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Abstract

In this paper, we revisit the regret minimization
problem in sparse stochastic contextual linear ban-
dits, where feature vectors may be of large dimen-
sion d, but where the reward function depends on
a few, say so < d, of these features only. We
present Thresholded Lasso bandit, an algorithm
that (i) estimates the vector defining the reward
function as well as its sparse support, i.e., signifi-
cant feature elements, using the Lasso framework
with thresholding, and (ii) selects an arm greedily
according to this estimate projected on its support.
The algorithm does not require prior knowledge
of the sparsity index sg and can be parameter-free
under some symmetric assumptions. For this sim-
ple algorithm, we establish non-asymptotic regret
upper bounds scaling as O (log d-++/T") in general,
and as O(log d + log T') under the so-called mar-
gin condition (a probabilistic condition on the sep-
aration of the arm rewards). The regret of previous
algorithms scales as O(log d+ /T log(dT)) and
O(log T'log d) in the two settings, respectively.
Through numerical experiments, we confirm that
our algorithm outperforms existing methods.

1. Introduction

The linear contextual bandit (Abe & Long, 1999; Li et al.,
2010) is a sequential decision-making problem that gener-
alizes the classical stochastic Multi-Armed Bandit (MAB)
problem (Lai & Robbins, 1985; Robbins, 1952), where (i)
in each round, the decision-maker is provided with a con-
text in the form of a feature vector for each arm and where
(ii) the expected reward is a linear function of these vec-
tors. More precisely, at the beginning of round ¢ > 1, the
decision-maker receives for each arm k, a feature vector
Ay € R<. She then selects an arm, say k, and observes
a sample of a random reward with mean (A4, x, 0). The pa-
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rameter vector § € R is fixed but initially unknown. Linear
contextual bandits have been extensively applied in online
services such as online advertisement and recommendation
systems (Li et al., 2010; 2016; Zeng et al., 2016), and con-
stitute arguably the most relevant structured bandit model
in practice.

The major challenge in the design of efficient algorithms for
contextual linear bandits stems from the high dimensionality
of the feature space. For example, for display ad systems as
studied in Chapelle & Li (2011); Weinberger et al. (2009),
the joint information about a user, an ad and its publisher
is encoded in a feature vector of dimension d = 224, For-
tunately, typically only a few features significantly impact
the expected reward. This observation has motivated the
analysis of problems where the unknown parameter vector
0 is sparse (Bastani & Bayati, 2015; Kim & Paik, 2019;
Oh et al., 2021; Wang et al., 2018). In this paper, we also
investigate sparse contextual linear bandits, and assume that
0 only has at most sy < d non-zero components. The set
of these components and its cardinality sy are unknown to
the decision-maker. Sparse contextual linear bandits have
attracted a lot of attention recently. State-of-the-art algo-
rithms developed to exploit the sparse structure achieve
regrets scaling as O(logd + /T log(dT)) in general, and
O(log dlog T') under the co-called margin condition (a set-
ting where arms are well separated); refer to Section 2 for
details.

We develop a novel algorithm, referred to as Thresholded
Lasso bandit!, with improved regret guarantees. Our al-
gorithm first uses the Lasso framework with thresholding
to maintain and update in each round estimates of the pa-
rameter vector 6 and of its support. It then greedily picks
an arm based on these estimates (the thresholded estimates
of 0). The regret of the algorithm strongly depends on the
accuracy of these estimates. We derive strong guarantees on
this accuracy, which in turn leads to regret guarantees. Our
contributions are as follows.

(i) Thresholded Lasso Estimation Performance. The
performance of the Lasso-based estimation procedure is now
fairly well understood, see e.g., Biihlmann & Van De Geer

'An  implementation of our method is available
at https://github.com/CyberAgentAILab/
thresholded-lasso-bandit.
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(2011); Tibshirani (1996); Zhou (2010). For example, Zhou
(2010) provides an analysis of the estimation of the support
of 6, and specifically, gives upper bounds on the number of
false positives (components that are not in the support, but
estimated as part of it) and false negatives (components that
are in the support, but not estimated as part of it). These
analyses, however, critically rely on the assumption that the
observed data is i.i.d.. This assumption does not hold for
the bandit problem, as the algorithm adapts its arm selection
strategy depending on the past observations. Despite the
non i.i.d. nature of the data, we manage to derive perfor-
mance guarantees of the estimate of 6. In particular, we
establish high probability guarantees that are independent
of the dimension d (see Lemma 5.7).

(ii) Regret Guarantees. Based on the analysis of the
Thresholded Lasso estimation procedure, we provide a
finite-time analysis of the regret of our algorithm under
certain symmetry assumptions made in Oh et al. (2021).
The regret scales at most as O(logd + +/T) in general
and O(logd + logT') under the margin condition. More
precisely, the estimation error of # induces a regret scal-
ing as O(V/T) (or O(log T') under the margin condition).
The additional term O(logd) in our regret upper bounds
comes from the errors made when estimating the support
of #. It is worth noting that when using the plain Lasso
estimator (without thresholding), one would obtain weaker
performance guarantees for the estimation of 8, typically
depending on d, see e.g., Bastani & Bayati (2015). This
dependence causes an additional multiplicative term log d
in the regret.

(iii) Numerical Experiments. We present extensive nu-
merical experiments to illustrate the performance of the
Thresholded Lasso bandit algorithm. We compare the es-
timation accuracy for 6 and the regret of our algorithm to
those of the Lasso bandit, Doubly-Robust Lasso bandit,
and Sparsity-Agnostic Lasso bandit algorithms (Bastani &
Bayati, 2020; Kim & Paik, 2019; Oh et al., 2021). These
experiments confirm the benefit of the use of the Lasso
procedure with thresholding.

2. Related Work

Stochastic linear bandit problems have attracted a lot of
attention over the last decade. Carpentier & Munos (2012)
addresses sparse linear bandits where ||0]||o < s¢ and where
the set of arms is restricted to the /5 unit ball. For regimes
where the time horizon is much smaller than the dimension
d,i.e., T < d, the authors propose an algorithm whose re-
gret scales at most as O(sov/T log(dT')). Hao et al. (2020b)
studied high-dimensional linear bandit problems where the
number of actions is larger than or equal to d. Under some
signal strength conditions, they propose an algorithm that

achieves a regret of O(sglogd + /soT log(dT)). These
studies, however, do not consider problems with contextual

information.

Recently, high-dimensional contextual linear bandits have
been investigated under the sparsity assumption ||0]g <
Sp. In this line of research, the decision-maker is provided
in each round with a set of arms defined by a finite set
of feature vectors. This set is uniformly bounded across
rounds. In this setting, the authors of Abbasi-Yadkori et al.
(2012) devise an algorithm with both a minimax (problem
independent) regret upper bound O(+/sodT') and problem
dependent upper bound O(dsg(log T)?) (the notation O
hides the polylogarithmic terms) without any assumption on
the distribution (other than the assumptions similar to our
Assumption 3.1).

In Bastani & Bayati (2020) (initially published in 2015
as Bastani & Bayati (2015)), the authors address a high-
dimensional contextual linear bandit problem where the
unknown parameter defining the reward function is arm-
specific (0 is different for the various arms). In the pro-
posed algorithm, arms are explored uniformly at random
for O(slog dlog T prespecified rounds. Under the mar-
gin condition, similar to our Assumption 5.1, the algo-
rithm achieves a regret of O(s3(logd + logT)?). For
the same problem, Wang et al. (2018) develops the so-
called MCP-Bandit algorithm. The latter also uses the uni-
form exploration for O(s3 log d log T') prespecified rounds,
and has improved regret guarantees: the regret scales as
O(sé(logd + sp)logT).

High-dimensional contextual linear bandits have been also
studied without the margin condition, but with a unique
parameter 6 defining the reward function. Kim & Paik
(2019) designs an algorithm with uniform exploration
phases of O(y/T log(dT)logT) rounds, and with regret
O(s0V/T log(dT)). All the aforementioned algorithms re-
quire the knowledge of the sparsity index so. In Oh et al.
(2021), the authors propose an algorithm, referred to as SA
Lasso bandit, that does not require this knowledge, and with
regret O (s log d + so+/T log(dT)). In addition, SA Lasso
bandit does not include any uniform exploration phase. Its
regret guarantees are derived under specific assumptions
on the context distribution, the so-called relaxed symme-
try assumption and the balanced covariance assumption.
The authors also establish a O(s3logd + \/soT log(dT))
regret upper bound under the so-called restricted eigen-
value condition. In Ren & Zhou (2020), under the restricted
eigenvalue condition induced by the restricted bounded den-
sity assumption, the authors established a regret bound of

O(sopolylog(d) + +/soT log(d)polylog(T)).

One notable recent development in contextual bandit is the
regret analyses of the exploration-free or greedy algorithms.
Under some symmetry assumptions on the context distri-
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Table 1.Algorithms and their regret guarantees for scaling with respedetedT. O notations are hiding sub-logarithmic factorsdin
and logarithmic factors isg. The '‘Compatibility' and 'Margin' conditions refer to Assumptions 3.2 and 5.1.

Paper Regret Compatibility Margin Other
Abbasi-Yadkori et al. (2012) O(dso(log T)?)

Bastani & Bayati (2020) O(s3(logd +log T)?) X X

Wang et al. (2018) O(s%(log d+ sg)logT) X X

Kim & Paik (2019) O(sp T log(dT)) X

Ren & Zhou (2020) O(sopolylog(d) + log( T) soT logd) Restricted Bounded Density
Oh et al. (2021) O(s3logd+ sp T log(dT)) X Asm 3.3,3.4

This work: Theorem 5.2 O(s3logd + sglogT) X X Asm 3.3,3.4,35
This work: Theorem 5.3 O(s3logd+ "~ soT) X Asm 3.3,3.4,3.5

Covariate diversity condition
(Stronger than Asm 3.5)

Bastani et al. (2021)

(non-sparse setting) O(dlogdlogT) X

bution, these algorithms exhibit sub-linear regret (Bastanyotation. The “g-norm of a vector_ 2 R% isk kg =
etal., 2021; Kannan et al., 2018; Ren & Zhou, 2020; Oh' % 1f ; 6 0g. We denote”; = 17 L AAZ asthe
etal., 2021). Our analysis is also inspired by the results oempirical Gram matrix generated by the arms selected un-
exploration-free algorithms. der a speci ¢ algorithm. For an [d], we de ne

In this paper, we develop an algorithm with improved regret B = { 1B:::; dB )” where for alli 2 [d], iz =

guarantees with and without the margin condition. The i1fi 2 Bg. ln:QrBeachB [S]’dwe de ne the subma-
algorithm does not rely on the knowledgesgfand can be X A(B) 2 R*/ 21 of A'2 R" € where forA(B), we
made parameter-free. Such a parameter-free algorithm ftract the rows that are . We. denotesupz;{x) as the
not proposed in other recent papers. We have summarizeift Of the non-zero element indices>o2 R®. We also
the relevant studies and our work in Table 1. We will come®® M€ min @s the minimal value of ij on the support:

back to this table when we discuss the assumptions. min = MiNi2supy ) J iJ. We denote bﬁ(_)_ = sup ) =
fi 2 [d]: ; 6 0gthe support of . De nitions and nota-

) tions are also summarized in Appendix A, Table 2.
3. Model and Assumptions

3.1. Model and Notation 3.2. Assumptions

We consider a contextual linear stochastic bandit problenf/e Present a set of assumptions used throughout the paper.
in a high-dimensional space. In each round [T] := Many assumptions are essentially from Oh et al. (2021).
f1::::;Tg, the algorithm is given a set of context vec- However, there are some differences, and these will be dis-

torsA; = fAw 2 RY : k 2 [K]g. The successive cussed. We also discuss and compare these assumptions to
sets(A(); 1 form an i.i.d. sequence with distribution those made inthe related literature.

pa. Inroundt, the algorithm selects an arfy, 2 A, . . .
based on past observations, and collects a random rewa'?‘ sumption 3.1(Sparsity and parameter constrainthe

. . arameter de ning the reward function is sparse, i.e.
ri. Formally, if F; is the -al r ner random P . ’ ’
- Formally, ifFy is the -algebra generated by rando k ko so for some xed but unknown integes (So does

measurable. We assume that bA.; i + "¢, where", is ggtndeessl?r(\jof/)vﬂ).c:r\wlit;jr:hzrnzssgme tshdft ki/vithssilofrcr)lre
a zero mean sub-Gaussian random variable with Varianc&nknown constars, (< s 1) Fingllr weze:ssgume that the
proxy 2 givenF; andA.. Our objective is to devise an 2 - Y

algorithm with minimal regret, where regret is de ned as: ! -norm of the context vector is boun_ded: for alind for
allA 2 A¢, KAk sa, wheresy > 0is a constant.

" - # Assumption 3.2 (Compatibility condition) For a matrix
. M 2 RY 9andaseS, [d], we de ne the compatibilit
R(T) = E mgxm; i re o o [d P y
. t=1 ! # 2Given this assumption of; to be a constant, note that the
NG value of min would scale as(1 =), asSo mn Kk ki s1
= E maxhA A i may hold. Note thatin Oh etal. (202K),k. (1) andkAk:

A2A’( ' (1) (forall A 2 A.) are assumed.
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constant (M; Sy) as: multivariate Gaussian, uniform, and Bernoulli distributions.
.M Assumption 3.4 is also adopted from Oh et al. (2021). This

. Sox> M X . ) A .
2(M;Sg):=  min 0 tkxsski  3kXsoka assumption holds for a wide range of distributions including

xkxsoki60  KXs, K2 multivariate Gaussian distribution, uniform distribution on
sphere. It also holds when contexts are independent across
brms with any arbitrary distributions (Oh et al., 2021). As-
sumption 3.5 implies that the context distribution is diverse
enough in the neighborhood of the support oNote that

The compatibility condition was introduced in the high_Assumption 3.5is standard in low dimensional linear bandit

dimensional statistics literature (Bihimann & Van De Geer,Iiterature (e.g., Lattimore & Szepesvari (2020); Degenne

2011). It ensures that the Lasso estimate (Tibshirani, 199 ) a ; .
of the parameter approaches to its true value as the number here, |fS_( ) = [dl, th(;?%nly chaice foB is _[d]’ and_the
of samples grows large. Note that it is easy to check tha?et of action has to sp&Rf’ (hence Assumption 3.5 is sat-

the compatibility condition is strictly weaker than assuming'S €d)- We will see that after an accurate e;tlmatedof tlhe
the positive de niteness of . It allows us to consider fea- supportS( ) (Lemma 5.4), Assumption 3.5 is used only

ture vectors with strongly correlated components. Ass:umpt-0 analyze the performance of the least square estimator of

tion 3.2 is considered to be essential for the Lasso estimaﬂgw-dimensional (order dD(so)) vector. Assumption 3.5

to be consistent and assumed in many of the relevant studie§ Strictly weaker than the covariate diversity condition of
See Table 1 for studies using the compatibility condition 32Stani etal. (2021), where the positive de niteness must

» can be a constant that does not depend.dFhis is the be guaranteed for the Gram matrix generated by the greedy

case, for example, when the context distribution is multivari-2/90ithm. We also discuss the details of assumptions in

ate Gaussian, uniform distribution. In these examples, théppendlx B.
minimum eigenvalue of the Gram matrix is lower bounded
by some constant. When the minimum eigenvalue is lowed. Algorithm

bounded by some constant, the compatibility constant is

also lower bounded by some constant (Bihimann & Van'n this section, we present the Thresholded (TH) Lasso
De Geer, 2011). bandit algorithm. The algorithm adapts the idea of Lasso

_ with thresholding proposed in Zhou (2010) to estimate
Assumption 3.3(Relaxed symmetry (Oh etal., 202150r g jts support. The main challenge in the analysis of the
the distributionps of A, there exists a constantA 1such Lasso with thresholding stems from the fact that here, the
thatfor allA 2 R 9 suchthapa(A) > 0, %55 . datais non i.id. (the arm selection is adaptive).

Assumption 3.4 (Balanced covariance (Oh et al., 2021))

For any permutation of [K], for any integerk 2 ‘Algorithm 1 TH Lasso Bandit
f2;::;;K  1lganda xed , there exists a consta@y, > 1

We assuge that for the Gram matrix of the action se
. K : .
= & a Ea . AkA; satis es 20 :8()
2, where o > Ois some positive constant.

t al. (2020); Jedra & Proutiere (2020); Hao et al. (2020a)).

such that L Input: o
h 2. fort=1; ;Tdo
CbEa pa (A A @ + A k)A (k)) 3:  Receive a context sét; := fAw (k2 [Klg
e o 4:  PullarmA; = argmaxhA; \i (ties are broken uni-
1thA @, << M(K), [o] i t EZA‘ t (
En on A (0A 01fA oy i << PA (); ig formlyahrandom) and observe
¢ 2log t log d
t

Assumption 3.5(Sparsebp|?sitive de nitenesspe ne for 6 A (AuA2 i UA)T: R (Faifaliiir)”
eachB [dl, B = i i Ea pu Ac(B)A(B)” ; 7. N ar1 mi;1 lk’R A, K3 + kk, o
where Ai(B) is ajBj-dimensional vector, which is ex- *° 0 9 t 2 R
tracted from the elements 8§ with indices inB. There g &M ¢ i 2d: j(/\(()t))jj > 4 g
exists a positive constant 0 such thaBB  [d], a Al L A w
N P, 9 S P 257 (el 4 iS0i9
jBj so+(4 Cp So)=pandS() B 10:  As DA

=) min Vi gV 11:

V2 RIBikvks=1 w1 argminkR - As k3

12: end for

The parametersy; ; Cp, are those of Assumptions 3.2, 3.3,

and 3.4.
The pseudo-code of our algorithm is presented in Algo-

Assumption 3.3 comes from Oh et al. (2021). This assumprithm 1. In roundt, the algorithm pulls the arm in a greedy
tion is satis ed for the wide range of distributions including way using the estimated valde of . From the past se-
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lected arms and rewards, we get via the Lasso a rst est{ii) (TH Lasso Bandit with parameter-free input) There
mate”{" of . This estimate is then used to estimate theare universal positive constants;;cs depending on
support gf using appropriate thresholding. The regularizer ;S A:S1; 23 o; ;Cp;K; ;C m, such that if we seto =

¢'= o (2logtlogd)=tissetatamuch larger value than 1=(loglogd)# in TH Lasso Bandit, then for all ¢4, for

at in the previous work (they typically have the order ofall T 2,

(log d + log t)=t), as we are only focusing on the support ,
recovery here. Note that we apply a thresholding procedure R(T) ¢+ so(logsp)? logT + s
twice to Ag) to provide the support estima%t). The nal
estimate’y,; is obtained as the least squares estimator of he precise de nitions of; -5 are given in Appendix E.1.

. (t) - .
, when restncte;d t&;" . The initial support estimate don_e We provide the proof of Theorem 5.2 in Appendix E.1.
by Lasso contains too many false positives. By including

thresholding steps in the algorithm, we remove the unneces- ith h . .
sary false positives and improve the support estimate. Wé'z' Without the Margin Condition

quantify this improvement in the next section. Theorem 5.3. Assume that Assumptions 3.1 — 3.5 hold.
(i) (TH Lasso Bandit with parameter-dependent input) There
5. Performance Guarantees are universal positive constants;c;;cs depending on

1S A;S1:S2, o, ;Cp K; such that if we setg = ¢y,
We analyze the regret of the Thresholded Lasso bandit afhen foralld c,. forall T 2
gorithm both when the margin condition holds and when it o
dqes not. We show that better guarantees can_be obtained R(T) s +(log so) SoT + 2
with a single-parameter or parameter-free algorithm.

(ii) (TH Lasso Bandit with parameter-free input) There

5.1. With the Margin Condition are universal positive constantss;cs depending on

Assumption 5.1(Margin condition) There exists a con- ;S A;S1:S2; 0; ;CpK;  such that if we seto, =

stantC,,, > 0 such that for all > 0, 1=(loglogd)# in TH Lasso Bandit, then for ali ¢,
forall T 2,

8k6 k% Pa p,(0O<jhAx Ay ij ) Cp: 0
R(T) ¢ +(log so) SoT + S5

The margin condition controls the probability that unggr

two arms yield very similar rewards (and hence are hard tqhe precise de nitions af;-c5 are given in Appendix E.2

separate) and is widely used in the classi cation literature

(see e.g., Tsybakov (2004); Audibert & Tsybakov (2007))The proof of Theorem 5.3 is presented in Appendix E.2.
For the (low-dimensional) linear bandit literature, it was rst
introduced in Goldenshluger & Zeevi (2013). The margin
condition holds for the most usual context distributions (in-
cluding the uniform distribution and Multivariate Gaussian
distributions) and a much weaker assumption than requirin
the strict separation between the arms.

Theorems 5.2 and 5.3 state that TH Lasso bandit achieves
much lower regret than the existing algorithms. Indeed,
upper regret bounds fBr the latter had a term scaling as
logdlogT (resp.logd+ T log(dT)) with (resp. without)

e margin condition. TH Lasso bandit removes Itiged
andlog T multiplicative factors. In most applications of the
The following theorem provides a non-asymptotic regretsparse linear contextual bandit, bdtkandd are typically
upper bound of TH Lasso bandit under the margin convery large, and the regret improvement obtained by TH
dition. To simplify the presentation of our regref up- Lasso bandit is signi cant. Also note thab()LHegretupper

per bound, dene = %009 so)(loglogd) ,  bounds match the minimax lower bourfd” soT) proved
n , 00 in Ren & Zhou (2020).

where Co = min  3;gmb—o— . Note that =

O s3(log sp)(log d)(loglog d) . 5.3. Sketch of the Proof of Theorems

Theorem 5.2. Assume that Assumptions 3.1 - 3.5, 5.1 holdyye sketch below the proof of Theorem 5.2 and 5.3. Com-
() (TH Lasso Bandit with parameter-dependent input)plete proofs of Theorems and associated Lemmas are pre-
There are universal positive constants c;; ¢z depend-  gented in Appendix E and Appendix F, respectively.

ingon ;s a;s1;S2; o5 ;CuK; ;C m, such that if we set

o= Cythenforalld ¢ forall T 2 (1) Estimation of the Support of . First, we prove that

the estimated support contains the true supg6r) with

3 2
R(T) ¢+ so(logso)” logT + sp high probability.
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Lemma 5.4r1. Let t %i) such that x; > 0. P ktu ke xand mn("g) E
2 2
4 40721350 + 1+1 Cz ® Sp t min - ZSOGXp ﬁéso
0 0
Under  Assumptions = 3.1, 3;12’ 3'3' and 3'A"From the above lemma, we conclude thé well estimated
P s() &Yandjs"ns()j &5 ith hi il i imati
1 IS J z with high probability. Note that in the above estimation error,
5 , ) ) X
1 2ex t? tload  ex oK the dependency isy can be also improved from linear to
P=mg g P 2 square root compared with the analysis of Lemma 1 (Oracle

Lemma 5.4 extends the support recovery result of thdn€quality)in Oh etal. (2021) (SA Lasso bandit). This stems
Thresholded Lasso (Zhou, 2010) to the case of non-i.i.d"om the fact that using the compatibility condition, one can
data (generated by the bandit algorithm). The dependencly control the'; norm of the estimation error of, while
onsy is analogous to the of ine result (Theorem 3.1 of Zhou USing the OLS leads to an guarantee.

(2010)). As it can be seen from the proof, even after the

single-step thresholding, for all suf ciently largewe have  (4) Instantaneous Regret Upper Bound with the Margin
the guarantee dB( ) g(()t) andjéc()t) nS()j = O(so) Condition. For the previous lemmas, we can derive an

with high probability. However, with the two-step thresh- UPPer bound on the ingtantaneous regrglwith the margin
olding, we havg4{"” nS( )j = O(" &) (See Appendix C  condition. De neho = b log(4(so + 4°$55°)) +lc

for the bene t of the two-step thresholding in detail). o
Remark5.5. In the proof of Lemma 5.4, we also obtain hemma 5.8(With the margin condition)De ne G'“ * :=

an bound on the estimation error &f’ (by the Lasso). min("8) 7e- - Lett 2. Under Assumptions 3.1,

One may directly usé\g) for the arm selection as isin Oh 3.2, 3.3, 3.4, 3.5, and 5.1, the expected instantaneous regret
etal. (2021), however, this resylts in a weaker performanc&[Mmaxaza A Ay; i]is upper bounded by:

guarantee of the ord&(logd+ T log(dT)) (without the b

margin condition). This is due to the fact that the estimation 1408 2s4Cy(K ~ 1)h3 2C2 so+ 2S5 % 1

error of'\gt) has a dependence dpwhich impacts the order 2 ° T 1

of the regret. This motivates the use of the thresholding I

procedure. With this procedure (i.e., usifiy, we remove +2(K  1)sas; PE)+P G'°° E

the dependence ihof the estimation error whehnis larger

than , which, inturn, leads to an instantaneous regret bound

independent ofl. In summary, the thresholding procedure Notice that the rst term of this instantaneous regret bound
allows us to derive better regret bounds than those in existing0€s not depend ah This leads to the better regret order.
work (e.g., Oh et al. (2021)).

On the other hand, without the margin condition, we present
the key lemma, which is proven by a novel application of

n p_0O
. (1) L A(t) . 4Cy So
Dene& = S() 7 andjS” nS(); 5 the discretization technique:

In the remaining of the proof, in view of Lemma 5.4, we

can assume that the evetholds. Lemma 5.9 (Without the margin condition)Under As-

sumptions 3.1, 3.2, 3.3, 3.4, and 3.5, for any [T],

(2) Minimal Eigenvalue of the Empirical Gram Ma-  E[M@Xaz2a [PA - A¢; i]is upper bounded by

trix. We write ${” = & for the simplicity. Let"s = Y —

1 tS:1_As(§)A5(§)> be the empirical Gram matrix on 36sA(K 1)h2C 2 s+ ﬁoﬁ
the estimated support. We prove that the positive de nite- t 1

ness of the empirical Gram matrix on the estimated support .

is guaranteed. +2(K  1sasy PEY+P G'°° E
Lemma 5.6. Lett 2 [T]. Under Assumptions 3.1

and 3.5, we have:P  min ("a) i E 1

Again, the rst term in the above bound is independend.of
Note also that compared Fgoﬁexisting work, we improve the
dependence it we getl= t instantaneous upper bound
o ) while in the other recerg work (e.g., Kim & Paik (2019);
(3) Estimation of after Thresholding. Next, we study o et al. (2021)) they get logt=t. As a consequence, we
the accuracy of;. obtain better regret guarantees without the margin condition.
Lemma 5.7. Let t 2 [T] and s° = 55 + More precisely, we manage to remove the unnecessgrly
4Cy So= 3. Under Assumption 3.1, we have, for all factors in the regret that was present in all previous studies.

ac,’ s

t
+
exp log so 202 C p(so*(4 C o' 50)= 2)
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By summing up these instantaneous regret bounds, we ghttps://github.com/giso01989/
Theorem 5.2 and 5.3. In Appendix D, we also provide regreDoubly-Robust-Lasso-Bandit
guarantees without Assumption 3.4 but whén= 2 (Theo- For the SA Lasso bandit and TH Lasso bandit algo-
rem D.2) and without the margin condition (Theorem D.3).rithms, we tune the hyperparameteg in [0:01; 0:5]
These theorems are established using the relaxed symmetiy roughly optimize the algorithm performance when
assumption only; see also the proof of Lemma 2 in Oh etaK =2;d = 1000; Amax = 10, andsp = 5. As a result, we
(2021). set o = 0:16for SA Lasso bandit, and set = 0:02 for

TH Lasso bandit.

6. Experiments

. : o Results. We rst compare the regret of each algorithm
In this section, we empirically evaluate the TH Lasso ban ith Ay = 10, K 2 f 2:50g, d = f100Q 200Q 1000,

dit algorithm. We compare its performance to those of”V

the Lasso Bandit (Bastani & Bayati, 2020), Doubly-Robustan.dSO 2 .f.5; 20g. We eXp e”"T‘e.”ted W't.h Iarger values of
(DR) Lasso bandit (Kim & Paik, 2019), and SA Lasso ban-d’ in addition to the one in existing studies. Figure 1 shows
' ¥ he average cumulative regret for each algorithm. We nd

dit (Oh et al., 2021) algorithms. Note that the Lasso banditt . . .
algorithm (Bastani & Bayati, 2020) deals with a slightly hat TH L"?‘SSO bandit o_utperfo_rr_ns the othe_r algorithms in
all scenarios. We provide additional experimental results,

different problem setting (varies across arms in their set including experiments with different correlation levefg2
ting). We follow the comparison ideas in Kim & Paik (2019) | =~ g gd' ol i di
(considered th&d-dimensional context vectors and the 70, 0:3g) and dimensior, in Appendix H.4.
Kd-dimensional regression parameters for each arm. Fd¥ext, we compare the estimation accuracy famder three
details, see Kim & Paik (2019)). algorithms (DR, SA, and TH Lasso bandit) in the scenario:
K =2;d =1000; Amax = 10;50 = 5. Figure 2 shows
Reward Parameter and Contexts. We consider prob- the number of false positivqégt) nS( )j, the number of
lems where 2 RY is sparse, i.ek ko = So. We generate  fa|se negativefS( ) n ggt)j’ and',-norm errork”y  ko.
each non-zero components ofn an i.i.d. manner using the Note that, for DR Lasso bandit and SA Lasso bandit, we
uniform distribution or{1; 2]. In each round, for each com- e ne the estimated support 4" = fi 2 [d] : \; 6 0g.
ponent 2 [d], we sampl(A¢1)i;  (Awk )i)” 2 R e can observe that the number of false positives of our
from a Gaussian distributioN (Ox ; V) whereVi; =1 for  4gorithm converge to zero faster than those of DR Lasso
alli 2 [K]andViy = 2 =0:7foralli 6 k2 [K]. We  pangit and SA Lasso bandit. Furthermore, our algorithm
then normalize eachyc = ((Ag)1:::5: (Aw)a)” 2 RY yields a smaller estimation erréfy  k» than the two

so that its’s-norm is at mosAmax for all k 2 [K]. Note  gther algorithms, as is shown in right column of Figure 2.
that the components of the feature vectors are correlated

over[d] and ovelK ]. The noise process is Gaussian, i.i.d We also conduct experiments varying\max 2 .
over rounds”; N (0;1). We test the algorithms for dif- f2:5,510,20;40,1g .~ As in the previous experi-
ferent values oK; d: so, andAmax . For each experimental ments, for e_ﬁlCH\max. we normalize each feature vector
setting, we averaged the results Bfrinstances. We also Atk SO that its’>-norm is at mosAnmax for all k 2 [K].

provide additional experimental results with non-GaussiarfVe setk = 2;d = 1000, ands, = 5. Figure 3 shows the
distributions in Appendix H.4. average cumulative regrettat 1000 of TH Lasso bandit

and SA Lasso bandit for eadhnax. This experiment

Remark6.1 In most of our experiments, the context is that TH L hibits | tthan SA L
drawn from a multivariate Gaussian, or uniform distribution con rms that 1H Lasso exnibits lower regret than asso
bandit. Additional results whek = 50 andsy = 20 are

on[ 1;1]%. In this case, the minimum eigenvalue of the . ) .
gram matrix is lower bounded by some constant. Hence,aISO included in Appendix H.3.
Assumptions 3.2 and 3.5 are satis ed. Clearly, AssumpFinally, we examine the robustness of TH Lasso bandit
tion 3.3 is satis ed by the symmetry of the distribution. and SA Lasso bandit with respect to the hyperparameter
When the distribution is independent over the arms, from . Wevary o2 [0:1 ;255 ]Jwhere =0:02for TH
Proposition 1 in Oh et al. (2021), Assumption 3.4 is satist asso bandit and = 0:16 for SA Lasso bandit. We set
ed. Since each element of the context distribution has &K = 2:d = 1000;sy = 5, andAmna = 10. Figure 4
bounded density everywhere, Assumption 5.1 is also satishows the average cumulative regret a 1000 for TH
ed. Furthermore, in Appendix H.5, we empirically tested Lasso bandit and SA Lasso bandit for different ratigs
our algorithm for some hard problems where the covariat@bserve that the regret of TH Lasso bandit is more stable
diversity condition (Bastani et al., 2021) does not hold.  than that of SA Lasso bandit as the ratio grows. Indeed, the
performance of TH Lasso bandit is not very sensitive to the
Algorithms. For DR Lasso bandit and Lasso bandit, we choice of g: itis robust. This contrasts with the SA Lasso
use the tuned hyperparameter at bandit algorithm, for which a careful tuning of, is needed
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Figure 1.Cumulative regret of the three algorithms with = 0:7, Amax = 10 in six scenarios selected usikg 2 f 2;50g, d 2
f 1000, 2000, 10000y, ands, 2 f 5; 20g. The shaded area represents the standard errors.

Figure 2.(Left) Number of false positiveiS{" nS( )j, (center) false negativgS( ) nS{"j, (right)*»-norm errork”™y  k; of the three
algorithms with 2=0:7,Amax =10,K =2,50 =5, andd = 1000. The shaded area represents the standard errors.

to get good performance. where the assumptions made in this paper may not hold. In
particular, it is worth investigating the case where the re-
7. Conclusion laxed symmetry condition (Assumption 3.3) is not satis ed.

In this case, being greedy in the successive arm selections
In this paper, we studied the high-dimensional contextuamay not work. It is intriguing to know whether devising
linear bandit problem with sparsity. We devised TH Lassoan algorithm without forced uniform exploration and with
bandit, a simple algorithm that applies a Lasso procedureeasonable regret guarantees is possible.
with thresholding to estimate the support of the unknown
parameter. We established nite-time regret upper bound%cknowledgements
under various assumptions, and in particular with and with-
out the margin condition. These bounds exhibit a bettekVe would like to thank Komei Fujita, Yusuke Kaneko, Hi-
regret scaling than those derived for previous algorithmgoaki Shiino, and Shota Yasui for the fruitful discussions.
We also numerically compared TH Lasso bandit to previWe also thank anonymous reviewers for helpful comments
ous algorithms in a variety of settings, and showed that ibn the previous version of our manuscript. K. Ariu was par-
outperformed other algorithms in these settings. tially supported by the Nakajima Foundation Scholarship. A.

In future work, it would be interesting to consider scenariospmlmere'S research is partially supported by the Wallenberg
' 9 Al, Autonomous Systems and Software Program (WASP)
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Figure 3.Cumulative regret at rourtd= 1000 of TH Lasso bandit  Figure 4.Cumulative regret at rounid= 1000 of TH Lasso bandit

and SA Lasso bandit with? = 0:7, K = 2, d = 1000, sp = and SA Lasso bandit with> = 0:7, Amax = 10, K =2,d =
5, and varyingAmax 2 f 2:5;5;10; 20;40;1g . The error bars 1000, sp = 5, and varying o= 2 [0:1;2:5]. The error bars
represent the standard errors. represent the standard errors.

funded by the Knut and Alice Wallenberg Foundation, andDegenne, R., Ménard, P., Shang, X., and Valko, M. Gami -
by Digital Futures. cation of pure exploration for linear bandits. Iterna-
tional Conference on Machine Learning020.
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Appendix

A. Table of Notations

Table 2 summarizes the notations used in the paper.

B. Discussion on the Assumptions and Regret Dependence Kn

Our assumptions are in principle following the literature Oh et al. (2021). In the contextual linear bandit setting, Assumptions
3.3 and 3.4 or the covariate diversity condition are standard (at least in the experimental settings). They hold for many context
distributions including multivariate Gaussian distribution, uniform distribution on the sphere, and arbitrary independent
distribution for each arm (Oh et al., 2021). For example, the covariate diversity condition holds in the experimental settings
of Bastani & Bayati (2020) and Wang et al. (2018).

Regarding the regret dependenc&afwe have at least linear scaling with. The constan€, does not scale witk when

the context distribution is a multivariate Gaussian distribution or a uniform distribution on a unit sphere (see Proposition 1 of
Oh et al. (2021)). However, for general distributi@@}, can scale exponentially witk . We conjecture that we can improve

this dependency: numerical results show that the dependen€e®mild (See Appendix H).

C. On the Bene t of the Two Step Thresholding Procedure
q
In our choice of the thresholding parametér(in the rst step and4 jéét)j in the second step), we aim at a partial
recovery of the support so that the trade-off between the duration of the phase with linearly growing regret and the support
recovery accuracy is optimized in the design. Using two-step thresholding, we achieve better regret guarantees than
single-step thresholding. This improvement is dug to the fact that with two-step thresholding, the estimated support of
is improved (with two-step thresholding, we haW€¢™ Sp) false positives on the estimated support, whereas with single
thresholding, there ai®(sp)). While this difference in rﬁgjlts does not contribute to changing the order of the regret, it
does contribute to improving the coef cients tog T and T terms in regret.

D. Additional Theorems

Before presenting the additional theorems, we introduce the following assumption (which is a slightly modi ed version of

Assumption 3.5). .
Assumption D.1(Sparse positive de nitenesk, =2). LetK =2.Dene g = % iﬂ Ea p. Ak(B)Ak(B)> ,for

anyB [d], whereAg(B) is ajBj-dimensional vector, which is extracted from the element&,ofvith indices inB.
There exists a positive constart  0such thaBB  [d],

Bi so+@ "&)=Z%ands() B =)  min v v
V2 RiBi:kvk,=1

The parametersy; are those of Assumptions 3.2, 3.3.

k n
J 2log(2 d?) 1 2 0
2

We rede ne the parameters= (log so)(loglogd) , whereCo =min  3; TRt
A

Co

The following theorem provides the regret guarantees vihen2 , without Balanced covariance (Assumption 3.4), and
with the margin condition.

Theorem D.2(with margin, without balanced covariancedssume that Assumptions 3.1-3.3, D.1, and 5.1 holdkard? .
(i) (TH Lasso Bandit with parameter-dependent input) There are universal positive constamtscs; depending on
1S A;S1:S2; o .C m suchthatif we setg = ci,thenforalld c,, forall T 2:

R(T) ¢ + so(logse)? logT + s

(i) (TH Lasso Bandit with parameter-free input) There are universal positive constants depending on
1S A;S1;S2; o) ;C m, such that if we sety = 1=(log Iogd)% in TH Lasso Bandit, then for alll c4, for all
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Table 2.Table of notations

Problem-speci c notations

At;k

So

(1. &)
SIS
N
t
Cm

ho
Co

E

S
"
G

A max

Feature vector associated with the d&m
Parameter vector
Dimension of feature vectors
Sparsity index
Total number of rounds
Set of context vectors at rourid
Distribution forA¢
Reward at round
-algebra generated by random varialflas; A1;r1;:: 5 Ar 13 A 15 1A
Zero mean sub-Gaussian noise
Variance proxy of';
Regret
Emp|r|§al Gram matrlx generated by the arms selected under a speci ¢ algorithm,
ie.,x
Support of f| 2 [d: i60g
m|n|2 S J |]
“1 norm upper bound oA 2 A (see Assumption 3.1)
"1 norm upper bound on (see Assumption 3.1)
Used for the lower bound onmin (See Assumption 3.1)
Compatibility constant (§§e Assumption 3.2)
Expected Gram matri-  _, Ea p, AxAg
Lower bound on 2( ;S( ))
Constant for Relaxed symmetry (see Assumption 3.3)
Constant for Balanced covariance (see Assumption 3.4)
Constant for Sparse positive de niteness (see Assumption 3.5 and D.1)
Regularizer at rountd
Coef cient of the regularizer
Estimate of the support after the rst and the second thresholding, respectively.

Estimated vector of
Constant for the margin condition (see Assumption 5.1)

Term whose order i©((log so) 2 l) (see de nitions before the Lemmas)
erm whose order i® (1=so)|(see de nitions before the Theorems)

2'°9(2%]d ) (log so)(log log d) o
Event S 8 andjS{V nsj ﬁ%poj or
s S8V andjSV ns;j Zp—zﬁ
Eglmate of the support after the second thresholding (Equwaléﬂ)t}o
oia As (é)A 5%
Event min (")
"2 norm bound oA« (used in the experiments)

Generic notations

kx ko
(x]
hx; yi
P(A)
Ela]
iB
B
A(B)
suppx)

[»]
‘o normofx, i.e. kxko = = L, 1f .609
Set of positive integers upbo, | e,[x]=f1:::;xg
Inner product ok andy
Probability that evenf\ occurs
Expected value o&
ilfi 2 Bg
..... >
n j BjsubmatrixofdA 2 R" 9 whereB [d]
Set of the non-zero element indicesxof
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R(T) ¢ + so(logse)? logT + s2
The precise de nitions af; -cs are given in Appendix E.3.

We provide the proof of Theorem D.2 in Appendix E.3.

Next, the following theorem provides the regret guarantees wher2, without Balanced covariance (Assumption 3.4),
and without the margin condition.

Theorem D.3(without margin, without balanced covariancé&ssume that Assumptions 3.1- 3.3, and D.1 holdkane 2.
() (TH Lasso Bandit with parameter-dependent input) There are universal positive constantscs depending on
1S A;S1;S2, o, suchthatifwesetyg= cy,thenforalld c,. forall T 2

p___
R(T) ¢ +(log so) SoT + S5

(i) (TH Lasso Bandit with parameter-free input) There are universal positive constants depending on
;S A;S1;S2; o, ; suchthatif we setg = 1=(log Iogd)% in TH Lasso Bandit, thenforal ¢4, forall T 2,

R(T) & +(log so) SoT + &)
The precise de nitions af; -cs are given in Appendix E.4.
We present the proof of Theorem D.3 in Appendix E.4. Furthermore, Lemmas associated with Theorems D.2 and D.3 and
their proofs are presented in Appendix G.
E. Proof of Theorems
E.1. Proof of Theorem 5.2 (with margin)

First, we determine tpe constarms ¢, as follows. §et 0=4 s, F: c with constant > 0 (independent odl, T, andsg)
p c 2log logd

suchthagt 4CEpse + 1+“%b so  4sa

° | 2 )

min - Note that such a constamexists as

r—
_4 sApE 2log logd

S
P~ 2log(( sg(log so)(log log d)(log d))) log d
A . ( sé(log so)(log log d)(log d))

Pe 2log( ( s§(log so)(log log d)(log d)))
( s§(log so)(log log d))
r
1 1 1
%) =0 sy loglogd * log so and

min  S2=S0 (from Assumption 3.}

We can take; =4 s Ap c. Assume that (increasing function ofl) satis es exp(4=0: This facilitates a constant
lower bound ord, hencec, is determined.

We upper bound the instantaneous regret in raundl. We have:
E[maxhA Ay; i]= E[maxbA  Ay; i]
A2A ¢ A2A ¢
Ef mg>§M; ij]1+ EfibA¢; ij]
SAS1 + SAS:
= 2spS; 1)






