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Abstract

Image-to-image regression is an important learn-
ing task, used frequently in biological imaging.
Current algorithms, however, do not generally
offer statistical guarantees that protect against
a model’s mistakes and hallucinations. To ad-
dress this, we develop uncertainty quantification
techniques with rigorous statistical guarantees for
image-to-image regression problems. In particu-
lar, we show how to derive uncertainty intervals
around each pixel that are guaranteed to contain
the true value with a user-specified confidence
probability. Our methods work in conjunction
with any base machine learning model, such as a
neural network, and endow it with formal math-
ematical guarantees, regardless of the true un-
known data distribution or choice of model. Fur-
thermore, they are simple to implement and com-
putationally inexpensive. We evaluate our pro-
cedure on three image-to-image regression tasks:
quantitative phase microscopy, accelerated mag-
netic resonance imaging, and super-resolution
transmission electron microscopy of a Drosophila
melanogaster brain, and provide accompanying
open source code.

1. Introduction
The deployment of image-to-image regression in scientific
imaging has generated enormous excitement, promising
a future where the resolution of an imaging system can
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be improved algorithmically (Weigert et al., 2018). For
example, research developments in machine learning have
accelerated MRI scans by an order of magnitude (Zbontar
et al., 2018b). But, to this day, there remains an elephant in
the room, obstructing the deployment of these systems: how
can we know when the model has produced an incorrect
prediction?

In most cases, we cannot. Indeed, the expressive power of
modern machine learning is also its torment. Deep learning
models have revolutionized predictive accuracy, but they
fail in silent, unknown, and even unknowable ways. For
scientific imaging settings, where learning will be used for
inference and discovery, we need ways to understand when
and how a model’s predictions might be wrong. Nonethe-
less, image-to-image regression algorithms, such as those
for denoising and super-resolution, are normally deployed
without any notion of statistical reliability. The scientist is
therefore left worrying that their new discovery is simply
the model’s hallucination. The purpose of this paper is to
introduce a technique which rigorously quantifies the uncer-
tainty in an image-valued point prediction, thereby alerting
the scientist of potential hallucinations (see Figure 1).

We will develop a method for endowing any image-to-image
regression model with per-pixel uncertainty intervals. At a
particular pixel, an uncertainty interval is a range of values
guaranteed to contain the true value of that pixel with high
probability. Our contributions are the following:

1. We introduce distribution-free uncertainty quantifica-
tion to image-to-image regression; this means the un-
certainty intervals will have a rigorous guarantee for
any image dataset and any regression model, regard-
less of the number of data points used to construct the
interval.

2. We introduce and evaluate several practical algo-
rithms for constructing these sets, including pixelwise
quantile regression, an extension of quantile regres-
sion (Koenker & Bassett Jr, 1978) to this setting. In
experiments, pixelwise quantile regression consistently
leads to the best performance of any uncertainty quan-
tification algorithm, often by a large amount.

3. We apply our methods to three challenging imag-

https://github.com/aangelopoulos/im2im-uq
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Figure 1. An algorithmic MRI reconstruction with uncertainty. A rapidly acquired but undersampled MR image of a knee (A) is fed
into a model that predicts a sharp reconstruction (B) with calibrated uncertainty (C). In (C), red means high uncertainty and blue means
low uncertainty. Wherever the reconstruction contains hallucinations, the uncertainty is high; see the hallucination in the image patch (E),
which has high uncertainty in (F), and does not exist in the ground truth (G). For experimental details, see Section 3.4.

ing problems: quantitative phase microscopy, ac-
celerated magnetic resonance imaging (MRI), and
super-resolution transmission electron microscopy of
a Drosophila melanogaster brain. Our accompanying
codebase allows for easy application of these methods
to any imaging problem, and the exact reproduction
of the aforementioned examples. The proposed cali-
brated pixelwise quantile regression approach offers
state-of-the-art results on these tasks, in the sense that
its uncertainty intervals are smaller than those from
other methods.

1.1. Notation and Goal

The inputs X and outputs Y are both images in X =
[0, 1]M×N (for simplicity of notation, we discuss the case
where X and Y are the same size). We also assume access
to an underlying predictor f̂(X) mapping from X to a point
prediction of Y . The reader can imagine X to be a down-
sampled version of Y , and f̂(X) ∈ RM×N to be the output
of a neural network trained to upsample X and reconstruct
Y (this is the super-resolution task).

Our task is to create uncertainty intervals around each pixel
of the predicted image f̂(X) that contain the true pixel
values with a user-specified probability. Formally, we will
construct the following interval-valued function for each
pixel,

T (X)(m,n) =
[
f̂(X)(m,n) − l̂(X)(m,n),

f̂(X)(m,n) + û(X)(m,n)

]
,

(1)

which takes an image and outputs the uncertainty interval for
each pixel (m,n). Notice that the intervals always include
the prediction f̂(X), and have width l̂(X) in the lower
direction and û(x) in the upper direction. Intuitively, a large
value in û(X) indicates a pixel that could have a much
higher value than the prediction (undershooting). Likewise,

a large pixel value in l̂(X) indicates a pixel that could have
a much lower value than the prediction (overshooting). We
will form the uncertainty intervals by using a held-out set
of calibration data, {(Xi, Yi)}ni=1, to assess the model’s
performance. The uncertainty intervals will be statistically
valid in the following sense. The user selects a risk level
α ∈ (0, 1), and an error level δ ∈ (0, 1), such as α = δ =
0.1. Then, we construct intervals that contain at least 1− α
of the ground-truth pixel values with probability 1− δ. That
is, with probability at least 1− δ,

E
[

1

MN

∣∣∣{(m,n) : Y test
(m,n) ∈ T (X

test)(m,n)}
∣∣∣] ≥ 1− α,

where Xtest, Y test is a fresh test point from the same distri-
bution as the calibration data.

In the next section, we will describe in detail the algorithm
for generating l̂(X) and û(X) as well as its statistical prop-
erties. Importantly, this algorithm is modular, allowing the
user to use the most complex, cutting-edge methods for
learning f̂ (i.e., the best neural network methods), all the
while having uncertainty intervals that reliably communicate
the quality of the predictions.

2. Methods
We now formally describe the method for constructing un-
certainty intervals. Each pixel in the image will get its own
uncertainty interval, as in (1), that is statistically guaranteed
to contain the true value with high probability.

The procedure that yields these intervals, visualized in Fig-
ure 2, has two phases. First, we train a model to output a
heuristic notion of uncertainty. In practice, this amounts to
training a machine learning system to output a point predic-
tion f̂ , a heuristic lower interval length l̃, and a heuristic
upper interval length ũ using any method, such as a neural
network. In Section 2.1 we introduce and benchmark four
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possible methods of learning these heuristics. The uncali-
brated intervals (f̂(X)− l̃(X), f̂(X)+ ũ(X)) are heuristic
in the sense that they do not contain the ground truth with
the desired probability—we made no assumptions about
the algorithm used to train l̃ and ũ. To remedy this, in the
second phase we calibrate the heuristic notions of uncer-
tainty by scaling them until they contain the right fraction of
the ground truth pixels. That is, we multiply the upper and
lower lengths by a value λ̂ that is chosen using the procedure
that we will describe in Section 2.2. The final intervals are
exactly those in (1), with the upper and lower widths

l̂(x) = λ̂l̃(x) and û(x) = λ̂ũ(x).

Algorithm 1 summarizes this process.

Following the above strategy will give us uncertainty in-
tervals that satisfy the desired statistical guarantee from
Section 1.1. We call a set of these rigorous uncertainty
intervals—one for each pixel in an image—an image-valued
Risk-Controlling Prediction Set.
Definition 2.1 (Risk-Controlling Prediction Set (RCPS),
modified from (Bates et al., 2021)). We call a random
set-valued function T : X →

(
2[0,1]

)M×N
an (α,δ)-Risk-

Controlling Prediction Set if

P (E[L(T (X), Y )] > α) ≤ δ, (2)

where

L(T (X), Y ) = 1−

∣∣∣{(m,n) : Y(m,n) ∈ T (X)(m,n)}
∣∣∣

MN
.

Remark 2.2. The inner expectation in (2) is over a new test
point, (X,Y ). The outer probability is over the calibration
data, {(Xi, Yi)}ni=1. In other words, T is constructed based
on the calibration data, which makes it a random function.
We will only fail to control the risk if we are unlucky with
the sample of calibration data, with probability δ.

(1) Compute heuristics

(2) Calibrate

(3) Predict

Figure 2. An explanation of image-valued risk-controlling pre-
diction sets. We visualize the process of constructing an uncer-
tainty interval for a single pixel (i, j) of the model’s prediction
f̂(X). In the first step, we compute the heuristic upper and lower
interval lengths. Second, we choose λ̂ via the RCPS calibration
procedure in Section 2.2. Finally, we form the risk-controlling
prediction set Tλ̂(X)(i,j) as in (1).

Algorithm 1 Generating Image-Valued RCPS

1: Train model that outputs point prediction f̂ and heuris-
tic lower and upper interval lengths l̃ and ũ.

2: Compute the calibrated parameter λ̂ using the calibra-
tion data and Algorithm 2.

3: Construct T as in (1).
4: For a new image X , output the risk-controlling predic-

tion set T (X).

Parsing the above equation, we define a level α, which tells
us what fraction of pixels in the image we allow to fall
outside of the intervals. If we set α = 0.1, for example, it
means no more than 10% of the true pixel values will lie
outside of T except with probability δ.

Having laid out the goal and general algorithm, we now
discuss how to train the model to output heuristic notions of
uncertainty for eventual calibration.

2.1. Picking a Heuristic Notion of Uncertainty

The selections of l̃ and ũ will ultimately determine the prop-
erties of the prediction sets, such as their size and shape.
We will learn these heuristics from the same training dataset
used to train f̂ . Here, we develop four different heuristic
notions of uncertainty, which we will evaluate and compare
in later experiments (Section 3). These heuristics are (1)
regression to the magnitude of the residual, (2) parameter-
izing each pixel as a Gaussian and reporting its standard
deviation, (3) outputting a softmax distribution at each pixel,
and (4) pixelwise quantile regression.

Although each of these methods is trained to predict some
form of uncertainty, they may not do it well—hence the need
for calibration via Algorithm 2 after training. Each heuristic
requires the use of a different loss function when training
the neural network via gradient descent. The remainder of
this subsection describes each loss function precisely. For
notational simplicity, we omit subscripts and sums indexing
different pixels; in the experiments, we train our models by
averaging the loss function applied to each pixel separately.

2.1.1. MAGNITUDE OF THE RESIDUAL

In this flavor of uncertainty quantification, we set ũ = l̃,
referring to both the upper and lower interval lengths as ũ
(the letter ‘u’ is a mnemonic for the ‘uncertainty’ of the
model). We then optimize ũ for the following loss function:

L(x, y) =
(
ũ(x)− |f̂(x)− y|

)2
.

The loss function encourages each pixel of ũ to be equal to
the model’s error at that pixel. Notice that L(x, y) = 0 in
the ideal case when the heuristic is exactly equal to the mag-
nitude of the residual, i.e., ũ(x) = |f̂(x)− y|. Estimating
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the magnitude of the residual is a straightforward way of
quantifying a model’s error, although it has two downsides.
Firstly, it can only construct symmetric intervals, which
makes the pixelwise intervals less informative and can in-
flate the set size. Second, unlike quantile regression, there
is no guarantee that the residual estimate results in a valid
prediction set without RCPS. Third, estimating the resid-
ual’s magnitude is challenging since the training residuals
are likely to be smaller than the test ones due to overfitting,
unless an extra data split is used.

2.1.2. ONE GAUSSIAN PER PIXEL

We will now explain another common heuristic, which in-
volves modeling each pixel as a sample from a Gaussian dis-
tribution with a particular mean and standard deviation (Nix
& Weigend, 1994). Translating into our notation, f̂ will be
the mean function, and ũ = l̃ will be the standard deviation.
We proceed by minimizing the negative log-likelihood of
the Gaussian distribution,

L(x, y) = log (ũ(x)) +
(f̂(x)− y)

2

ũ(x)
.

Like the residual magnitude method from Section 2.1.1,
this heuristic is only suited to symmetric intervals and pro-
vides no guarantees of coverage without strong assumptions.
Additionally, unlike the residual magnitude and quantile
regression methods, one cannot use data splitting to avoid
overconfidence due to overfitting.

2.1.3. SOFTMAX OUTPUTS

This next heuristic is most common in classification; indeed,
it involves reframing image-to-image regression as a clas-
sification problem over a discrete set of K possible pixel
values. Then, we train the image-to-image regression with
a cross-entropy loss as if it were doing K-class classifica-
tion for each pixel. This has two main downsides: first,
the method is limited to resolutions of 1/K, which makes
it conservative; second, it requires a factor of O(K) more
memory than the other heuristics due to the extra dimension.
For the sake of space, we defer the precise details of this
method to Appendix B.

2.1.4. PIXELWISE QUANTILE REGRESSION

This final heuristic is a multi-dimensional version of confor-
malized quantile regression (Romano et al., 2019; Koenker
& Bassett Jr, 1978). If we want a 90% uncertainty interval,
then reporting the interval between the estimated 95% and
5% quantiles for each pixel is a valid approach. Thus, we
set ũ to be an estimate of the 1− α/2 conditional quantile
and l̃ to be an estimate of the α/2 conditional quantile. We
estimate these pixelwise quantiles with a special loss func-
tion called a quantile loss (sometimes informally referred to

as a pinball loss), shown below in its general form for the α
quantile and its quantile estimator q̂α(x),

Lα(q̂α(x), y) = (y − q̂α(x))α1 {y > q̂α(x)}+
(q̂α(x)− y)(1− α)1 {y ≤ q̂α(x)} .

Omitting some algebra, we can see that the minimizer of
this loss is the conditional quantile, i.e., QuantileY |X(α) =
min{q : P [Y < q | X] ≤ α}. Estimating q̂ via empir-
ical risk minimization should therefore approximate the
conditional quantile. This can be made rigorous—under
some regularity conditions, quantile regression converges
asymptotically to the conditional quantile (Koenker & Bas-
sett Jr, 1978; Chaudhuri, 1991; Steinwart & Christmann,
2011; Takeuchi et al., 2006; Zhou et al., 1996; Zhou & Port-
noy, 1998). This analysis suggests that quantile regression
could be practically effective.

Note that in this case, ũ and l̃ must be trained with differ-
ent loss functions, since they estimate different quantiles.
Ultimately, we collapse these into one global loss for the
heuristic,

L(x, y) = Lα/2(l̃(x), y) + L1−α/2(ũ(x), y).

After training, we expect l̃ and ũ to approximate the α/2
and 1− α/2 quantiles respectively.

2.2. Calibrating Heuristic Notions of Uncertainty

As earlier discussed, we seek to form the RCPS in (1), which
we can compute using any of the heuristics from Section 2.1.
The function T will vary based on the heuristic notion of
uncertainty used; however, the algorithm for selecting λ̂ will
provide the guarantee in Definition 2.1 regardless.

The calibration algorithm upper bounds the fraction of pixels
falling outside the intervals, and then picks the smallest
uncertainty intervals where the upper bound falls below α.
Making this more concrete, we index the size of the intervals

Algorithm 2 Pseudocode for computing λ̂

Input: Calibration data, (Xi, Yi), i = 1, . . . , n; risk level
α; error rate δ; underlying predictor f̂ ; heuristic lower and
upper interval lengths l̃ and ũ; maximum value λmax; step
size dλ > 0.
Output: Parameter λ̂ for computing RCPS.

1: λ← λmax

2: UCB← 1
3: while UCB ≤ α do
4: λ← λ− dλ
5: for i = 1, ..., n do
6: Li ← L(Tλ(Xi))

7: UCB← 1
n

n∑
i=1

Li +
√

1
2n log 1

δ

8: λ̂← λ+ dλ # Backtrack by one (we overshot).
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with a free multiplicative factor λ,

Tλ(X)(m,n) =
[
f̂(X)(m,n) − λl̃(X)(m,n),

f̂(X)(m,n) + λũ(X)(m,n)

]
.

For a particular input image, when λ grows, the intervals
grow; for a sufficiently large λ, the intervals will contain all
of the ground truth pixel values. Our job is to pick λ̂ to be
the smallest value such that Tλ̂(X) satisfies Definition 2.1
(note that T (X) = Tλ̂(X)). Using the calibration dataset,
we form Hoeffding’s upper-confidence bound,

R̂+(λ) =
1

n

n∑
i=1

L(Tλ(Xi), Yi) +

√
1

2n
log

1

δ
.

It is shown in (Hoeffding, 1963) that the Hoeffding bound
is valid, that is, P

[
R̂+(λ) < R(λ)

]
< δ. Knowing this,

we can use R̂+(λ) to pick the smallest λ satisfying Defini-
tion 2.1. There is a closed-form expression for this process,

λ̂ = min
{
λ : R̂+(λ′) ≤ α, ∀α′ ≥ α

}
. (3)

Proposition 2.3 (Tλ̂ is an RCPS (Bates et al., 2021)). With
λ̂ selected as in (3), Tλ̂ satisfies Definition 2.1.

For the proof of this fact, along with a discussion of the
tighter confidence bounds used in the experiments, see pre-
vious work (Bates et al., 2021; Angelopoulos et al., 2021a).
This calibration procedure is easy to implement in code, and
we summarize it in Algorithm 2.

3. Experiments
The following sequence of experiments applies our meth-
ods to several challenging settings in biological imaging.
The goal of these experiments is twofold. First, we demon-
strate the utility of the procedures in practical experiments.
Second, we evaluate the comparative effectiveness of the
different heuristics qualitatively, as well as with a series of
quantitative metrics. We will briefly discuss these metrics
before providing the details of each experiment.

3.1. Evaluation Metrics

Empirical risk. The first quantity to notice is the risk,
which should fall below α with probability (1− δ). This is
guaranteed in general by Proposition 2.3. For each dataset
and heuristic, we make a histogram of the risk over several
runs of the RCPS calibration, showing it is indeed controlled
at the desired level.

Prediction set size. If the underlying heuristic notion of
uncertainty is poor, then, in order to control the risk, the
sets may need to be large. Generally, such an output is not
informative to a practitioner, and all else equal, smaller in-
tervals give more actionable assessments of the regression’s

quality. Thus, we report histograms of the interval size for
each metric—smaller is better. As another view onto the
regression’s quality, ; we provide code in our GitHub for
running Spearman correlations between the set size and the
indicator of miscoverage (similar to measuring AUSE (Ilg
et al., 2018)).

Size-stratified risk. Next, we seek prediction sets that do
not systematically make mistakes in difficult parts of the
image. Our risk control requirement in Definition 2.1 may
be satisfied even if the prediction sets systematically fail to
contain the most difficult pixels. For example, if α = 0.1
and 90% of pixels are covered by fixed-width intervals of
size 0.01, then the requirement is satisfied—however, the
sets no longer serve as useful notions of uncertainty. To
investigate such behavior, we evaluate the size-stratified
risk (Angelopoulos & Bates, 2021)—i.e., we stratify pixels
by the quartile of their interval sizes, and report the empirical
risk within each of these quartiles. The desire is to have
the risk be at approximately the same level for all strata,
i.e., the risk should be as similar as possible between pixels
with different set sizes. In other words, when we make a
barplot of the stratified risk, the bars should all be the same
height. Achieving this balance means the algorithm is not
over-including easier-to-estimate pixels in order to excuse
poor performance on difficult ones.

MSE of point prediction. Finally, we want to pick a heuris-
tic notion of uncertainty that does not harm the accuracy of
the point prediction during the joint training process. To
measure this, we plot the mean-squared error (MSE) on
the validation set for the point prediction which was jointly
trained with each heuristic measure of uncertainty. A lower
mean-squared error means that the joint training of the point
prediction and heuristic uncertainty worked nicely, and did
not degrade the point prediction. For certain heuristics, such
as the Gaussian and softmax versions, this measure is par-
ticularly important because these methods do not directly
optimize for the MSE and instead require a different proce-
dure for supervising the point prediction (maximizing the
Gaussian log likelihood and minimizing the cross-entropy
loss, respectively).

Visualizations. In addition to the quantitative metrics, there
is no substitute for seeing visualizations of the uncertainty
intervals. For each example, we show the input, the out-
put, the prediction sets generated by quantile regression, the
absolute difference between the prediction and the ground
truth, and the ground truth target. We represent the predic-
tion sets by passing the pixelwise interval lengths through
a colormap, where small sets render a pixel blue and large
sets render it red. The interpretation, then, is that the red-
der a region is, the more uncertain it is and conversely, the
bluer a region is, the more confident it is. Consequently, we
expect the colormap to be red where the model is missing
biological features and around fine structures such as edges
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Figure 3. Examples of quantitative phase reconstructions of leukocytes with uncertainty shown in the following order: input (we only
show one of the two illuminations), prediction, uncertainty visualization (produced with quantile regression), absolute difference between
prediction and ground truth (renormalized for visualization), ground truth.

which are difficult to reconstruct from partial data.

Spatial miscoverage. As another way of evaluating the
conditional coverage of our method, we look at spatial vari-
ations in prediction set errors. Specifically, we report the
average miscoverage per-pixel as a spatial heatmaps in Ap-
pendix A.

3.2. Experimental Details

We use a standard experimental pipeline for all of the forth-
coming experiments. In all experiments, we fit the predictor
f̂ and the heuristic notions of uncertainty ũ and l̃ jointly.
To ensure a level playing field and to promote reproducibil-
ity, the code used to define, train, and evaluate the model
is shared among all heuristics and datasets. In order to
run a new experiment (e.g., on a new dataset or with a
new heuristic), minimal additional code is needed. See
the code at this Github link: https://github.com/
aangelopoulos/im2im-uq.

In each experiment, an 8-layer U-Net (Ronneberger et al.,
2015) is used as the base model architecture and trained
with an Adam optimizer for 10 epochs. We swept over
two learning rates, {0.001, 0.0001}, and chose the learning
rate that minimized the point prediction’s MSE for each
method in each experiment. All images get normalized to
the interval [0, 1]. For the softmax heuristic, we discretized
the prediction space with K = 50 because larger choices of
K become too computationally expensive due to the amount
of memory needed to store the extra dimension—a major
practical limitation of this heuristic. We choose α = δ =
0.1 for the RCPS procedure in all cases, and adaptively
select a grid of 1000 values of λ for each experiment. We
evaluate each method by plotting its risk, average set size,
size-stratified risk, and mean-squared error of the jointly
trained prediction, as well as displaying an example. Further
experimental details are available in the codebase.

We now discuss each experiment in detail. For each ex-
periment, we include a brief background of the imaging
problem, a description of the inputs X and outputs Y , and
the aforementioned evaluation metrics for each heuristic.
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Figure 4. A quantitative summary of all four heuristics after
RCPS calibration in the quantitative phase example. All meth-
ods control the risk, and quantile regression has the smallest set
size. The Gaussian method has poor MSE, interval size, and size-
stratified risk because it did not converge in training for either of
the learning rates we chose.

3.3. Quantitative Phase Microscopy of Leukocytes

Background. In order to image the structure of cells—
which are essentially transparent bags of water—one must
measure their local refractive index, or equivalently, the
phase delay incurred by light passing through each region
of the cell. This task, known as quantitative phase imaging
or QPI (Mir et al., 2012; Park et al., 2018; Jo et al., 2018),
requires an algorithm to map intensity-only images to the
phase value at each pixel, since it is impossible to directly
measure the phase of light. Generally, as input to the al-
gorithm, these methods take in a diverse set of intensity
images captured under different imaging conditions, such
as the illumination angle. Their performance improves with
more input images.

Dataset description. Framing QPI as image-to-image re-
gression, we take the input X to be the concatenation of two
obliquely illuminated cell intensity images (from opposite
angles) and the target Y to be a reference phase image. Y is
obtained using an analytic phase recovery technique known
as differential phase contrast (DPC), which takes four or
more images as input (Tian & Waller, 2015). The utility,
then, of the regression model is to reduce the number of in-
put images needed for high quality phase prediction, thereby
improving the tradeoff between acquisition speed and pre-
diction accuracy. Furthermore, the quantitative phase values

https://github.com/aangelopoulos/im2im-uq
https://github.com/aangelopoulos/im2im-uq
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have an intrinsic meaning, so by adding uncertainty inter-
vals which are on the scale of the phase values, we provide
an important inferential tool for analyzing cell morphology.

For the experiment, we use the Berkeley Single Cell Com-
putational Microscopy (BSCCM) dataset (Pinkard, 2021),
which contains 2,000 single leukocyte (white blood cell)
images with 150x150 pixels taken using several imaging
modalities. Of particular interest to us, this dataset includes
images taken under a variety of different angles of illumi-
nation co-registered with quantitative phase maps obtained
via 4-image DPC. As input to the U-Net, we concatenate
two obliquely illuminated cell images along the channel
dimension. We use 1800 randomly selected data points
with a batch size of 64 to train the model, 100 points for
calibration, and 100 points for validation. Our results are
visualized in Figure 3.

Results. We report our results in Figure 5. As promised by
the calibration procedure, risk-control holds for all choices
of heuristic uncertainties. In terms of statistical power, we
see that quantile regression outcompetes the other heuristics
in the trifecta of evaluations—it has the smallest average
set size and best size-stratified coverage while remaining
competitive with other methods in mean-squared error. Al-
together, these metrics express that the uncertainty intervals
produced by calibrated quantile regression are tight and
adaptive to the model’s performance, even among different
pixels within a single prediction. The softmax heuristic,
though seemingly competitive in these evaluations, gives
nearly fixed-width intervals, most of which have exactly the
same size because of the discretization.

3.4. Fast Magnetic Resonance Imaging
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Figure 5. A quantitative summary of all four heuristics after
RCPS calibration in the FastMRI example. All three methods
control the risk. Quantile regression has the smallest interval size
and best size-stratified risk.

Background. Much like our previous example, in MRI
there exists a tradeoff between imaging speed and quality.
MRI directly samples an object’s spatial frequency (k-space)
over time; so it is possible to reduce the scan time by low-
ering the effective sampling rate in k-space. Although fast
imaging is more comfortable for human subjects and also

critical for certain fast movements like the beating of the
heart, insufficient sampling results in low quality, aliased
MR images. However, with deep learning, we can try to fill
in the information lost by undersampling to emulate fully
sampled images, thereby getting the joint benefits of fast
scan times and high quality reconstructions.

Dataset description. The inputs X are the undersampled
images formed by downsampling k-space by a factor of four
along a single dimension (the phase encoding direction),
and then taking an inverse Fourier transform. Our outputs Y
are the fully sampled MR images. Successfully regressing
X to Y essentially accelerates the MRI scan time by a factor
of four.

We use the FastMRI dataset for this example (Zbontar et al.,
2018b). The dataset includes 10,000 clinical knee MR vol-
umes taken with 3T or 1.5T magnets which are algorithmi-
cally undersampled with k-space masks that emulate fast
sampling strategies. We dissect the volumes into 27,993
randomly selected 320x320 pixel coronal knee slices for
training the model, 3,474 for the RCPS calibration, and
3,474 for validation. We use a batch size of 78. For the
Gaussian method, we standardized the output space to be
mean zero and unit variance, since it failed to properly train
when normalized to fall in the interval [0, 1].

Results. Qualitatively, Figure 1 shows an example of an
MRI reconstruction using calibrated quantile regression.
The predictions are slightly blurred versions of the ground
truth, likely due to the network’s bias toward low frequency
outputs (Rahaman et al., 2019). The uncertainty intervals
have large values in areas with high contrast, expressing the
intrinsic uncertainty in localizing edges using incomplete
information. The quantitative results of this experiment,
visualized in Figure 5, are in line with those of the QPI
experiment; we achieve the desired risk level and quan-
tile regression performs best on all metrics. Although the
softmax heuristic has near-even size-stratified risk, this is
because it outputs quantized sets of nearly fixed size, and
the strata are therefore decided by random tie-breaking.

3.5. Fly Brain Transmission Electron Microscopy

Background. Finally, we perform algorithmic super-
resolution transmission electron microscopy (TEM) of the
brain of a Drosophila melanogaster (fruit fly). TEM uses
focused electron beams rather than visible light to produce
images, and due to the small de Broglie wavelength of elec-
trons, it can achieve significantly higher resolution than
visible light microscopy, on the order of single nanome-
ters. However, TEM sequentially scans over the sample
volume, imaging point-by-point; thus, its scan time scales
cubically with the desired resolution. For large volumes
like the fly brain shown in Figure 6, imaging can take years.
Upsampling lower resolution (say 16nm) TEM data to high
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Figure 6. Examples of Drosophila brain reconstructions with uncertainty shown in the following order: input, prediction, uncertainty
visualization, absolute difference between prediction and ground truth, ground truth. We use the pixelwise quantile regression version of
the procedure.
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Figure 7. Quantitative results of pixelwise quantile regression
on the TEMCA fly brain dataset. The risk is controlled, the inter-
vals have reasonable lengths, and the size-stratified risk is roughly
balanced, although slightly more permissive with small intervals.

resolution (4nm) images could therefore save months of
time.

Dataset description. We consider super-resolution as
image-to-image regression, where X is simply a manually
downsampled version of a 4nm TEM image Y . In particular,
we consider a factor of 4x nearest-neighbor downsampling
along both image dimensions to emulate the acquisition of
a 16nm TEM image.

We use the Janelia Transmission Electron Microscopy
Camera Array (TEMCA2) dataset of the Full Adult Fly
Brain (Zheng et al., 2018). This dataset contains a 26
TB brain volume at four nanometer resolution isotropically
along all dimensions. As a consequence of this data burden,
we did not run the full suite of procedures on the dataset, and
instead ran only the consistently best performing method—
pixelwise quantile regression. The dataset size is unknown
in advance because we randomly sample subregions of a
TEM slice on-the-fly, then throw the sample out if it has
sufficiently many black pixels (i.e., does not contain tissue
of interest). The fraction of images that are thrown out is
random and unknown before runtime because the full 16TB
dataset cannot be stored in random access memory. This
procedure is reproducible via our GitHub. We used roughly
2M images of size 320x320 for training, 25K images for
calibration, and 25K images for validation. We use a batch
size of 16. Each image is only seen once.

Results. The results of this procedure are depicted in Fig-
ure 6. The quantitative measures in Figure 7 are similar to
those of past experiments. Qualitatively, the prediction sets
identify regions of high contrast as more uncertain, perhaps

due to the spectral bias of CNNs. The sets are periodically
zero-length, i.e., fully confident, every four pixels. This is
because the input is a downsampled version of the target, so
the model perfectly knows every fourth pixel. Consequently,
at those pixels, the model does not have any uncertainty.
This highlights the adaptivity and tightness of the prediction
sets; they are not only useful in understanding where the
model is poor, but also where the model performs reliably.

4. Related Work
Image-to-image regression. Methods for interpolating
between samples of a two dimensional digital function,
which we now call image super-resolution, have existed
since antiquity (Generations of Chinese mathematicians,
200BC-100AD; Needham & Gwei-Djen, 1959; Ptolemy,
200AD). Such methods, along with classical spline approxi-
mations (Hahn, 1918; Schoenberg & Whitney, 1953; Walsh
et al., 1962), have been commonly deployed since at least
the 1980s (Keys, 1981). In the 21st century, learning-based
approaches (Freeman et al., 2002; Chang et al., 2004; Yang
et al., 2010) have dominated the research conversation, par-
ticularly those using convolutional neural networks (Dong
et al., 2014; 2015; Johnson et al., 2016) and generative ad-
versarial networks (Goodfellow et al., 2014; Ledig et al.,
2017). Beyond interpolation, image-to-image regression
also encompasses denoising (Buades et al., 2005b;a; Burger
et al., 2012; Tian et al., 2020; Goyal et al., 2020), style trans-
fer (Gatys et al., 2016; Isola et al., 2017; Zhu et al., 2017;
Jing et al., 2020), image colorization (Zhang et al., 2016),
and so on. A line of work based on the U-Net (Ronneberger
et al., 2015) adapts the above techniques for biomedical
imaging problems, achieving strong results (Zbontar et al.,
2018a; Zhou et al., 2018). We build directly on this work.

Heuristic notions of uncertainty. Parameterizing a Gaus-
sian distribution and maximizing its log-likelihood with
gradient descent has been employed since at least 1994 (Nix
& Weigend, 1994). The idea of the cross-entropy loss
leading to the softmax distributional estimate has its roots
in the Kraft-McMillan theorem (Kraft, 1949; McMillan,
1956) and related information-theoretic concepts (Thomas
& Cover, 1999). Quantile regression was proposed in the
mid-1970s by Koenker & Bassett Jr (1978). Many analyses
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and variations of the technique have been proposed, such as
for local polynomials (Chaudhuri, 1991), in additive mod-
els (Koenker, 2011) or for conditional coverage (Feldman
et al., 2021). Quantile regression comes with an asymptotic
guarantee of conditional coverage under certain regular-
ity conditions (Chaudhuri, 1991; Steinwart & Christmann,
2011; Takeuchi et al., 2006; Zhou et al., 1996; Zhou & Port-
noy, 1998). Many papers have used the technique, applying
it to economics (Chaney et al., 2011; McKenzie & Rapoport,
2007; Machado & Mata, 2005), machine learning (Hwang
& Shim, 2005; Meinshausen & Ridgeway, 2006; Natekin
& Knoll, 2013), medical research (Armitage et al., 2008),
and more. Accessible references to the topic of quantile
regression are provided (Koenker, 2005; Koenker et al.,
2018). Ensemble methods (Hansen & Salamon, 1990; Lak-
shminarayanan et al., 2017; Fort et al., 2019) and Bayesian
methods such as MC-Dropout (Gal & Ghahramani, 2016)
are also common in deep learning. Prediction intervals can
also be formed with interval neural networks (Oala et al.,
2020); our codebase includes the capability to calibrate and
evaluate this heuristic as well. These heuristics do not have
finite-sample guarantees and fall outside the scope of our
discussion; see (Gal, 2016) for an introduction.

Distribution-free uncertainty quantification. Conformal
prediction is a lightweight procedure for creating prediction
sets with finite-sample coverage while requiring no model
retraining (Vovk et al., 1999; 2005; Lei et al., 2015; 2013;
Lei, 2014; Sadinle et al., 2019). We build directly on confor-
malized quantile regression (CQR) (Romano et al., 2019).
We replace the conformal subroutine in CQR with the
fixed-sequence testing procedure from (Bates et al., 2021;
Angelopoulos et al., 2021a). Other works have applied
distribution-free uncertainty quantification to biological and
medical computer vision tasks (Hechtlinger et al., 2018;
Cauchois et al., 2021; Romano et al., 2020; Angelopoulos
et al., 2021b;c; Lu et al., 2021). However, we are not aware
of any that have studied image-to-image regression. An
introduction to these topics is available in (Angelopoulos &
Bates, 2021).

5. Conclusion
The methods described herein allow for rigorous per-pixel
uncertainty estimation in image-to-image regression prob-
lems. In our view, the major limitation of this work is the
inability to express uncertainty at a conceptual level. The
uncertainty maps produced by the methods herein often co-
occur with edges and other high-frequency objects. Future
work may focus on producing uncertainties that are disen-
tangled at a conceptual level or attempt to disaggregate error
due to the presence of high frequencies from other factors.
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A. Spatial Miscoverage
A.1. Quantitative Phase Microscopy of Leukocytes

Figure 8. Spatial variations in miscoverage in the BSCCM dataset are shown for each of the four methods as a heatmap. Blue represents
0% miscoverage and red represents 100%. The methods are, in order, residual magnutude, gaussian, softmax, and quantile regression.

A.2. Fast Magnetic Resonance Imaging

Figure 9. Spatial variations in miscoverage in the fast MRI dataset are shown for each of the four methods as a heatmap. Blue represents
0% miscoverage and red represents 100%. The methods are, in order, residual magnutude, gaussian, softmax, and quantile regression.

B. Mathematical Description of the Softmax Heuristic Notion of Uncertainty
The softmax heuristic is different from the others described in Section 2; the functions ũ and l̃ are not equal, and they are not
learned directly. Instead, we train the network to produce an entire probability distribution, and directly extract all three of f̂ ,
ũ, and l̃.

Let us first discretize the possible pixel values into K categories: {0, 1
K−1 , ...,

K−1
K−1}. We then associate a discrete label

with an otherwise continuous label via the function

D(y) =

∣∣∣∣ {i : i ∈ 0, 1, ...,K − 1 and
i

K − 1
≥ y

} ∣∣∣∣.
Intuitively, the function D(y) discretizes [0, 1], then bins the pixel accordingly.

This allows us to train the neural network to output distributions over pixel values π̂y(x) estimating the conditional
probabilities P [Y = y | X = x] via the cross-entropy loss,

L(x, y) = 1

MN

∑
1≤i≤M
1≤j≤N

−π̂D(y)(x) + log

(
K∑

k=1

exp (π̂D(k)(x))

)
.



Image-to-Image Regression with Distribution-Free Uncertainty Quantification

Finally, we can extract the prediction and heuristic uncertainties,

f̂(x) =
1

K − 1
argmax

k
π̂k(x);

ũ(x) =
1

K − 1
Quantile

(
1− α

2
, π̂(x)

)
;

l̃(x) =
1

K − 1
Quantile

(α
2
, π̂(x)

)
,

where

Quantile (β, π̂(x)) = min

K ′ :

K′∑
k=1

π̂k(x) ≥ β

 .

The softmax approach requires discretizing Y into K bins, which can severely limit its utility. The heuristic can only
create prediction sets whose endpoints are multiples of 1/K, which may make it too conservative. Furthermore, the output
representation can be enormous, making the memory constraints infeasible for large images (e.g., for K = 256, the model
produces an output of size M ×N × 256).


