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Abstract

Continual Learning (CL) is the problem of se-
quentially learning predictive models with vary-
ing data that may originate from different con-
texts. Many existing CL methods assume that the
data stream is divided into a sequence of contexts,
termed as tasks, with explicitly given transition
boundaries. Unfortunately, many real-world CL
scenarios have neither explicit task information
nor context boundaries, motivating the study of
task-agnostic CL. This paper proposes a varia-
tional architecture growing framework dubbed
VariGrow. By interpreting dynamically grow-
ing neural networks as a Bayesian approximation,
and defining flexible implicit variational distribu-
tions, VariGrow detects if a new task is arriving
through an energy-based novelty score. If the nov-
elty score is high and the sample is “detected”
as a new task, VariGrow will grow a new expert
module to be responsible for it. Otherwise, the
sample will be assigned to one of the existing ex-
perts who is the most “familiar” with it (i.e., one
with the lowest novelty score) to preserve all the
acquired knowledge. We have tested VariGrow
on several CIFAR and ImageNet-based bench-
marks for the strictly task-agnostic CL setting
without any task information during training or
testing, which demonstrates its consistently supe-
rior or competitive performance. More interesting,
VariGrow achieves comparable performance with
task-aware CL methods.
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1. Introduction
In conventional machine learning, data points are assumed
to be identically and independently distributed (iid) and
all available at once. In contrast, the regime of continual
learning (CL) presents the new challenge of incrementally
accumulating knowledge from past experiences, mimicking
human’s ability to learn with non-iid data streams in widely
varying contexts. CL sequentially learns novel concepts
to achieve reliable predictions without catastrophically for-
getting previously learned knowledge. It can be applied
to many real-world applications, such as robotics (Thrun
& Mitchell, 1995), computer vision (Li et al., 2017), au-
tonomous driving (Pierre, 2018), and healthcare monitor-
ing (Ardywibowo et al., 2019; 2018; Ardywibowo, 2017;
Jiang et al., 2019). To this end, many CL methods have
been developed in attempting to solve the stability-plasticity
dilemma (Aljundi et al., 2017; 2018; Lopez-Paz & Ranzato,
2017; Kirkpatrick et al., 2017; Rusu et al., 2016; Shin et al.,
2017; Yoon et al., 2018; Yan et al., 2021b; Liu et al., 2021;
Rajasegaran et al., 2019).

Many existing CL methods assume that the data stream
is explicitly divided into a sequence of transiting contexts,
termed as tasks, with task information given at both training
and testing time. In real-world scenarios, however, there is
no clear transition boundary between different contexts or
tasks, limiting the application of these CL methods in prac-
tice (Lee et al., 2020). With this in mind, task-agnostic CL
performs continual learning without requiring task IDs and
their transitions. This new setting is challenging, dubbed as
the single-headed setting, where existing task-agnostic CL
methods have significantly lower performance compared
to their task-aware counterparts (Rao et al., 2019; Aljundi,
2019; Aljundi et al., 2019; Zeno et al., 2018; He & Jaeger,
2018). In this paper, we focus on task-agnostic CL for
classification problems.

Existing CL methods can be broadly categorized into 1)
regularization-based, 2) memory-based, and 3) expansion-
based (Parisi et al., 2019). While regularization- and
memory-based methods focus on retaining the knowledge
learned from the old tasks, expansion-based methods lean
towards better absorbing new knowledge and circumvent
the capability saturation (Sodhani et al., 2020). To the best
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of our knowledge, though, methods that tackle both catas-
trophic forgetting and capability saturation, under the task-
agnostic CL paradigm, are lacking (Kaushik et al., 2021).
Bayesian inference offers a promising way to reconcile this
problem, with old data points naturally being summarized
by a posterior distribution that can be sequentially updated.
The inherent uncertainty quantification capability enables
effective task-agnostic CL without needing task information
explicitly (Barber, 2012). In particular, Bayesian nonpara-
metrics offer a natural solution to the stability-plasticity
dilemma by principally increasing model complexity as
novel data arrives. However, the posterior distribution be-
comes intractable with large and complex datasets, and
existing sequential variational approximations are not flexi-
ble enough to capture the complexity of these datasets (Blei
& Jordan, 2006; Lin, 2013; Lee et al., 2020; Kessler et al.,
2019). Promisingly, implicit variational inference enables
flexible modeling of the posterior (Yin & Zhou, 2018; Tit-
sias & Ruiz, 2019; Molchanov et al., 2019). However, their
application to dynamically growing architectures for task-
agnostic CL has not been previously explored.

In this paper, we propose VariGrow, a Variational archi-
tecture Growing framework for task-agnostic continual
learning. To accomplish this, we first formulate model
or network growing in terms of Bayesian nonparametric
distributions that define an infinite mixture of expert distri-
butions, which can be considered as having an expansion-
based backbone. This consists of an expert distribution for
each mixture component and a mixing distribution selecting
from which expert the data originate. We then approxi-
mate these distributions using flexible implicit variational
distributions, allowing us to more accurately capture the
posterior at each incremental step. Specifically, we design
a mixing distribution using energy-based novelty scores to
determine the mixture component to which each data point
belongs (LeCun et al., 2006; Liu et al., 2020). This allows
to dynamically decide whether to grow a new mixture com-
ponent for novel instances, or to assign it to an existing
one. Meanwhile, each component is handled by an expert
distribution defined implicitly through Bayesian Neural Net-
works (BNNs) (Yin & Zhou, 2018; Titsias & Ruiz, 2019;
Molchanov et al., 2019). By deriving tractable approxima-
tions to the Kullback-Leibler (KL) divergence, we optimize
the Evidence Lower Bound (ELBO) of our formulation
through stochastic gradient-based techniques along with a
sparsification trick to ensure expressiveness. We have tested
VariGrow on several CIFAR and ImageNet-based bench-
marks for the strict task-agnostic (without using the ‘label
trick’ (Zeno et al., 2018)) CL setting, which demonstrates
its consistently competitive performance to existing task-
agnostic CL methods. Interestingly, VariGrow even achieves
comparable performances to task-aware counterparts.

2. Related Work
Continual Learning: Continual learning models aim to
learn new knowledge without catastrophically forgetting
previously learned information. Methods in this domain
can be broadly categorized into three classes: 1) memory-
based methods which store a subset of raw data or build a
generative model to generate synthetic data for replay (Re-
buffi et al., 2017; Shin et al., 2017; Lopez-Paz & Ranzato,
2017; Riemer et al., 2018), 2) regularization-based methods
which focus on preserving old information when learning
new ones by penalizing drastic changes to a model’s param-
eters (Kirkpatrick et al., 2017; Aljundi et al., 2018; Titsias
et al., 2019; Pomponi et al., 2020), and 3) expansion-based
methods which grow and assign new model components for
different tasks, keeping unrelated model parameters fixed.
The expansion can be based on neurons (Wortsman et al.,
2020), layers (Rusu et al., 2016; Schwarz et al., 2018), or
independent networks (Yan et al., 2021b). Most CL methods
require the task information during training and/or testing.
For example, in the multi-head setting, models would only
need to predict among the classes in one task, instead of the
whole class set (Kaushik et al., 2021).

Task-agnostic continual learning: In many real-world
applications, the current task information is usually not
given (Lee et al., 2020; Kirichenko et al., 2021). Some
methods proposed to tackle the task-agnostic setting, but
only during testing (Kaushik et al., 2021; Yan et al., 2021b;
Abati et al., 2020; Rajasegaran et al., 2020). There are re-
cently developed methods assuming that task information is
not given during training (Lee et al., 2020; Ebrahimi et al.,
2020; Zeno et al., 2018) but their performances are much
lower compared to their task-aware counterparts. Further-
more, the model training in these methods have various
drawbacks. Rajasegaran et al. (2020) assumes that data
in one batch comes from a single context (task), and as-
sume that task labels are available during training. The
training of UCB (Ebrahimi et al., 2020) is extremely slow
due to their modified backpropagation formulation. In Lee
et al. (2020), CN-DPM has the least assumptions on the
data stream; however, their method requires performing
density estimation through generative modeling, which can
be intractable and unstable (Grathwohl et al., 2019; Lee
et al., 2020; Mescheder et al., 2018; Nalisnick et al., 2018),
causing their performance to be significantly lower than
task-aware CL methods.

Variational Inference for CL with Anomaly Detection:
Our VariGrow is motivated by the energy-based model
(EBM), which maps an input to a single, non-probabilistic
scalar called energy (Liu et al., 2020; LeCun et al., 2006).
This energy score has shown to outperform the softmax
confidence score for OoD detection (Hendrycks & Gim-
pel, 2016). Some other works on OoD detection either
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Figure 1. VariGrow schematic: (a): The dynamically growing construct illustrated for two expert components. The input x is passed into
a Bayesian Neural Network f1 with weights ω1 ∼ qϕ(ω1) multiplied by a binary mask m1 ∼ qϕ(m1), sparsifying the architecture.
The output is used to compute an energy-based novelty score ψ1

ϕ. As ψ1
ϕ(x) exceeds a threshold α, VariGrow expands and creates a

second mixture component. The novelty scores are then used to construct the mixing distribution and sample z ∼ qϕ(z|x), determining
which expert component is used to compute p(y|x,w,z). Through differentiable reparameterizations and approximations, gradient-based
optimization can be performed to learn the variational parameters that optimize the Evidence Lower Bound (ELBO). (b): The graphical
model of the nonparametric distribution that we approximate, consisting of mixture assignments zn for each data point according to prior
probability p(zn = k) = vk, and a mixture distribution where the expert parameters wk = {ωk,mk} are sampled from.

develop deep generative models (Nalisnick et al., 2018),
unify probabilistic and non-probabilistic models (Ranzato
et al., 2007), or add background classes to enhance OoD de-
tection (Mohseni et al., 2020). Kurle et al. (2019) analyzed
non-stationary data using Bayesian neural networks and
memory-based online variational Bayes by implementing
‘Bayesian forgetting’ to selectively forget knowledge not
relevant to the current data distribution. Kessler et al. (2019)
proposed a hierarchical Indian Buffet process (IBP) to allo-
cate resources when learning new tasks. However, training
would still require task information for online inference.
Zeno et al. (2018) proposed Bayesian Gradient Descent to
train neural networks, claiming that their closed-form update
rule better fits task-agnostic training. However, a ‘label trick’
was used to implicitly infer new tasks from novel labels.
Nguyen et al. (2018) proposed VCL, a variational Bayesian
interpretation of CL using exemplar data points and a KL
divergence penalty to retain previous information. But VCL
is a multi-head formulation and requires task labels both
during training and testing. Kirichenko et al. (2021) pro-
posed using likelihood-based mixture models to handle the
multi-modality of the different tasks. However, likelihood-
based models fail on complex datasets and often assign
higher likelihoods to OoD data (Nalisnick et al., 2018). For
this, they resort to use a pretrained model to extract features
for more complex datasets such as CIFAR100 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009).

3. Methodology
Let {Dt}Ti=t be a stream of datasets with each Dt having
input-output pairs (x, y). Bayesian learning places a prior
distribution p(θ) on the model parameters θ. In continual
learning (CL), the posterior distribution after observing t+1
datasets is obtained using Bayes’ rule:

p(θ|D1:t+1) ∝ p(Dt+1|θ)p(θ|D1:t). (1)

Here, the posterior obtained in the previous step t is treated
as a prior for the current step t + 1. As we observe more
novel data points, the complexity of the evolving posterior
given our dataset increases. Hence it is important that our
model scales accordingly (Hjort et al., 2010).

3.1. VariGrow

To this end, we design a dynamically growing model, Vari-
Grow, parameterized as follows:

p(w, z|D1:t+1) ∝ p(Dt+1|w, zt+1)p(w, z|D1:t),

p(w, z|D1:t) =

t∏
i=1

p(wzi |Di)p(z|D1:t).

Here, w denote the parameters of an expert module such
as a neural network, while z determines which expert mix-
ture component p(wz) to sample w from. This mixing
strategy naturally enriches the model representation capac-
ity when needed for continual learning. The schematic is
shown in Figure. 1. When training with large and complex
datasets, the posterior distribution is intractable and is typi-
cally approximated (Blei et al., 2017). It is important that
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the distributions we use to approximate the posterior via
variational inference are flexible and expressive. For CL in
particular, one must ensure that these variational distribu-
tions can be robustly updated without requiring the access
to previously observed datasets (Nguyen et al., 2018). In
our CL settings, one would expect to grow more compo-
nents as we sequentially observe more data from novel tasks.
There could be infinitely many expert mixture components,
presenting additional challenges in inference (Hjort et al.,
2010). To address the mentioned challenges, we define the
following variational approximation to the above posterior:

qϕ(w, z|x) =
t∏

i=1

qϕ(wzi)qϕ(z|x). (2)

To obtain an ideal approximate solution, it is crucial that
both qϕ(z|x) and qϕ(wz) are expressive and flexible. To
this end, we will define these distributions implicitly. Also,
note that we make qϕ(z|x) covariate-dependent, allowing
us to assign individual data points to any mixture compo-
nent. To deal with the potentially infinite number of expert
modules, we can define qϕ(z|x) through a set of K expert
components, while the other mixture components can be
defined in relation to these main components. We describe
these two distributions in detail in the following sections.

For the moment, let us assume that these two distributions
are given. Optimizing the variational parameters ϕ corre-
sponds to minimizing the negative ELBO at each CL step t:

L(ϕt+1) = Eqϕt+1
(w,z|x)[− log p(Dt+1|wzt+1

)]

+ KL(qϕt+1
(w, z|x) ∥ qϕt

(w, z|x)).
(3)

The expectation can be approximated using a single sample
of (w, zt+1) ∼ qϕt+1

(w, z|x), and log p(Dt+1|wK+1) =
NE(x,y)∼Dt+1

[log p(y|x,wK+1)] can be approximated us-
ing minibatches, with N being the number of data points in
Dt+1. When a novel task is detected by our variational for-
mulation, zt+1 > K, and a new expert mixture component
K + 1 is created. So the ELBO becomes

L(ϕt+1) = Eqϕt+1
(w,z|x)[− log p(Dt+1|wK+1)]

+ KL(qϕt+1
(wK+1) ∥ p(w))

+ KL(qϕt+1
(z|x) ∥ qϕt

(z|x)).
(4)

Here, since K + 1 indicates a new mixture component
qϕt

(wK+1) = p(w), where p(w) is the prior distribution
on the expert parameters. Meanwhile when we observe data
points assigned to an existing mixture component, zt+1 =
k ∈ {1, . . . ,K}, we have:

L(ϕt+1) = Eqϕt+1
(w,z|x)[− log p(Dt+1|wk)]

+ nkKL(qϕt+1
(wk) ∥ qϕt

(wk))

+ KL(qϕt+1
(z|x) ∥ qϕt

(z|x)),
(5)

where nk is the number of data points previously assigned
to expert k. Intuitively, as more data points are assigned to
expert k, we would expect the expert distribution qϕ(wk) to
approach the true corresponding posterior. Meanwhile, for
new expert components, only a prior distribution is given,
and the component is free to learn from novel data.

To evaluate and optimize the ELBO above, it is important
that we define our variational distributions such that the KL
terms defined above are easily computable, plus being flex-
ible and expressive. So we adopt an energy-based mixing
construct for the variational distribution qϕ(z|x) and define
the expert weight distribution implicitly.

3.2. Energy-based Mixing Distribution

Here, we describe our specification for the expert mixing
distribution qϕ(z|x). By Bayes’ rule, we have

qϕ(z|x) =
qϕ(x|z)qϕ(z)∑∞

i=1 qϕ(x|z = i)qϕ(z = i)
. (6)

Although one would typically find qϕ(x|z) through density
estimation, such as an agnostic method CN-DPM (Lee et al.,
2020), this involves the difficult optimization process of
training generative models which can be intractable and
unstable to perform in practice (Grathwohl et al., 2019;
Mescheder et al., 2018; Nalisnick et al., 2018). Instead of
relying on density estimation for qϕ(x|z) we interpret it as
an energy-based score function as in Liu et al. (2020).

In energy-based models, the system is optimized such that
x belonging to a particular mixture component k will have
low free energy ψk

ϕ(x) relative to component k (LeCun
et al., 2006; Liu et al., 2020). For example, in classification
problems, the Helmholtz free energy relative to component k
can be written w.r.t. the log-posterior predictive distribution
ℓkϕ(x, c) = Eqϕ(w|z=k)[log p(y = c|x,w, z = k)]:

ψk
ϕ(x) = −T log

( C∑
c=1

exp(ℓkϕ(x, c)/T )

)
.

Here, C is all the known classes until current CL step, and
T a temperature parameter of the free energy of compo-
nent k. Note that ℓkϕ(x, c) can be estimated using a single
sample of w. Similar energy functions can be derived for
other tasks (LeCun et al., 2006). We would expect higher
energy for data points x not belonging to component k, al-
lowing us to assign data points into their respective mixture
components. Specifically, for k ∈ {1, . . . ,K}, we have

qϕ(z = k|x) =
exp (−ψk

ϕ(x))∑K
i=1 exp (−ψi

ϕ(x)) + e−α
,

where α is a parameter controlling the concentration of the
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mixture components. Meanwhile, for k > K, we have

qϕ(z = k|x) = e−α

2k−K
(∑K

i=1 exp (−ψi
ϕ(x)) + e−α

) .
Note that qϕ(z > K|x) = e−α/(

∑K
i=1 exp (−ψi

ϕ(x)) +

e−α). Here, the number of active mixture components K
can dynamically grow as more data come in. Specifically,
when qϕ(z > K|x) > qϕ(zi|x),∀i ∈ {1, . . . ,K}, we can
allocate a new mixture component, growing a new expert
module that implicitly defines this distribution. From an
energy-based perspective, α can be seen as the average
energy of all data points in the system. Such energy-based
novelty scores allow us to identify and handle novel data
points in a Bayesian fashion.

Having specified our mixing distribution, we now show how
to approximate its KL term. Instead of computing the KL
term of this distribution directly, we derive a tractable upper
bound to the KL term. Specifically, we can divide the KL
term into two parts as follows:

KL(qϕt+1
(z|x)||qϕt

(z|x)) =
K∑
i=1

qϕt+1
(z = i|x) log

qϕt+1
(z = i|x)

qϕt
(z = i|x)

+

∞∑
i=K+1

qϕt+1
(z = i|x) log

qϕt+1
(z = i|x)

qϕt
(z = i|x)

.

(7)

Then, by applying Jensen’s inequality to the second term:

KL(qϕt+1
(z|x)||qϕt

(z|x)) ≤
K∑
i=1

qϕt+1
(z = i|x) log

qϕt+1
(z = i|x)

qϕt
(z = i|x)

+ qϕt+1
(z > K|x) log

qϕt+1
(z > K|x)

qϕt
(z > K|x)

(8)

In other words, by defining the following K + 1 categorical
distribution q′ϕ(z|x):

q′ϕ(z = k|x) = qϕ(z = k|x), k ∈ {1, . . . ,K} (9)

q′ϕ(z = K + 1|x) = qϕ(z > K|x), (10)

we can use the KL divergence of this distribution as a
tractable upper bound to the KL divergence of our origi-
nal distribution:

KL(qϕt+1
(z|x)||qϕt

(z|x)) ≤ KL(q′ϕt+1
(z|x)||q′ϕt

(z|x)).

3.3. Implicit Expert Distribution

We now define the expert distribution qϕ(w|z) = qϕ(wz).
For each z, we define wz as the parameters of a Bayesian
Neural Network (BNN). To regularize the BNN ensuring
that it does not overfit and to maintain a small memory

size, we posit that only a small percentage of weights in the
BNN are nonzero so here we apply a sparsification method.
Indeed, this is inline with recent findings on neural network
model compression (Frankle & Carbin, 2018), as well as
existing variational inference methods for encourgaging
sparse activations in BNNs (Ardywibowo et al., 2022a;b;
2020; Boluki et al., 2020). So we separate w into two
parameter groups w = {ω,m}. Here ω are the weights and
biases commonly found in a standard BNN. For a Bayesian
treatment of ω, approximate Bayesian inference techniques
for neural networks, such as Monte Carlo dropout and its
variants can be used (Gal & Ghahramani, 2016; Gal et al.,
2017; Kingma et al., 2015; Boluki et al., 2020; Kumar et al.,
2021). Alternatively, one can employ MAP estimation of
ω and place Gaussian priors to induce L2 weight decay
regularization (Krogh & Hertz, 1992; Vladimirova et al.,
2019).

On the other hand, m is a learnable mask parameter that de-
cide which weights and biases of ω are active or set to zero.
With this, we can define a sparsifying prior for m. Specifi-
cally, let mk be stochastic binary variables that determine
whether weight k is used. To simplify our exposition, we
will remove the subscript k and introduce them later for con-
ciseness. For each weight k, we define a prior distribution
p(m) for each binary variable as

p(m) = Bern(e−η). (11)

Here, η is a parameter controlling the shape of the prior.
We then define a variational distribution q(m) = qϕ(m)
with parameters ϕ ∈ (−∞,∞) by transforming random
variables from an explicit distribution ϵ ∼ p(ϵ) using a
reparameterizable transformation as follows:

ϵ ∼ p(ϵ), m = ζ(ϕ, ϵ) ⇒ m ∼ qϕ(m). (12)

Here, ζ(ϕ, ϵ) outputs a binary random variable that deter-
mines whether the weight corresponding tom is used, where
m = ζ(ϕ, ϵ). By defining p(ϵ) as the logistic distribution
with probability density f(ϵ), and ζ(ϕ, ϵ) through the sig-
moid function σ(ϕ) ∈ (0, 1) as follows:

ϵ ∼ p(ϵ), f(ϵ) =
e−ϵ

(1 + e−ϵ)2
,

ζ(ϕ, ϵ) = 1

[
log

(
σ(ϕ)

1− σ(ϕ)

)
+ ϵ > 0

]
,

we have that qϕ(m = 1) = Ep(ϵ)[ζ(ϕ, ϵ)] = σ(ϕ). In
practice, ϵ ∼ p(ϵ) can be sampled as ϵ = log u − log(1 −
u), where u ∼ Unif(0, 1). With this, the KL divergence
between the prior and posterior can be computed as

KL(q(m)||p(m)) =

K∑
k=1

KL(qϕ(mk)||p(mk)),
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Table 1. Results on CIFAR100-B0 benchmark (averaged over three runs). Parameters are counted by millions. *Dashes indicate results
were not reported by the authors.

Method 5 Steps 10 Steps 20 Steps 50 Steps
Params. Acc. (%) Params. Acc. (%) Params. Acc. (%) Params. Acc. (%)

Bound 11.2 80.40 11.2 80.41 11.2 81.49 11.2 81.74
iCaRL (Rebuffi et al., 2017) 11.2 71.14 11.2 65.27 11.2 61.20 11.2 56.08
UCIR (Hou et al., 2019) 11.2 62.77 11.2 58.66 11.2 58.17 11.2 56.86
BiC (Hou et al., 2019) 11.2 73.10 11.2 68.80 11.2 66.48 11.2 62.09
WA (Zhao et al., 2020) 11.2 72.81 11.2 69.46 11.2 67.33 11.2 64.32
PODNet (Douillard et al., 2020) 11.2 66.70 11.2 58.03 11.2 53.97 11.2 51.19
AANets (Liu et al., 2021) 11.2 67.59 11.2 65.66 - - - -
RPSNet (Rajasegaran et al., 2019) 60.6 70.50 56.5 68.60 - - - -
DER (Yan et al., 2021a) 2.89 75.55 4.96 74.64 7.21 73.98 10.15 72.05
CN-DPM (Lee et al., 2020) (Agnostic) 19.2 20.34 19.2 17.60 19.2 18.79 19.2 19.70
VariGrow (Agnostic) 2.97 75.50 4.88 75.04 7.30 74.03 10.25 72.21

KL(qϕ(mk)||p(mk)) =−H[qϕ(mk)] + ηqϕ(mk = 1)

− log
(
1− e−η

)
qϕ(mk = 0),

whereH[qϕ(mk)] is the entropy of qϕ(mk). For sufficiently
large η, log (1− e−η) ≈ 0. We achieve this by scaling η
with N , η = Nλ. We can then scale the negative ELBO
with the number of samples N without changing the optima.

KL(qϕ(mk)||p(mk)) ≈ − 1

N
H[qϕ(mk)]+

Nλ

N
qϕ(mk = 1).

For large N , the entropy term vanishes, leaving us with

KL(qϕ(mk)||p(mk)) ≈ λqϕ(mk = 1) = λσ(ϕk).

Here the KL term penalizes the model for using too many
weights on average, enabling sparsity of each expert. The
discrete nature of the selection variables makes it not im-
mediately amenable to gradient-based optimization through
reparameterization. To deal with this challenge, we adopt
the Gumbel-softmax reparameterization trick (Jang et al.,
2016; Maddison et al., 2016) to relax the discrete random
variables. This amounts to replacing the indicator func-
tion in ζ(ϕ, ϵ) with a sigmoid scaled by temperature τ ,
ζ(ϕ, ϵ) ≈ ζ̃(ϕ, ϵ) = σ

((
log

( σ(ϕ)
1−σ(ϕ)

)
+ ϵ

)
/τ

)
. Mean-

while, during testing, we can use ζ(ϕ, ϵ) directly and re-
move the stochasticity. The masking parameters seemingly

take more resources but in experiments we show that they
can reduce and sparsify the BNN nicely.

4. Experiments
In this section, we conduct extensive experiments to vali-
date the effectiveness of VariGrow. We evaluate our method
on 3 datasets: CIFAR-100 (Rebuffi et al., 2017), ImageNet-
100 (Rebuffi et al., 2017), and ImageNet-1000 (Rebuffi et al.,
2017), using two commonly used benchmark protocols. Af-
ter detailing our experimental setups and implementation
details in Section 4.1, we present and discuss experimental
results on the CIFAR-100 dataset and both ImageNet-100
and ImageNet-1000 datasets in Sections 4.2 and 4.3.

4.1. Experimental Setups
Datasets: CIFAR-100 (Krizhevsky et al., 2009) consists of
60,000 32x32 pixel color images ranging over 100 classes.
The dataset is divided into 50,000 training images with
500 images per class, and 10,000 images for evaluation
with 100 images per class. ImageNet-1000 (Deng et al.,
2009) is a large-scale dataset consisting of 1,000 classes,
including about 1.2 million RGB images for training and
50,000 images for validation. ImageNet-100 (Rebuffi et al.,
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Figure 2. Class-incremental performance comparisons at each step for the CIFAR-100 dataset.
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Table 2. Results on CIFAR100-B50 (averaged over three runs). Parameters are counted by millions.

Method 2 Steps 5 Steps 10 Steps
Params. Acc. (%) Params. Acc. (%) Params. Acc. (%)

Bound 11.2 77.22 11.2 79.89 11.2 79.91
iCaRL (Rebuffi et al., 2017) 11.2 71.33 11.2 65.06 11.2 58.59
UCIR (Hou et al., 2019) 11.2 67.21 11.2 64.28 11.2 59.92
BiC (Hou et al., 2019) 11.2 72.47 11.2 66.62 11.2 60.25
WA (Zhao et al., 2020) 11.2 71.43 11.2 64.01 11.2 57.86
PODNet (Douillard et al., 2020) 11.2 71.30 11.2 67.25 11.2 64.04
DER (Yan et al., 2021a) 3.90 74.57 6.13 72.60 8.79 72.45
VariGrow (Agnostic) 3.63 74.62 6.01 73.97 8.55 72.75

2017; Hou et al., 2019; Yan et al., 2021b) is a subset of it by
selecting 100 classes from the ImageNet-1000 dataset.

Benchmark Protocols: For the CIFAR-100, we test our
methods on two widely used protocols: 1) CIFAR100-
B0 (Rebuffi et al., 2017; Yan et al., 2021b): a protocol
which divides all 100 classes into 5, 10, 20, and 50 incre-
mental steps with a fixed memory size of 2,000 exemplars
over batches; 2) CIFAR100-B50 (Hou et al., 2019; Yan et al.,
2021b): a protocol which starts from a model trained on
50 classes, while the remaining 50 classes are divided into
splits of 2, 5, and 10 incremental steps with 20 examples as
memory per class. We compare the top-1 average incremen-
tal accuracy, which takes the average of the accuracy for
each step. We follow similar protocols for ImageNet-100:
1) ImageNet100-B0 (Rebuffi et al., 2017; Yan et al., 2021b):
the protocol trains the model in batches of 10 classes from
scratch with a fixed memory size 2,000 over batches; 2)
ImageNet100-B50 (Hou et al., 2019; Yan et al., 2021b): the
protocol starts from a model trained on 50 classes while the
remaining 50 classes come in 10 steps with 20 exemplars
per class. For fair comparisons, we use the same ImageNet
subset and class order done by Rebuffi et al. (2017), Hou
et al. (2019), and Yan et al. (2021b). For ImageNet-1000,
we evaluate our method on the ImageNet1000-B0 bench-
mark (Rebuffi et al., 2017; Yan et al., 2021b), that trains
the model in batches of 100 classes with 10 steps in total

and set a fixed memory size as 20,000 exemplars, with the
same class order by Rebuffi et al. (2017) for ImageNet-1000.
For both ImageNet-100 and ImageNet-1000, we compare
the top-1 and top-5 average incremental accuracy, as well
as the last step accuracy. For the task-agnostic setting dur-
ing training and testing we hide task IDs, which is called
single-head setting. The task-aware setting (i.e. multi-head)
is using one prediction head for each task and effectively
predicting the labels within a task instead the whole label
pool. For baselines, we compare against various state-of-
the-art (i) task-aware CL methods: iCaRL (Rebuffi et al.,
2017) is memory-based that picks exemplars by balanc-
ing the number of class labels. UCIR (Hou et al., 2019),
uses normalized feature vectors for prediction. BiC (Hou
et al., 2019) trains a bias correction layer on a validation
set. WA (Zhao et al., 2020) corrects biased weights by
aligning the norm of the weight vectors of new classes to
weight vectors of old classes. PODNet (Douillard et al.,
2020) uses a spatial distillation loss penalizing parameter
changes. TPCIL (Tao et al., 2020) attempts to preserve the
topology of the latent feature space, AANets (Liu et al.,
2021) attempt to solve the stability-plasticity dilemma by
proposing stable and plastic blocks, RPSNet (Rajasegaran
et al., 2019) is a path selection algorithm that progressively
chooses optimal paths as sub-network for the new classes.
DER (Yan et al., 2021a) dynamically grows the network
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Figure 3. Class-incremental performance comparisons at each step for the ImageNet-100 and ImageNet-1000.
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Table 3. Results on ImageNet-B0 (averaged over three runs). Parameters are counted by millions. Avg is the average accuracy (%) over
steps. Last is the accuracy (%) evaluate on each task for the model at the last incremental step. *Dashes indicate results were not reported.

Method
ImageNet100-B0 ImageNet1000-B0

Params. Top-1 Top-5 Params. Top-1 Top-5
Avg Last Avg Last Avg Last Avg Last

Bound 11.2 - - - 95.1 11.2 89.27 - - -
iCaRL (Rebuffi et al., 2017) 11.2 - - 83.6 63.8 11.2 38.4 22.7 63.7 44.0
BiC (Hou et al., 2019) 11.2 - - 90.6 84.4 11.2 - - 84.0 73.2
WA (Zhao et al., 2020) 11.2 - - 91.0 84.1 11.2 65.67 55.6 86.6 81.1
RPSNet (Rajasegaran et al., 2019) - - - 87.9 74.0 - - - - -
AANets (Liu et al., 2021) 11.2 75.58 - - - 11.2 64.85 - - -
DER (Yan et al., 2021a) 7.67 76.12 66.06 92.79 88.38 14.52 66.73 58.62 87.08 81.89
VariGrow (Agnostic) 7.82 76.04 65.87 92.51 88.17 14.89 66.58 58.47 86.88 81.70

using given task labels. We also benchmark against (ii) task-
agnostic CL methods: CN-DPM (Lee et al., 2020), a hybrid
expansion- and memory-based method, and UCB (Ebrahimi
et al., 2020), a regularization-based BNN model. We were
not able to reproducible UCB’s results reliably, with an ac-
curacy of only 40.34% on the CIFAR10/100 testing protocol.
One agnostic method (Aljundi et al., 2019) was not consid-
ered due to the capacity can only handle smaller dataset.
Implementation Details: For all datasets, we adopt ResNet-
18 (He et al., 2016) as the architecture of our expert modules,
following RPSNet (Rajasegaran et al., 2019) and DER (Yan
et al., 2021b). We run experiments on three different class
orders and report the average of the results. In these ex-
periments, we treat the exemplars variationally, follow-
ing Nguyen et al. (2018) and select new exemplars (i.e.
coreset) as novel mixture components are encountered based
on the herding selection strategy (Welling, 2009). We also
use these exemplars along with OoD datasets to further
calibrate our energy-based novelty score, following the se-
lection of Liu et al. (2020). We use Tiny-ImageNet (Le
& Yang) and LSUN (Yu et al., 2015) as OoD datasets for
CIFAR-100 and ImageNet experiments respectively. We
perform MAP estimation of the neural network weights
ω using Gaussian priors, equivalent to adding a 5 × 10−4

weight decay coefficient. We set λ = 1 for the prior distribu-
tion of m, and set T = 1, and α = 18 for the energy-based
novelty scores. We optimize our formulation using SGD
with a learning rate of 0.1, batch size of 128 for CIFAR-100,
and 256 for ImageNet. We train for 120 epochs and decay
the learning rate by 0.1 after 30, 60, and 90 epochs.

4.2. Evaluation on CIFAR100

Quantitative Results: Table 1 and Figure 2 (left) show the
results for CIFAR100-B0. We can see that, without need-
ing task labels nor task switching information, our method
is competitive with state-of-the-art CL methods which are
task-aware. Meanwhile, ours significantly outperforms CN-
DPM, a task-agnostic online learning formulation, with an
improvement of over +50%. Moreover, the margin between

Table 4. Results on ImageNet-B50 (averaged over three runs). Pa-
rameters are counted by millions. *Dashes indicate results were
not reported by the authors.

Method
ImageNet100-B50

Params. Top-1 Top-5
Avg Last Avg Last

Bound 11.2 81.20 81.5 - -
UCIR (Hou et al., 2019) 11.2 68.09 57.3 - -
PODNet (Douillard et al., 2020) 11.2 74.33 - - -
TPCIL (Tao et al., 2020) 11.2 74.81 66.91 - -
DER (Yan et al., 2021a) 8.87 77.73 72.06 94.01 91.64
VariGrow (Agnostic) 8.94 77.64 71.48 92.84 89.95

our method and CN-DPM continuously increases, indicat-
ing that our method performs better over longer continual
learning episodes with fewer parameters with our sparsifica-
tion. Note also that we are getting very close to the offline
multi-task learning baseline (Bound). This demonstrates
that VariGrow is able to learn from a non-iid data stream
without much decrease in performance despite not having
access to the entire dataset.

We further compare the performance of VariGrow on the
CIFAR100-B50 benchmark in Table 2 and Figure 2 (middle,
right), again showing that our method is competitive with
task-aware continual learning methods. We note that DER is
the most competitive task-aware method in our benchmarks
but it has to grow the network architecture with given task
switching information.

To further banchmark the efficacy of our method in handling
task-agnosticism, we study the effects of two settings where
task-agnosticism can occur. One setting involves removing

Table 5. Results on different task-agnostic settings on the
CIFAR100-B50 benchmark.

Setting Accuracy (%)
5 Steps 10 Steps

Baseline 73.97 72.45
Lookback Old Tasks 71.21 70.98
Fuzzy Boundaries 70.03 69.19
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Figure 4. Novelty score values for each iteration on the CIFAR100-
B50 10-step protocol.

the clear task boundaries, and instead gradually introducing
data from novel tasks. This setting is similar to the fuzzy
task boundary experiment conducted by Lee et al. (2020).
The other setting assumes that data from previous tasks
can be observed again in between task switches. Thus,
our model needs to be able to distinguish these instances
and correctly assign them to an existing expert instead of
growing a new one. We denote both of these experiments as
fuzzy and lookback respectively, and the performance of our
method in these settings on the CIFAR-100 dataset can be
seen in Table 5. As seen in Table 5, our method suffers only
a slight degradation in accuracy in these settings compared
to the traditional setting. We hypothesize that this is caused
by stray datapoints being incorrectly assigned to the wrong
expert.

Qualitative view on energy-based Novelty Score: We
show the energy-based novelty score at each timestep for
the CIFAR100-B50 10-step protocol in Figure 4. Here, we
see that our novelty score clearly helps detect task changes,
with significantly increased novelty scores after a new task
is observed. Note also that VariGrow is able to correctly
detect that there are 10 tasks with 10 observed peaks.

4.3. Evaluation on ImageNet

We show results for the ImageNet-100 and ImageNet-1000
datasets in Tables 3, 4, and Figure 3. We see that our Vari-
Grow is again competitive with task-aware methods for all
splits on these two datasets, which are more complex com-
pared to CIFAR100. We note that the gap in top-5 accuracy
is smaller. We believe that this is because the top-5 accuracy
is more tolerant to slightly inaccurate predictions and thus
less sensitive to catastrophic forgetting.

5. Conclusions
We have presented VariGrow, a variational architecture
growing formulation to solve strict task-agnostic continual
learning. VariGrow defines an implicit variational construct
to approximate the nonparametric posterior at each incre-
mental CL step, giving a Bayesian interpretation of growing

networks. Using energy-based novelty detection, we are
able to dynamically grow the CL prediction model only
when needed and reliably assign data points and thereafter
corresponding tasks into different expert mixture compo-
nents, where each component can be handled by expert
distributions defined implicitly by neural networks. Our ex-
tensive performance evaluation experiments on both CIFAR
and ImageNet show that VariGrow significantly outperforms
existing task-agnostic CL methods and is competitive even
against task-aware CL methods.
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