than ‖∆1-SAM‖1 but it can still be sufficient (especially, when using a higher ρ as we
do for Fig. 15) to improve the biasing effect so that it leads to noticeable improvements in generalization.

At the same time, for 1-SAM→ ERM, which amounts to consider a step size ρs = ρ if s < t and ρs = 0 after the switch, the
integral is already large enough due to the first 1000 epochs with SAM, leading to a term ‖∆1-SAM-0-t‖1 ≈ d

∫ t
0
L(w(s))ds

and switching back to ERM preserves the implicit bias due to a low enough effective α. This explains why switching back
to ERM does not negatively affect generalization of the model.

C. Convergence of the SAM Algorithm
In this section we provide proofs of convergence for SAM. We consider first the full-batch SAM algorithm and then its
stochastic version.

C.1. Convergence of Full-Batch n-SAM

We first consider the full-batch version of SAM, i.e., the following update rule:

wt+1 = wt − γ∇L (wt + ρ∇L(wt)) . (20)

We note that this update rule is reminiscent of the extra-gradient algorithm (Korpelevich, 1977) but with an ascent in the
inner step instead of a descent. Moreover, this update rule can also be seen as a realization of the general extrapolated
gradient descent framework suggested in Lin et al. (2020). However, taking an ascent step for extrapolation is not discussed
there, and the convergence properties of the update rule from Eq. (20), to the best of our knowledge, have not been proven.

Summary of the convergence results. Let us first recall the definition of β-smoothness which we will use in our proofs.
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(A2’) (β-smoothness). There exists β>0 such that ‖∇L(w)−∇L(v)‖ ≤ β‖w − v‖ for all w, v ∈ Rd.

When the function L is β-smooth, convergence to stationary points can be obtained.

Theorem 6. Assume (A2’). For any γ < 1/β and ρ < 1/β, the iterates (20) satisfy for all T ≥ 0:

1

T

T−1∑
t=0

‖∇L(wt)‖2 ≤
2

γ(1− ρβ)T
(L(w0)− L∗),

If, in addition, the function L satisfies (A3), then:

L(wT )− L∗ ≤
(

1− γ(1− ρβ)µ

2

)T
(L(w0)− L∗).

We can make the following remarks:

• We recover the rates of gradient descent but with constants increasing with the ascent step size ρ.

• The condition ρ < 1/β is necessary since the point w + 1/β∇L(w) can be a local maximum of L. Such w would be
a fixed point of the algorithm without being a stationary point of L.

• The proof crucially relies on the bound 〈∇L(wt + ρ∇L(wt)),∇L(wt)〉 ≥ (1− ρβ)‖∇L(wt)‖2 which shows that
the SAM step is well-aligned with the gradient step (see Lemma 7) and on a descent inequality similar to the classical
one for gradient descent (see Lemma 8).

• For non-convex functions, full details are provided in Theorem 9. When the function satisfies in addition Polyak-
Lojasiewicz inequality, a stronger result holds which is stated in Theorem 10.

• For convex functions, 〈∇L(wt + ρ∇L(wt)),∇L(wt)〉 ≥ ‖∇L(wt)‖2 and convergence holds for any step size ρ
given that γρ is small enough. Details are provided in Theorem 11.

Auxiliary Lemmas. The following lemma shows that the SAM update is well correlated with the gradient ∇L(w) and will
be a cornerstone to our proof.

Lemma 7. Let L be a differentiable function and w ∈ Rd. We have the following bound for any ρ ≥ 0:

〈∇L(w + ρ∇L(w)),∇L(w)〉 ≥ (1 + αρ)‖∇L(w)‖2 where α =


−β if L is β-smooth,
0 if L is convex
µ if L is µ-strongly convex.

Proof. We simply add and subtract a term ‖∇L(w)‖2 in order to make use of classical inequalities bounding 〈∇L(w1)−
∇L(w2), w1 − w2〉 by ‖w1 − w2‖2 for smooth or convex functions and w1, w2 ∈ Rd.

〈∇L(w + ρ∇L(w)),∇L(w)〉 = 〈∇L(w + ρ∇L(w))−∇L(w),∇L(w)〉) + ‖∇L(w)‖2

= 1/ρ〈∇L(w + ρ∇L(w))−∇L(w), ρ∇L(w)〉+ ‖∇L(w)‖2

≥ (1 + αρ)‖∇L(w)‖2,

where the last inequality is using that

〈∇L(w1)−∇L(w2), w1 − w2〉 ≥ α‖w2 − w1‖2, where α =


−β if L is β-smooth,
0 if L is convex
µ if L is µ-strongly convex.

The next lemma shows that the decrease of function values of the SAM algorithm defined in Eq. (20) can be controlled
similarly as in the case of gradient descent (Nesterov, 2004).
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Lemma 8. Assume (A2’). For any γ ≤ 1/β, the iterates (20) satisfy for all t ≥ 0:

L(wt+1) ≤ L(wt)− γ(1− ρβ)
(

1− γβ

2
(1− ρβ)

)
‖∇L(wt)‖2.

If, in addition, the function L satisfies (A3) with potentially µ = 0, then for all γ, ρ ≥ 0 such that γβ(2− ρβ) ≤ 2, we have

L(wt+1) ≤ L(wt)− γ
(

1− γβ

2
+ ρµ

(
1− γβ − γρβ2

2

))
‖∇L(wt)‖2.

We note that the constraints on the step size are different depending on the assumptions on the function L. In the non-convex
case, ρ has to be smaller than 1/β, whereas in the convex case, it has to be smaller than 2/β.

Proof. Let us define bywt+1/2 = wt+ρ∇L(wt) the SAM ascent step. Using the smoothness of the function L (Assumption
(A2’)), we obtain

L(wt+1) ≤ L(wt)− γ〈∇L(wt+1/2),∇L(wt)〉+
γ2β

2
‖∇L(wt+1/2)‖2.

The main trick is to use the binomial squares

‖∇L(wt+1/2)‖2 = −‖∇L(wt)‖2 + ‖∇L(wt+1/2)−∇L(wt)‖2 + 2〈∇L(wt+1/2),∇L(wt)〉,

to bound

L(wt+1) ≤ L(wt)− γ〈∇L(wt+1/2),∇L(wt)〉+
γ2β

2
‖∇L(wt+1/2)‖2

= L(wt)−
γ2β

2
‖∇L(wt)‖2 +

γ2β

2
‖∇L(wt+1/2)−∇L(wt)‖2 − γ(1− γβ)〈∇L(wt+1/2),∇L(wt)〉

≤ L(wt)− γ[1− ρβ − γβ

2
(1− ρβ)2]‖∇L(wt)‖2,

where we have used Lemma 7 and that ‖∇L(wt+1/2)−∇L(wt)‖2 ≤ β2‖wt+1/2 − wt‖2 ≤ β2ρ2‖∇L(wt)‖2.

If, in addition, the function L is convex then we can use its co-coercivity (Nesterov, 2004) to bound ‖∇L(wt+1/2) −
∇L(wt)‖2 ≤ β〈∇L(wt+1/2)−∇L(wt), wt+1/2 − wt〉 and obtain a tighter bound:

L(wt+1) ≤ L(wt)− γ〈∇L(wt+1/2),∇L(wt)〉+
γ2β

2
‖∇L(wt+1/2)‖2

= L(wt)−
γ2β

2
‖∇L(wt)‖2 +

γ2β

2
‖∇L(wt+1/2)−∇L(wt)‖2 − γ(1− γβ)〈∇L(wt+1/2),∇L(wt)〉

≤ L(wt)− γ(1− γβ

2
)‖∇L(wt)‖2 − γ(1− γβ − γρβ2

2
)〈∇L(wt+1/2)−∇L(wt),∇L(wt)〉

≤ L(wt)− γ(1− γβ

2
+ ρµ(1− γβ − γρβ2

2
))‖∇L(wt)‖2,

where we have used Lemma 7.

Convergence proofs. Using the previous Lemma 8 recursively, we can bound the average gradient value of the iterates (20)
of SAM algorithm and ensure convergence to stationary points.

Theorem 9. Assume (A2’). For any γ < 1/β and ρ < 1/β, the iterates (20) satisfies for all T ≥ 0:

1

T

T∑
t=0

‖∇L(wt)‖2 ≤
L(w0)− L(wT )

Tγ(1− ρβ)[1− γβ
2 (1− ρβ)]

.
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Proof. Using the Lemma 8 we obtain

γ(1− ρβ)
(

1− γβ

2
(1− ρβ)

)
‖∇L(wt)‖2 ≤ L(wt)− L(wt+1).

And summing these inequalities for t = 0, . . . , T − 1 yields

1

T

T−1∑
t=0

‖∇L(wt)‖2 ≤
L(w0)− L(wT )

Tγ(1− ρβ)[1− γβ
2 (1− ρβ)]

.

When the function L additionally satisfies a Polyak-Lojasiewicz condition (A3), linear convergence of the function value to
the minimum function value can be obtained. This is the object of the following theorem:

Theorem 10. Assume (A2’) and (A3). For any γ < 1/β and ρ < 1/β, the iterates (20) satisfies for all T ≥ 0:

L(wt)− L∗ ≤
(

1− 2γµ(1− ρβ)
(

1− γβ

2
(1− ρβ)

))t
(L(w0)− L∗).

Proof. Using the Lemma 8 and that the function L is µ Polyak-Lojasiewicz (Assumption (A3)) we obtain

L(wt+1) ≤ L(wt)− 2µγ(1− ρL)
(

1− γβ

2
(1− ρL)

)
(L(wt)− L∗).

And subtracting the optimal value L∗ we get

L(wt)− L∗ ≤
(

1− 2γµ(1− ρβ)
(

1− γβ

2
(1− ρβ)

))
(L(wt−1)− L∗)

≤
(

1− 2γµ(1− ρβ)
(

1− γβ

2
(1− ρβ)

))t
(L(w0)− L∗).

When the function L is convex, convergence of the average of the iterates can be proved.

Theorem 11. Assume (A2’) and L convex. For any step sizes γ and ρ such that γβ(1 + ρβ) < 2, then the averaged
w̄T = 1

T

∑T−1
t=0 wt of the iterates (20) satisfies for all T ≥ 0:

L(w̄T )− L∗ ≤
2ρβ + 1

γ(2− γβ(1 + ρβ))T
‖w0 − w∗‖2,

If, in addition, the function L is µ-strongly convex, then:

‖wT − w∗‖2 ≤
(
1− γµ(2− γβ(1 + ρβ))

)T
(2ρ+ 1)‖w0 − w∗‖2.

The proof is using a different astute Lyapunov function which works for the non-strongly convex case.

Proof. Let us define by Vt = [L(wt)− L(w∗)] + 1
2ρ‖wt − w∗‖2 and by wt+1/2 = wt + ρ∇L(wt) the SAM ascent step.

Vt+1 − Vt ≤ −
γ

ρ
〈∇L(wt+1/2), wt − w∗〉 − γ〈∇L(wt+1/2),∇L(wt)〉+

γ2

2ρ
(1 + ρβ)‖∇L(wt+1/2)‖2

= −γ
ρ
〈∇L(wt+1/2), wt + ρ∇L(wt)− w∗〉+

γ2

2ρ
(1 + ρβ)‖∇L(wt+1/2)‖2

= −γ
ρ
〈∇L(wt+1/2), wt+1/2 − w∗〉+

γ2

2ρ
(1 + ρβ)‖∇L(wt+1/2)‖2

≤ −γ
ρ

(1− γβ

2
(1 + ρβ))〈∇L(wt+1/2), wt+1/2 − w∗〉.
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If L is convex then L(wt+1/2)− L(w∗) ≤ 〈∇L(wt+1/2), wt+1/2 − w∗〉 and therefore we obtain

γ

ρ

(
1− γβ

2
(1 + ρβ)

)(
L(wt+1/2)− L(w∗)

)
≤ Vt − Vt+1.

Using the definition of wt+1/2 we always have that L(wt+1/2) ≥ L(wt) + ρ‖∇L(wt)‖2 therefore

γ

ρ

(
1− γβ

2
(1 + ρβ)

)
(L(wt)− L(w∗)) ≤ Vt − Vt+1.

And taking the sum and using Jensen inequality we finally obtain:

L(
1

T

T∑
t=0

wt)− L(w∗) ≤
V0 − VT+1

T γ
ρ (1− γβ

2 (1 + ρβ))
.

If L is µ-strongly convex, we use that 〈∇L(wt+1/2), wt+1/2 − w∗〉 ≥ µ‖wt+1/2 − w∗‖2 to obtain

‖wt+1/2 − w∗‖2 = ‖wt + ρ∇L(wt)− w∗‖2 = ‖wt − w∗‖2 + 2ρ〈∇L(wt), wt − w∗〉+ ρ2‖∇L(wt)‖2

≥ ‖wt − w∗‖2 + 2ρ〈∇L(wt), wt − w∗〉
≥ ‖wt − w∗‖2 + 2ρ[L(wt)− L(w∗)]

≥ 2ρVt.

Therefore we have

Vt+1 ≤ (1− γµ(2− γβ(1 + ρβ)))Vt ≤ (1− γµ(2− γβ(1 + ρβ)))
t+1

V0.

C.2. Convergence of Stochastic SAM

C.2.1. CONVERGENCE OF n-SAM

When the SAM algorithm is implemented with the n-SAM objective as optimization objective, two different batches are
used in the ascent and descent steps. We obtain the n-SAM algorithm defined as

wt+1 = wt −
γt
b

∑
i∈It

∇`i
(
wt +

ρt
b

∑
i∈Jt

∇`i(wt)
)
, (21)

where It and Jt are two different mini-batches of data of size b. For this variant of the SAM algorithm, we obtain the
following convergence result.
Theorem 12. Assume (A1), (A2’) for the iterates (21). For any T ≥ 0 and for step sizes γt = 1√

Tβ
and ρt = 1

T 1/4β
, we

have:

1

T
E

[
T−1∑
t=0

‖∇L(wt)‖2
]
≤ 4

β
√
T

(L(w0)− L∗) +
8σ2

b
√
T
,

In addition, under (A2), with step sizes γt = min{ 8t+4
3µ(t+1)2 ,

1
2β } and ρt =

√
γt/β:

E [L(wT )]− L∗ ≤
3β2(L(w0)− L∗)

µ2T 2
+

22βσ2

bµ2T

We obtain the same convergence result as in Theorem 2, but under the relaxed smoothness assumption (A2’).

As in the deterministic case, the proof relies on two lemmas which shows that the SAM update is well correlated with the
gradient and that the decrease of function values can be controlled.

Auxiliary lemmas. The following lemma shows that the SAM update is well correlated with the gradient∇L(wt). Let us
denote by∇Lt+1(w) = 1

b

∑
i∈It ∇`i(w),∇Lt+1/2(w) = 1

b

∑
i∈Jt ∇`i(w), and wt+1/2 = wt + ρ∇Lt+1/2(wt) the SAM

ascent step.
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Lemma 13. Assume (A1) and (A2). Then for all ρ ≥ 0, t ≥ 0 and w ∈ Rd,

E〈∇Lt+1(w + ρ∇Lt+1/2(w)),∇L(w)〉 ≥ (1/2− βρ)‖∇L(w)‖2 − β2ρ2σ2

2
.

The proof is similar to the proof of Lemma 7. Only the stochasticity of the noisy gradients has to be taken into account. For
this goal, we consider instead the update which would have been obtained without noise, and bound the remainder using the
bounded variance assumption (A1).

Proof. Let us denote by ŵ = w + ρ∇L(w), the true gradient step. We first add and subtract∇Lt+1/2(ŵ)

〈∇Lt+1(w + ρ∇Lt+1/2(w)),∇L(w)〉 = 〈∇Lt+1(w + ρ∇Lt+1/2(w))−∇Lt+1(ŵ),∇L(w)〉 − 〈∇Lt+1(ŵ),∇L(w)〉.

We bound the two terms separately. We use the smoothness of L (Assumption (A2’)) to bound the first term:

−E〈∇Lt+1(w + ρ∇Lt+1/2(w))−∇Lt+1(ŵ),∇L(w)〉 = −E〈∇L(w + ρ∇Lt+1/2(w))−∇L(ŵ),∇L(w)〉

≤ 1

2
E ‖∇L(w + ρ∇Lt+1/2(w))−∇L(ŵ)‖2 +

1

2
‖∇L(w)‖2

≤ β2

2
E ‖w + ρ∇Lt+1/2(w)− ŵ‖2 +

1

2
‖∇L(w)‖2

≤ β2ρ2

2
E ‖∇Lt+1/2(w)−∇L(w)‖2 +

1

2
‖∇L(wt)‖2

≤ β2ρ2σ2

2b
+

1

2
‖∇L(w)‖2,

where we have used that the variance of a mini-batch of size b is bounded by σ2/b. Note that this term can be equivalently
bounded by βρσ/

√
b‖∇L(w)‖ if needed. For the second term, we directly apply Lemma 7 to obtain

E〈∇Lt+1(ŵ),∇L(w)〉 = E〈∇L(ŵ),∇L(w)〉 ≥ (1− βρ)‖∇L(w)‖2.

The next lemma shows that the decrease of function values of stochastic n-SAM can be controlled similarly as for standard
stochastic gradient descent.

Lemma 14. Let us assume (A1, A2’) then for all γ ≤ 1
2β and ρ ≤ 1

2β , the iterates (21) satisfies

EL(wt+1) ≤ EL(wt)−
γ

4
E ‖∇L(wt)‖2 + γβσ2(γ + ρ2β).

This lemma is analogous to Lemma 8 in the stochastic case. The proof is very similar, with the slight difference that
Lemma 13 is used instead of Lemma 7.

Proof. Let us define by wt+1/2 = wt + ρ∇Lt+1/2(wt). Using the smoothness of the function L (A2), we obtain

L(wt+1) ≤ L(wt)− γ〈∇Lt+1(wt+1/2),∇L(wt)〉+
γ2β

2
‖∇Lt+1(wt+1/2)‖2.

Taking the expectation and using that the variance is bounded (A1) yields to

EL(wt+1) ≤ EL(wt)− γ E〈∇L(wt+1/2),∇L(wt)〉+
γ2β

2
E ‖∇Lt+1(wt+1/2)‖2

≤ EL(wt)− γ E〈∇L(wt+1/2),∇L(wt)〉+ γ2β E ‖∇Lt+1(wt+1/2)−∇L(wt+1/2)‖2 + γ2β E ‖∇L(wt+1/2)‖2

≤ EL(wt)− γ E〈∇L(wt+1/2),∇L(wt)〉+ γ2β
σ2

b
+ γ2β E ‖∇L(wt+1/2)‖2.
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The main trick is still to use the binomial squares

‖∇L(wt+1/2)‖2 = −‖∇L(wt)‖2 + ‖∇L(wt+1/2)−∇L(wt)‖2 + 2〈∇L(wt+1/2),∇L(wt)〉

to bound

EL(wt+1) ≤ EL(wt)− γ E〈∇L(wt+1/2),∇L(wt)〉+
γ2β

2
E ‖∇L(wt+1/2)‖2 + γ2σ2β/b

= EL(wt)− γ2LE ‖∇L(wt)‖2 + γ2β E ‖∇L(wt+1/2)−∇L(wt)‖2

− γ(1− 2γβ)E〈∇L(wt+1/2),∇L(wt)〉+ γ2σ2β/b

= EL(wt)− γ2β E ‖∇L(wt)‖2 + γ2L3 E ‖wt+1/2 − wt‖2

− γ(1− 2γβ)(1/2 + αρ)E ‖∇L(wt)‖2 + γ(1− 2γL)σ2ρ2β2/2 + γ2σ2β/b

= EL(wt)− γ2β E ‖∇L(wt)‖2 + γ2β3ρ2 E ‖∇Lt+1/2(wt)‖2

− γ(1− 2γβ)(1/2 + αρ)E ‖∇L(wt)‖2 + γ(1− 2γβ)σ2/bρ2β2/2 + γ2σ2β/b

= EL(wt)− γ2β E ‖∇L(wt)‖2 + 2γ2β3ρ2 E ‖∇L(wt)‖2 + 2γ2β3ρ2σ2/b

− γ(1− 2γβ)(1/2 + αρ)E ‖∇L(wt)‖2 + γ(1− 2γβ)σ2ρ2β2/2 + γ2σ2β/b

≤ L(wt)−
γ

2
[1− 2ρβ(1− 2γβ(1− ρβ))]E ‖∇L(wt)‖2 + γσ2β/b[γ + ρ2L/2(1 + 2γβ)]

where we have used Lemma 13 and that ‖∇L(wt+1/2)−∇L(wt)‖2 ≤ β2‖wt+1/2 − wt‖2.

Using Lemma 14 we directly obtain the following convergence result.

Theorem 15. Assume (A1) and (A2’). For γ ≤ 1/(2β) and ρ ≤ 1/(2β), the iterates (4) satisfies:

1

T

T−1∑
t=0

E ‖∇L(wt)‖2 ≤ 4
L(w0)− EL(wT )

Tγ
+ 4Tσ2β(γ + ρ2β)/b.

This theorem gives the first part of Theorem 12. The proof of the stronger result obtained when the function is in addition
PL (Assumption (A3)) is similar to the proof of Theorem 3.2 of Gower et al. (2019), only the constants are changing.

C.2.2. CONVERGENCE OF m-SAM

In the m-SAM algorithm, the same batch is used in the ascent and descent steps unlike in the n-SAM algorithm analyzed
above. We obtain then iterates (4) for which we have stated the convergence result in Theorem 2 in the main part. The proof
follows the same lines as above with the minor difference that we are assuming the individual gradients ∇ft are Lipschitz
(Assumption (A2)) to control the alignment of the expected SAM direction. Let us denote by ∇Lt(w) = 1

b

∑
i∈Jt ∇`i(w).

Lemma 16. Assume (A1-2). Then we have for all w ∈ Rd, ρ ≥ 0 and t ≥ 0

E〈∇Lt(w + ρ∇Lt(w)),∇L(w)〉 ≥ (1/2− ρβ)‖∇L(w)‖2 − β2ρ2σ2

2b
.

The proof is very similar to the proof of Lemma 13. The only difference is that the Assumption (A2) is used instead of
(A2’).

Proof. Let us denote by ŵ = w + ρ∇L(w), the true gradient step. We first add and subtract∇Lt(ŵ)

〈∇Lt(w + ρ∇Lt(w)),∇L(w)〉 = 〈∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ),∇L(w)〉 − 〈∇Lt(ŵ),∇L(w)〉.
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We bound the two terms separately. We use the smoothness of Lt to bound the first term (Assumption (A2)):

−〈∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ),∇L(w)〉 ≤ 1

2
‖∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ)‖2 +

1

2
‖∇L(w)‖2

≤ β2

2
E ‖w + ρ∇Lt(w)− ŵ‖2 +

1

2
‖∇L(w)‖2

≤ β2ρ2

2
‖∇Lt(w)−∇L(w)‖2 +

1

2
‖∇L(w)‖2.

And taking the expectation, we obtain:

−E〈∇Lt(w + ρ∇Lt(w))−∇Lt(ŵ),∇L(w)〉 ≤ β2ρ2σ2

2b
+

1

2
E ‖∇L(w)‖2.

For the second term, we apply directly Lemma 7

E〈∇Lt(ŵ),∇L(wt)〉 = 〈∇L(ŵ),∇L(w)〉 ≥ (1− βρ)‖∇L(w)‖2.

Assembling the two inequalities yields the result.

The next lemma shows that the decrease of function values of the m-SAM algorithm can be controlled similarly as in the
case of gradient descent. It is analogous to Lemma 14 where different batches are used in both the ascent and descent steps
of SAM algorithm.

Lemma 17. Assume (A1-2). For all γ ≤ 1
β and ρ ≤ 1

4β , the iterates (4) satisfy

EL(wt+1) ≤ EL(wt)−
3γ

8
E ‖∇L(wt)‖2 + γβ

σ2

b
(γ + 2ρ2β).

Proof. Let us define by wt+1/2 = wt + ρ∇Lt+1(wt). Using the smoothness of the function L which is implied by (A2),
we obtain

L(wt+1) ≤ L(wt)− γ〈∇Lt+1(wt+1/2),∇L(wt)〉+
γ2β

2
‖∇Lt+1(wt+1/2)‖2.

We still use the binomial squares

‖∇Lt+1(wt+1/2)‖2 = −‖∇L(wt)‖2 + ‖∇Lt+1(wt+1/2)−∇L(wt)‖2 + 2〈∇Lt+1(wt+1/2),∇L(wt)〉

and bound L(wt+1) by

L(wt+1) ≤ L(wt)−
γ2β

2
‖∇L(wt)‖2 +

γ2β

2
‖∇Lt+1(wt+1/2)−∇L(wt)‖2 − γ(1− γβ)〈∇Lt+1(wt+1/2),∇L(wt)〉

≤ L(wt)−
γ2β

2
‖∇L(wt)‖2 + γ2β‖∇Lt+1(wt+1/2)−∇Lt+1(wt)‖2 + γ2β‖∇Lt+1(wt)−∇L(wt)‖2

− γ(1− γβ)〈∇Lt+1(wt+1/2),∇L(wt)〉

≤ L(wt)−
γ2β

2
‖∇L(wt)‖2 + γ2ββ2‖wt+1/2 − wt‖2 + γ2β‖∇Lt+1(wt)−∇L(wt)‖2

− γ(1− γβ)〈∇Lt+1(wt+1/2),∇L(wt)〉

= L(wt)−
γ2β

2
‖∇L(wt)‖2 + γ2β3ρ2‖∇Lt+1(wt)‖2 + γ2β‖∇Lt+1(wt)−∇L(wt)‖2

− γ(1− γβ)〈∇Lt+1(wt+1/2),∇L(wt)〉

= L(wt)−
γ2β

2
(1− 4β2ρ2)‖∇L(wt)‖2 + γ2β(1 + 2β2ρ2)‖∇Lt+1(wt)−∇L(wt)‖2

− γ(1− γβ)〈∇Lt+1(wt+1/2),∇L(wt)〉
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Taking the expectation and using Lemma 16, we obtain

EL(wt+1) ≤ EL(wt)−
γ2β

2
(1− 4β2ρ2)E ‖∇L(wt)‖2 + γ2β(1 + 2β2ρ2)E ‖∇Lt+1(wt)−∇L(wt)‖2

− γ(1− γβ)E〈∇Lt+1(wt+1/2),∇L(wt)〉

≤ EL(wt)−
γ2β

2
(1− 4β2ρ2)E ‖∇L(wt)‖2 + γ2β(1 + 2β2ρ2)σ2/b

− γ(1− γβ)(1/2− βρ)E ‖∇L(wt)‖2 + γ(1− γβ)
ρ2σ2β2

2b

≤ EL(wt)−
γ2β

2
(1− 4β2ρ2)E ‖∇L(wt)‖2 + γ2β(1 + 2β2ρ2)σ2/b

− γ

2
(1− 2βρ(1− γ(β − 2ρβ2)))E ‖∇L(wt)‖2 + γσ2/b[γβ +

ρ2β2

2
(1 + 3γβ)].

Using Lemma 17 we directly obtain the main convergence result for m-SAM.

Theorem 18. Assume (A1-2). For γ ≤ 1
β and ρ ≤ 1

4β , the iterates (4) satisfy:

1

T
E

[
T−1∑
t=0

‖∇L(wt)‖2
]
≤ 8

3Tγ
(L(w0)− EL(wT )) +

8σ2β(γ + ρ2β)

3b
.

In addition, under (A3), with step sizes γt = min{ 8t+4
3µ(t+1)2 ,

1
2β } and ρt =

√
γt/β:

E[L(wT )]− L∗ ≤
3β2(L(w0)− L∗)

µ2T 2
+

22βσ2

µ2bT
.

Proof. The first bound directly comes from Lemma 17. The second bound is similar to the proof of Theorem 3.2 of Gower
et al. (2019), only the constants are changing.

Finally, we note that Theorem 2 is a direct consequence of Theorem 18 with γt = 1√
Tβ

, ρt = 1
T 1/4β

and slightly simplified
constants.

D. Experimental Details
Training details for deep networks. In all experiments, we train deep networks using SGD with step size 0.1, momentum
0.9, and `2-regularization parameter λ = 0.0005. We perform experiments on CIFAR-10 and CIFAR-100 (Krizhevsky &
Hinton, 2009) where for all experiments we apply basic data augmentations: random image crops and mirroring. We use
batch size 128 for most experiments except when it is mentioned otherwise. We use a pre-activation ResNet-18 (He et al.,
2016) for CIFAR-10 and ResNet-34 on CIFAR-100 with a width factor 64 and piece-wise constant learning rates (with a
10-times decay at 50% and 75% epochs). We train all models for 200 epochs except those in Sec. 4.3 and Sec. 5.2 for which
we use 1000 epochs. We use batch normalization for most experiments, except when it is explicitly mentioned otherwise as,
for example, in the experiments where we aim to compute sharpness and for this we use networks with group normalization.

For all experiments involving SAM, we select the best perturbation radius ρ based on a grid search over ρ ∈
{0.025, 0.05, 0.1, 0.2, 0.3, 0.4}. In most cases, the optimal ρ is equal to 0.1 while in the ERM → SAM experiment,
it is equal to ρ = 0.4 for CIFAR-10 and ρ = 0.2 for CIFAR-100. We note that using a higher ρ in this case is coherent with
the experiments on diagonal linear networks which also required a higher ρ. For all experiments with SAM, we use a single
GPU, so we do not implicitly rely on lower m-sharpness in m-SAM. The only exception where m is smaller than the batch
size is the experiments shown in Fig. 4 and Fig. 16. Regarding n-SAM in Fig. 1, we implement it by doing the ascent step
on a different batch compared to the descent step, i.e., as described in our convergence analysis part in Eq. (21).

Sharpness computation. We compute m-sharpness on 1024 training points (i.e., by averaging over d1024/me) of CIFAR-
10 or CIFAR-100 using 100 iterations of projected gradient ascent using a step size α = 0.1 · ρ. For each iteration, we
normalize the updates by the `2 gradient norm.
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Confidence intervals on plots. Many experimental results are replicated over different random seeds used for training. We
show the results using the mean and 95% bootstrap confidence intervals which is the standard way to show such results in
the seaborn library Waskom (2021).

Code and computing infrastructure. The code of our experiments is publicly available.4 We perform all our experiments
with deep networks on a single NVIDIA V100 GPU with 32GB of memory. Since most of our experiments involved a grid
search over the perturbation radius ρ and replication over multiple random seeds, we could not do the same at the ImageNet
scale due to our limited computational resources.

E. Additional Deep Learning Experiments
In this section, we show additional experimental results complementary to those presented in the main part. In particular, we
provide multiple ablation study related to the role of m in m-SAM, batch size, and model width. We also provide additional
experiments on the evolution of sharpness over training using training time and test time batch normalization, training loss
of ERM vs. SAM models, and the performance under label noise for standard and unnormalized SAM.

E.1. The Effect ofm inm-SAM

We show the results of SAM for different m in m-SAM (with a fixed batch size 256) in Fig. 16. We note that in this
experiment, we used group normalization instead of batch normalization like, for example, in Fig. 1, so the exact test error
values should not be compared between these two figures. We observe from Fig. 16, that the generalization improvement is
larger for smaller m and it is continuous in m. We also note that a similar experiment has been done in the original SAM
paper (Foret et al., 2021). Here, we additionally verified this finding on an additional dataset (CIFAR-100) and for networks
trained without batch normalization (which may have had an extra regularization effect as we discussed in Sec. 4.1).
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Figure 16: Test error of models trained with group normalization and different m in m-SAM using batch size 256.

E.2. The Effect of the Batch Size on SAM

We show the results of SAM for different batch sizes in Fig. 17 where we use m equal to the batch size. Note that a too high
m leads to marginal improvements in generalization (≈ 0.2%) and is not able to bridge the gap between large-batch (1024)
and small-batch (256 or 128) SGD.

E.3. The Effect of the Model Width on SAM

We show in Fig. 18 test error improvements of SAM over ERM for different model width factors. For comparison, in
all other experiments we use model width factor 64. As expected, there is little improvement (or even no improvement
as on CIFAR-10) from SAM for small networks where extra regularization is not needed. However, interestingly, the
generalization improvement is the largest not for the widest models, but rather for intermediate model widths, such as model
width 16.

4https://github.com/tml-epfl/understanding-sam

https://github.com/tml-epfl/understanding-sam
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Figure 17: Test error of models trained with group normalization and different batch sizes for the same number of epochs (200). Note
that for all models, we use m in m-SAM equal to the batch size.
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Figure 18: Test error improvements of SAM over ERM for different model width factors.

E.4. Sharpness for Models with Batch Normalization

The main problem of measuring sharpness for networks with BatchNorm is the discrepancy between training and test-time
behaviour. Fig. 19 illustrates this issue: the maximum loss computed over radius ρ is substantially different depending on
whether we use training-time vs. test-time BatchNorm. This is an important discrepancy since the training-time BatchNorm
is effectively used by SAM while the test-time BatchNorm is used by default for post-hoc sharpness computation. To avoid
this discrepancy, we presented the results in the main part only on models trained with GroupNorm which does not have this
problem.
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Figure 19: 128-sharpness (ρ = 0.1) over training for a network with batch normalization when measured with the training-time and
test-time batch normalization. The model is trained with SAM using ρ = 0.1.
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E.5. Training Loss for ERM vs. SAM Models

Fig. 11 in the main part shows that both training and test errors have a slight increasing trend after the first learning rate decay
at 500 epochs. As a sanity check, in Fig. 20, we plot the total objective value (including the `2 regularization term) which
shows a consistent decreasing trend. Thus, we conclude that the increasing training error is not some anomaly connected to
a failure of optimizing the training objective.
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Figure 20: Training objective of ERM vs. SAM over epochs. For both models, we observe a clear decreasing trend.

E.6. SAM with a Decreasing Perturbation Radius ρ

In Fig. 21, we plot the test error over different ρt where we decay the ρt using the same schedule as for the outer learning
rate γt. We denote this as SAM with decreasing ρ contrary to the standard SAM for which ρ is constant throughout training.
We note that in both cases, we use the `2-normalized updates as in the original SAM. The results suggest that decreasing
the perturbation radius ρt over epochs is detrimental to generalization. This observation is relevant in the context of the
convergence analysis that suggests that SAM converges even if ρt is significantly larger than the outer step size γt which is
the case when we decay γt over epochs while keeping ρt constant.
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Figure 21: Test error of SAM with a constant perturbation radius ρ (i.e., standard SAM) compared to SAM with decreasing perturbation
radii ρt. The decrease of ρt follows the same piecewise constant schedule as the learning rate γt. We note that in both cases, we use the
`2-normalized updates as in the original SAM.

E.7. Experiments with Noisy Labels

In Fig. 22, we show experiments with CIFAR-10 and CIFAR-100 with 60% of noisy labels for SAM with a fixed inner step
size ρ that does not include gradient normalization (denoted as unnormalized SAM). We did a prior grid search to determine
the best fixed ρ for this case which we show in the figure. We can observe that the best test error taken over epochs almost
exactly matches that of the standard SAM.
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Figure 22: Plots over training for a ResNet-18 trained on CIFAR-10 with 60% label noise for SAM with and without gradient
normalization.
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