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Abstract
In this paper, we revisit the regret minimization
problem in sparse stochastic contextual linear ban-
dits, where feature vectors may be of large dimen-
sion d, but where the reward function depends on
a few, say s0 � d, of these features only. We
present Thresholded Lasso bandit, an algorithm
that (i) estimates the vector defining the reward
function as well as its sparse support, i.e., signifi-
cant feature elements, using the Lasso framework
with thresholding, and (ii) selects an arm greedily
according to this estimate projected on its support.
The algorithm does not require prior knowledge
of the sparsity index s0 and can be parameter-free
under some symmetric assumptions. For this sim-
ple algorithm, we establish non-asymptotic regret
upper bounds scaling asO(log d+

√
T ) in general,

and as O(log d+ log T ) under the so-called mar-
gin condition (a probabilistic condition on the sep-
aration of the arm rewards). The regret of previous
algorithms scales asO(log d+

√
T log(dT )) and

O(log T log d) in the two settings, respectively.
Through numerical experiments, we confirm that
our algorithm outperforms existing methods.

1. Introduction
The linear contextual bandit (Abe & Long, 1999; Li et al.,
2010) is a sequential decision-making problem that gener-
alizes the classical stochastic Multi-Armed Bandit (MAB)
problem (Lai & Robbins, 1985; Robbins, 1952), where (i)
in each round, the decision-maker is provided with a con-
text in the form of a feature vector for each arm and where
(ii) the expected reward is a linear function of these vec-
tors. More precisely, at the beginning of round t ≥ 1, the
decision-maker receives for each arm k, a feature vector
At,k ∈ Rd. She then selects an arm, say k, and observes
a sample of a random reward with mean 〈At,k, θ〉. The pa-

1EECS and Digital Futures, KTH Royal Institute of Technology,
Stockholm, Sweden 2Cyberagent, Inc., Tokyo, Japan. Correspon-
dence to: Kaito Ariu <ariu@kth.se>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

rameter vector θ ∈ Rd is fixed but initially unknown. Linear
contextual bandits have been extensively applied in online
services such as online advertisement and recommendation
systems (Li et al., 2010; 2016; Zeng et al., 2016), and con-
stitute arguably the most relevant structured bandit model
in practice.

The major challenge in the design of efficient algorithms for
contextual linear bandits stems from the high dimensionality
of the feature space. For example, for display ad systems as
studied in Chapelle & Li (2011); Weinberger et al. (2009),
the joint information about a user, an ad and its publisher
is encoded in a feature vector of dimension d = 224. For-
tunately, typically only a few features significantly impact
the expected reward. This observation has motivated the
analysis of problems where the unknown parameter vector
θ is sparse (Bastani & Bayati, 2015; Kim & Paik, 2019;
Oh et al., 2021; Wang et al., 2018). In this paper, we also
investigate sparse contextual linear bandits, and assume that
θ only has at most s0 � d non-zero components. The set
of these components and its cardinality s0 are unknown to
the decision-maker. Sparse contextual linear bandits have
attracted a lot of attention recently. State-of-the-art algo-
rithms developed to exploit the sparse structure achieve
regrets scaling as O(log d+

√
T log(dT )) in general, and

O(log d log T ) under the co-called margin condition (a set-
ting where arms are well separated); refer to Section 2 for
details.

We develop a novel algorithm, referred to as Thresholded
Lasso bandit1, with improved regret guarantees. Our al-
gorithm first uses the Lasso framework with thresholding
to maintain and update in each round estimates of the pa-
rameter vector θ and of its support. It then greedily picks
an arm based on these estimates (the thresholded estimates
of θ). The regret of the algorithm strongly depends on the
accuracy of these estimates. We derive strong guarantees on
this accuracy, which in turn leads to regret guarantees. Our
contributions are as follows.

(i) Thresholded Lasso Estimation Performance. The
performance of the Lasso-based estimation procedure is now
fairly well understood, see e.g., Bühlmann & Van De Geer

1An implementation of our method is available
at https://github.com/CyberAgentAILab/
thresholded-lasso-bandit.
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(2011); Tibshirani (1996); Zhou (2010). For example, Zhou
(2010) provides an analysis of the estimation of the support
of θ, and specifically, gives upper bounds on the number of
false positives (components that are not in the support, but
estimated as part of it) and false negatives (components that
are in the support, but not estimated as part of it). These
analyses, however, critically rely on the assumption that the
observed data is i.i.d.. This assumption does not hold for
the bandit problem, as the algorithm adapts its arm selection
strategy depending on the past observations. Despite the
non i.i.d. nature of the data, we manage to derive perfor-
mance guarantees of the estimate of θ. In particular, we
establish high probability guarantees that are independent
of the dimension d (see Lemma 5.7).

(ii) Regret Guarantees. Based on the analysis of the
Thresholded Lasso estimation procedure, we provide a
finite-time analysis of the regret of our algorithm under
certain symmetry assumptions made in Oh et al. (2021).
The regret scales at most as O(log d +

√
T ) in general

and O(log d + log T ) under the margin condition. More
precisely, the estimation error of θ induces a regret scal-
ing as O(

√
T ) (or O(log T ) under the margin condition).

The additional term O(log d) in our regret upper bounds
comes from the errors made when estimating the support
of θ. It is worth noting that when using the plain Lasso
estimator (without thresholding), one would obtain weaker
performance guarantees for the estimation of θ, typically
depending on d, see e.g., Bastani & Bayati (2015). This
dependence causes an additional multiplicative term log d
in the regret.

(iii) Numerical Experiments. We present extensive nu-
merical experiments to illustrate the performance of the
Thresholded Lasso bandit algorithm. We compare the es-
timation accuracy for θ and the regret of our algorithm to
those of the Lasso bandit, Doubly-Robust Lasso bandit,
and Sparsity-Agnostic Lasso bandit algorithms (Bastani &
Bayati, 2020; Kim & Paik, 2019; Oh et al., 2021). These
experiments confirm the benefit of the use of the Lasso
procedure with thresholding.

2. Related Work
Stochastic linear bandit problems have attracted a lot of
attention over the last decade. Carpentier & Munos (2012)
addresses sparse linear bandits where ‖θ‖0 ≤ s0 and where
the set of arms is restricted to the `2 unit ball. For regimes
where the time horizon is much smaller than the dimension
d, i.e., T � d, the authors propose an algorithm whose re-
gret scales at most asO(s0

√
T log(dT )). Hao et al. (2020b)

studied high-dimensional linear bandit problems where the
number of actions is larger than or equal to d. Under some
signal strength conditions, they propose an algorithm that

achieves a regret of O(s0 log d +
√
s0T log(dT )). These

studies, however, do not consider problems with contextual
information.

Recently, high-dimensional contextual linear bandits have
been investigated under the sparsity assumption ‖θ‖0 ≤
s0. In this line of research, the decision-maker is provided
in each round with a set of arms defined by a finite set
of feature vectors. This set is uniformly bounded across
rounds. In this setting, the authors of Abbasi-Yadkori et al.
(2012) devise an algorithm with both a minimax (problem
independent) regret upper bound Õ(

√
s0dT ) and problem

dependent upper bound O(ds0(log T )2) (the notation Õ
hides the polylogarithmic terms) without any assumption on
the distribution (other than the assumptions similar to our
Assumption 3.1).

In Bastani & Bayati (2020) (initially published in 2015
as Bastani & Bayati (2015)), the authors address a high-
dimensional contextual linear bandit problem where the
unknown parameter defining the reward function is arm-
specific (θ is different for the various arms). In the pro-
posed algorithm, arms are explored uniformly at random
for O(s2

0 log d log T ) prespecified rounds. Under the mar-
gin condition, similar to our Assumption 5.1, the algo-
rithm achieves a regret of O(s2

0(log d + log T )2). For
the same problem, Wang et al. (2018) develops the so-
called MCP-Bandit algorithm. The latter also uses the uni-
form exploration for O(s2

0 log d log T ) prespecified rounds,
and has improved regret guarantees: the regret scales as
O(s2

0(log d+ s0) log T ).

High-dimensional contextual linear bandits have been also
studied without the margin condition, but with a unique
parameter θ defining the reward function. Kim & Paik
(2019) designs an algorithm with uniform exploration
phases of O(

√
T log(dT ) log T ) rounds, and with regret

O(s0

√
T log(dT )). All the aforementioned algorithms re-

quire the knowledge of the sparsity index s0. In Oh et al.
(2021), the authors propose an algorithm, referred to as SA
Lasso bandit, that does not require this knowledge, and with
regretO(s2

0 log d+ s0

√
T log(dT )). In addition, SA Lasso

bandit does not include any uniform exploration phase. Its
regret guarantees are derived under specific assumptions
on the context distribution, the so-called relaxed symme-
try assumption and the balanced covariance assumption.
The authors also establish a O(s2

0 log d +
√
s0T log(dT ))

regret upper bound under the so-called restricted eigen-
value condition. In Ren & Zhou (2020), under the restricted
eigenvalue condition induced by the restricted bounded den-
sity assumption, the authors established a regret bound of
O(s0polylog(d) +

√
s0T log(d)polylog(T )).

One notable recent development in contextual bandit is the
regret analyses of the exploration-free or greedy algorithms.
Under some symmetry assumptions on the context distri-
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Table 1. Algorithms and their regret guarantees for scaling with respect to d and T . O notations are hiding sub-logarithmic factors in d
and logarithmic factors in s0. The ’Compatibility’ and ’Margin’ conditions refer to Assumptions 3.2 and 5.1.

Paper Regret Compatibility Margin Other

Abbasi-Yadkori et al. (2012) O(ds0(log T )2)
Bastani & Bayati (2020) O(s2

0(log d+ log T )2) X X
Wang et al. (2018) O(s2

0(log d+ s0) log T ) X X
Kim & Paik (2019) O(s0

√
T log(dT )) X

Ren & Zhou (2020) O(s0polylog(d) + log(T )
√
s0T log d) Restricted Bounded Density

Oh et al. (2021) O(s2
0 log d+ s0

√
T log(dT )) X Asm 3.3, 3.4

This work: Theorem 5.2 O(s2
0 log d+ s0 log T ) X X Asm 3.3, 3.4, 3.5

This work: Theorem 5.3 O(s2
0 log d+

√
s0T ) X Asm 3.3, 3.4, 3.5

Bastani et al. (2021)
(non-sparse setting)

O(d log d log T ) X
Covariate diversity condition

(Stronger than Asm 3.5)

bution, these algorithms exhibit sub-linear regret (Bastani
et al., 2021; Kannan et al., 2018; Ren & Zhou, 2020; Oh
et al., 2021). Our analysis is also inspired by the results on
exploration-free algorithms.

In this paper, we develop an algorithm with improved regret
guarantees with and without the margin condition. The
algorithm does not rely on the knowledge of s0 and can be
made parameter-free. Such a parameter-free algorithm is
not proposed in other recent papers. We have summarized
the relevant studies and our work in Table 1. We will come
back to this table when we discuss the assumptions.

3. Model and Assumptions
3.1. Model and Notation

We consider a contextual linear stochastic bandit problem
in a high-dimensional space. In each round t ∈ [T ] :=
{1, . . . , T}, the algorithm is given a set of context vec-
tors At = {At,k ∈ Rd : k ∈ [K]}. The successive
sets (At)t≥1 form an i.i.d. sequence with distribution
pA. In round t, the algorithm selects an arm At ∈ At
based on past observations, and collects a random reward
rt. Formally, if Ft is the σ-algebra generated by random
variables (A1, A1, r1, . . . ,At−1, At−1, rt−1,At), At is Ft-
measurable. We assume that rt = 〈At, θ〉+ εt, where εt is
a zero mean sub-Gaussian random variable with variance
proxy σ2 given Ft and At. Our objective is to devise an
algorithm with minimal regret, where regret is defined as:

R(T ) := E

[
T∑
t=1

max
A∈At

〈A, θ〉 − rt

]

= E

[
T∑
t=1

max
A∈At

〈A−At, θ〉

]
.

Notation. The `0-norm of a vector θ ∈ Rd is ‖θ‖0 =∑d
i=1 1 {θi 6= 0}. We denote Σ̂t = 1

t

∑t
s=1AsA

>
s as the

empirical Gram matrix generated by the arms selected un-
der a specific algorithm. For any B ⊂ [d], we define
θB := (θ1,B , . . . , θd,B)> where for all i ∈ [d], θi,B :=
θi1{i ∈ B}. For each B ⊂ [d], we define the subma-
trix A(B) ∈ Rn×|B| of A ∈ Rn×d where for A(B), we
extract the rows that are in B. We denote supp(x) as the
set of the non-zero element indices of x ∈ Rd. We also
define θmin as the minimal value of |θi| on the support:
θmin := mini∈supp(θ) |θi|. We denote by S(θ) = supp(θ) =
{i ∈ [d] : θi 6= 0} the support of θ. Definitions and nota-
tions are also summarized in Appendix A, Table 2.

3.2. Assumptions

We present a set of assumptions used throughout the paper.
Many assumptions are essentially from Oh et al. (2021).
However, there are some differences, and these will be dis-
cussed. We also discuss and compare these assumptions to
those made in the related literature.

Assumption 3.1 (Sparsity and parameter constraints). The
parameter θ defining the reward function is sparse, i.e.,
‖θ‖0 ≤ s0 for some fixed but unknown integer s0 (s0 does
not depend on d). We further assume that ‖θ‖1 ≤ s1 for
some unknown constant2 s1 and θmin ≥ s2/s0 with some
unknown constant s2 (< s1). Finally, we assume that the
`∞-norm of the context vector is bounded: for all t and for
all A ∈ At, ‖A‖∞ ≤ sA, where sA > 0 is a constant.

Assumption 3.2 (Compatibility condition). For a matrix
M ∈ Rd×d and a set S0 ⊂ [d], we define the compatibility

2Given this assumption of s1 to be a constant, note that the
value of θmin would scale as Θ (1/s0), as s0θmin ≤ ‖θ‖1 ≤ s1
may hold. Note that in Oh et al. (2021), ‖θ‖2 ≤ Θ(1) and ‖A‖2 ≤
Θ(1) (for all A ∈ At) are assumed.
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constant φ(M,S0) as:

φ2(M,S0) := min
x:‖xS0‖1 6=0

{
s0x
>Mx

‖xS0‖21
:‖xSc0‖1≤3‖xS0‖1

}
.

We assume that for the Gram matrix of the action set
Σ := 1

K

∑K
k=1 EA∼pA

[
AkA

>
k

]
satisfies φ2(Σ, S(θ)) ≥

φ2
0, where φ0 > 0 is some positive constant.

The compatibility condition was introduced in the high-
dimensional statistics literature (Bühlmann & Van De Geer,
2011). It ensures that the Lasso estimate (Tibshirani, 1996)
of the parameter θ approaches to its true value as the number
of samples grows large. Note that it is easy to check that
the compatibility condition is strictly weaker than assuming
the positive definiteness of Σ. It allows us to consider fea-
ture vectors with strongly correlated components. Assump-
tion 3.2 is considered to be essential for the Lasso estimate
to be consistent and assumed in many of the relevant studies.
See Table 1 for studies using the compatibility condition.
φ0 can be a constant that does not depend on d. This is the
case, for example, when the context distribution is multivari-
ate Gaussian, uniform distribution. In these examples, the
minimum eigenvalue of the Gram matrix is lower bounded
by some constant. When the minimum eigenvalue is lower
bounded by some constant, the compatibility constant is
also lower bounded by some constant (Bühlmann & Van
De Geer, 2011).

Assumption 3.3 (Relaxed symmetry (Oh et al., 2021)). For
the distribution pA of A, there exists a constant ν ≥ 1 such
that for all A ∈ RK×d such that pA(A) > 0, pA(A)

pA(−A) ≤ ν.

Assumption 3.4 (Balanced covariance (Oh et al., 2021)).
For any permutation γ of [K], for any integer k ∈
{2, ...,K − 1} and a fixed θ, there exists a constant Cb > 1
such that

CbEA∼pA
[
(Aγ(1)A

>
γ(1) +Aγ(K)A

>
γ(K))

·1{〈Aγ(1), θ〉 < . . . < 〈Aγ(K), θ〉}
]

� EA∼pA
[
Aγ(k)A

>
γ(k)1{〈Aγ(1), θ〉 < . . . < 〈Aγ(K), θ〉}

]
.

Assumption 3.5 (Sparse positive definiteness). Define for
each B ⊂ [d], ΣB := 1

K

∑K
k=1 EA∼pA

[
Ak(B)Ak(B)>

]
,

where Ak(B) is a |B|-dimensional vector, which is ex-
tracted from the elements of Ak with indices in B. There
exists a positive constant α > 0 such that ∀B ⊂ [d],

|B| ≤ s0 + (4νCb
√
s0)/φ2

0 and S(θ) ⊂ B
=⇒ min

v∈R|B|:‖v‖2=1
v>ΣBv ≥ α.

The parameters φ0, ν, Cb are those of Assumptions 3.2, 3.3,
and 3.4.

Assumption 3.3 comes from Oh et al. (2021). This assump-
tion is satisfied for the wide range of distributions including

multivariate Gaussian, uniform, and Bernoulli distributions.
Assumption 3.4 is also adopted from Oh et al. (2021). This
assumption holds for a wide range of distributions including
multivariate Gaussian distribution, uniform distribution on
sphere. It also holds when contexts are independent across
arms with any arbitrary distributions (Oh et al., 2021). As-
sumption 3.5 implies that the context distribution is diverse
enough in the neighborhood of the support of θ. Note that
Assumption 3.5 is standard in low dimensional linear bandit
literature (e.g., Lattimore & Szepesvári (2020); Degenne
et al. (2020); Jedra & Proutiere (2020); Hao et al. (2020a)).
There, if S(θ) = [d], the only choice for B is [d], and the
set of action has to span Rd (hence Assumption 3.5 is sat-
isfied). We will see that after an accurate estimate of the
support S(θ) (Lemma 5.4), Assumption 3.5 is used only
to analyze the performance of the least square estimator of
low-dimensional (order of O(s0)) vector. Assumption 3.5
is strictly weaker than the covariate diversity condition of
Bastani et al. (2021), where the positive definiteness must
be guaranteed for the Gram matrix generated by the greedy
algorithm. We also discuss the details of assumptions in
Appendix B.

4. Algorithm
In this section, we present the Thresholded (TH) Lasso
bandit algorithm. The algorithm adapts the idea of Lasso
with thresholding proposed in Zhou (2010) to estimate θ
and its support. The main challenge in the analysis of the
Lasso with thresholding stems from the fact that here, the
data is non i.i.d. (the arm selection is adaptive).

Algorithm 1 TH Lasso Bandit
1: Input: λ0

2: for t = 1, · · · , T do
3: Receive a context set At := {At,k : k ∈ [K]}
4: Pull arm At = argmax

A∈At
〈A, θ̂t〉 (ties are broken uni-

formly at random) and observe rt
5: λt ← λ0

√
2 log t log d

t

6: A← (A1, A2, . . . , At)
>, R← (r1, r2, . . . , rt)

>

7: θ̂
(t)
0 ← argmin

θ

1
t ‖R−Aθ‖

2
2 + λt‖θ‖1

8: Ŝ
(t)
0 ← {j ∈ [d] : |(θ̂(t)

0 )j | > 4λt}

9: Ŝ
(t)
1 ← {j ∈ Ŝ(t)

0 : |(θ̂(t)
0 )j | ≥ 4λt

√
|Ŝ(t)

0 |}
10: AS ← (A

1,Ŝ
(t)
1
, A

2,Ŝ
(t)
1
, . . . , A

t,Ŝ
(t)
1

)>

11: θ̂t+1 ← argmin
θ
‖R−ASθ‖22

12: end for

The pseudo-code of our algorithm is presented in Algo-
rithm 1. In round t, the algorithm pulls the arm in a greedy
way using the estimated value θ̂t of θ. From the past se-
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lected arms and rewards, we get via the Lasso a first esti-
mate θ̂(t)

0 of θ. This estimate is then used to estimate the
support of θ using appropriate thresholding. The regularizer
λt := λ0

√
(2 log t log d)/t is set at a much larger value than

that in the previous work (they typically have the order of√
(log d+ log t)/t), as we are only focusing on the support

recovery here. Note that we apply a thresholding procedure
twice to θ̂(t)

0 to provide the support estimate Ŝ(t)
1 . The final

estimate θ̂t+1 is obtained as the least squares estimator of
θ, when restricted to Ŝ(t)

1 . The initial support estimate done
by Lasso contains too many false positives. By including
thresholding steps in the algorithm, we remove the unneces-
sary false positives and improve the support estimate. We
quantify this improvement in the next section.

5. Performance Guarantees
We analyze the regret of the Thresholded Lasso bandit al-
gorithm both when the margin condition holds and when it
does not. We show that better guarantees can be obtained
with a single-parameter or parameter-free algorithm.

5.1. With the Margin Condition

Assumption 5.1 (Margin condition). There exists a con-
stant Cm > 0 such that for all κ > 0,

∀k 6= k′, PA∼pA(0 < |〈Ak −Ak′ , θ〉| ≤ κ) ≤ Cmκ.

The margin condition controls the probability that under pA
two arms yield very similar rewards (and hence are hard to
separate) and is widely used in the classification literature
(see e.g., Tsybakov (2004); Audibert & Tsybakov (2007)).
For the (low-dimensional) linear bandit literature, it was first
introduced in Goldenshluger & Zeevi (2013). The margin
condition holds for the most usual context distributions (in-
cluding the uniform distribution and Multivariate Gaussian
distributions) and a much weaker assumption than requiring
the strict separation between the arms.

The following theorem provides a non-asymptotic regret
upper bound of TH Lasso bandit under the margin con-
dition. To simplify the presentation of our regret up-
per bound, define τ =

⌊
2 log(2d2)

C2
0

(log s0)(log log d)
⌋

,

where C0 = min
{

1
2 ,

φ2
0

512s0s2AνCb

}
. Note that τ =

O
(
s2

0(log s0)(log d)(log log d)
)
.

Theorem 5.2. Assume that Assumptions 3.1 – 3.5, 5.1 hold.
(i) (TH Lasso Bandit with parameter-dependent input)
There are universal positive constants c1, c2, c3 depend-
ing on σ, sA, s1, s2, φ0, ν, Cb,K, α,Cm, such that if we set
λ0 = c1, then for all d ≥ c2, for all T ≥ 2:

R(T ) ≤ c3
(
τ + s0(log s0)

3
2 log T + s2

0

)
.

(ii) (TH Lasso Bandit with parameter-free input) There
are universal positive constants c4, c5 depending on
σ, sA, s1, s2, φ0, ν, Cb,K, α,Cm, such that if we set λ0 =
1/(log log d)

1
4 in TH Lasso Bandit, then for all d ≥ c4, for

all T ≥ 2,

R(T ) ≤ c5
(
τ + s0(log s0)

3
2 log T + s2

0

)
.

The precise definitions of c1-c5 are given in Appendix E.1.

We provide the proof of Theorem 5.2 in Appendix E.1.

5.2. Without the Margin Condition

Theorem 5.3. Assume that Assumptions 3.1 – 3.5 hold.
(i) (TH Lasso Bandit with parameter-dependent input) There
are universal positive constants c1, c2, c3 depending on
σ, sA, s1, s2, φ0, ν, Cb,K, α such that if we set λ0 = c1,
then for all d ≥ c2. for all T ≥ 2:

R(T ) ≤ c3
(
τ + (log s0)

√
s0T + s2

0

)
.

(ii) (TH Lasso Bandit with parameter-free input) There
are universal positive constants c4, c5 depending on
σ, sA, s1, s2, φ0, ν, Cb,K, α such that if we set λ0 =
1/(log log d)

1
4 in TH Lasso Bandit, then for all d ≥ c4,

for all T ≥ 2,

R(T ) ≤ c5
(
τ + (log s0)

√
s0T + s2

0

)
.

The precise definitions of c1-c5 are given in Appendix E.2

The proof of Theorem 5.3 is presented in Appendix E.2.

Theorems 5.2 and 5.3 state that TH Lasso bandit achieves
much lower regret than the existing algorithms. Indeed,
upper regret bounds for the latter had a term scaling as
log d log T (resp. log d+

√
T log(dT )) with (resp. without)

the margin condition. TH Lasso bandit removes the log d
and log T multiplicative factors. In most applications of the
sparse linear contextual bandit, both T and d are typically
very large, and the regret improvement obtained by TH
Lasso bandit is significant. Also note that our regret upper
bounds match the minimax lower bound Ω(

√
s0T ) proved

in Ren & Zhou (2020).

5.3. Sketch of the Proof of Theorems

We sketch below the proof of Theorem 5.2 and 5.3. Com-
plete proofs of Theorems and associated Lemmas are pre-
sented in Appendix E and Appendix F, respectively.

(1) Estimation of the Support of θ. First, we prove that
the estimated support contains the true support S(θ) with
high probability.
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Lemma 5.4. Let t ≥ 2 log(2d2)
C2

0
such that

4

(
4νCbs0
φ2
0

+

√(
1 + 4νCb

φ2
0

)
s0

)
λt ≤ θmin.

Under Assumptions 3.1, 3.2, 3.3, and 3.4,
P
(
S(θ) ⊂ Ŝ(t)

1 and |Ŝ(t)
1 \ S(θ)| ≤ 4νCb

√
s0

φ2
0

)
≥ 1− 2 exp

(
− tλ2

t

32σ2s2A
+ log d

)
− exp

(
− tC

2
0

2

)
.

Lemma 5.4 extends the support recovery result of the
Thresholded Lasso (Zhou, 2010) to the case of non-i.i.d
data (generated by the bandit algorithm). The dependence
on s0 is analogous to the offline result (Theorem 3.1 of Zhou
(2010)). As it can be seen from the proof, even after the
single-step thresholding, for all sufficiently large t, we have
the guarantee of S(θ) ⊂ Ŝ

(t)
0 and |Ŝ(t)

0 \ S(θ)| = O(s0)
with high probability. However, with the two-step thresh-
olding, we have |Ŝ(t)

1 \ S(θ)| = O(
√
s0) (See Appendix C

for the benefit of the two-step thresholding in detail).
Remark 5.5. In the proof of Lemma 5.4, we also obtain
an bound on the estimation error of θ̂(t)

0 (by the Lasso).
One may directly use θ̂(t)

0 for the arm selection as is in Oh
et al. (2021), however, this results in a weaker performance
guarantee of the orderO(log d+

√
T log(dT )) (without the

margin condition). This is due to the fact that the estimation
error of θ̂(t)

0 has a dependence on d, which impacts the order
of the regret. This motivates the use of the thresholding
procedure. With this procedure (i.e., using θ̂t), we remove
the dependence in d of the estimation error when t is larger
than τ , which, in turn, leads to an instantaneous regret bound
independent of d. In summary, the thresholding procedure
allows us to derive better regret bounds than those in existing
work (e.g., Oh et al. (2021)).

Define Et :=
{
S(θ) ⊂ Ŝ(t)

1 and |Ŝ(t)
1 \ S(θ)| ≤ 4νCb

√
s0

φ2
0

}
.

In the remaining of the proof, in view of Lemma 5.4, we
can assume that the event Et holds.

(2) Minimal Eigenvalue of the Empirical Gram Ma-
trix. We write Ŝ(t)

1 = Ŝ for the simplicity. Let Σ̂Ŝ :=
1
t

∑t
s=1As(Ŝ)As(Ŝ)> be the empirical Gram matrix on

the estimated support. We prove that the positive definite-
ness of the empirical Gram matrix on the estimated support
is guaranteed.

Lemma 5.6. Let t ∈ [T ]. Under Assumptions 3.1

and 3.5, we have: P
(
λmin(Σ̂Ŝ) ≥ α

4νCb

∣∣ Et) ≥ 1 −

exp

(
log
(
s0 +

4νCb
√
s0

φ2
0

)
− tα

20s2AνCb(s0+(4νCb
√
s0)/φ2

0)

)
.

(3) Estimation of θ after Thresholding. Next, we study
the accuracy of θ̂t.

Lemma 5.7. Let t ∈ [T ] and s′ = s0 +
4νCb

√
s0/φ

2
0. Under Assumption 3.1, we have, for all

x, λ > 0: P
(
‖θ̂t+1 − θ‖2 ≥ x and λmin(Σ̂Ŝ) ≥ λ

∣∣ Et)
≤ 2s′ exp

(
− λ2tx2

2σ2s2As
′

)
.

From the above lemma, we conclude that θ is well estimated
with high probability. Note that in the above estimation error,
the dependency in s0 can be also improved from linear to
square root compared with the analysis of Lemma 1 (Oracle
inequality) in Oh et al. (2021) (SA Lasso bandit). This stems
from the fact that using the compatibility condition, one can
only control the `1 norm of the estimation error of θ, while
using the OLS leads to an `2 guarantee.

(4) Instantaneous Regret Upper Bound with the Margin
Condition. For the previous lemmas, we can derive an
upper bound on the instantaneous regret with the margin

condition. Define h0 = b
√

log(4(s0 +
4νCb

√
s0

φ2
0

)) + 1c.

Lemma 5.8 (With the margin condition). Define G
α

4νCb
t :={

λmin(Σ̂Ŝ) ≥ α
4νCb

}
. Let t ≥ 2. Under Assumptions 3.1,

3.2, 3.3, 3.4, 3.5, and 5.1, the expected instantaneous regret
E[maxA∈At〈A−At, θ〉] is upper bounded by:

1408σ2s4
ACm(K − 1)h3

0ν
2C2

b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

1

t− 1

+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)) .
Notice that the first term of this instantaneous regret bound
does not depend on d. This leads to the better regret order.

On the other hand, without the margin condition, we present
the key lemma, which is proven by a novel application of
the discretization technique:

Lemma 5.9 (Without the margin condition). Under As-
sumptions 3.1, 3.2, 3.3, 3.4, and 3.5, for any t ∈ [T ],
E[maxA∈At〈A−At, θ〉] is upper bounded by

36σsA(K − 1)h2
0νCb

α

√√√√2
(
s0 +

4νCb
√
s0

φ2
0

)
t− 1

+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)) .
Again, the first term in the above bound is independent of d.
Note also that compared to existing work, we improve the
dependence in t: we get 1/

√
t instantaneous upper bound

while in the other recent work (e.g., Kim & Paik (2019);
Oh et al. (2021)) they get

√
log t/t. As a consequence, we

obtain better regret guarantees without the margin condition.
More precisely, we manage to remove the unnecessary log T
factors in the regret that was present in all previous studies.
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By summing up these instantaneous regret bounds, we get
Theorem 5.2 and 5.3. In Appendix D, we also provide regret
guarantees without Assumption 3.4 but when K = 2 (Theo-
rem D.2) and without the margin condition (Theorem D.3).
These theorems are established using the relaxed symmetry
assumption only; see also the proof of Lemma 2 in Oh et al.
(2021).

6. Experiments
In this section, we empirically evaluate the TH Lasso ban-
dit algorithm. We compare its performance to those of
the Lasso Bandit (Bastani & Bayati, 2020), Doubly-Robust
(DR) Lasso bandit (Kim & Paik, 2019), and SA Lasso ban-
dit (Oh et al., 2021) algorithms. Note that the Lasso bandit
algorithm (Bastani & Bayati, 2020) deals with a slightly
different problem setting (θ varies across arms in their set-
ting). We follow the comparison ideas in Kim & Paik (2019)
(considered the Kd-dimensional context vectors and the
Kd-dimensional regression parameters for each arm. For
details, see Kim & Paik (2019)).

Reward Parameter and Contexts. We consider prob-
lems where θ ∈ Rd is sparse, i.e., ‖θ‖0 = s0. We generate
each non-zero components of θ in an i.i.d. manner using the
uniform distribution on [1, 2]. In each round t, for each com-
ponent i ∈ [d], we sample ((At,1)i, · · · , (At,K)i)

> ∈ RK
from a Gaussian distribution N (0K , V ) where Vi,i = 1 for
all i ∈ [K] and Vi,k = ρ2 = 0.7 for all i 6= k ∈ [K]. We
then normalize each At,k = ((At,k)1, . . . , (At,k)d)

> ∈ Rd
so that its `2-norm is at most Amax for all k ∈ [K]. Note
that the components of the feature vectors are correlated
over [d] and over [K]. The noise process is Gaussian, i.i.d.
over rounds: εt ∼ N (0, 1). We test the algorithms for dif-
ferent values of K, d, s0, and Amax. For each experimental
setting, we averaged the results for 20 instances. We also
provide additional experimental results with non-Gaussian
distributions in Appendix H.4.
Remark 6.1. In most of our experiments, the context is
drawn from a multivariate Gaussian, or uniform distribution
on [−1, 1]d. In this case, the minimum eigenvalue of the
gram matrix Σ is lower bounded by some constant. Hence,
Assumptions 3.2 and 3.5 are satisfied. Clearly, Assump-
tion 3.3 is satisfied by the symmetry of the distribution.
When the distribution is independent over the arms, from
Proposition 1 in Oh et al. (2021), Assumption 3.4 is satis-
fied. Since each element of the context distribution has a
bounded density everywhere, Assumption 5.1 is also satis-
fied. Furthermore, in Appendix H.5, we empirically tested
our algorithm for some hard problems where the covariate
diversity condition (Bastani et al., 2021) does not hold.

Algorithms. For DR Lasso bandit and Lasso bandit, we
use the tuned hyperparameter at

https://github.com/gisoo1989/
Doubly-Robust-Lasso-Bandit.
For the SA Lasso bandit and TH Lasso bandit algo-
rithms, we tune the hyperparameter λ0 in [0.01, 0.5]
to roughly optimize the algorithm performance when
K = 2, d = 1000, Amax = 10, and s0 = 5. As a result, we
set λ0 = 0.16 for SA Lasso bandit, and set λ0 = 0.02 for
TH Lasso bandit.

Results. We first compare the regret of each algorithm
with Amax = 10, K ∈ {2, 50}, d = {1000, 2000, 10000},
and s0 ∈ {5, 20}. We experimented with larger values of
d, in addition to the one in existing studies. Figure 1 shows
the average cumulative regret for each algorithm. We find
that TH Lasso bandit outperforms the other algorithms in
all scenarios. We provide additional experimental results,
including experiments with different correlation levels ρ2(∈
{0, 0.3}) and dimension d, in Appendix H.4.

Next, we compare the estimation accuracy for θ under three
algorithms (DR, SA, and TH Lasso bandit) in the scenario:
K = 2, d = 1000, Amax = 10, s0 = 5. Figure 2 shows
the number of false positives |Ŝ(t)

1 \ S(θ)|, the number of
false negatives |S(θ) \ Ŝ(t)

1 |, and `2-norm error ‖θ̂t − θ‖2.
Note that, for DR Lasso bandit and SA Lasso bandit, we
define the estimated support as Ŝ(t)

1 = {i ∈ [d] : θ̂t,i 6= 0}.
We can observe that the number of false positives of our
algorithm converge to zero faster than those of DR Lasso
bandit and SA Lasso bandit. Furthermore, our algorithm
yields a smaller estimation error ‖θ̂t − θ‖2 than the two
other algorithms, as is shown in right column of Figure 2.

We also conduct experiments varying Amax ∈
{2.5, 5, 10, 20, 40,∞}. As in the previous experi-
ments, for each Amax, we normalize each feature vector
At,k so that its `2-norm is at most Amax for all k ∈ [K].
We set K = 2, d = 1000, and s0 = 5. Figure 3 shows the
average cumulative regret at t = 1000 of TH Lasso bandit
and SA Lasso bandit for each Amax. This experiment
confirms that TH Lasso exhibits lower regret than SA Lasso
bandit. Additional results when K = 50 and s0 = 20 are
also included in Appendix H.3.

Finally, we examine the robustness of TH Lasso bandit
and SA Lasso bandit with respect to the hyperparameter
λ0. We vary λ0 ∈ [0.1λ∗, 2.5λ∗] where λ∗ = 0.02 for TH
Lasso bandit and λ∗ = 0.16 for SA Lasso bandit. We set
K = 2, d = 1000, s0 = 5, and Amax = 10. Figure 4
shows the average cumulative regret at t = 1000 for TH
Lasso bandit and SA Lasso bandit for different ratios λ0/λ

∗.
Observe that the regret of TH Lasso bandit is more stable
than that of SA Lasso bandit as the ratio grows. Indeed, the
performance of TH Lasso bandit is not very sensitive to the
choice of λ0: it is robust. This contrasts with the SA Lasso
bandit algorithm, for which a careful tuning of λ0 is needed

https://github.com/gisoo1989/Doubly-Robust-Lasso-Bandit
https://github.com/gisoo1989/Doubly-Robust-Lasso-Bandit
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Figure 1. Cumulative regret of the three algorithms with ρ2 = 0.7, Amax = 10 in six scenarios selected using K ∈ {2, 50}, d ∈
{1000, 2000, 10000}, and s0 ∈ {5, 20}. The shaded area represents the standard errors.
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Figure 2. (Left) Number of false positives |Ŝ(t)
1 \S(θ)|, (center) false negatives |S(θ) \ Ŝ(t)

1 |, (right) `2-norm error ‖θ̂t− θ‖2 of the three
algorithms with ρ2 = 0.7, Amax = 10, K = 2, s0 = 5, and d = 1000. The shaded area represents the standard errors.

to get good performance.

7. Conclusion
In this paper, we studied the high-dimensional contextual
linear bandit problem with sparsity. We devised TH Lasso
bandit, a simple algorithm that applies a Lasso procedure
with thresholding to estimate the support of the unknown
parameter. We established finite-time regret upper bounds
under various assumptions, and in particular with and with-
out the margin condition. These bounds exhibit a better
regret scaling than those derived for previous algorithms.
We also numerically compared TH Lasso bandit to previ-
ous algorithms in a variety of settings, and showed that it
outperformed other algorithms in these settings.

In future work, it would be interesting to consider scenarios

where the assumptions made in this paper may not hold. In
particular, it is worth investigating the case where the re-
laxed symmetry condition (Assumption 3.3) is not satisfied.
In this case, being greedy in the successive arm selections
may not work. It is intriguing to know whether devising
an algorithm without forced uniform exploration and with
reasonable regret guarantees is possible.
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Appendix

A. Table of Notations
Table 2 summarizes the notations used in the paper.

B. Discussion on the Assumptions and Regret Dependence on K

Our assumptions are in principle following the literature Oh et al. (2021). In the contextual linear bandit setting, Assumptions
3.3 and 3.4 or the covariate diversity condition are standard (at least in the experimental settings). They hold for many context
distributions including multivariate Gaussian distribution, uniform distribution on the sphere, and arbitrary independent
distribution for each arm (Oh et al., 2021). For example, the covariate diversity condition holds in the experimental settings
of Bastani & Bayati (2020) and Wang et al. (2018).

Regarding the regret dependence of K, we have at least linear scaling with K. The constant Cb does not scale with K when
the context distribution is a multivariate Gaussian distribution or a uniform distribution on a unit sphere (see Proposition 1 of
Oh et al. (2021)). However, for general distribution, Cb can scale exponentially with K. We conjecture that we can improve
this dependency: numerical results show that the dependence on K is mild (See Appendix H).

C. On the Benefit of the Two Step Thresholding Procedure

In our choice of the thresholding parameter (4λt in the first step and 4λt

√
|Ŝ(t)

0 | in the second step), we aim at a partial
recovery of the support so that the trade-off between the duration of the phase with linearly growing regret and the support
recovery accuracy is optimized in the design. Using two-step thresholding, we achieve better regret guarantees than
single-step thresholding. This improvement is due to the fact that with two-step thresholding, the estimated support of θ
is improved (with two-step thresholding, we have O(

√
s0) false positives on the estimated support, whereas with single

thresholding, there are O(s0)). While this difference in results does not contribute to changing the order of the regret, it
does contribute to improving the coefficients on log T and

√
T terms in regret.

D. Additional Theorems
Before presenting the additional theorems, we introduce the following assumption (which is a slightly modified version of
Assumption 3.5).

Assumption D.1 (Sparse positive definiteness, K = 2). Let K = 2. Define ΣB := 1
2

∑2
k=1 EA∼pA

[
Ak(B)Ak(B)>

]
, for

any B ⊂ [d], where Ak(B) is a |B|-dimensional vector, which is extracted from the elements of Ak with indices in B.
There exists a positive constant α > 0 such that ∀B ⊂ [d],(

|B| ≤ s0 + (2ν
√
s0)/φ2

0 and S(θ) ⊂ B
)

=⇒
(

min
v∈R|B|:‖v‖2=1

v>ΣBv ≥ α
)
.

The parameters φ0, ν are those of Assumptions 3.2, 3.3.

We redefine the parameters τ =
⌊

2 log(2d2)
C2

0
(log s0)(log log d)

⌋
, where C0 = min

{
1
2 ,

φ2
0

256s0s2Aν

}
.

The following theorem provides the regret guarantees when K = 2, without Balanced covariance (Assumption 3.4), and
with the margin condition.

Theorem D.2 (with margin, without balanced covariance). Assume that Assumptions 3.1–3.3, D.1, and 5.1 hold and K = 2.
(i) (TH Lasso Bandit with parameter-dependent input) There are universal positive constants c1, c2, c3 depending on
σ, sA, s1, s2, φ0, ν, α, Cm, such that if we set λ0 = c1, then for all d ≥ c2, for all T ≥ 2:

R(T ) ≤ c3
(
τ + s0(log s0)

3
2 log T + s2

0

)
.

(ii) (TH Lasso Bandit with parameter-free input) There are universal positive constants c4, c5 depending on
σ, sA, s1, s2, φ0, ν, α, Cm, such that if we set λ0 = 1/(log log d)

1
4 in TH Lasso Bandit, then for all d ≥ c4, for all
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Table 2. Table of notations
Problem-specific notations
At,k Feature vector associated with the arm k
θ Parameter vector
d Dimension of feature vectors
s0 Sparsity index
T Total number of rounds
At Set of context vectors at round t
pA Distribution for At
rt Reward at round t
Ft σ-algebra generated by random variables (A1, A1, r1, . . . ,At−1, At−1, rt−1,At)
εt Zero mean sub-Gaussian noise
σ2 Variance proxy of εt
R(T ) Regret

Σ̂t Empirical Gram matrix generated by the arms selected under a specific algorithm,
i.e., 1

t

∑t
s=1AsA

>
s

S(θ) Support of θ: {i ∈ [d] : θi 6= 0}
θmin mini∈S |θi|
sA `∞ norm upper bound on A ∈ At (see Assumption 3.1)
s1 `1 norm upper bound on θ (see Assumption 3.1)
s2 Used for the lower bound on θmin (see Assumption 3.1)

φ2(M,S0) Compatibility constant (see Assumption 3.2)
Σ Expected Gram matrix 1

K

∑K
k=1 EA∼pA

[
AkA

>
k

]
φ2
0 Lower bound on φ2(Σ, S(θ))
ν Constant for Relaxed symmetry (see Assumption 3.3)
Cb Constant for Balanced covariance (see Assumption 3.4)
α Constant for Sparse positive definiteness (see Assumption 3.5 and D.1)
λt Regularizer at round t
λ0 Coefficient of the regularizer

Ŝ
(t)
0 , Ŝ

(t)
1 Estimate of the support after the first and the second thresholding, respectively.

θ̂t Estimated vector of θ
Cm Constant for the margin condition (see Assumption 5.1)
h0 Term whose order is O((log s0)

1
2 ) (see definitions before the Lemmas)

C0 Term whose order is O(1/s0) (see definitions before the Theorems)
τ

⌊
2 log(2d2)

C2
0

(log s0)(log log d)
⌋

Et Event
{
S ⊂ Ŝ(t)

1 and |Ŝ(t)
1 \ S| ≤

4νCb
√
s0

φ2
0

}
or{

S ⊂ Ŝ(t)
1 and |Ŝ(t)

1 \ S| ≤
2ν
√
s0

φ2
0

}
Ŝ Estimate of the support after the second thresholding (Equivalent to Ŝ(t)

1 )
Σ̂Ŝ

1
t

∑t
s=1As(Ŝ)As(Ŝ)>

Gλt Event
{
λmin(Σ̂Ŝ) ≥ λ

}
Amax `2 norm bound on At,k (used in the experiments)

Generic notations
‖x‖0 `0 norm of x, i.e., ‖x‖0 =

∑d
i=1 1{θi 6= 0}

[x] Set of positive integers upto x, i.e., [x] = {1, . . . , x}
〈x, y〉 Inner product of x and y
P(A) Probability that event A occurs
E[a] Expected value of a
θi,B θi1{i ∈ B}
θB (θ1,B , . . . , θd,B)>

A(B) n× |B| submatrix of A ∈ Rn×d where B ⊂ [d]
supp(x) Set of the non-zero element indices of x



Thresholded Lasso Bandit

T ≥ 2,

R(T ) ≤ c5
(
τ + s0(log s0)

3
2 log T + s2

0

)
.

The precise definitions of c1-c5 are given in Appendix E.3.

We provide the proof of Theorem D.2 in Appendix E.3.

Next, the following theorem provides the regret guarantees when K = 2, without Balanced covariance (Assumption 3.4),
and without the margin condition.
Theorem D.3 (without margin, without balanced covariance). Assume that Assumptions 3.1– 3.3, and D.1 hold and K = 2.
(i) (TH Lasso Bandit with parameter-dependent input) There are universal positive constants c1, c2, c3 depending on
σ, sA, s1, s2, φ0, ν, α such that if we set λ0 = c1, then for all d ≥ c2. for all T ≥ 2:

R(T ) ≤ c3
(
τ + (log s0)

√
s0T + s2

0

)
.

(ii) (TH Lasso Bandit with parameter-free input) There are universal positive constants c4, c5 depending on
σ, sA, s1, s2, φ0, ν, α such that if we set λ0 = 1/(log log d)

1
4 in TH Lasso Bandit, then for all d ≥ c4, for all T ≥ 2,

R(T ) ≤ c5
(
τ + (log s0)

√
s0T + s2

0

)
.

The precise definitions of c1-c5 are given in Appendix E.4.

We present the proof of Theorem D.3 in Appendix E.4. Furthermore, Lemmas associated with Theorems D.2 and D.3 and
their proofs are presented in Appendix G.

E. Proof of Theorems
E.1. Proof of Theorem 5.2 (with margin)

First, we determine the constants c1, c2 as follows. Set λ0 = 4σsA
√
c with constant c > 0 (independent of d, T , and s0)

such that 4

(
4νCbs0
φ2
0

+

√(
1 + 4νCb

φ2
0

)
s0

)(
4σsA

√
c

√
2 log τ log d

τ

)
︸ ︷︷ ︸

λτ

≤ θmin. Note that such a constant c exists as

λτ = 4σsA
√
c

√
2 log τ log d

τ

= 4σsA
√
c

√
2 log(Θ(s2

0(log s0)(log log d)(log d))) log d

Θ(s2
0(log s0)(log log d)(log d))

= 4σsA
√
c

√
2 log(Θ(s2

0(log s0)(log log d)(log d)))

Θ(s2
0(log s0)(log log d))

=⇒ λτ = O
(

1

s0

√
1

log log d
+

1

log s0

)
and

θmin ≥ s2/s0 (from Assumption 3.1).

We can take c1 = 4σsA
√
c. Assume that τ (increasing function of d) satisfies τ ≥ exp(4/c). This facilitates a constant

lower bound on d, hence c2 is determined.

We upper bound the instantaneous regret in round t ≥ 1. We have:

E[max
A∈At

〈A−At, θ〉] = E[max
A∈At

〈A−At, θ〉]

≤ E[| max
A∈At

〈A, θ〉|] + E[|〈At, θ〉|]

≤ sAs1 + sAs1

= 2sAs1, (1)
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where the second inequality stems from Hölder’s inequality. We deduce the following upper bound on the expected regret
up to round T :

R(T ) = E

[
T∑
t=1

max
A∈At

〈A−At, θ〉

]
(a)

≤ 2sAs1τ +

T∑
t=τ+1

E
[

max
A∈At

〈A−At, θ〉
]

(b)

≤ 2sAs1τ +

T∑
t=τ+1

(1408σ2s4
ACm(K − 1)h3

0ν
2C2

b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

1

t− 1

+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)))
(c)

≤ 2sAs1τ +

T∑
t=τ+1

(1408σ2s4
ACm(K − 1)h3

0ν
2C2

b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

1

t− 1

+ 2(K − 1)sAs1

(
2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)
+ exp

(
− tC

2
0

2

)
+ exp

(
log

(
s0 +

4νCb
√
s0

φ2
0

)
− tα

20s2
AνCb

(
s0 + (4νCb

√
s0)/φ2

0

)))),

where for (a), we used equation (1) for 1 ≤ t ≤ τ ; for (b), we used Lemma 5.8; for (c), we used Lemma 5.4 (for Et) and

Lemma 5.6 (for G
α

4νCb
t ). Now we have:

T∑
t=τ+1

1408σ2s4
ACm(K − 1)h3

0ν
2C2

b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

1

t− 1

=

T−1∑
t=τ

1408σ2s4
ACm(K − 1)h3

0ν
2C2

b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

1

t

≤
1408σ2s4

ACm(K − 1)h3
0ν

2C2
b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

(1 +

∫ T

1

1

t
dt)

=
1408σ2s4

ACm(K − 1)h3
0ν

2C2
b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

(1 + log T ),



Thresholded Lasso Bandit

and

T∑
t=τ+1

exp

(
− tλ2

t

32σ2s2
A

+ log d

)
=

T∑
t=τ+1

exp (−c log t log d+ log d)

(a)

≤
T∑

t=τ+1

exp

(
−c log d log t

2

)
(b)

≤
T∑

t=τ+1

exp (−2 log t)

=

T∑
t=τ+1

1

t2

≤
∞∑
t=1

1

t2

=
π2

6
,

where for (a) and (b), we used the assumption τ ≥ exp(4/c). In addition,

T∑
t=τ+1

exp

(
− tC

2
0

2

)
+ exp

(
log

(
s0 +

4νCb
√
s0

φ2
0

)
− tα

20s2
AνCb

(
s0 + (4νCb

√
s0)/φ2

0

))

≤
∫ ∞

0

(
exp

(
− tC

2
0

2

)
+

(
s0 +

4νCb
√
s0

φ2
0

)
exp

(
− tα

20s2
AνCb

(
s0 + (4νCb

√
s0)/φ2

0

))) dt
=

2

C2
0

+

(
s0 +

4νCb
√
s0

φ2
0

)2
20s2

AνCb

α
.

In summary, we obtain:

R(T ) ≤ 2sAs1τ +
1408σ2s4

ACm(K − 1)h3
0ν

2C2
b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

(1 + log T )

+ 2(K − 1)sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

4νCb
√
s0

φ2
0

)2
20s2

AνCb

α

)
.

Looking at the scaling with respect to d, T , and s0, one can determine c3 (note that 1/C2
0 = O(s2

0) and h3
0 = O((log(s0))

3
2 )).

This concludes the proof of the first part of the theorem.

Regarding the second part of the theorem, we impose the following condition on d:

(i) log log d ≥ 4096σ4s4
A

(ii) 4

(
4νCbs0
φ2
0

+

√(
1 + 4νCb

φ2
0

)
s0

)
λτ ≤ θmin,

(iii) d ≥ 100.

When d ≥ c4 with some constant c4, it should be noted that the condition (ii) can hold, as√
2 log τ log d

τ
= O

(
1

s0

√
1

log log d
+

1

log s0

)
(2)
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and

λ0 = 1/(log log d)
1
4 (3)

= o(1) (as d→∞). (4)

Then, we have the following computations:
T∑

t=τ+1

exp

(
− tλ2

t

32σ2s2
A

+ log d

)
=

T∑
t=τ+1

exp

(
−

(
log t

16σ2s2
A(log log d)

1
2

− 1

)
log d

)
(a)

≤
T∑

t=τ+1

exp

(
− log t log d

32σ2s2
A(log log d)

1
2

)
(b)

≤
T∑

t=τ+1

exp

(
− log t log τ

32σ2s2
A(log log d)

1
2

)
(c)

≤
T∑

t=τ+1

exp (−2 log t)

=

T∑
t=τ+1

1

t2

≤
∞∑
t=1

1

t2

=
π2

6
,

where for (a), we used the fact that log τ ≥ 64σ2s2
A(log log d)

1
2 from (i); for (b), we used the fact that log τ ≤ log d from

d ≥ 100; for (c), we used again log τ ≥ 64σ2s2
A(log log d)

1
2 . Therefore, similarly, we get the regret bound

R(T ) ≤ 2sAs1τ +
1408σ2s4

ACm(K − 1)h3
0ν

2C2
b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

(1 + log T )

+ 2(K − 1)sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

4νCb
√
s0

φ2
0

)2
20s2

AνCb

α

)
,

and we can find the constant c5. This concludes the proof.

�

E.2. Proof of Theorem 5.3 (without margin)

First, we determine the constants c1, c2 similarly to those of Theorem 5.2.

Using Lemma 5.9, we proceed as in the proof of Theorem 5.2, and deduce that:

R(T ) = E

[
T∑
t=1

max
A∈At

〈A−At, θ〉

]

≤ 2sAs1τ +

T∑
t=τ+1

E
[

max
A∈At

〈A−At, θ〉
]

≤ 2sAs1τ

+

T∑
t=τ+1

36σsA(K − 1)h2
0νCb

α

√√√√2
(
s0 +

4νCb
√
s0

φ2
0

)
t− 1

+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))
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We also show that:

T∑
t=τ+1

2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))

≤ 2(K − 1)sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

4νCb
√
s0

φ2
0

)2
20s2

AνCb

α

)
.

Now we have:

T∑
t=τ+1

36σsA(K − 1)h2
0νCb

α

√√√√2
(
s0 +

4νCb
√
s0

φ2
0

)
t− 1

=

T−1∑
t=τ

36σsA(K − 1)h2
0νCb

α

√√√√2
(
s0 +

4νCb
√
s0

φ2
0

)
t

≤
36σsA(K − 1)h2

0νCb

√
2
(
s0 +

4νCb
√
s0

φ2
0

)
α

(1 +

∫ T

1

√
1

t
dt)

≤
36σsA(K − 1)h2

0νCb

√
8
(
s0 +

4νCb
√
s0

φ2
0

)
α

√
T ,

In summary, we get:

R(T ) ≤ 2sAs1τ +

36σsA(K − 1)h2
0νCb

√
8
(
s0 +

4νCb
√
s0

φ2
0

)
α

√
T

+ 2(K − 1)sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

4νCb
√
s0

φ2
0

)2
20s2

AνCb

α

)
.

Looking at the scaling with respect to d, T , and s0, one can determine c3 (note that 1/C2
0 = O(s2

0) and h2
0 = O(log(s0))).

This concludes the proof of the first part of the theorem.

Regarding the second part of the theorem, we can determine the constant c4 similarly as in Theorem 5.2. Then, we proceed
as in the proof of Theorem 5.2 and get the regret bound:

R(T ) ≤ 2sAs1τ +

36σsA(K − 1)h2
0νCb

√
8
(
s0 +

4νCb
√
s0

φ2
0

)
α

√
T

+ 2(K − 1)sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

4νCb
√
s0

φ2
0

)2
20s2

AνCb

α

)
.

We can find the constant c5 from this upper bound. This concludes the proof. �

E.3. Proof of Theorem D.2 (with margin, without balanced covariance)

This proof follows that of Theorem 5.2 to some extent. First, we determine the constants c1, c2 as follows. Set λ0 = 4σsA
√
c

with constant c > 0 (independent of d, T , and s0) such that 4

(
2νs0
φ2
0

+

√(
1 + 2ν

φ2
0

)
s0

)(
4σsA

√
c

√
2 log τ log d

τ

)
︸ ︷︷ ︸

λτ

≤
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θmin. Note that such a constant c exists as

λτ = 4σsA
√
c

√
2 log τ log d

τ

= 4σsA
√
c

√
2 log(Θ(s2

0(log s0)(log log d)(log d))) log d

Θ(s2
0(log s0)(log log d)(log d))

= 4σsA
√
c

√
2 log(Θ(s2

0(log s0)(log log d)(log d)))

Θ(s2
0(log s0)(log log d))

=⇒ λτ = O
(

1

s0

√
1

log log d
+

1

log s0

)
and

θmin ≥ s2/s0 (from Assumption 3.1).

We can take c1 = 4σsA
√
c. Assume that τ (increasing function of d) satisfies τ ≥ exp(4/c). This facilitates a constant

lower bound on d, hence c2 is determined.

We deduce the following upper bound on the expected regret up to round T :

R(T ) = E

[
T∑
t=1

max
A∈At

〈A−At, θ〉

]
(a)

≤ 2sAs1τ +

T∑
t=τ+1

E
[

max
A∈At

〈A−At, θ〉
]

(b)

≤ 2sAs1τ +

T∑
t=τ+1

352σ2s4
ACmh

3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

1

t− 1
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))


(c)

≤ 2sAs1τ +

T∑
t=τ+1

(
352σ2s4

ACmh
3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

1

t− 1

+ 2sAs1

(
2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)
+ exp

(
− tC

2
0

2

)

+ exp

(
log

(
s0 +

2ν
√
s0

φ2
0

)
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

)))),
where for (a), we used equation (1) for 1 ≤ t ≤ τ ; for (b), we used Lemma G.4; for (c), we used Lemma G.1 (for Et) and
Lemma G.2 (for G

α
2ν
t ). Now we have:

T∑
t=τ+1

352σ2s4
ACmh

3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

1

t− 1
=

T−1∑
t=τ

352σ2s4
ACmh

3
0

(
s0 +

2ν
√
s0

φ2
0

)
α2

1

t

≤
352σ2s4

ACmh
3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

(1 +

∫ T

1

1

t
dt)

=
352σ2s4

ACmh
3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

(1 + log T ),
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and
T∑

t=τ+1

exp

(
− tλ2

t

32σ2s2
A

+ log d

)
=

T∑
t=τ+1

exp (−c log t log d+ log d)

(a)

≤
T∑

t=τ+1

exp

(
−c log d log t

2

)
(b)

≤
T∑

t=τ+1

exp (−2 log t)

=

T∑
t=τ+1

1

t2

≤
∞∑
t=1

1

t2

=
π2

6
,

where for (a) and (b), we used the assumption τ ≥ exp(4/c). In addition,

T∑
t=τ+1

(
exp

(
− tC

2
0

2

)
+ exp

(
log

(
s0 +

2ν
√
s0

φ2
0

)
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

)))

≤
∫ ∞

0

(
exp

(
− tC

2
0

2

)
+

(
s0 +

2ν
√
s0

φ2
0

)
exp

(
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

))) dt
=

2

C2
0

+

(
s0 +

2ν
√
s0

φ2
0

)2
10s2

Aν

α
.

In summary, we obtain that:

R(T ) ≤ 2sAs1τ +
352σ2s4

ACmh
3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

(log T + 1)

+ 2sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

2ν
√
s0

φ2
0

)2
10s2

Aν

α

)
.

Looking at the scaling with respect to d, T , and s0, one can determine c3. This concludes the first part of the theorem.

Regarding the second part of the theorem, we impose the following condition on d:

(i) log log d ≥ 4096σ4s4
A

(ii) 4

(
2νs0
φ2
0

+

√(
1 + 2ν

φ2
0

)
s0

)
λτ ≤ θmin,

(iii) d ≥ 100.

With some constant c4, when d ≥ c4, it should be noted that the condition (ii) holds, as√
2 log τ log d

τ
= O

(
1

s0

√
1

log log d
+

1

log s0

)
and

λ0 = 1/(log log d)
1
4

= o(1) (as d→∞).
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We have,

T∑
t=τ+1

exp

(
− tλ2

t

32σ2s2
A

+ log d

)
=

T∑
t=τ+1

exp

(
−

(
log t

16σ2s2
A(log log d)

1
2

− 1

)
log d

)
(a)

≤
T∑

t=τ+1

exp

(
− log t log d

32σ2s2
A(log log d)

1
2

)
(b)

≤
T∑

t=τ+1

exp

(
− log t log τ

32σ2s2
A(log log d)

1
2

)
(c)

≤
T∑

t=τ+1

exp (−2 log t)

=

T∑
t=τ+1

1

t2

≤
∞∑
t=1

1

t2

=
π2

6
,

where for (a), we used the fact that log τ ≥ 64σ2s2
A(log log d)

1
2 ; for (b), we used the fact that log τ ≤ log d from d ≥ 100;

for (c), we used again log τ ≥ 64σ2s2
A(log log d)

1
2 . Therefore, a similar regret upper bound can be obtained in this case:

R(T ) ≤ 2sAs1τ +
352σ2s4

ACmh
3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

(log T + 1)

+ 2sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

2ν
√
s0

φ2
0

)2
10s2

Aν

α

)

and we can find the constant c5. This concludes the proof.

E.4. Proof of Theorem D.3 (without margin, without balanced covariance)

This proof follows the proof of Theorem 5.3 mostly. First, we determine the constants c1, c2 similarly to those of
Theorem D.2.

Using Lemma G.5, we proceed as in the proof of Theorem 5.3, and deduce that:

R(T ) = E[

T∑
t=1

max
A∈At

〈A−At, θ〉]

≤ 2sAs1τ +

T∑
t=τ+1

E[max
A∈At

〈A−At, θ〉]

≤ 2sAs1τ +

T∑
t=τ+1

18σsAh
2
0ν

α

√√√√2
(
s0 +

2ν
√
s0

φ2
0

)
t− 1

+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c
|Et
)) .
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We have:

T∑
t=τ+1

2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))

≤
T∑

t=τ+1

2sAs1

(
2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)

+ exp

(
− tC

2
0

2

)
+ exp

(
log

(
s0 +

2ν
√
s0

φ2
0

)
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

))),
Regarding the series involving

√
1/t, we have:

T∑
t=τ+1

√
1

t− 1
=

T−1∑
t=τ

√
1

t

≤ 1 +

∫ T

1

√
1

t
dt

≤ 2
√
T .

The bounds for

T∑
t=τ+1

2sAs1

(
2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)

+ exp

(
− tC

2
0

2

)
+ exp

(
log

(
s0 +

2ν
√
s0

φ2
0

)
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

)))
hold similarly as is in Theorem D.2. In summary, we get:

R(T ) ≤ 2sAs1τ

+

36σsAh
2
0ν

√
2
(
s0 +

2ν
√
s0

φ2
0

)
α

√
T + 2sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

2ν
√
s0

φ2
0

)2
10s2

Aν

α

)
.

Looking at the scaling with respect to d, T , and s0, one can determine c3. This concludes the proof of the first part of the
theorem.

Regarding the second part of the theorem, we impose the following condition on d:

(i) log log d ≥ 4096σ4s4
A

(ii) 4

(
2νs0
φ2
0

+

√(
1 + 2ν

φ2
0

)
s0

)
λτ ≤ θmin,

(iii) d ≥ 100.

With some constant c4, when d ≥ c4, it should be noted that the condition (ii) holds, as√
2 log τ log d

τ
= O

(
1

s0

√
1

log log d
+

1

log s0

)
and

λ0 = 1/(log log d)
1
4

= o(1) (as d→∞).
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Then, similarly to the proof in Appendix E.3, we obtain

R(T ) ≤ 2sAs1τ

+

36σsAh
2
0ν

√
2
(
s0 +

2ν
√
s0

φ2
0

)
α

√
T + 2sAs1

(
π2

3
+

2

C2
0

+

(
s0 +

2ν
√
s0

φ2
0

)2
10s2

Aν

α

)
.

Investigating the scaling with respect to d, T , and s0, one can determine c5.

�

F. Proof of Lemmas
F.1. Proof of Lemma 5.4

We define v := θ̂
(t)
0 − θ. We first analyze the performance of the initial Lasso estimate.

Lemma F.1. Let Σ̂t :=
∑t
s=1 AsA

>
s

t be the empirical covariance matrix of the selected context vectors. Suppose Σ̂t satisfies
the compatibility condition with the support S(θ) with the compatibility constant φt. Then, under Assumption 3.1, we have:

P
(
‖v‖1 ≤

4s0λt
φ2
t

)
≥ 1− 2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)
.

The next lemma then states that the compatibility constant of Σ̂t does not deviate much from the compatibility constant of Σ.

Lemma F.2. Let C0 := min
{

1
2 ,

φ2
0

512s0s2AνCb

}
. For all t ≥ 2 log(2d2)

C2
0

, we have:

P
(
φ2(Σ̂t, S(θ)) ≥ φ2

0

4νCb

)
≥ 1− exp

(
− tC

2
0

2

)
.

Then, we follow the steps of the proof given by Zhou (2010). Let us define the event Gt as:

Gt :=

{
‖v‖1 ≤

4s0λt
φ2
t

}
.

For the rest of this section, we assume that the event Gt holds. Note that:

‖v‖1 ≥ ‖vS(θ)c‖1 =
∑

j∈S(θ)c

|(θ̂(t)
0 )j |

≥
∑

j∈S(θ)c∩Ŝ(t)
0

|(θ̂(t)
0 )j |

=
∑

j∈Ŝ(t)
0 \S(θ)

|(θ̂(t)
0 )j |

(a)

≥ |Ŝ(t)
0 \ S(θ)|4λt,

where for (a), we used the construction of Ŝ(t)
0 in the algorithm. We get:

|Ŝ(t)
0 \ S(θ)| ≤ ‖v‖1

4λt
(a)

≤ s0

φ2
t

,
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where for (a), we used the definition of Gt. We have: ∀j ∈ S(θ),

|(θ̂(t)
0 )j | ≥ θmin − ‖vS(θ)‖∞

≥ θmin − ‖vS(θ)‖1

≥ θmin −
4s0λt
φ2
t

.

Therefore, when t is large enough so that 4λt ≤ θmin − 4s0λt
φ2
t

, we have: S(θ) ⊂ Ŝ(t)
0 . Using a similar argument, when t is

large enough so that 4λt

√(
1 + 1

φ2
t

)
s0 ≤ θmin − 4s0λt

φ2
t

, it holds that S(θ) ⊂ Ŝ
(t)
1 . From the construction of Ŝ(t)

1 in the

algorithm, it also holds that: Ŝ(t)
1 ⊂ Ŝ(t)

0 . Therefore,

‖v‖1 ≥
∑

i∈Ŝ(t)
0 \S(θ)

|(θ̂(t)
0 )i|

≥
∑

i∈Ŝ(t)
1 \S(θ)

|(θ̂(t)
0 )i|

≥ |Ŝ(t)
1 \ S(θ)|4λt

√
|Ŝ(t)

0 |,

and

|Ŝ(t)
1 \ S(θ)| ≤ ‖v‖1

4λt

√
|Ŝ(t)

0 |

≤ 1

4λt

√
|Ŝ(t)

0 |
· 4s0λt
φ2
t

≤
√
s0

φ2
t

.

Note that the condition 4λt

√(
1 + 1

φ2
t

)
s0 ≤ θmin − 4s0λt

φ2
t

is equivalent to 4λt

(√(
1 + 1

φ2
t

)
s0 + s0

φ2
t

)
≤ θmin. This

concludes the proof of Lemma 5.4 by substituting φ2
t = φ2

0/(4νCb). �

F.2. Proof of Lemmas used in the proof of Lemma 5.4

F.2.1. PROOF OF LEMMA F.1

The proof is similar to that given by Oh et al. (2021). For the sake of brevity, let S = S(θ). Let us define the loss function:

`t(θ) :=
1

t

t∑
s=1

(rt − 〈θ,At〉)2.

The initial Lasso estimate is given by:

θ̂t := arg min
θ′
{`t(θ′) + λt‖θ′‖1} .

From this definition, we get:

`t(θ̂t) + λt‖θ̂t‖1 ≤ `t(θ) + λt‖θ‖1.

Let us denote E[·] as the expectation over rt in this section. Note that in view of the previous inequality, we have:

`t(θ̂t)− E[`t(θ̂t)] + E[`t(θ̂t)]− E[`t(θ)] + λt‖θ̂t‖1 ≤ `t(θ)− E[`t(θ)] + λt‖θ‖1.
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Denoting vt(θ) := `t(θ)− E[`t(θ)] and E(θ′) := E[`t(θ
′)]− E[`t(θ)],

vt(θ̂t) + E(θ̂t) + λt‖θ̂t‖1 ≤ vt(θ) + λt‖θ‖1.

Let us define the event Tt:

Tt := {|vt(θ̂t)− vt(θ)| ≤
1

2
λt‖θ̂t − θ‖1}.

We can condition on this event in the rest of the proof:

Lemma F.3. We have:

P
(
|vt(θ̂t)− vt(θ)| ≤

1

2
λt‖θ̂t − θ‖1

)
≥ 1− 2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)
.

Given the event Tt, we have:

2E(θ̂t) ≤ 2λt(‖θ‖1 − ‖θ̂t‖1) + λt‖θ̂t − θ‖1.

By the triangle inequality,

‖θ̂t‖1 = ‖θ̂t,S‖1 + ‖θ̂t,Sc‖1
≥ ‖θS‖1 − ‖θ̂t,S − θS‖+ ‖θ̂t,Sc‖1.

We also have:

‖θ̂t − θ‖1 = ‖(θ̂t − θ)S‖1 + ‖(θ̂t − θ)Sc‖1
= ‖θ̂t,S − θS‖1 + ‖θ̂t,Sc‖1.

Therefore, we get:

2E(θ̂t) ≤ 2λt‖θ‖1 − 2λt(‖θS‖1 − ‖θ̂t,S − θS‖1 + ‖θ̂t,Sc‖1) + λt(‖θ̂t,S − θS‖1 + ‖θ̂t,Sc‖1)

= 3λt‖θ̂t,S − θS‖1 − λt‖θ̂t,Sc‖1. (5)

From the compatibility condition, we get:

‖θ̂t,S − θS‖21 ≤
s0(θ̂t − θ)>Σ̂t(θ̂t − θ)

φ2
t

(6)

Using inequality (5), we get:

2E(θ̂t) + λt‖θ̂t − θ‖1 = 2E(θ̂t) + λt‖θ̂t,Sc‖1 + λt‖θ̂t,S − θS‖1
≤ 3λt‖θ̂t,S − θS‖1 + λt‖θ̂t,S − θS‖1
= 4λt‖θ̂t,S − θS‖1

≤ 4λt
φt

√
s0(θ̂t − θ)>Σ̂t(θ̂t − θ)

≤ (θ̂t − θ)>Σ̂t(θ̂t − θ) +
4λ2

t s0

φ2
t

≤ 2E(θ̂t) +
4λ2

t s0

φ2
t

,

where for the third inequality, we used 4uv ≤ u2 + 4v2 with u =

√
(θ̂t − θ)>Σ̂t(θ̂t − θ) and v =

λt
√
s0

φt
. The last

inequality is due to Lemma F.4:



Thresholded Lasso Bandit

Lemma F.4. We have:

E(θ̂t) ≥
1

2
(θ̂t − θ)>Σ̂t(θ̂t − θ) .

Thus, we get:

‖θ̂t − θ‖1 ≤
4λts0

φ2
t

.

This concludes the proof. �

F.2.2. PROOF OF LEMMA F.2

For the sake of brevity, let S = S(θ). First, we define the adapted Gram matrix Σt := 1
t

∑t
s=1 E[AsA

>
s |Fs−1]. From the

construction of the algorithm, E[AsA
>
s |Fs−1] = E[

∑K
k=1As,kA

>
s,k1{k = argmax

k′
〈As,k, θ̂s〉}| θ̂s]. The following lemma

characterizes the expected Gram matrix generated by the algorithm.

Lemma F.5 (Lemma 10 of Oh et al. (2021)). Under Assumptions 3.3 and 3.4, for each fixed vector θ′ ∈ Rd, we have:

EA∼pA

 ∑
k=1,2

AkA
>
k 1{k = argmax

k′
〈Ak, θ′〉}

 � 1

2νCb
Σ,

where A � B means that A−B is positive semidefinite.

Using Lemma F.5, we have

Σt �
1

2νCb
Σ. (7)

By Lemma 6.18 of Bühlmann & Van De Geer (2011), Assumption 3.2, and the definition of the compatibility constant, we
get:

φ2(Σt, S) ≥ φ2(
1

2νCb
Σ, S) ≥ φ2

0

2νCb
. (8)

Furthermore, we have a following adaptive matrix concentration results for Σ̂t:

Lemma F.6. Let C0 := min
{

1
2 ,

φ2
0

512s0s2AνCb

}
. We have, for all t ≥ 2 log(2d2)

C2
0

,

P
(

1

2s2
A

‖Σ̂t − Σt‖∞ ≥
φ2(Σt, S)

64s0s2
A

)
≤ exp

(
− tC

2
0

2

)
.

We use a following result from Bühlmann & Van De Geer (2011):

Lemma F.7 (Corollary 6.8 in Bühlmann & Van De Geer (2011)). Suppose Σ0 satisfies the compatibility condition for the
set S with |S| = s0, with the compatibility constant φ2(Σ0, S) > 0, and that ‖Σ0 − Σ1‖∞ ≤ λ, where 32λs0

φ2(Σ0,S) ≤ 1. Then,

the compatibility condition also holds for Σ1 with the compatibility constant φ
2(Σ0,S)

2 , i.e., φ2(Σ1, S) ≥ φ2(Σ0,S)
2 .

Combining the above results, we get, for all t ≥ 2 log(2d2)
C2

0
:

φ2(Σ̂t, S) ≥ φ2(Σt, S)

2

≥ φ2
0

4νCb
,

with probability at least 1− exp
(
− tC

2
0

2

)
. This concludes the proof. �
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F.2.3. PROOF OF LEMMA F.3

Let us denote θ̂ = θ̂t for simplicity. We compute vt(θ̂) as:

vt(θ̂) = `t(θ̂)− E[`t(θ̂)]

=
1

t

t∑
s=1

(rs − 〈θ̂, As〉)2 − 1

t

t∑
s=1

E
[
(rs − 〈θ̂, As〉)2

]
=

1

t

t∑
s=1

(〈θ,As〉+ εs − 〈θ̂, As〉)2 − 1

t

t∑
s=1

E
[
(〈θ,As〉+ εs − 〈θ̂, As〉)2

]
=

1

t

t∑
s=1

(2εs〈θ − θ̂, As〉+ ε2
s − E[ε2

s]).

We also have that:

vt(θ) =
1

t

t∑
s=1

(ε2
s − E[ε2

s]).

Therefore, we can compute:

vt(θ̂)− vt(θ) =
1

t

t∑
s=1

2εs〈θ − θ̂, As〉

≤ 2

t

∥∥∥∥∥
t∑

s=1

εsAs

∥∥∥∥∥
∞

‖θ − θ̂‖1,

where we used Hölder’s inequality in the above inequality. We have that:

P

(
2

t

∥∥∥∥∥
t∑

s=1

εsAs

∥∥∥∥∥
∞

≤ λ

)
≥ 1−

d∑
i=1

P

(
2

t

∣∣∣∣∣
t∑

s=1

εs(As)i

∣∣∣∣∣ > λ

)
,

where (As)i is the i-th element of As. Define F̃t as the σ-algebra generated by the random variables
(A1,A1, ε1, . . . , At,At, εt,At+1). For each i ∈ [d], we get E[εs(As)i|F̃s−1] = (As)i E[εs|F̃s−1] = 0. Thus, for each
i ∈ [d], {εs(As)i}ts=1 is a martingale difference sequence adapted to the filtration F̃1 ⊂ . . . ⊂ F̃t−1. By Assumption 3.1,
we have |(As)i| ≤ sA. We compute, for each α ∈ R,

E[exp(αεs(As)i)|F̃s−1] ≤ E[exp(αεssA)|F̃s−1]

≤ exp

(
α2s2

Aσ
2

2

)
.

Therefore εs(As)i is also a sub-Gaussian random variable with the variance proxy (sAσ)2. Next, we use the concentration
results by Wainwright (2019), Theorem 2.19:

Theorem F.8. Let (Zt, F̃t)∞t=1 be a martingale difference sequence, and assume that for all α ∈ R, E[exp(αZs)|F̃s−1] ≤
exp(α

2σ2

2 ) with probability one. Then, for all x ≥ 0, we get:

P

(∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣ ≥ x
)
≤ 2 exp

(
− x2

2tσ2

)
.

From these results, we get:

P

(∣∣∣∣∣
t∑

s=1

εs(As)i

∣∣∣∣∣ > tλ

2

)
≤ 2 exp

(
− tλ2

8σ2s2
A

)
.
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Taking λ = 1
2λt,

P

(
2

t

∥∥∥∥∥
t∑

s=1

εsAs

∥∥∥∥∥
∞

≤ λt
2

)
≥ 1− 2d exp

(
− tλ2

t

32σ2s2
A

)
= 1− 2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)
.

�

F.2.4. PROOF OF LEMMA F.4

We denote θ̂t = θ̂ for brevity. From the definitions of E(θ′) and `t(θ′),

E(θ̂) = E[`t(θ̂)]− E[`t(θ)]

=
1

t
E

[
t∑

s=1

(〈θ̂ − θ,As〉+ εs)
2 −

t∑
s=1

ε2
s

]

=
1

t

t∑
s=1

〈θ̂ − θ,As〉2

=
1

t

t∑
s=1

(θ̂ − θ)>AsA>s (θ̂ − θ)

= (θ̂ − θ)>Σ̂t(θ̂ − θ)

≥ 1

2
(θ̂ − θ)>Σ̂t(θ̂ − θ),

where for the inequality, we used the positive semi-definiteness of Σ̂t. �

F.2.5. PROOF OF LEMMA F.5

The proof is almost identical to the proof of Lemma 10 in Oh et al. (2021). �

F.2.6. PROOF OF LEMMA F.6

Let us define γijt (At) as:

γijt (At) :=
1

2s2
A

((At)i(At)j − E[(At)i(At)j | Ft−1]) ,

where (At)i is the i-th element of At. We have, following a Bernstein-like inequality for the adapted data:

Lemma F.9 (Bernstein-like inequality for the adapted data (Oh et al., 2021)). Suppose for all t ≥ 1, for all 1 ≤ i ≤ j ≤ d,
E[γijt (At)|Ft−1] = 0 and E[|γijt (At)|m | Ft−1] ≤ m! for all integer m ≥ 2. Then, for all x > 0, and for all integer t ≥ 1,
we have:

P

(
max

1≤i≤j≤d

∣∣∣∣∣1t
t∑

s=1

γijs (As)

∣∣∣∣∣ ≥ x+
√

2x+

√
4 log(2d2)

t
+

2 log(2d2)

t

)
≤ exp

(
− tx

2

)
.

Note that 1
2s2A
‖Σ̂t − Σt‖∞ = max1≤i≤j≤d

∣∣∣ 1t ∑t
s=1 γ

ij
s (As)

∣∣∣, E[γijt (At)|Ft−1] = 0, and E[|γijt (At)|m | Ft−1] ≤ 1 for
all integer m ≥ 2. Therefore, we can apply Lemma F.9:

P

(
1

2s2
A

‖Σ̂t − Σt‖∞ ≥ x+
√

2x+

√
4 log(2d2)

t
+

2 log(2d2)

t

)
≤ exp

(
− tx

2

)
.
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For all t ≥ 2 log(2d2)
C2

0
with C0 := min

{
1
2 ,

φ2
0

256s0s2AνCb

}
, taking x = C2

0 ,

x+
√

2x+

√
4 log(2d2)

t
+

2 log(2d2)

t
≤ 2C2

0 + 2
√

2C0

≤ 4C0

≤ φ2
0

128s0s2
AνCb

≤ φ2(Σt, S)

64s0s2
A

.

In summary, for all t ≥ 2 log(2d2)
C2

0
, we get:

P
(

1

2s2
A

‖Σ̂t − Σt‖∞ ≥
φ2(Σt, S)

64s0s2
A

)
≤ P

(
1

2s2
A

‖Σ̂t − Σt‖∞ ≥ C2
0 +
√

2C0 +

√
4 log(2d2)

t
+

2 log(2d2)

t

)

≤ exp

(
− tC

2
0

2

)
.

This concludes the proof. �

F.3. Proof of Lemma 5.6

For a fixed Ŝ, first we define the adapted Gram matrix on the estimated support as

Σt :=
1

t

t∑
s=1

E[As(Ŝ)As(Ŝ)>|Fs−1].

From the construction of the algorithm, E[As(Ŝ)As(Ŝ)>|Fs−1] = E[
∑K
k=1As,k(Ŝ)As,k(Ŝ)>1{k =

argmax
k′
〈As,k, θ̂s〉}| θ̂s]. Recall that for each B ⊂ [d], ΣB := 1

K

∑K
k=1 EA∼pA

[
Ak(B)Ak(B)>

]
, where Ak(B)

is a |B|-dimensional vector extracted the elements of Ak with indices in B. The following lemma characterizes the expected
Gram matrix generated by the algorithm.

Lemma F.10. Fix Ŝ such that S(θ) ⊂ Ŝ and |Ŝ| ≤ s0 + (4νCb
√
s0)/φ2

0. Fix θ′ ∈ Rd. Under Assumption 3.2, 3.3, and 3.4,
we have:

EA∼pA

 ∑
k∈[K]

Ak(Ŝ)Ak(Ŝ)>1{k = argmax
k′
〈Ak, θ′Ŝ〉}

 � 1

2νCb
ΣŜ ,

where A � B means that A−B is positive semidefinite.

First, we prove the lower bound on the smallest eigenvalue of the expected covariance matrices. Let ΣŜ :=
1
t

∑t
s=1 E[As(Ŝ)As(Ŝ)> | Ft−1]. By Assumption 3.5 and the construction of the algorithm, under the event Et, we

get:

λmin(ΣŜ) = λmin

(
1

t

t∑
s=1

E

[
K∑
k=1

As,k,ŜAs,k,Ŝ1{k = argmax
k′
〈Ak′ , θ̂s〉} | θ̂s

])

≥
t∑

s=1

λmin

(
1

t
E

[
K∑
k=1

As,k,ŜAs,k,Ŝ1{k = argmax
k′
〈Ak′ , θ̂s〉} | θ̂s

])
≥ α

2νCb
,
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where for the first inequality, we used the concavity of λmin(·) over the positive semi-definite matrices. Next, we prove the
upper bound on the largest eigenvalue of As(Ŝ)As(Ŝ)>:

λmax(As(Ŝ)As(Ŝ)>) = max
‖v‖2=1

v>As(Ŝ)As(Ŝ)>v

(a)

≤ max
‖v‖2=1

‖v‖21‖As(Ŝ)‖2∞

≤ |Ŝ|s2
A

≤
(
s0 + (4νCb

√
s0)/φ2

0

)
s2
A,

where for (a), we used Hölder’s inequality. Now recall the matrix Chernoff inequality by Tropp (2011):

Theorem F.11 (Matrix Chernoff, Theorem 3.1 of Tropp (2011)). Let F1 ⊂ F2 ⊂ . . . ⊂ Ft be a filtration and a consider a
finite sequence {Xs} of positive semi-definite matrices with dimension d, adapted to the filtration. Suppose λmax(Xk) ≤ R
almost surely. Define the finite series: Y :=

∑t
s=1Xs and W :=

∑t
s=1 E[Xs | Fs−1]. Then, for all µ ≥ 0, for all

δ ∈ [0, 1), we have:

P (λmin(Y ) ≤ (1− δ)µ and λmin(W ) ≥ µ) ≤ d
(

e−δ

(1− δ)1−δ

) µ
R

.

Taking R =
(
s0 + (4νCb

√
s0)/φ2

0

)
s2
A, Xs = As,ŜA

>
s,Ŝ

, Y = tΣ̂Ŝ , W = tΣŜ , δ = 1/2, µ = t α
2νCb

:

P
(
λmin(tΣ̂Ŝ) ≤ 1

2
t
α

2νCb
and λmin(tΣŜ) ≥ t α

2νCb

)
≤
(
s0 +

4νCb
√
s0

φ2
0

)(
e−0.5

0.50.5

) t
R

α
2νCb

≤ exp

(
log

(
s0 +

4νCb
√
s0

φ2
0

)
− tα

20s2
AνCb

(
s0 + (4νCb

√
s0)/φ2

0

)) ,
where for the last inequality, we used −0.5− 0.5 log(0.5) < − 1

10 . This concludes the proof. �

F.4. Proof of Lemma 5.7

In this proof, we denote Ŝ = Ŝ
(t)
1 and ε = (ε1, . . . , εt)

>. Assume λmin(Σ̂Ŝ) ≥ λ. We have:

‖θ̂t+1 − θ‖2 = ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>R− θ‖2
= ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>(Aθ + ε)− θ‖2
= ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>(A(Ŝ)θ(Ŝ) + ε)− θ‖2
= ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>ε‖2
≤ ‖(A(Ŝ)>A(Ŝ))−1‖2‖A(Ŝ)>ε‖2

≤ 1

λt
‖A(Ŝ)>ε‖2.
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We get (note that we are conditioning on a fixed Ŝ during the proof):

P
(
‖θ̂t+1 − θ‖2 ≥ x and λmin(Σ̂Ŝ) ≥ λ

)
= P

(
‖θ̂t+1 − θ‖2 ≥ x

∣∣∣ λmin(Σ̂Ŝ) ≥ λ
)
P(λmin(Σ̂Ŝ) ≥ λ)

≤ P
(
‖A(Ŝ)>ε‖2 ≥ λtx

∣∣∣ λmin(Σ̂Ŝ) ≥ λ
)
P(λmin(Σ̂Ŝ) ≥ λ)

≤ P
(
‖A(Ŝ)>ε‖2 ≥ λtx

)
≤

d∑
i=1

P

∣∣∣∣∣
t∑

s=1

εs(As)i1
{
i ∈ Ŝ

}∣∣∣∣∣ ≥ λtx√
s0 +

4νCb
√
s0

φ2
0


=
∑
i∈Ŝ

P

∣∣∣∣∣
t∑

s=1

εs(As)i

∣∣∣∣∣ ≥ λtx√
s0 +

4νCb
√
s0

φ2
0


(a)

≤ 2

(
s0 +

4νCb
√
s0

φ2
0

)
exp

− λ2tx2

2σ2s2
A

(
s0 +

4νCb
√
s0

φ2
0

)
 ,

where for (a), we used Theorem F.8. This concludes the proof. �

F.5. Proof of Lemma 5.8

We follow the proof strategy of Lemma 6 in Bastani et al. (2021). Let rπt be the instantaneous expected regret of algorithm
π at round t defined as:

rπt := E
[

max
A∈At

〈A−At, θ〉
]
.

Let us define the eventsRk := {At ∈ RK×d : k ∈ argmax
k′
〈At,k′ , θ〉} and Gλt :=

{
λmin(Σ̂Ŝ) ≥ λ

}
. We have:

rπt ≤
K∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk) .

The term E [rπt | At ∈ Rk] can be further computed as:

E [rπt | At ∈ Rk] = E [〈At,k −At, θ〉 | At ∈ Rk]

≤ E
[
1
{
〈At, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At, θ〉 | At ∈ Rk

]
≤
∑
` 6=k

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk

]
≤
∑
` 6=k

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk, Et, G

α
4νCb
t

]
+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)) .
Let us denote the event Ih := {At ∈ RK×d : 〈At,k −At,`, θ〉 ∈ (2δsAh, 2δsA(h+ 1)]} where

δ =
σsAνCb

α

√√√√32
(
s0 + 4νCbs0

φ2
0

)
t− 1

.
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By conditioning on Ih, we get:

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

]
≤
ds1/δe∑
h=0

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

]
P(At ∈ Ih)

(a)

≤
ds1/δe∑
h=0

2δsA(h+ 1)E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
| At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

]
· P (〈At,k −At,`, θ〉 ∈ (0, 2δsA(h+ 1)])

(b)

≤
ds1/δe∑
h=0

4δ2s2
A(h+ 1)2CmP

(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
,

where for (a), we used the definition of Ih and for (b), we used Assumption 5.1. Under the event At ∈ Ih, the event
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 happens only when at least one of the events 〈At,k, θ − θ̂〉 ≥ δsAh or 〈At,`, θ̂ − θ〉 ≥ δsAh holds.
Therefore,

P
(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
≤ P

(
〈At,k, θ − θ̂〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
+ P

(
〈At,`, θ̂ − θ〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
(a)

≤ P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
+ P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
= 2P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
,

where for (a), we used the Cauchy–Schwarz inequality. Let us denote s′ = s0 +
4νCb

√
s0

φ2
0

. Then, using Lemma 5.7, we get:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
≤ 2s′ exp

(
− α2tδ2h2

32σ2s2
Aν

2C2
b s
′

)
= 2s′ exp

(
−h2

)
.

We also trivially have that:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
≤ 1.

Therefore, we can bound the expected instantaneous regret as:

rπt ≤
K∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk)

≤
K∑
k=1

∑
` 6=k

ds1/δe∑
h=0

(
4δ2s2

A(h+ 1)2Cm min
{

1, 4s′ exp
(
−h2

)})
+2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c)))
· P (At ∈ Rk)

(a)

≤ G

ds1/δe∑
h=0

(h+ 1)2 min
{

1, 4s′ exp
(
−h2

)}
+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))

≤ G

(
h0∑
h=0

(h+ 1)2 +

hmax∑
h=h0+1

4s′(h+ 1)2 exp
(
−h2

))
+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))
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where for brevity G = 4δ2s2
ACm(K − 1), where for (a), we used

∑K
k=1 P (At ∈ Rk) = 1 from Assumption 5.1 and we

set h0 := b
√

log 4s′ + 1c. We have:

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) =

hmax∑
h=h0+1

h2 exp(−h2) + 2

hmax∑
h=h0+1

h exp(−h2) +

hmax∑
h=h0+1

exp(−h2)

≤
∫ ∞
h0

h2 exp(−h2)dh+ 2

∫ ∞
h0

h exp(−h2)dh+

∫ ∞
h0

exp(−h2)dh.

Using an integration by parts, the inequality
∫∞
h0

exp(−h2
0)dh ≤ exp(−h2

0)/(h0 +
√
h2

0 + 4/π) ≤ exp(−h2
0), and h0 ≥ 1

from s0 ≥ 1, we get: ∫ ∞
h0

h2 exp(−h2)dh ≤ 1

2
h0 exp(−h2

0) +
1

2
exp(−h2

0)

2

∫ ∞
h0

h exp(−h2)dh = exp(−h2
0)∫ ∞

h0

exp(−h2)dh ≤ exp(−h2
0).

Therefore,

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) ≤ 1

2
h0 exp(−h2

0) +
5

2
exp(−h2

0)

≤ h0 exp(−h2
0) + 5 exp(−h2

0).

We get:

h0∑
h=0

(h+ 1)2 +

hmax∑
h=h0+1

4s′(h+ 1)2 exp
(
−h2

)
≤ (h0 + 1)(h0 + 2)(2h0 + 3)

6
+ 4s′(h0 + 5) exp(−h2

0)

≤ 2h3
0 + 9h2

0 + 13h0 + 6

6
+ 4s′(h0 + 5)

1

4s′

(a)

≤ 11h3
0,

where for (a), we used h0 ≥ 1. Finally, we get:

rπt ≤ 44δ2s2
ACm(K − 1)h3

0 + 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))

≤
1408σ2s4

ACm(K − 1)h3
0ν

2C2
b

(
s0 +

4νCb
√
s0

φ2
0

)
α2

1

t− 1
+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)) .
This concludes the proof. �

F.6. Proof of Lemma 5.9

Let rπt be the instantaneous expected regret of algorithm π in round t defined as:

rπt := E
[

max
A∈At

〈A−At, θ〉
]
.

Let us define the events Rk := {At ∈ RK×d : k ∈ argmax
k′
〈At,k′ , θ〉} and Gλt :=

{
λmin(Σ̂Ŝ) ≥ λ

}
. As in the proof of

Lemma 5.8, we get:

rπt ≤
K∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk) ,
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and

E [rπt | At ∈ Rk] = E [〈At,k −At, θ〉 | At ∈ Rk]

≤
∑
` 6=k

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk, Et, G

α
4νCb
t

]
+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)) .
Let us denote the event Ih := {At ∈ RK×d : 〈At,k −At,`, θ〉 ∈ (2δsAh, 2δsA(h+ 1)]} where

δ =
σsAνCb

α

√√√√32
(
s0 + 4νCbs0

φ2
0

)
t− 1

.

By conditioning on Ih, we get:

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

]
≤
ds1/δe∑
h=0

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

]
P(At ∈ Ih)

(a)

≤
ds1/δe∑
h=0

2δsA(h+ 1)E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
| At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

]
· P (〈At,k −At,`, θ〉 ∈ (0, 2δsA(h+ 1)])

≤
ds1/δe∑
h=0

2δsA(h+ 1)P
(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
,

where for (a), we used the definition of Ih. Under the event At ∈ Ih, the event 〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 happens only when
at least one of the events 〈At,k, θ − θ̂〉 ≥ δsAh or 〈At,`, θ̂ − θ〉 ≥ δsAh holds. Therefore,

P
(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
≤ P

(
〈At,k, θ − θ̂〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
+ P

(
〈At,`, θ̂ − θ〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
(a)

≤ P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
+ P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
= 2P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
,

where for (a), we used the Cauchy–Schwarz inequality. Let us denote s′ = s0 +
4νCb

√
s0

φ2
0

. Then, using Lemma 5.7, we get:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
≤ 2s′ exp

(
− α2tδ2h2

32σ2s2
Aν

2C2
b s
′

)
= 2s′ exp

(
−h2

)
.

We also trivially have that:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
4νCb
t

)
≤ 1.
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Therefore, we can upper bound the expected instantaneous regret as:

rπt ≤
K∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk)

≤
K∑
k=1

∑
` 6=k

ds1/δe∑
h=0

(
2δsA(h+ 1) min

{
1, 4s′ exp

(
−h2

)})
+2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c))
· P (At ∈ Rk)

)
(a)

≤ 2δsA(K − 1)

ds1/δe∑
h=0

(h+ 1) min
{

1, 4s′ exp
(
−h2

)}
+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))
≤ 2δsA(K − 1)

(
h0∑
h=0

(h+ 1) +

hmax∑
h=h0+1

4s′(h+ 1) exp
(
−h2

))

+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))
where for (a), we used

∑K
k=1 P (At ∈ Rk) = 1 and we set h0 := b

√
log 4s′ + 1c. We have:

hmax∑
h=h0+1

(h+ 1) exp(−h2) =

hmax∑
h=h0+1

h exp(−h2) +

hmax∑
h=h0+1

exp(−h2)

≤
∫ ∞
h0

h exp(−h2)dh+

∫ ∞
h0

exp(−h2)dh.

Since h0 ≥ 1 from s0 ≥ 1, we get: ∫ ∞
h0

h exp(−h2)dh =
1

2
exp(−h2

0)∫ ∞
h0

exp(−h2)dh ≤ exp(−h2
0).

Therefore,
hmax∑

h=h0+1

(h+ 1) exp(−h2) ≤ 3

2
exp(−h2

0).

We get:
h0∑
h=0

(h+ 1) +

hmax∑
h=h0+1

4s′(h+ 1) exp
(
−h2

)
≤ (h0 + 1)(h0 + 2)

2
+ 4s′

3

2
exp(−h2

0)

≤ h2
0 + 3h0 + 2

2
+

6s′

4s′

(a)

≤ 9

2
h2

0,

where for (a), we used h0 ≥ 1. Finally, we get:

rπt ≤ 9δsA(K − 1)h2
0 + 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et))

≤ 36σsA(K − 1)h2
0νCb

α

√√√√2
(
s0 +

4νCb
√
s0

φ2
0

)
t− 1

+ 2(K − 1)sAs1

(
P(Ect ) + P

((
G

α
4νCb
t

)c∣∣∣∣Et)) .
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This concludes the proof. �

G. Proof of Lemmas (without balanced covariance)

Lemma G.1. Let t ≥ 2 log(2d2)
C2

0
such that 4

(
2νs0
φ2
0

+

√(
1 + 2ν

φ2
0

)
s0

)
λt ≤ θmin. Under Assumptions 3.1, 3.2, 3.3, and

3.4,
P
(
S(θ) ⊂ Ŝ(t)

1 and |Ŝ(t)
1 \ S(θ)| ≤ 2ν

√
s0

φ2
0

)
≥ 1− 2 exp

(
− tλ2

t

32σ2s2A
+ log d

)
− exp

(
− tC

2
0

2

)
.

We redefine the event Et as

Et =

{
S ⊂ Ŝ(t)

1 and |Ŝ(t)
1 \ S| ≤

2ν
√
s0

φ2
0

}
.

Lemma G.2. Let t ∈ [T ]. Under Assumptions 3.1 and D.1, we have:

P
(
λmin(Σ̂Ŝ) ≥ α

2ν

∣∣ Et) ≥ 1− exp

(
log

(
s0 +

2ν
√
s0

φ2
0

)
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

)) .
Lemma G.3. Let t ∈ [T ] and s′ = s0 + 2ν

√
s0/φ

2
0. Under Assumption 3.1, we have for all x, λ > 0:

P
(
‖θ̂t+1 − θ‖2 ≥ x and λmin(Σ̂Ŝ) ≥ λ

∣∣ Et) ≤ 2s′ exp

(
− λ2tx2

2σ2s2
As
′

)
.

We redefine the parameter h0 = b
√

log(4(s0 +
2ν
√
s0

φ2
0

)) + 1c.

Lemma G.4. Define G
α
2ν
t :=

{
λmin(Σ̂Ŝ) ≥ α

2ν

}
. Let t ≥ 2. Under Assumptions 3.1, 3.2, 3.3, 3.4, 5.1, and D.1, the

expected instantaneous regret E[maxA∈At〈A−At, θ〉] is upper bounded by:

352σ2s4
ACmh

3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

1

t− 1
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et)) .
Lemma G.5. Under Assumptions 3.1, 3.2, 3.3, 3.4, and D.1, for any t ∈ [T ], E[maxA∈At〈A−At, θ〉] is upper bounded
by:

18σsAh
2
0ν

α

√√√√2
(
s0 +

2ν
√
s0

φ2
0

)
t− 1

+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et)) .
G.1. Proof of Lemma G.1

For the sake of brevity, let S = S(θ). We define v := θ̂
(t)
0 − θ. We first analyze the performance of the initial Lasso estimate.

Lemma G.6. Let Σ̂t :=
∑t
s=1 AsA

>
s

t be the empirical covariance matrix of the selected context vectors. Suppose Σ̂t satisfies
the compatibility condition with the support S with the compatibility constant φt. Then, under Assumption 3.1, we have:

P
(
‖v‖1 ≤

4s0λt
φ2
t

)
≥ 1− 2 exp

(
− tλ2

t

32σ2s2
A

+ log d

)
.

The next lemma then states that the compatibility constant of Σ̂t does not deviate much from the compatibility constant of Σ.

Lemma G.7. Assume K = 2. Let C0 := min
{

1
2 ,

φ2
0

256s0s2Aν

}
. For all t ≥ 2 log(2d2)

C2
0

, we have:

P
(
φ2(Σ̂t, S) ≥ φ2

0

2ν

)
≥ 1− exp

(
− tC

2
0

2

)
.
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Then, we follow the steps of the proof given by Zhou (2010). Let us define the event Gt as:

Gt :=

{
‖v‖1 ≤

4s0λt
φ2
t

}
.

For the rest of this section, we assume that the event Gt holds. Note that:

‖v‖1 ≥ ‖vSc‖1
=
∑
j∈Sc
|(θ̂(t)

0 )j |

≥
∑

j∈Sc∩Ŝ(t)
0

|(θ̂(t)
0 )j |

=
∑

j∈Ŝ(t)
0 \S

|(θ̂(t)
0 )j |

(a)

≥ |Ŝ(t)
0 \ S|4λt,

where for (a), we used the construction of Ŝ(t)
0 in the algorithm. We get:

|Ŝ(t)
0 \ S| ≤

‖v‖1
4λt

(a)

≤ s0

φ2
t

,

where for (a), we used the definition of Gt. We have: ∀j ∈ S,

|(θ̂(t)
0 )j | ≥ θmin − ‖vS‖∞

≥ θmin − ‖vS‖1

≥ θmin −
4s0λt
φ2
t

.

Therefore, when t is large enough so that 4λt ≤ θmin− 4s0λt
φ2
t

, we have: S ⊂ Ŝ(t)
0 . Using a similar argument, when t is large

enough so that 4λt

√(
1 + 1

φ2
t

)
s0 ≤ θmin − 4s0λt

φ2
t

, it holds that S ⊂ Ŝ(t)
1 . From the construction of Ŝ(t)

1 in the algorithm, it

also holds that: Ŝ(t)
1 ⊂ Ŝ(t)

0 . Therefore,

‖v‖1 ≥
∑

i∈Ŝ(t)
0 \S

|(θ̂(t)
0 )i|

≥
∑

i∈Ŝ(t)
1 \S

|(θ̂(t)
0 )i|

≥ |Ŝ(t)
1 \ S|4λt

√
|Ŝ(t)

0 |,

and

|Ŝ(t)
1 \ S| ≤

‖v‖1

4λt

√
|Ŝ(t)

0 |

≤ 1

4λt

√
|Ŝ(t)

0 |
· 4s0λt
φ2
t

≤
√
s0

φ2
t

.

Note that the condition 4λt

√(
1 + 1

φ2
t

)
s0 ≤ θmin − 4s0λt

φ2
t

is equivalent to 4λt

(√(
1 + 1

φ2
t

)
s0 + s0

φ2
t

)
≤ θmin. This

concludes the proof of Lemma G.1 by substituting φ2
t = φ2

0/(2ν). �
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G.2. Proof of Lemmas used in the proof of Lemma G.1

G.2.1. PROOF OF LEMMA G.6

The proof is identical to that of Lemma F.1.

G.2.2. PROOF OF LEMMA G.7

For the sake of brevity, let S = S(θ). First, we define the adapted Gram matrix Σt := 1
t

∑t
s=1 E[AsA

>
s |Fs−1]. From the

construction of the algorithm, E[AsA
>
s |Fs−1] = E[

∑K
k=1As,kA

>
s,k1{k = argmax

k′
〈As,k, θ̂s〉}| θ̂s]. The following lemma

characterizes the expected Gram matrix generated by the algorithm.

Lemma G.8. Assume K = 2. Under Assumption 3.2 and Assumption 3.3, for each fixed vector θ′ ∈ Rd, we have:

EA∼pA

 ∑
k=1,2

AkA
>
k 1{k = argmax

k′
〈Ak, θ′〉}

 � 1

ν
Σ,

where A � B means that A−B is positive semidefinite.

Using Lemma G.8, we have

Σt �
1

ν
Σ. (9)

By Lemma 6.18 of Bühlmann & Van De Geer (2011), Assumption 3.2, and the definition of the compatibility constant, we
get:

φ2(Σt, S) ≥ φ2(
1

ν
Σ, S) ≥ φ2

0

ν
. (10)

Furthermore, we have a following adaptive matrix concentration results for Σ̂t:

Lemma G.9. Let C0 := min
{

1
2 ,

φ2
0

256s0s2Aν

}
. We have, for all t ≥ 2 log(2d2)

C2
0

,

P
(

1

2s2
A

‖Σ̂t − Σt‖∞ ≥
φ2(Σt, S)

64s0s2
Aν

)
≤ exp

(
− tC

2
0

2

)
.

Combining Lemmas G.9 and F.7, we get, for all t ≥ 2 log(2d2)
C2

0
:

φ2(Σ̂t, S) ≥ φ2(Σt, S)

2

≥ φ2
0

2ν
,

with probability at least 1− exp
(
− tC

2
0

2

)
. This concludes the proof. �

G.2.3. PROOF OF LEMMA G.8

The proof is almost identical to the proof of Lemma 2 in Oh et al. (2021). �

G.2.4. PROOF OF LEMMA G.9

Let us define γijt (At) as:

γijt (At) :=
1

2C2
A

((At)i(At)j − E[(At)i(At)j | Ft−1]) ,
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where (At)i is the i-th element of At. Note that 1
2s2A
‖Σ̂t−Σt‖∞ = max1≤i≤j≤d

∣∣∣ 1t ∑t
s=1 γ

ij
s (As)

∣∣∣, E[γijt (At)|Ft−1] = 0,

and E[|γijt (At)|m | Ft−1] ≤ 1 for all integer m ≥ 2. Therefore, we can apply Lemma F.9:

P

(
1

2s2
A

‖Σ̂t − Σt‖∞ ≥ x+
√

2x+

√
4 log(2d2)

t
+

2 log(2d2)

t

)
≤ exp

(
− tx

2

)
.

For all t ≥ 2 log(2d2)
C2

0
with C0 := min

{
1
2 ,

φ2
0

256s0s2Aν

}
, taking x = C2

0 ,

x+
√

2x+

√
4 log(2d2)

t
+

2 log(2d2)

t
≤ 2C2

0 + 2
√

2C0

≤ 4C0

≤ φ2
0

64s0s2
Aν

≤ φ2(Σt, S)

64s0s2
Aν

.

In summary, for all t ≥ 2 log(2d2)
C2

0
, we get:

P
(

1

2s2
A

‖Σ̂t − Σt‖∞ ≥
φ2(Σt, S)

64s0s2
Aν

)
≤ P

(
1

2s2
A

‖Σ̂t − Σt‖∞ ≥ C2
0 +
√

2C0 +

√
4 log(2d2)

t
+

2 log(2d2)

t

)

≤ exp

(
− tC

2
0

2

)
.

This concludes the proof. �

G.3. Proof of Lemma G.2

For a fixed Ŝ, first we define the adapted Gram matrix on the estimated support as

Σt :=
1

t

t∑
s=1

E[As(Ŝ)As(Ŝ)>|Fs−1].

From the construction of the algorithm, E[As(Ŝ)As(Ŝ)>|Fs−1] = E[
∑K
k=1As,k(Ŝ)As,k(Ŝ)>1{k =

argmax
k′
〈As,k, θ̂s〉}| θ̂s]. Recall that for each B ⊂ [d], ΣB := 1

K

∑K
k=1 EA∼pA

[
Ak(B)Ak(B)>

]
, where Ak(B)

is a |B|-dimensional vector extracted the elements of Ak with indices in B. The following lemma characterizes the expected
Gram matrix generated by the algorithm.

Lemma G.10. AssumeK = 2. Fix Ŝ such that S(θ) ⊂ Ŝ and |Ŝ| ≤ s0 +(2ν
√
s0)/φ2

0. Fix θ′ ∈ Rd. Under Assumption 3.2
and Assumption 3.3, we have:

EA∼pA

 ∑
k=1,2

Ak(Ŝ)Ak(Ŝ)>1{k = argmax
k′
〈Ak, θ′Ŝ〉}

 � 1

ν
ΣŜ ,

where A � B means that A−B is positive semidefinite.

First, we prove the lower bound on the smallest eigenvalue of the expected covariance matrices. Let ΣŜ :=
1
t

∑t
s=1 E[As(Ŝ)As(Ŝ)> | Ft−1]. By Assumption D.1 and the construction of the algorithm, under the event Et, we
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get:

λmin(ΣŜ) = λmin

(
1

t

t∑
s=1

E

[
K∑
k=1

As,k,ŜAs,k,Ŝ1{k = argmax
k′
〈Ak′ , θ̂s〉} | θ̂s

])

≥
t∑

s=1

λmin

(
1

t
E

[
K∑
k=1

As,k,ŜAs,k,Ŝ1{k = argmax
k′
〈Ak′ , θ̂s〉} | θ̂s

])
=
α

ν
,

where for the inequality, we used the concavity of λmin(·) over the positive semi-definite matrices. Next, we prove the upper
bound on the largest eigenvalue of As(Ŝ)As(Ŝ)>:

λmax(As(Ŝ)As(Ŝ)>) = max
‖v‖=1

v>As(Ŝ)As(Ŝ)>v

(a)

≤ max
‖v‖=1

‖v‖21‖As(Ŝ)‖2∞

≤ |Ŝ|s2
A

≤
(
s0 + (2ν

√
s0)/φ2

0

)
s2
A

where for (a), we used Hölder’s inequality and Assumption 3.1. Taking R =
(
s0 + (2ν

√
s0)/φ2

0

)
s2
A, Xs = As,ŜA

>
s,Ŝ

,

Y = tΣ̂Ŝ , W = tΣŜ , δ = 1/2, µ = tαν in Theorem F.11, we have:

P
(
λmin(tΣ̂Ŝ) ≤ 1

2
t
α

ν
and λmin(tΣŜ) ≥ tα

ν

)
≤
(
s0 +

2ν
√
s0

φ2
0

)(
e−0.5

0.50.5

) tα
Rν

≤ exp

(
log

(
s0 +

2ν
√
s0

φ2
0

)
− tα

10s2
Aν
(
s0 + (2ν

√
s0)/φ2

0

)) ,
where for the last inequality, we used −0.5− 0.5 log(0.5) < − 1

10 . This concludes the proof. �

G.3.1. PROOF OF LEMMA G.10

The proof is almost identical to the proof of Lemma 2 in Oh et al. (2021). �

G.4. Proof of Lemma G.3

In this proof, we denote Ŝ = Ŝ
(t)
1 and ε = (ε1, . . . , εt)

>. Assume λmin(Σ̂Ŝ) ≥ λ. We have:

‖θ̂t+1 − θ‖2 = ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>R− θ‖2
= ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>(Aθ + ε)− θ‖2
= ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>(A(Ŝ)θ(Ŝ) + ε)− θ‖2
= ‖(A(Ŝ)>A(Ŝ))−1A(Ŝ)>ε‖2
≤ ‖(A(Ŝ)>A(Ŝ))−1‖2‖A(Ŝ)>ε‖2

≤ 1

λt
‖A(Ŝ)>ε‖2.
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We get (note that we are conditioning on a fixed Ŝ during the proof):

P
(
‖θ̂t+1 − θ‖2 ≥ x and λmin(Σ̂Ŝ) ≥ λ

)
= P

(
‖θ̂t+1 − θ‖2 ≥ x

∣∣∣ λmin(Σ̂Ŝ) ≥ λ
)
P(λmin(Σ̂Ŝ) ≥ λ)

≤ P
(
‖A(Ŝ)>ε‖2 ≥ λtx

∣∣∣ λmin(Σ̂Ŝ) ≥ λ
)
P(λmin(Σ̂Ŝ) ≥ λ)

≤ P
(
‖A(Ŝ)>ε‖2 ≥ λtx

)
≤

d∑
i=1

P

∣∣∣∣∣
t∑

s=1

εs(As)i1
{
i ∈ Ŝ

}∣∣∣∣∣ ≥ λtx√
s0 +

2ν
√
s0

φ2
0


=
∑
i∈Ŝ

P

∣∣∣∣∣
t∑

s=1

εs(As)i

∣∣∣∣∣ ≥ λtx√
s0 +

2ν
√
s0

φ2
0


(a)

≤ 2

(
s0 +

2ν
√
s0

φ2
0

)
exp

− λ2tx2

2σ2s2
A

(
s0 +

2ν
√
s0

φ2
0

)
 ,

where for (a), we used Theorem F.8. This concludes the proof. �

G.5. Proof of Lemma G.4

We follow the proof strategy of Lemma 6 in Bastani et al. (2021). Let rπt be the instantaneous expected regret of algorithm
π at round t defined as:

rπt := E
[

max
A∈At

〈A−At, θ〉
]
.

Let us define the eventsRk := {At ∈ RK×d : k ∈ argmax
k′
〈At,k′ , θ〉} and Gλt :=

{
λmin(Σ̂Ŝ) ≥ λ

}
. We have:

rπt ≤
2∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk) .

The term E [rπt | At ∈ Rk] can be further computed as:

E [rπt | At ∈ Rk] = E [〈At,k −At, θ〉 | At ∈ Rk]

≤ E
[
1
{
〈At, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At, θ〉 | At ∈ Rk

]
≤
∑
` 6=k

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk

]
≤
∑
` 6=k

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk, Et, G

α
2ν
t

]
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et)) .
Let us denote the event Ih := {At ∈ RK×d : 〈At,k −At,`, θ〉 ∈ (2δsAh, 2δsA(h+ 1)]} where

δ =
σsAν

α

√√√√8
(
s0 +

2ν
√
s0

φ2
0

)
t− 1

.
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By conditioning on Ih, we get:

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

]
≤
ds1/δe∑
h=0

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

]
P(At ∈ Ih)

(a)

≤
ds1/δe∑
h=0

2δsA(h+ 1)E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
| At ∈ Rk ∩ Ih, Et, G

α
2ν
t

]
× P (〈At,k −At,`, θ〉 ∈ (0, 2δsA(h+ 1)])

(b)

≤
ds1/δe∑
h=0

4δ2s2
A(h+ 1)2CmP

(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
,

where for (a), we used the definition of Ih and for (b), we used Assumption 5.1. Under the event At ∈ Ih, the event
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 happens only when at least one of the events 〈At,k, θ − θ̂〉 ≥ δsAh or 〈At,`, θ̂ − θ〉 ≥ δsAh holds.
Therefore,

P
(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
≤ P

(
〈At,k, θ − θ̂〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
+ P

(
〈At,`, θ̂ − θ〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
(a)

≤ P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
+ P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
= 2P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
,

where for (a), we used the Cauchy–Schwarz inequality. Let us denote s′ = s0 +
2ν
√
s0

φ2
0

. Then, using Lemma G.3, we get:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
≤ 2s′ exp

(
− α2tδ2h2

8σ2s2
Aν

2s′

)
= 2s′ exp

(
−h2

)
.

We also trivially have that:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
≤ 1.

Therefore, we can upper bound the expected instantaneous regret as:

rπt ≤
2∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk)

≤
2∑
k=1

∑
` 6=k

ds1/δe∑
h=0

(
4δ2s2

A(h+ 1)2Cm min
{

1, 4s′ exp
(
−h2

)})
+2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c))
· P (At ∈ Rk)

)
(a)

≤ 4δ2s2
ACm

ds1/δe∑
h=0

(h+ 1)2 min
{

1, 4s′ exp
(
−h2

)}
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))
≤ 4δ2s2

ACm

(
h0∑
h=0

(h+ 1)2 +

hmax∑
h=h0+1

4s′(h+ 1)2 exp
(
−h2

))
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))
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where for (a), we used
∑2
k=1 P (At ∈ Rk) = 1 from Assumption 5.1 and we set h0 := b

√
log 4s′ + 1c. We have:

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) =

hmax∑
h=h0+1

h2 exp(−h2) + 2

hmax∑
h=h0+1

h exp(−h2) +

hmax∑
h=h0+1

exp(−h2)

≤
∫ ∞
h0

h2 exp(−h2)dh+ 2

∫ ∞
h0

h exp(−h2)dh+

∫ ∞
h0

exp(−h2)dh.

Using an integration by parts, the inequality
∫∞
h0

exp(−h2
0)dh ≤ exp(−h2

0)/(h0 +
√
h2

0 + 4/π) ≤ exp(−h2
0), and h0 ≥ 1

from s0 ≥ 1, we get: ∫ ∞
h0

h2 exp(−h2)dh ≤ 1

2
h0 exp(−h2

0) +
1

2
exp(−h2

0)

2

∫ ∞
h0

h exp(−h2)dh = exp(−h2
0)∫ ∞

h0

exp(−h2)dh ≤ exp(−h2
0).

Therefore,

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) ≤ 1

2
h0 exp(−h2

0) +
5

2
exp(−h2

0)

≤ h0 exp(−h2
0) + 5 exp(−h2

0).

We get:

h0∑
h=0

(h+ 1)2 +

hmax∑
h=h0+1

4s′(h+ 1)2 exp
(
−h2

)
≤ (h0 + 1)(h0 + 2)(2h0 + 3)

6
+ 4s′(h0 + 5) exp(−h2

0)

≤ 2h3
0 + 9h2

0 + 13h0 + 6

6
+ 4s′(h0 + 5)

1

4s′

(a)

≤ 11h3
0,

where for (a), we used h0 ≥ 1. Finally, we get:

rπt ≤ 44δ2s2
ACmh

3
0 + 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))
≤

352σ2s4
ACmh

3
0ν

2
(
s0 +

2ν
√
s0

φ2
0

)
α2

1

t− 1
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et)) .
This concludes the proof. �

G.6. Proof of Lemma G.5

Let rπt be the instantaneous expected regret of algorithm π in round t defined as:

rπt := E
[

max
A∈At

〈A−At, θ〉
]
.

Let us define the events Rk := {At ∈ RK×d : k ∈ argmax
k′
〈At,k′ , θ〉} and Gλt :=

{
λmin(Σ̂Ŝ) ≥ λ

}
. As in the proof of

Lemma 5.8, we get:

rπt ≤
2∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk) ,
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and

E [rπt | At ∈ Rk] = E [〈At,k −At, θ〉 | At ∈ Rk]

≤
∑
` 6=k

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk, Et, G

α
2ν
t

]
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et)) .
Let us denote the event Ih := {At ∈ RK×d : 〈At,k −At,`, θ〉 ∈ (2δsAh, 2δsA(h+ 1)]} where

δ =
σsAν

α

√√√√8
(
s0 + 2νs0

φ2
0

)
t− 1

.

By conditioning on Ih, we get:

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

]
≤
ds1/δe∑
h=0

E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
〈At,k −At,`, θ〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

]
P(At ∈ Ih)

(a)

≤
ds1/δe∑
h=0

2δsA(h+ 1)E
[
1
{
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉

}
| At ∈ Rk ∩ Ih, Et, G

α
2ν
t

]
× P (〈At,k −At,`, θ〉 ∈ (0, 2δsA(h+ 1)])

≤
ds1/δe∑
h=0

2δsA(h+ 1)P
(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
,

where for (a), we used the definition of Ih. Under the event At ∈ Ih, the event 〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 happens only when
at least one of the events 〈At,k, θ − θ̂〉 ≥ δsAh or 〈At,`, θ̂ − θ〉 ≥ δsAh holds. Therefore,

P
(
〈At,`, θ̂t〉 ≥ 〈At,k, θ̂t〉 | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
≤ P

(
〈At,k, θ − θ̂〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
+ P

(
〈At,`, θ̂ − θ〉 ≥ δsAh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
(a)

≤ P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
+ P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
= 2P

(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
,

where for (a), we used the Cauchy–Schwarz inequality. Let us denote s′ = s0 +
2ν
√
s0

φ2
0

. Then, using Lemma 5.7, we get:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
≤ 2s′ exp

(
− α2tδ2h2

8σ2s2
Aν

2C2
b s
′

)
= 2s′ exp

(
−h2

)
.

We also trivially have that:

P
(
‖θ − θ̂‖2 ≥ δh | At ∈ Rk ∩ Ih, Et, G

α
2ν
t

)
≤ 1.
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Therefore, we can upper bound the expected instantaneous regret as:

rπt ≤
2∑
k=1

E [rπt | At ∈ Rk]P (At ∈ Rk)

≤
2∑
k=1

∑
` 6=k

ds1/δe∑
h=0

(
2δsA(h+ 1) min

{
1, 4s′ exp

(
−h2

)})
+2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c))
· P (At ∈ Rk)

)
(a)

≤ 2δsA

ds1/δe∑
h=0

(h+ 1) min
{

1, 4s′ exp
(
−h2

)}
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))
≤ 2δsA

(
h0∑
h=0

(h+ 1) +

hmax∑
h=h0+1

4s′(h+ 1) exp
(
−h2

))
+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))
where for (a), we used

∑K
k=1 P (At ∈ Rk) = 1 and we set h0 := b

√
log 4s′ + 1c. We have:

hmax∑
h=h0+1

(h+ 1) exp(−h2) =

hmax∑
h=h0+1

h exp(−h2) +

hmax∑
h=h0+1

exp(−h2)

≤
∫ ∞
h0

h exp(−h2)dh+

∫ ∞
h0

exp(−h2)dh.

Since h0 ≥ 1 from s0 ≥ 1, we get: ∫ ∞
h0

h exp(−h2)dh =
1

2
exp(−h2

0)∫ ∞
h0

exp(−h2)dh ≤ exp(−h2
0).

Therefore,

hmax∑
h=h0+1

(h+ 1) exp(−h2) ≤ 3

2
exp(−h2

0).

We get:

h0∑
h=0

(h+ 1) +

hmax∑
h=h0+1

4s′(h+ 1) exp
(
−h2

)
≤ (h0 + 1)(h0 + 2)

2
+ 4s′

3

2
exp(−h2

0)

≤ h2
0 + 3h0 + 2

2
+

6s′

4s′

(a)

≤ 9

2
h2

0,

where for (a), we used h0 ≥ 1. Finally, we get:

rπt ≤ 9δsAh
2
0 + 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et))

≤ 18σsAh
2
0ν

α

√√√√2
(
s0 +

2ν
√
s0

φ2
0

)
t− 1

+ 2sAs1

(
P(Ect ) + P

((
G
α
2ν
t

)c∣∣∣Et)) .
This concludes the proof. �
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H. Additional Experimental Results and Details
H.1. The implementation of Lasso bandit

Although the problem formulation for DR Lasso and SA Lasso is the same as ours, the problem formulation for Lasso bandit
Bastani & Bayati (2020) is different from ours. In Bastani & Bayati (2020), the unknown regression vectors are defined arm-
wise and a common context is observed among the arms. In the numerical experiments, we followed the comparison idea in
Kim & Paik (2019) and Oh et al. (2021) to apply Lasso bandit of Bastani & Bayati (2020) to our problem setting. The idea is
explained as follows: from the action set At, the Kd-dimensional context vector Xt = (A>t,1, A

>
t,2, . . . , A

>
t,K)> ∈ RKd and

the Kd-dimensional arm-wise unknown regression vector βk = (1{k = 1}θ>,1{k = 2}θ>, . . . ,1{k = K}θ>)> ∈ RKd
for each k ∈ [K] is considered to enable the comparison. Under these transformations, we have problem dimension Kd
(instead of d). Thus, the assumptions and the regret guarantees have different scalings mainly in K.

H.2. Additional Results with Various Correlation Levels

Figures 5-7 show the numerical results with correlation levels between two arms ρ2 ∈ {0.0, 0.3, 0.7} and dimension
d ∈ {100, 1000, 2000, 10000}, respectively. We find that TH Lasso bandit exhibits lower regret than SA Lasso bandit and
DR Lasso bandit in all scenarios. In particular, the difference between TH Lasso and SA Lasso becomes more apparent as
the dimension d increases, just as the theorem shows.
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Figure 5. Cumulative regret of the three algorithms with ρ2 = 0.0, Amax = 10, K ∈ {2, 50}, d ∈ {100, 1000, 2000, 10000}, and
s0 ∈ {5, 20}. The shaded area represents the standard errors.
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Case 2: ρ2 = 0.3
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Figure 6. Cumulative regret of the three algorithms with ρ2 = 0.3, Amax = 10, K ∈ {2, 50}, d ∈ {100, 1000, 2000, 10000}, and
s0 ∈ {5, 20}. The shaded area represents the standard errors.
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Case 3: ρ2 = 0.7
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Figure 7. Cumulative regret of the three algorithms with ρ2 = 0.7, Amax = 10, K ∈ {2, 50}, d ∈ {100, 1000, 2000, 10000}, and
s0 ∈ {5, 20}. The shaded area represents the standard errors.
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H.3. Additional Results with Various Amax for K-Armed Bandits

We also present the experimental results with varying Amax ∈ {2.5, 5, 10, 20, 40,∞} and a different parameter setting. We
set K = 50, d = 1000, and s0 = 20. Figure 8 shows the average cumulative regret at t = 1000 of TH Lasso bandit and SA
Lasso bandit for each Amax. We observe that TH Lasso bandit outperforms SA Lasso bandit for all Amax.
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Figure 8. Cumulative regret at round t = 1000 of TH Lasso bandit and SA Lasso bandit with ρ2 = 0.7, K = 50, d = 1000, s0 = 20,
and varying Amax ∈ {2.5, 5, 10, 20, 40,∞}. The error bars represent the standard errors.
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H.4. Additional Results with Non-Gaussian Distributions

Figure 9 shows the numerical results with the uniform distribution and non-Gaussian elliptical distributions. For experiments
with the uniform distribution, in each round t, we sample each feature vector At,k independently from a d-dimensional
hypercube [−1, 1]d. For experiments with the elliptical distribution, we construct each feature vector At,k by the following
equation:

At,k = µ+RAU (l)

where µ ∈ Rd is a mean vector, U (l) ∈ Rl is uniformly distributed on the unit sphere in R(l), R ∈ R is a random variable
independent of U (l), and A is a d× l-dimensional matrix with rank l. We sample R from Gaussian distributionN (0, 1), and
sample each element of A in an i.i.d manner using the uniform distribution on [−1, 1]. We set µ = 0d and set l = 200. As
in the previous experiments, we generate each non-zero components of θ in an i.i.d manner using the uniform distribution on
[1, 2]. The noise process is Gaussian, i.i.d. over rounds: εt ∼ N (0, 1). We find that TH Lasso bandit exhibits lower regret
than SA Lasso bandit and DR Lasso bandit in experiments with both distributions.
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Figure 9. Cumulative regret of the three algorithms with non-Gaussian distributions. The figures in left and center columns show
the experimental results with the uniform distribution. The figures in right column shows the experimental results with the elliptical
distribution. The shaded area represents the standard errors.
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H.5. Additional Results in Hard Instances

We further investigate the performance of TH Lasso bandit in hard instances where the feature vectors of the best arms do
not cover the support of θ (situations where the covariate diversity condition (Bastani et al., 2021) does not hold). In this
experiment, we set K = 3 and θ = (1, 0.1, 1, 0, 0, · · · , 0)> so that S = {1, 2, 3}. We generate the arm set by generating
feature vectors separately on the support S and the non-support Sc = [d] \ S. First, in each round t, we generate the feature
vectors on S as the following procedure: in each round t, the set of feature vectors ASt = {ASt,1, ASt,2, ASt,3} is set to A1

with probability 0.3 and is set to A2 with probability 0.7. We set A1 = {(1, 0, 0)>, (0, 1, 0)>, (0.9, 0.5, 0)>} and A1 =
{(0, 1, 0)>, (0, 0, 1)>, (0.0, 0.5, 0.9)>}. Second, for each component i ∈ Sc, we sample ((AS

c

t,1)i, (A
Sc

t,2)i, (A
Sc

t,3)i)
> ∈ R3

from a Gaussian distribution N (03, V ) where Vj,j = 1 for all j ∈ [3] and Vj,k = ρ2 for all j 6= k ∈ [3]. We then define
AS

c

t,k = ((AS
c

t,k)1, · · · , (AS
c

t,k)|Sc|)
> ∈ R|Sc|. Finally, by concatenating the feature vectors on S and Sc, we construct the

feature vector At,k = ((ASt,k)>, (AS
c

t,k)>)> ∈ Rd. Note that (1, 0, 0)> ∈ A1 and (0, 0, 1)> ∈ A2 are always included in
the best arms, and they do not span R3. Figure 10 shows the numerical results with correlation levels between two arms
ρ2 ∈ {0.0, 0.3, 0.7} and dimension d ∈ {1000, 2000}. We find that TH Lasso bandit exhibits lower regret than SA Lasso
bandit and DR Lasso bandit in all scenarios.
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Figure 10. Cumulative regret of the three algorithms in hard instances. The shaded area represents the standard errors.

H.6. Additional Results with Real-world Dataset

In this section, we empirically evaluate the TH Lasso bandit algorithm on a real-world dataset. We compare its performance
to those of the (uniformly) random policy and LinUCB (Li et al., 2010) with the exploration parameter α = 0.1.

We use the R6A dataset3 that contains a part of the user view/click log for articles displayed on the Yahoo!’s Today Module.
Specifically, we use the dataset corresponding to May 1st, 2009. We evaluate each algorithm using the replay method (Li
et al., 2011) with T = 10, 000 valid events. To evaluate the expected value and variance, we subsampled the data so that
each event is used with probability 0.9 for each instance. For a fair comparison between LinUCB and TH Lasso bandit, we
modify the TH Lasso bandit algorithm so that the unknown vector θ varies across arms. To emulate a high-dimensional
setting, we generate each context vector At,k by concatenating the original 12-dimensional feature vector with the random
dummy vector sampled from the uniform distribution on [0, 1]88. We present the average number of clicks from users for 20
instances in Figure 11. We observe that TH Lasso bandit outperforms the random policy and LinUCB.

3https://webscope.sandbox.yahoo.com

https://webscope.sandbox.yahoo.com


Thresholded Lasso Bandit

0 2000 4000 6000 8000 10000
Round

0

100

200

300

400

500

Nu
m

be
r o

f C
lic

ks

THLassoBandit
LinUCB
Random

Figure 11. Average number of clicks for the three algorithms on a real-world dataset. The error bars represent the standard errors.


