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Abstract
In this paper, we revisit the regret minimization
problem in sparse stochastic contextual linear ban-
dits, where feature vectors may be of large dimen-
sion d, but where the reward function depends on
a few, say s0 � d, of these features only. We
present Thresholded Lasso bandit, an algorithm
that (i) estimates the vector defining the reward
function as well as its sparse support, i.e., signifi-
cant feature elements, using the Lasso framework
with thresholding, and (ii) selects an arm greedily
according to this estimate projected on its support.
The algorithm does not require prior knowledge
of the sparsity index s0 and can be parameter-free
under some symmetric assumptions. For this sim-
ple algorithm, we establish non-asymptotic regret
upper bounds scaling asO(log d+

√
T ) in general,

and as O(log d+ log T ) under the so-called mar-
gin condition (a probabilistic condition on the sep-
aration of the arm rewards). The regret of previous
algorithms scales asO(log d+

√
T log(dT )) and

O(log T log d) in the two settings, respectively.
Through numerical experiments, we confirm that
our algorithm outperforms existing methods.

1. Introduction
The linear contextual bandit (Abe & Long, 1999; Li et al.,
2010) is a sequential decision-making problem that gener-
alizes the classical stochastic Multi-Armed Bandit (MAB)
problem (Lai & Robbins, 1985; Robbins, 1952), where (i)
in each round, the decision-maker is provided with a con-
text in the form of a feature vector for each arm and where
(ii) the expected reward is a linear function of these vec-
tors. More precisely, at the beginning of round t ≥ 1, the
decision-maker receives for each arm k, a feature vector
At,k ∈ Rd. She then selects an arm, say k, and observes
a sample of a random reward with mean 〈At,k, θ〉. The pa-
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rameter vector θ ∈ Rd is fixed but initially unknown. Linear
contextual bandits have been extensively applied in online
services such as online advertisement and recommendation
systems (Li et al., 2010; 2016; Zeng et al., 2016), and con-
stitute arguably the most relevant structured bandit model
in practice.

The major challenge in the design of efficient algorithms for
contextual linear bandits stems from the high dimensionality
of the feature space. For example, for display ad systems as
studied in Chapelle & Li (2011); Weinberger et al. (2009),
the joint information about a user, an ad and its publisher
is encoded in a feature vector of dimension d = 224. For-
tunately, typically only a few features significantly impact
the expected reward. This observation has motivated the
analysis of problems where the unknown parameter vector
θ is sparse (Bastani & Bayati, 2015; Kim & Paik, 2019;
Oh et al., 2021; Wang et al., 2018). In this paper, we also
investigate sparse contextual linear bandits, and assume that
θ only has at most s0 � d non-zero components. The set
of these components and its cardinality s0 are unknown to
the decision-maker. Sparse contextual linear bandits have
attracted a lot of attention recently. State-of-the-art algo-
rithms developed to exploit the sparse structure achieve
regrets scaling as O(log d+

√
T log(dT )) in general, and

O(log d log T ) under the co-called margin condition (a set-
ting where arms are well separated); refer to Section 2 for
details.

We develop a novel algorithm, referred to as Thresholded
Lasso bandit1, with improved regret guarantees. Our al-
gorithm first uses the Lasso framework with thresholding
to maintain and update in each round estimates of the pa-
rameter vector θ and of its support. It then greedily picks
an arm based on these estimates (the thresholded estimates
of θ). The regret of the algorithm strongly depends on the
accuracy of these estimates. We derive strong guarantees on
this accuracy, which in turn leads to regret guarantees. Our
contributions are as follows.

(i) Thresholded Lasso Estimation Performance. The
performance of the Lasso-based estimation procedure is now
fairly well understood, see e.g., Bühlmann & Van De Geer

1An implementation of our method is available
at https://github.com/CyberAgentAILab/
thresholded-lasso-bandit.
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(2011); Tibshirani (1996); Zhou (2010). For example, Zhou
(2010) provides an analysis of the estimation of the support
of θ, and specifically, gives upper bounds on the number of
false positives (components that are not in the support, but
estimated as part of it) and false negatives (components that
are in the support, but not estimated as part of it). These
analyses, however, critically rely on the assumption that the
observed data is i.i.d.. This assumption does not hold for
the bandit problem, as the algorithm adapts its arm selection
strategy depending on the past observations. Despite the
non i.i.d. nature of the data, we manage to derive perfor-
mance guarantees of the estimate of θ. In particular, we
establish high probability guarantees that are independent
of the dimension d (see Lemma 5.7).

(ii) Regret Guarantees. Based on the analysis of the
Thresholded Lasso estimation procedure, we provide a
finite-time analysis of the regret of our algorithm under
certain symmetry assumptions made in Oh et al. (2021).
The regret scales at most as O(log d +

√
T ) in general

and O(log d + log T ) under the margin condition. More
precisely, the estimation error of θ induces a regret scal-
ing as O(

√
T ) (or O(log T ) under the margin condition).

The additional term O(log d) in our regret upper bounds
comes from the errors made when estimating the support
of θ. It is worth noting that when using the plain Lasso
estimator (without thresholding), one would obtain weaker
performance guarantees for the estimation of θ, typically
depending on d, see e.g., Bastani & Bayati (2015). This
dependence causes an additional multiplicative term log d
in the regret.

(iii) Numerical Experiments. We present extensive nu-
merical experiments to illustrate the performance of the
Thresholded Lasso bandit algorithm. We compare the es-
timation accuracy for θ and the regret of our algorithm to
those of the Lasso bandit, Doubly-Robust Lasso bandit,
and Sparsity-Agnostic Lasso bandit algorithms (Bastani &
Bayati, 2020; Kim & Paik, 2019; Oh et al., 2021). These
experiments confirm the benefit of the use of the Lasso
procedure with thresholding.

2. Related Work
Stochastic linear bandit problems have attracted a lot of
attention over the last decade. Carpentier & Munos (2012)
addresses sparse linear bandits where ‖θ‖0 ≤ s0 and where
the set of arms is restricted to the `2 unit ball. For regimes
where the time horizon is much smaller than the dimension
d, i.e., T � d, the authors propose an algorithm whose re-
gret scales at most asO(s0

√
T log(dT )). Hao et al. (2020b)

studied high-dimensional linear bandit problems where the
number of actions is larger than or equal to d. Under some
signal strength conditions, they propose an algorithm that

achieves a regret of O(s0 log d +
√
s0T log(dT )). These

studies, however, do not consider problems with contextual
information.

Recently, high-dimensional contextual linear bandits have
been investigated under the sparsity assumption ‖θ‖0 ≤
s0. In this line of research, the decision-maker is provided
in each round with a set of arms defined by a finite set
of feature vectors. This set is uniformly bounded across
rounds. In this setting, the authors of Abbasi-Yadkori et al.
(2012) devise an algorithm with both a minimax (problem
independent) regret upper bound Õ(

√
s0dT ) and problem

dependent upper bound O(ds0(log T )2) (the notation Õ
hides the polylogarithmic terms) without any assumption on
the distribution (other than the assumptions similar to our
Assumption 3.1).

In Bastani & Bayati (2020) (initially published in 2015
as Bastani & Bayati (2015)), the authors address a high-
dimensional contextual linear bandit problem where the
unknown parameter defining the reward function is arm-
specific (θ is different for the various arms). In the pro-
posed algorithm, arms are explored uniformly at random
for O(s2

0 log d log T ) prespecified rounds. Under the mar-
gin condition, similar to our Assumption 5.1, the algo-
rithm achieves a regret of O(s2

0(log d + log T )2). For
the same problem, Wang et al. (2018) develops the so-
called MCP-Bandit algorithm. The latter also uses the uni-
form exploration for O(s2

0 log d log T ) prespecified rounds,
and has improved regret guarantees: the regret scales as
O(s2

0(log d+ s0) log T ).

High-dimensional contextual linear bandits have been also
studied without the margin condition, but with a unique
parameter θ defining the reward function. Kim & Paik
(2019) designs an algorithm with uniform exploration
phases of O(

√
T log(dT ) log T ) rounds, and with regret

O(s0

√
T log(dT )). All the aforementioned algorithms re-

quire the knowledge of the sparsity index s0. In Oh et al.
(2021), the authors propose an algorithm, referred to as SA
Lasso bandit, that does not require this knowledge, and with
regretO(s2

0 log d+ s0

√
T log(dT )). In addition, SA Lasso

bandit does not include any uniform exploration phase. Its
regret guarantees are derived under specific assumptions
on the context distribution, the so-called relaxed symme-
try assumption and the balanced covariance assumption.
The authors also establish a O(s2

0 log d +
√
s0T log(dT ))

regret upper bound under the so-called restricted eigen-
value condition. In Ren & Zhou (2020), under the restricted
eigenvalue condition induced by the restricted bounded den-
sity assumption, the authors established a regret bound of
O(s0polylog(d) +

√
s0T log(d)polylog(T )).

One notable recent development in contextual bandit is the
regret analyses of the exploration-free or greedy algorithms.
Under some symmetry assumptions on the context distri-
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Table 1.Algorithms and their regret guarantees for scaling with respect tod andT . O notations are hiding sub-logarithmic factors ind
and logarithmic factors ins0 . The 'Compatibility' and 'Margin' conditions refer to Assumptions 3.2 and 5.1.

Paper Regret Compatibility Margin Other

Abbasi-Yadkori et al. (2012) O(ds0(log T)2)
Bastani & Bayati (2020) O(s2

0(log d + log T)2) X X
Wang et al. (2018) O(s2

0(log d + s0) log T) X X
Kim & Paik (2019) O(s0

p
T log(dT)) X

Ren & Zhou (2020) O(s0polylog(d) + log( T )
p

s0T log d) Restricted Bounded Density
Oh et al. (2021) O(s2

0 logd + s0
p

T log(dT)) X Asm 3.3, 3.4
This work: Theorem 5.2 O(s2

0 logd + s0 logT) X X Asm 3.3, 3.4, 3.5
This work: Theorem 5.3 O(s2

0 logd +
p

s0T) X Asm 3.3, 3.4, 3.5
Bastani et al. (2021)
(non-sparse setting)

O(d logd logT) X
Covariate diversity condition

(Stronger than Asm 3.5)

bution, these algorithms exhibit sub-linear regret (Bastani
et al., 2021; Kannan et al., 2018; Ren & Zhou, 2020; Oh
et al., 2021). Our analysis is also inspired by the results on
exploration-free algorithms.

In this paper, we develop an algorithm with improved regret
guarantees with and without the margin condition. The
algorithm does not rely on the knowledge ofs0 and can be
made parameter-free. Such a parameter-free algorithm is
not proposed in other recent papers. We have summarized
the relevant studies and our work in Table 1. We will come
back to this table when we discuss the assumptions.

3. Model and Assumptions

3.1. Model and Notation

We consider a contextual linear stochastic bandit problem
in a high-dimensional space. In each roundt 2 [T] :=
f 1; : : : ; Tg, the algorithm is given a set of context vec-
tors A t = f A t;k 2 Rd : k 2 [K ]g. The successive
sets(A t )t � 1 form an i.i.d. sequence with distribution
pA . In roundt, the algorithm selects an armA t 2 A t

based on past observations, and collects a random reward
r t . Formally, if F t is the� -algebra generated by random
variables(A 1; A1; r 1; : : : ; A t � 1; A t � 1; r t � 1; A t ), A t is F t -
measurable. We assume thatr t = hA t ; � i + " t , where" t is
a zero mean sub-Gaussian random variable with variance
proxy � 2 given F t andA t . Our objective is to devise an
algorithm with minimal regret, where regret is de�ned as:

R(T) := E

"
TX

t =1

max
A 2A t

hA; � i � r t

#

= E

"
TX

t =1

max
A 2A t

hA � A t ; � i

#

:

Notation. The `0-norm of a vector� 2 Rd is k� k0 =
P d

i =1 1 f � i 6= 0g. We denotê� t = 1
t

P t
s=1 AsA>

s as the
empirical Gram matrix generated by the arms selected un-
der a speci�c algorithm. For anyB � [d], we de�ne
� B := ( � 1;B ; : : : ; � d;B )> where for all i 2 [d], � i;B :=
� i 1f i 2 B g. For eachB � [d], we de�ne the subma-
trix A(B ) 2 Rn �j B j of A 2 Rn � d where forA(B ), we
extract the rows that are inB . We denotesupp(x) as the
set of the non-zero element indices ofx 2 Rd. We also
de�ne � min as the minimal value ofj� i j on the support:
� min := min i 2 supp( � ) j� i j. We denote byS(� ) = supp(� ) =
f i 2 [d] : � i 6= 0g the support of� . De�nitions and nota-
tions are also summarized in Appendix A, Table 2.

3.2. Assumptions

We present a set of assumptions used throughout the paper.
Many assumptions are essentially from Oh et al. (2021).
However, there are some differences, and these will be dis-
cussed. We also discuss and compare these assumptions to
those made in the related literature.

Assumption 3.1(Sparsity and parameter constraints). The
parameter� de�ning the reward function is sparse, i.e.,
k� k0 � s0 for some �xed but unknown integers0 (s0 does
not depend ond). We further assume thatk� k1 � s1 for
some unknown constant2 s1 and� min � s2=s0 with some
unknown constants2 (< s 1). Finally, we assume that the
`1 -norm of the context vector is bounded: for allt and for
all A 2 A t , kAk1 � sA , wheresA > 0 is a constant.

Assumption 3.2(Compatibility condition). For a matrix
M 2 Rd� d and a setS0 � [d], we de�ne the compatibility

2Given this assumption ofs1 to be a constant, note that the
value of� min would scale as� (1 =s0), ass0 � min � k � k1 � s1

may hold. Note that in Oh et al. (2021),k� k2 � �(1) andkAk2 �
�(1) (for all A 2 A t ) are assumed.
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constant� (M; S0) as:

� 2(M; S0) := min
x :kx S 0 k1 6=0

�
s0x> Mx
kxS0 k2

1
:kxSc

0
k1 � 3kxS0 k1

�
:

We assume that for the Gram matrix of the action set
� := 1

K

P K
k=1 EA� pA

�
Ak A>

k

�
satis�es � 2(� ; S(� )) �

� 2
0, where� 0 > 0 is some positive constant.

The compatibility condition was introduced in the high-
dimensional statistics literature (Bühlmann & Van De Geer,
2011). It ensures that the Lasso estimate (Tibshirani, 1996)
of the parameter� approaches to its true value as the number
of samples grows large. Note that it is easy to check that
the compatibility condition is strictly weaker than assuming
the positive de�niteness of� . It allows us to consider fea-
ture vectors with strongly correlated components. Assump-
tion 3.2 is considered to be essential for the Lasso estimate
to be consistent and assumed in many of the relevant studies.
See Table 1 for studies using the compatibility condition.
� 0 can be a constant that does not depend ond. This is the
case, for example, when the context distribution is multivari-
ate Gaussian, uniform distribution. In these examples, the
minimum eigenvalue of the Gram matrix is lower bounded
by some constant. When the minimum eigenvalue is lower
bounded by some constant, the compatibility constant is
also lower bounded by some constant (Bühlmann & Van
De Geer, 2011).

Assumption 3.3(Relaxed symmetry (Oh et al., 2021)). For
the distributionpA of A , there exists a constant� � 1 such
that for allA 2 RK � d such thatpA (A ) > 0, pA (A )

pA ( � A ) � � .

Assumption 3.4(Balanced covariance (Oh et al., 2021)).
For any permutation
 of [K ], for any integerk 2
f 2; :::; K � 1g and a �xed� , there exists a constantCb > 1
such that

CbEA� pA

h
(A 
 (1) A>


 (1) + A 
 ( K ) A
>

 ( K ) )

�1fhA 
 (1) ; � i < : : : < hA 
 ( K ) ; � ig
�

� EA� pA

h
A 
 ( k ) A

>

 ( k ) 1fhA 
 (1) ; � i < : : : < hA 
 ( K ) ; � ig

i
:

Assumption 3.5(Sparse positive de�niteness). De�ne for
eachB � [d], � B := 1

K

P K
k=1 EA� pA

�
Ak (B )Ak (B )>

�
;

whereAk (B ) is a jB j-dimensional vector, which is ex-
tracted from the elements ofAk with indices inB . There
exists a positive constant� > 0 such that8B � [d],

jB j � s0 + (4 �C b
p

s0)=� 2
0 andS(� ) � B

=) min
v2 Rj B j :kvk2 =1

v> � B v � �:

The parameters� 0; �; C b are those of Assumptions 3.2, 3.3,
and 3.4.

Assumption 3.3 comes from Oh et al. (2021). This assump-
tion is satis�ed for the wide range of distributions including

multivariate Gaussian, uniform, and Bernoulli distributions.
Assumption 3.4 is also adopted from Oh et al. (2021). This
assumption holds for a wide range of distributions including
multivariate Gaussian distribution, uniform distribution on
sphere. It also holds when contexts are independent across
arms with any arbitrary distributions (Oh et al., 2021). As-
sumption 3.5 implies that the context distribution is diverse
enough in the neighborhood of the support of� . Note that
Assumption 3.5 is standard in low dimensional linear bandit
literature (e.g., Lattimore & Szepesvári (2020); Degenne
et al. (2020); Jedra & Proutiere (2020); Hao et al. (2020a)).
There, ifS(� ) = [ d], the only choice forB is [d], and the
set of action has to spanRd (hence Assumption 3.5 is sat-
is�ed). We will see that after an accurate estimate of the
supportS(� ) (Lemma 5.4), Assumption 3.5 is used only
to analyze the performance of the least square estimator of
low-dimensional (order ofO(s0)) vector. Assumption 3.5
is strictly weaker than the covariate diversity condition of
Bastani et al. (2021), where the positive de�niteness must
be guaranteed for the Gram matrix generated by the greedy
algorithm. We also discuss the details of assumptions in
Appendix B.

4. Algorithm

In this section, we present the Thresholded (TH) Lasso
bandit algorithm. The algorithm adapts the idea of Lasso
with thresholding proposed in Zhou (2010) to estimate�
and its support. The main challenge in the analysis of the
Lasso with thresholding stems from the fact that here, the
data is non i.i.d. (the arm selection is adaptive).

Algorithm 1 TH Lasso Bandit
1: Input: � 0

2: for t = 1 ; � � � ; T do
3: Receive a context setA t := f A t;k : k 2 [K ]g
4: Pull armA t = argmax

A 2A t

hA; �̂ t i (ties are broken uni-

formly at random) and observer t

5: � t  � 0

q
2 log t log d

t

6: A  (A1; A2; : : : ; A t )> ; R  (r 1; r 2; : : : ; r t )>

7: �̂ ( t )
0  argmin

�

1
t kR � A� k2

2 + � t k� k1

8: Ŝ( t )
0  f j 2 [d] : j(�̂ ( t )

0 ) j j > 4� t g

9: Ŝ( t )
1  f j 2 Ŝ( t )

0 : j(�̂ ( t )
0 ) j j � 4� t

q
jŜ( t )

0 jg
10: AS  (A1;Ŝ ( t )

1
; A2;Ŝ ( t )

1
; : : : ; A t; Ŝ ( t )

1
)>

11: �̂ t +1  argmin
�

kR � AS � k2
2

12: end for

The pseudo-code of our algorithm is presented in Algo-
rithm 1. In roundt, the algorithm pulls the arm in a greedy
way using the estimated valuê� t of � . From the past se-
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lected arms and rewards, we get via the Lasso a �rst esti-
mate�̂ ( t )

0 of � . This estimate is then used to estimate the
support of� using appropriate thresholding. The regularizer
� t := � 0

p
(2 log t logd)=t is set at a much larger value than

that in the previous work (they typically have the order ofp
(log d + log t)=t), as we are only focusing on the support

recovery here. Note that we apply a thresholding procedure
twice to�̂ ( t )

0 to provide the support estimatêS( t )
1 . The �nal

estimatê� t +1 is obtained as the least squares estimator of
� , when restricted tôS( t )

1 . The initial support estimate done
by Lasso contains too many false positives. By including
thresholding steps in the algorithm, we remove the unneces-
sary false positives and improve the support estimate. We
quantify this improvement in the next section.

5. Performance Guarantees

We analyze the regret of the Thresholded Lasso bandit al-
gorithm both when the margin condition holds and when it
does not. We show that better guarantees can be obtained
with a single-parameter or parameter-free algorithm.

5.1. With the Margin Condition

Assumption 5.1(Margin condition). There exists a con-
stantCm > 0 such that for all� > 0,

8k 6= k0; PA � pA (0 < jhAk � Ak 0; � ij � � ) � Cm�:

The margin condition controls the probability that underpA

two arms yield very similar rewards (and hence are hard to
separate) and is widely used in the classi�cation literature
(see e.g., Tsybakov (2004); Audibert & Tsybakov (2007)).
For the (low-dimensional) linear bandit literature, it was �rst
introduced in Goldenshluger & Zeevi (2013). The margin
condition holds for the most usual context distributions (in-
cluding the uniform distribution and Multivariate Gaussian
distributions) and a much weaker assumption than requiring
the strict separation between the arms.

The following theorem provides a non-asymptotic regret
upper bound of TH Lasso bandit under the margin con-
dition. To simplify the presentation of our regret up-

per bound, de�ne� =
j

2 log(2 d2 )
C 2

0
(log s0)(log log d)

k
,

where C0 = min
n

1
2 ; � 2

0
512s0 s2

A �C b

o
. Note that � =

O
�
s2

0(log s0)(log d)(log log d)
�
.

Theorem 5.2. Assume that Assumptions 3.1 – 3.5, 5.1 hold.
(i) (TH Lasso Bandit with parameter-dependent input)
There are universal positive constantsc1; c2; c3 depend-
ing on�; s A ; s1; s2; � 0; �; C b; K; �; C m, such that if we set
� 0 = c1, then for alld � c2, for all T � 2:

R(T) � c3

�
� + s0(log s0)

3
2 logT + s2

0

�
:

(ii) (TH Lasso Bandit with parameter-free input) There
are universal positive constantsc4; c5 depending on
�; s A ; s1; s2; � 0; �; C b; K; �; C m, such that if we set� 0 =
1=(log logd)

1
4 in TH Lasso Bandit, then for alld � c4, for

all T � 2,

R(T) � c5

�
� + s0(log s0)

3
2 logT + s2

0

�
:

The precise de�nitions ofc1-c5 are given in Appendix E.1.

We provide the proof of Theorem 5.2 in Appendix E.1.

5.2. Without the Margin Condition

Theorem 5.3. Assume that Assumptions 3.1 – 3.5 hold.
(i) (TH Lasso Bandit with parameter-dependent input) There
are universal positive constantsc1; c2; c3 depending on
�; s A ; s1; s2; � 0; �; C b; K; � such that if we set� 0 = c1,
then for alld � c2. for all T � 2:

R(T) � c3

�
� + (log s0)

p
s0T + s2

0

�
:

(ii) (TH Lasso Bandit with parameter-free input) There
are universal positive constantsc4; c5 depending on
�; s A ; s1; s2; � 0; �; C b; K; � such that if we set� 0 =
1=(log logd)

1
4 in TH Lasso Bandit, then for alld � c4,

for all T � 2,

R(T) � c5

�
� + (log s0)

p
s0T + s2

0

�
:

The precise de�nitions ofc1-c5 are given in Appendix E.2

The proof of Theorem 5.3 is presented in Appendix E.2.

Theorems 5.2 and 5.3 state that TH Lasso bandit achieves
much lower regret than the existing algorithms. Indeed,
upper regret bounds for the latter had a term scaling as
logd logT (resp.logd+

p
T log(dT)) with (resp. without)

the margin condition. TH Lasso bandit removes thelogd
andlogT multiplicative factors. In most applications of the
sparse linear contextual bandit, bothT andd are typically
very large, and the regret improvement obtained by TH
Lasso bandit is signi�cant. Also note that our regret upper
bounds match the minimax lower bound
(

p
s0T) proved

in Ren & Zhou (2020).

5.3. Sketch of the Proof of Theorems

We sketch below the proof of Theorem 5.2 and 5.3. Com-
plete proofs of Theorems and associated Lemmas are pre-
sented in Appendix E and Appendix F, respectively.

(1) Estimation of the Support of � . First, we prove that
the estimated support contains the true supportS(� ) with
high probability.
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Lemma 5.4. Let t � 2 log(2 d2 )
C 2

0
such that

4
�

4�C bs0
� 2

0
+

r �
1 + 4�C b

� 2
0

�
s0

�
� t � � min .

Under Assumptions 3.1, 3.2, 3.3, and 3.4,

P
�

S(� ) � Ŝ( t )
1 andjŜ( t )

1 n S(� )j � 4�C b
p

s0

� 2
0

�

� 1 � 2 exp
�

� t� 2
t

32� 2 s2
A

+ log d
�

� exp
�

� tC 2
0

2

�
:

Lemma 5.4 extends the support recovery result of the
Thresholded Lasso (Zhou, 2010) to the case of non-i.i.d
data (generated by the bandit algorithm). The dependence
ons0 is analogous to the of�ine result (Theorem 3.1 of Zhou
(2010)). As it can be seen from the proof, even after the
single-step thresholding, for all suf�ciently larget, we have
the guarantee ofS(� ) � Ŝ( t )

0 andjŜ( t )
0 n S(� )j = O(s0)

with high probability. However, with the two-step thresh-
olding, we havejŜ( t )

1 n S(� )j = O(
p

s0) (See Appendix C
for the bene�t of the two-step thresholding in detail).
Remark5.5. In the proof of Lemma 5.4, we also obtain
an bound on the estimation error of�̂ ( t )

0 (by the Lasso).
One may directly usê� ( t )

0 for the arm selection as is in Oh
et al. (2021), however, this results in a weaker performance
guarantee of the orderO(log d+

p
T log(dT)) (without the

margin condition). This is due to the fact that the estimation
error of�̂ ( t )

0 has a dependence ond, which impacts the order
of the regret. This motivates the use of the thresholding
procedure. With this procedure (i.e., using�̂ t ), we remove
the dependence ind of the estimation error whent is larger
than� , which, in turn, leads to an instantaneous regret bound
independent ofd. In summary, the thresholding procedure
allows us to derive better regret bounds than those in existing
work (e.g., Oh et al. (2021)).

De�ne Et :=
n

S(� ) � Ŝ( t )
1 andjŜ( t )

1 n S(� )j � 4�C b
p

s0

� 2
0

o
:

In the remaining of the proof, in view of Lemma 5.4, we
can assume that the eventEt holds.

(2) Minimal Eigenvalue of the Empirical Gram Ma-
trix. We write Ŝ( t )

1 = Ŝ for the simplicity. Let�̂ Ŝ :=
1
t

P t
s=1 As(Ŝ)As(Ŝ)> be the empirical Gram matrix on

the estimated support. We prove that the positive de�nite-
ness of the empirical Gram matrix on the estimated support
is guaranteed.

Lemma 5.6. Let t 2 [T]. Under Assumptions 3.1

and 3.5, we have:P
�

� min (�̂ Ŝ ) � �
4�C b

�
� Et

�
� 1 �

exp
�

log
�

s0 + 4�C b
p

s0

� 2
0

�
� t�

20s2
A �C b(s0 +(4 �C b

p
s0 )=� 2

0 )

�
:

(3) Estimation of � after Thresholding. Next, we study
the accuracy of̂� t .

Lemma 5.7. Let t 2 [T] and s0 = s0 +
4�C b

p
s0=� 2

0. Under Assumption 3.1, we have, for all

x; � > 0: P
�

k�̂ t +1 � � k2 � x and� min (�̂ Ŝ ) � �
�
� Et

�

� 2s0exp
�

� � 2 tx 2

2� 2 s2
A s0

�
:

From the above lemma, we conclude that� is well estimated
with high probability. Note that in the above estimation error,
the dependency ins0 can be also improved from linear to
square root compared with the analysis of Lemma 1 (Oracle
inequality) in Oh et al. (2021) (SA Lasso bandit). This stems
from the fact that using the compatibility condition, one can
only control thè 1 norm of the estimation error of� , while
using the OLS leads to an`2 guarantee.

(4) Instantaneous Regret Upper Bound with the Margin
Condition. For the previous lemmas, we can derive an
upper bound on the instantaneous regret with the margin

condition. De�neh0 = b
q

log(4(s0 + 4�C b
p

s0

� 2
0

)) + 1 c.

Lemma 5.8(With the margin condition). De�ne G
�

4 �C b
t :=n

� min (�̂ Ŝ ) � �
4�C b

o
. Let t � 2. Under Assumptions 3.1,

3.2, 3.3, 3.4, 3.5, and 5.1, the expected instantaneous regret
E[maxA 2A t hA � A t ; � i ] is upper bounded by:

1408� 2s4
A Cm(K � 1)h3

0� 2C2
b

�
s0 + 4�C b

p
s0

� 2
0

�

� 2

1
t � 1

+ 2( K � 1)sA s1

�
P(Ec

t ) + P
� �

G
�

4 �C b
t

� c
�
�
�
�Et

��
:

Notice that the �rst term of this instantaneous regret bound
does not depend ond. This leads to the better regret order.

On the other hand, without the margin condition, we present
the key lemma, which is proven by a novel application of
the discretization technique:

Lemma 5.9 (Without the margin condition). Under As-
sumptions 3.1, 3.2, 3.3, 3.4, and 3.5, for anyt 2 [T],
E[maxA 2A t hA � A t ; � i ] is upper bounded by

36�s A (K � 1)h2
0�C b

�

vu
u
t 2

�
s0 + 4�C b

p
s0

� 2
0

�

t � 1

+ 2( K � 1)sA s1

�
P(Ec

t ) + P
� �

G
�

4 �C b
t

� c
�
�
�
�Et

��
:

Again, the �rst term in the above bound is independent ofd.
Note also that compared to existing work, we improve the
dependence int: we get1=

p
t instantaneous upper bound

while in the other recent work (e.g., Kim & Paik (2019);
Oh et al. (2021)) they get

p
log t=t. As a consequence, we

obtain better regret guarantees without the margin condition.
More precisely, we manage to remove the unnecessarylogT
factors in the regret that was present in all previous studies.
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By summing up these instantaneous regret bounds, we get
Theorem 5.2 and 5.3. In Appendix D, we also provide regret
guarantees without Assumption 3.4 but whenK = 2 (Theo-
rem D.2) and without the margin condition (Theorem D.3).
These theorems are established using the relaxed symmetry
assumption only; see also the proof of Lemma 2 in Oh et al.
(2021).

6. Experiments

In this section, we empirically evaluate the TH Lasso ban-
dit algorithm. We compare its performance to those of
the Lasso Bandit (Bastani & Bayati, 2020), Doubly-Robust
(DR) Lasso bandit (Kim & Paik, 2019), and SA Lasso ban-
dit (Oh et al., 2021) algorithms. Note that the Lasso bandit
algorithm (Bastani & Bayati, 2020) deals with a slightly
different problem setting (� varies across arms in their set-
ting). We follow the comparison ideas in Kim & Paik (2019)
(considered theKd -dimensional context vectors and the
Kd -dimensional regression parameters for each arm. For
details, see Kim & Paik (2019)).

Reward Parameter and Contexts. We consider prob-
lems where� 2 Rd is sparse, i.e.,k� k0 = s0. We generate
each non-zero components of� in an i.i.d. manner using the
uniform distribution on[1; 2]. In each roundt, for each com-
ponenti 2 [d], we sample((A t; 1) i ; � � � ; (A t;K ) i )> 2 RK

from a Gaussian distributionN (0K ; V ) whereVi;i = 1 for
all i 2 [K ] andVi;k = � 2 = 0 :7 for all i 6= k 2 [K ]. We
then normalize eachA t;k = (( A t;k )1; : : : ; (A t;k )d)> 2 Rd

so that its̀ 2-norm is at mostAmax for all k 2 [K ]. Note
that the components of the feature vectors are correlated
over[d] and over[K ]. The noise process is Gaussian, i.i.d.
over rounds:" t � N (0; 1). We test the algorithms for dif-
ferent values ofK; d; s0, andAmax . For each experimental
setting, we averaged the results for20 instances. We also
provide additional experimental results with non-Gaussian
distributions in Appendix H.4.
Remark6.1. In most of our experiments, the context is
drawn from a multivariate Gaussian, or uniform distribution
on [� 1; 1]d. In this case, the minimum eigenvalue of the
gram matrix� is lower bounded by some constant. Hence,
Assumptions 3.2 and 3.5 are satis�ed. Clearly, Assump-
tion 3.3 is satis�ed by the symmetry of the distribution.
When the distribution is independent over the arms, from
Proposition 1 in Oh et al. (2021), Assumption 3.4 is satis-
�ed. Since each element of the context distribution has a
bounded density everywhere, Assumption 5.1 is also satis-
�ed. Furthermore, in Appendix H.5, we empirically tested
our algorithm for some hard problems where the covariate
diversity condition (Bastani et al., 2021) does not hold.

Algorithms. For DR Lasso bandit and Lasso bandit, we
use the tuned hyperparameter at

https://github.com/gisoo1989/
Doubly-Robust-Lasso-Bandit .
For the SA Lasso bandit and TH Lasso bandit algo-
rithms, we tune the hyperparameter� 0 in [0:01; 0:5]
to roughly optimize the algorithm performance when
K = 2 ; d = 1000; Amax = 10, ands0 = 5 . As a result, we
set� 0 = 0 :16 for SA Lasso bandit, and set� 0 = 0 :02 for
TH Lasso bandit.

Results. We �rst compare the regret of each algorithm
with Amax = 10, K 2 f 2; 50g, d = f 1000; 2000; 10000g,
ands0 2 f 5; 20g. We experimented with larger values of
d, in addition to the one in existing studies. Figure 1 shows
the average cumulative regret for each algorithm. We �nd
that TH Lasso bandit outperforms the other algorithms in
all scenarios. We provide additional experimental results,
including experiments with different correlation levels� 2(2
f 0; 0:3g) and dimensiond, in Appendix H.4.

Next, we compare the estimation accuracy for� under three
algorithms (DR, SA, and TH Lasso bandit) in the scenario:
K = 2 ; d = 1000; Amax = 10; s0 = 5 . Figure 2 shows
the number of false positivesjŜ( t )

1 n S(� )j, the number of
false negativesjS(� ) n Ŝ( t )

1 j, and`2-norm errork�̂ t � � k2.
Note that, for DR Lasso bandit and SA Lasso bandit, we
de�ne the estimated support aŝS( t )

1 = f i 2 [d] : �̂ t;i 6= 0g.
We can observe that the number of false positives of our
algorithm converge to zero faster than those of DR Lasso
bandit and SA Lasso bandit. Furthermore, our algorithm
yields a smaller estimation errork�̂ t � � k2 than the two
other algorithms, as is shown in right column of Figure 2.

We also conduct experiments varyingAmax 2
f 2:5; 5; 10; 20; 40; 1g . As in the previous experi-
ments, for eachAmax , we normalize each feature vector
A t;k so that its̀ 2-norm is at mostAmax for all k 2 [K ].
We setK = 2 ; d = 1000, ands0 = 5 . Figure 3 shows the
average cumulative regret att = 1000 of TH Lasso bandit
and SA Lasso bandit for eachAmax . This experiment
con�rms that TH Lasso exhibits lower regret than SA Lasso
bandit. Additional results whenK = 50 ands0 = 20 are
also included in Appendix H.3.

Finally, we examine the robustness of TH Lasso bandit
and SA Lasso bandit with respect to the hyperparameter
� 0. We vary� 0 2 [0:1� � ; 2:5� � ] where� � = 0 :02 for TH
Lasso bandit and� � = 0 :16 for SA Lasso bandit. We set
K = 2 ; d = 1000; s0 = 5 , andAmax = 10. Figure 4
shows the average cumulative regret att = 1000 for TH
Lasso bandit and SA Lasso bandit for different ratios� 0=� � .
Observe that the regret of TH Lasso bandit is more stable
than that of SA Lasso bandit as the ratio grows. Indeed, the
performance of TH Lasso bandit is not very sensitive to the
choice of� 0: it is robust. This contrasts with the SA Lasso
bandit algorithm, for which a careful tuning of� 0 is needed
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Figure 1.Cumulative regret of the three algorithms with� 2 = 0 :7, Amax = 10 in six scenarios selected usingK 2 f 2; 50g, d 2
f 1000; 2000; 10000g, ands0 2 f 5; 20g. The shaded area represents the standard errors.

Figure 2.(Left) Number of false positivesjŜ( t )
1 n S(� )j, (center) false negativesjS(� ) n Ŝ( t )

1 j, (right) `2-norm errork�̂ t � � k2 of the three
algorithms with� 2 = 0 :7, Amax = 10 , K = 2 , s0 = 5 , andd = 1000. The shaded area represents the standard errors.

to get good performance.

7. Conclusion

In this paper, we studied the high-dimensional contextual
linear bandit problem with sparsity. We devised TH Lasso
bandit, a simple algorithm that applies a Lasso procedure
with thresholding to estimate the support of the unknown
parameter. We established �nite-time regret upper bounds
under various assumptions, and in particular with and with-
out the margin condition. These bounds exhibit a better
regret scaling than those derived for previous algorithms.
We also numerically compared TH Lasso bandit to previ-
ous algorithms in a variety of settings, and showed that it
outperformed other algorithms in these settings.

In future work, it would be interesting to consider scenarios

where the assumptions made in this paper may not hold. In
particular, it is worth investigating the case where the re-
laxed symmetry condition (Assumption 3.3) is not satis�ed.
In this case, being greedy in the successive arm selections
may not work. It is intriguing to know whether devising
an algorithm without forced uniform exploration and with
reasonable regret guarantees is possible.
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Appendix

A. Table of Notations

Table 2 summarizes the notations used in the paper.

B. Discussion on the Assumptions and Regret Dependence onK

Our assumptions are in principle following the literature Oh et al. (2021). In the contextual linear bandit setting, Assumptions
3.3 and 3.4 or the covariate diversity condition are standard (at least in the experimental settings). They hold for many context
distributions including multivariate Gaussian distribution, uniform distribution on the sphere, and arbitrary independent
distribution for each arm (Oh et al., 2021). For example, the covariate diversity condition holds in the experimental settings
of Bastani & Bayati (2020) and Wang et al. (2018).

Regarding the regret dependence ofK , we have at least linear scaling withK . The constantCb does not scale withK when
the context distribution is a multivariate Gaussian distribution or a uniform distribution on a unit sphere (see Proposition 1 of
Oh et al. (2021)). However, for general distribution,Cb can scale exponentially withK . We conjecture that we can improve
this dependency: numerical results show that the dependence onK is mild (See Appendix H).

C. On the Bene�t of the Two Step Thresholding Procedure

In our choice of the thresholding parameter (4� t in the �rst step and4� t

q
jŜ( t )

0 j in the second step), we aim at a partial
recovery of the support so that the trade-off between the duration of the phase with linearly growing regret and the support
recovery accuracy is optimized in the design. Using two-step thresholding, we achieve better regret guarantees than
single-step thresholding. This improvement is due to the fact that with two-step thresholding, the estimated support of�
is improved (with two-step thresholding, we haveO(

p
s0) false positives on the estimated support, whereas with single

thresholding, there areO(s0)). While this difference in results does not contribute to changing the order of the regret, it
does contribute to improving the coef�cients onlogT and

p
T terms in regret.

D. Additional Theorems

Before presenting the additional theorems, we introduce the following assumption (which is a slightly modi�ed version of
Assumption 3.5).

Assumption D.1(Sparse positive de�niteness,K = 2 ). Let K = 2 . De�ne � B := 1
2

P 2
k=1 EA� pA

�
Ak (B )Ak (B )>

�
, for

anyB � [d], whereAk (B ) is a jB j-dimensional vector, which is extracted from the elements ofAk with indices inB .
There exists a positive constant� > 0 such that8B � [d],

�
jB j � s0 + (2 �

p
s0)=� 2

0 andS(� ) � B
�

=)
�

min
v2 Rj B j :kvk2 =1

v> � B v � �
�

:

The parameters� 0; � are those of Assumptions 3.2, 3.3.

We rede�ne the parameters� =
j

2 log(2 d2 )
C 2

0
(log s0)(log log d)

k
, whereC0 = min

n
1
2 ; � 2

0
256s0 s2

A �

o
.

The following theorem provides the regret guarantees whenK = 2 , without Balanced covariance (Assumption 3.4), and
with the margin condition.

Theorem D.2(with margin, without balanced covariance). Assume that Assumptions 3.1–3.3, D.1, and 5.1 hold andK = 2 .
(i) (TH Lasso Bandit with parameter-dependent input) There are universal positive constantsc1; c2; c3 depending on
�; s A ; s1; s2; � 0; �; �; C m, such that if we set� 0 = c1, then for alld � c2, for all T � 2:

R(T) � c3

�
� + s0(log s0)

3
2 logT + s2

0

�
:

(ii) (TH Lasso Bandit with parameter-free input) There are universal positive constantsc4; c5 depending on
�; s A ; s1; s2; � 0; �; �; C m, such that if we set� 0 = 1=(log logd)

1
4 in TH Lasso Bandit, then for alld � c4, for all
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Table 2.Table of notations
Problem-speci�c notations

A t;k Feature vector associated with the armk
� Parameter vector
d Dimension of feature vectors
s0 Sparsity index
T Total number of rounds
A t Set of context vectors at roundt
pA Distribution forA t

r t Reward at roundt
F t � -algebra generated by random variables(A 1 ; A 1 ; r 1 ; : : : ; A t � 1 ; A t � 1 ; r t � 1 ; A t )
" t Zero mean sub-Gaussian noise
� 2 Variance proxy of" t

R(T) Regret
�̂ t Empirical Gram matrix generated by the arms selected under a speci�c algorithm,

i.e., 1
t

P t
s=1 A sA>

s
S(� ) Support of� : f i 2 [d] : � i 6= 0 g
� min min i 2 S j� i j
sA `1 norm upper bound onA 2 A t (see Assumption 3.1)
s1 `1 norm upper bound on� (see Assumption 3.1)
s2 Used for the lower bound on� min (see Assumption 3.1)

� 2(M; S 0) Compatibility constant (see Assumption 3.2)
� Expected Gram matrix1K

P K
k =1 EA� pA

�
A k A>

k

�

� 2
0 Lower bound on� 2(� ; S(� ))

� Constant for Relaxed symmetry (see Assumption 3.3)
Cb Constant for Balanced covariance (see Assumption 3.4)
� Constant for Sparse positive de�niteness (see Assumption 3.5 and D.1)
� t Regularizer at roundt
� 0 Coef�cient of the regularizer

Ŝ( t )
0 ; Ŝ( t )

1 Estimate of the support after the �rst and the second thresholding, respectively.
�̂ t Estimated vector of�
Cm Constant for the margin condition (see Assumption 5.1)
h0 Term whose order isO((log s0)

1
2 ) (see de�nitions before the Lemmas)

C0 Term whose order isO(1=s0) (see de�nitions before the Theorems)

�
j

2 log(2 d2 )
C 2

0
(log s0)(log log d)

k

Et Event
n

S � Ŝ( t )
1 andjŜ( t )

1 n Sj � 4�C b
p

s0
� 2

0

o
or

n
S � Ŝ( t )

1 andjŜ( t )
1 n Sj � 2�

p
s0

� 2
0

o

Ŝ Estimate of the support after the second thresholding (Equivalent toŜ( t )
1 )

�̂ Ŝ
1
t

P t
s=1 A s (Ŝ)A s (Ŝ)>

G�
t Event

n
� min (�̂ Ŝ ) � �

o

Amax `2 norm bound onA t;k (used in the experiments)

Generic notations
kxk0 `0 norm ofx, i.e.,kxk0 =

P d
i =1 1f � i 6= 0 g

[x] Set of positive integers uptox, i.e.,[x] = f 1; : : : ; xg
hx; y i Inner product ofx andy
P(A) Probability that eventA occurs
E[a] Expected value ofa
� i;B � i 1f i 2 B g
� B (� 1;B ; : : : ; � d;B )>

A(B ) n � j B j submatrix ofA 2 Rn � d whereB � [d]
supp(x) Set of the non-zero element indices ofx
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T � 2,

R(T) � c5

�
� + s0(log s0)

3
2 logT + s2

0

�
:

The precise de�nitions ofc1-c5 are given in Appendix E.3.

We provide the proof of Theorem D.2 in Appendix E.3.

Next, the following theorem provides the regret guarantees whenK = 2 , without Balanced covariance (Assumption 3.4),
and without the margin condition.

Theorem D.3(without margin, without balanced covariance). Assume that Assumptions 3.1– 3.3, and D.1 hold andK = 2 .
(i) (TH Lasso Bandit with parameter-dependent input) There are universal positive constantsc1; c2; c3 depending on
�; s A ; s1; s2; � 0; �; � such that if we set� 0 = c1, then for alld � c2. for all T � 2:

R(T) � c3

�
� + (log s0)

p
s0T + s2

0

�
:

(ii) (TH Lasso Bandit with parameter-free input) There are universal positive constantsc4; c5 depending on
�; s A ; s1; s2; � 0; �; � such that if we set� 0 = 1=(log logd)

1
4 in TH Lasso Bandit, then for alld � c4, for all T � 2,

R(T) � c5

�
� + (log s0)

p
s0T + s2

0

�
:

The precise de�nitions ofc1-c5 are given in Appendix E.4.

We present the proof of Theorem D.3 in Appendix E.4. Furthermore, Lemmas associated with Theorems D.2 and D.3 and
their proofs are presented in Appendix G.

E. Proof of Theorems

E.1. Proof of Theorem 5.2 (with margin)

First, we determine the constantsc1, c2 as follows. Set� 0 = 4 �s A
p

c with constantc > 0 (independent ofd, T, ands0)

such that4
�

4�C bs0
� 2

0
+

r �
1 + 4�C b

� 2
0

�
s0

�  

4�s A
p

c

r
2 log� logd

�

!

| {z }
� �

� � min . Note that such a constantc exists as

� � = 4 �s A
p

c

r
2 log� logd

�

= 4 �s A
p

c

s
2 log(�( s2

0(log s0)(log log d)(log d))) log d
�( s2

0(log s0)(log log d)(log d))

= 4 �s A
p

c

s
2 log(�( s2

0(log s0)(log log d)(log d)))
�( s2

0(log s0)(log log d))

=) � � = O
�

1
s0

r
1

log logd
+

1
logs0

�
and

� min � s2=s0 (from Assumption 3.1):

We can takec1 = 4 �s A
p

c. Assume that� (increasing function ofd) satis�es� � exp(4=c): This facilitates a constant
lower bound ond, hencec2 is determined.

We upper bound the instantaneous regret in roundt � 1. We have:

E[max
A 2A t

hA � A t ; � i ] = E[max
A 2A t

hA � A t ; � i ]

� E[j max
A 2A t

hA; � ij ] + E[jhA t ; � ij ]

� sA s1 + sA s1

= 2sA s1; (1)




