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Abstract
We study the problem of Gaussian bandits with
general side information, as first introduced by
Wu, Szepesvári, and György. In this setting, the
play of an arm reveals information about other
arms, according to an arbitrary a priori known
side information matrix: each element of this
matrix encodes the fidelity of the information
that the “row” arm reveals about the “column”
arm. In the case of Gaussian noise, this model
subsumes standard bandits, full-feedback, and
graph-structured feedback as special cases. In
this work, we first construct an LP-based asymp-
totic instance-dependent lower bound on the re-
gret. The LP optimizes the cost (regret) required
to reliably estimate the suboptimality gap of each
arm. This LP lower bound motivates our main
contribution: the first known asymptotically opti-
mal algorithm for this general setting.

1. Introduction
In the stochastic online learning framework, a player se-
quentially selects from a set of available actions (or “arms”)
and collects a stochastic reward associated with the chosen
action. Under the objective of maximizing the (expected)
cumulative reward collected over a number of rounds, the
“complexity” of an instance is greatly impacted by the na-
ture of the feedback the player receives at the end of each
round. In the full-feedback case, for instance, where the
player observes the realized rewards of all actions, the most
reasonable (and provably optimal) strategy is to greedily
select at each round the action with maximum estimated
mean reward computed using the observed samples. In
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the bandit-feedback case (Lai & Robbins, 1985; Bubeck
& Cesa-Bianchi, 2012), on the other hand, where only the
reward of the chosen action is revealed to the player, more
sophisticated ideas have to be leveraged in order to align
the two conflicting objectives of the problem: exploration
(learning the best action) and exploitation (not playing sub-
optimal actions).

In a number of real world applications, however, the feed-
back does not fall into any of the above extreme categories,
since an action can potentially leak information regarding,
not only its own reward distribution, but also the distribu-
tions of other actions. Drawing an example from music
recommendation, the fact that a user likes a specific rec-
ommended song (corresponding to an action chosen by the
platform) can potentially imply that similar songs (e.g., of
the same artist or genre) might also be appreciated by the
user. In another example, encouraging a certain user of a
social network to advertise a purchased product (potentially
by offering a discount as part of a promotion campaign), the
seller can obtain valuable information about other neighbor-
ing users by recording their reactions.

Motivated by such practical scenarios, researchers have fo-
cused their attention on online learning models with richer
information structures – namely, feedback which interpo-
lates between full and bandit (Mannor & Shamir, 2011;
Caron et al., 2012; Lin et al., 2014; Yun et al., 2018; Cortes
et al., 2020). While the presence of side observations per-
mits improved regret guarantees compared to those of stan-
dard multi-armed bandits, techniques and algorithms that
have been proved successful for bandit-feedback (e.g., op-
timism principle and the UCB method) fail to achieve op-
timality. Indeed, enriching the feedback model severely
perplexes the role of exploration and exploitation. To illus-
trate, one can think of the following example: K − 1 arms
provide to the player standard bandit feedback. In addition
to these, there also exists an “information-revealing” arm
with (deterministically) zero reward, such that, once played,
the player gets full-feedback on the realized rewards of the
round, for all arms. Even in the above simple example, the
number of times (if any) this “information-revealing” arm
should played in a minimum regret solution is now a com-
plex function ofK and the (a priori unknown) suboptimality
gaps.



Initiated by the work of (Mannor & Shamir, 2011) in the
context of adversarial bandits, the majority of works in this
field focuses on the so-called graph-structured feedback
model (Alon et al., 2015; Wu et al., 2015; Kocák et al.,
2016; Arora et al., 2019; Cortes et al., 2020). There, each
arm corresponds to a node of a given (directed) graph and
every time the player chooses an action, she observes the re-
ward realization of the arm played, but also the realizations
of all the adjacent arms in the graph. In the above setting, a
series of works (Buccapatnam et al., 2014; Alon et al., 2015;
Cohen et al., 2016; Lykouris et al., 2020) has provided algo-
rithms with regret guarantees that no longer depend on the
number of arms, but on smaller inherent characteristics of
the feedback-graph (e.g., clique or independence number).

One of the most general feedback models that has been
introduced in the literature is due to Wu, Szepesvári, and
György (Wu et al., 2015). According to their model, playing
an arm reveals noisy information about the reward of all
other arms according to an arbitrary a priori known side
information matrix. Specifically, each element of this square
matrix encodes the fidelity of the information – expressed in
terms of standard deviation of the noise – that the “row” arm
reveals about the “column” arm. Notice that, modulo the
Gaussian noise assumption made in (Wu et al., 2015), the
above model subsumes the full, bandit, and graph-structured
feedback as special cases. For the case of Gaussian noise,
(Wu et al., 2015) provide finite-time instance-dependent
lower bounds on the regret of any algorithm. In terms of
upper bounds, the authors only address the special case
where each entry of the feedback matrix satisfies σi,j ∈
{σ,∞} for some fixed σ (which is essentially the graph-
structured feedback model), but they leave open the question
of an algorithm for general feedback matrices.

1.1. Our Contributions

In our work, we provide the first algorithm and regret anal-
ysis for the setting of general feedback matrices proposed
by (Wu et al., 2015). As we show, the regret guarantee
of our algorithm is asymptotically optimal, as it matches
our asymptotic instance-dependent lower bound. We now
outline the main challenges and technical contributions of
this work.

Concentration bounds for a natural ML estimator. In the
restricted case where the entries of the feedback matrix are
in {σ,∞}, the natural estimator of the mean reward of an
arm is the sample average of the (finite-variance) samples
collected. In our algorithm, where the collected samples
are subject to different noise levels, we replace the above
estimator by the weighted average of the collected samples,
where the weight of each sample is the inverse variance
of the noise of its source. The above maximum-likelihood
estimator suggests that the notion of “number of samples”,

as a measure of the amount of information collected, needs
to be replaced by the weighted number of samples.

The use of weighted average as an estimator introduces tech-
nical hurdles: in scenarios where the number of samples is
a random variable that depends on the trajectory of the algo-
rithm, one needs to apply a union bound over all possible
sample numbers in order to decorrelate the estimate from
the evolution of the algorithm up to each round. However,
in our case where each sample can be collected under K
different noise levels, the weighted number of samples of
an arm can take exponentially many different values – a fact
that invalidates the use of union bound. In Section 3, we
show how to overcome the above issue by proving concen-
tration guarantees for our estimator, which extend to the
more general case of sub-Gaussian noise.

Asymptotic regret lower bound. In our setting, a minimum
regret arm-pulling schedule is a complicated function of the
number of arms, the suboptimality gaps, and the feedback
matrix. In the imaginary scenario where prior knowledge of
the suboptimality gaps is assumed, the underlying (combi-
natorial) problem is to collect sufficient information in order
to distinguish the optimal arm by paying the minimum cost
(i.e., total suboptimality gap of the arms played for explo-
ration). Although this problem is computationally hard, it
can be closely approximated (up to rounding errors) and
relaxed by a linear program (LP). As we prove in Section 4,
since the above approximation becomes tighter as the time
horizon increases, the exact same LP provides a clear and
intuitive asymptotic lower bound on the regret.

Asymptotically optimal algorithm. The LP-based asymp-
totic regret lower bound that we construct serves as a starting
point for the design of our asymptotically optimal algorithm.
Since the suboptimality gaps are initially unknown, the role
of our algorithm is now twofold: to estimate the LP (in-
cluding constraints and objective) up to a sufficient degree,
while simultaneously to implement its optimal solution in an
online manner. In order to achieve the above dual objective,
our algorithm interleaves rounds of pure greedy exploitation,
when sufficient information (with respect to the estimated
LP) has been collected, and exploration rounds. The latter
case is further partitioned into rounds where, by greedily
collecting high fidelity samples, the algorithm attempts to
uniformly estimate the LP, and more refined exploration
rounds that are dictated by its solution. In Section 5, we
describe our algorithm and prove its asymptotic optimality.

Due to space constraints, all omitted proofs have been
moved to the Appendix.

1.2. Related Work

The problem of bandits with graph-structured feedback was
introduced by (Mannor & Shamir, 2011) in an adversarial



setting. Their model naturally interpolates between experts,
where the learner observes feedback from all actions, and
bandits, where the learner receives feedback only from the
action selected at each round. Since then, the graph feedback
model has been extensively studied in both adversarial and
stochastic settings.

In the stochastic case, the work of (Caron et al., 2012)
presents a Ω(log(T )) regret lower bound for the graph
feedback setting, as long as not all suboptimal arms have
a maximum-reward neighbor. In addition, (Caron et al.,
2012) examine the regret of natural UCB variants that in-
clude the side observations in the UCB indices. They pro-
vide instance-dependent regret guarantees of worst-case or-
der O

(
χ · ∆max

∆2
min
· log(T )

)
, where χ is the clique-partition

number of the graph (i.e. the minimum number of cliques
into which the graph can be partitioned). (Buccapatnam
et al., 2014) provide an asymptotic instance-dependent LP
lower bound for the graph-structured feedback model. The
authors also propose two algorithms which exploit (a re-
laxation of) the minimum dominating set of the graph (i.e.,
the smallest set of nodes which, in terms of their one-step
neighbors, covers all arms) in order to perform more effi-
cient exploration. Their gap-dependent regret guarantees
are of the form O

(∑
i∈D

log(T )
∆i

)
, where D is a special

dominating set of the graph. Similar guarantees for UCB
and Thomson Sampling are provided by (Lykouris et al.,
2020) in terms of the independence number of the feedback
graph (i.e. the size of the maximum independent set).

In principle, it seems that the absence of initial knowledge
of the suboptimality gaps prevents the above approaches
from achieving optimal regret guarantees. The work of
(Wu et al., 2015) is the first to resolve the above issue and
achieve optimal instance-dependent regret. Focusing on the
Gaussian setting, they present an algorithm that attempts
to estimate the gaps as well as satisfy the constraints of
the asymptotic instance-dependent LP lower bound due to
(Buccapatnam et al., 2014). They also present a minimax
optimal algorithm for this setting. In addition, (Wu et al.,
2015) generalize the graph-structured feedback model to
arbitrary feedback matrices, for which they present finite-
time gap-dependent lower bounds.

The graph-structured feedback model has also been ex-
tensively studied in an adversarial setting. (Mannor
& Shamir, 2011) present algorithms with regret guar-
antees of the form O(

√
α · log(k) · T ), for undirected,

and O(
√
χ · log(k) · T ) for directed graphs, together with

Ω(
√
α · T ) lower bounds. (Alon et al., 2013) provide im-

proved results for the directed feedback graph case. In (Alon
et al., 2015), the authors investigate the relation between
the observability properties of the graph and the optimal
achievable regret. (Kocák et al., 2016) generalize the graph

feedback to weighted graph and provide Õ(
√
α∗ · T ) guar-

antees, where α∗ is a generalization of the independence
number for weighted graphs and the Õ(·) notation is used to
hide logarithmic terms. Other variants of adversarial online
learning with graph-structured feedback have been studied
in (Rangi & Franceschetti, 2019; Cortes et al., 2019; Arora
et al., 2019; Resler & Mansour, 2019; Cortes et al., 2020).

Finally, additional examples of bandits that incorporate
graph-structured feedback include the work of (Liu et al.,
2018a;b), where the authors study the Bayesian version of
the problem and provide O(

√
α · T · log(K)) regret guar-

antees for time-varying graphs. In (Liu et al., 2018a) the
authors employ information directed sampling for this set-
ting. (Li et al., 2020) extend the graph-structured feedback
by adding observation probabilities on the edges. (Cohen
et al., 2016) study the case where the feedback graph is
never fully revealed to the learner. Other variations of the
problem include (Yun et al., 2018; Singh et al., 2020; Wang
et al., 2020), and the so-called partial monitoring setting
(Lin et al., 2014; Bartók et al., 2014; Hanawal et al., 2016).

2. Problem Definition
Model. We consider the variant of the stochastic multi-
armed bandit problem where the player is given K arms
with (unknown) expected rewards µ = (µ1, . . . , µK) and
a feedback matrix Σ = (σi,j)i,j∈[K]. By playing an ac-
tion i ∈ [K] the player observes a noisy sample Xj from
the reward of each arm j ∈ [K], distributed indepen-
dently as Xj ∼ N (µj , σ

2
i,j), and collects the realized value

Xi ∼ N (µi, σ
2
i,i). Therefore, the matrix Σ quantifies the

quality of the noisy observations of the expected rewards in
terms of standard deviation of the Gaussian noise. At any
round t where arm it is played, we denote by Xj,t the noisy
observation for each arm j ∈ [K], which coincides with
the realized collected reward in the case where j = it. The
objective is to minimize the expected cumulative regret over
an unknown time horizon T , defined as

RT (µ) = T · µ∗ − E

∑
t∈[T ]

Xit,t

,
where µ∗ = maxi∈[K] µi is the maximum expected reward.

We remark that we do not impose any non-trivial restrictions
on the feedback matrix Σ ∈ Rk×k≥0 . In particular, we allow
Σ to be asymmetric, i.e., σi,j ̸= σj,i for i ̸= j, and we
permit that σj,i < σi,i, namely, higher quality information
about the reward of an action can potentially be obtained by
playing a different action. Finally, σi,j =∞ corresponds to
the case where pulling arm i reveals no information about
the reward of arm j.

Technical notation. We denote by i∗(µ) the maximum
expected reward arm of vector µ and by µ∗ its expected re-



ward. In the case of more than one optimal arms, we choose
i∗(µ) to be the optimal arm of smallest index. For any vec-
tor µ, the suboptimality gap of arm i ∈ [K] is defined as
∆i(µ) = µ∗ − µi. We define the minimum and maximum
suboptimality gaps as ∆min(µ) = mini:∆i(µ)>0 ∆i(µ) and
∆max(µ) = maxi∈[K] ∆i(µ), respectively. For brevity, we
simply use ∆max instead of ∆max(µ) when µ is the actual
mean reward vector.

For any feedback-matrix Σ, we define σmin
i =

minj∈[K] σj,i to be the minimum standard deviation of the
noise under which we can obtain information about µi. Note
that, although the condition σmin

i < ∞ for any i ∈ [K]
is essential for an instance to be identifiable (indeed, if
σmin
i = ∞ for some i ∈ [K], then it is impossible to esti-

mate µi), we do not explicitly make this assumption, given
that the dependence on {σmin

i }i∈[K] appears naturally in
our results. Finally, we define σ̄ = maxi∈[K] σ

min
i to be the

maximum σmin
i over all arms.

At any round t, we denote byNi(t) the number of times arm
i has been pulled up to and including round t− 1. Finally,
we define ζi(t) =

∑
j∈[K]Nj(t)/σ

2
j,i to be the weighted

number of samples corresponding to arm i ∈ [K] at the
beginning of round t.

3. Maximum-Likelihood Estimator and
Concentration Bounds

By definition of our model, every time an arm j ∈ [K] is
played at some round τ , for each arm i ∈ [K], the player ob-
serves a sampleXi,τ drawn independently fromN (µi, σ

2
j,i).

From the perspective of a fixed arm i ∈ [K], the player col-
lects, at each round, a noisy estimate of µi under various
(Gaussian) noise levels. In particular, the noise variance de-
pends on the played arm, which in turn is a function of the
trajectory of the algorithm up to that round. The results of
the following sections rely on a natural maximum-likelihood
(ML) estimator for the mean of samples from heterogeneous
sources of identical means and different standard deviations,
given by matrix Σ. In this section, we define this estimator
and prove useful concentration properties. For brevity, for
the rest of this section we fix an arm i ∈ [K] and drop any
reference to it.

The ML estimator for the mean of any arm at the begin-
ning of round t (namely, using t− 1 samples) is defined as
follows:

µ̂(t) =

t−1∑
τ=1

Xτ

σ2
iτ

/ t−1∑
τ=1

1

σ2
iτ

=
∑
j∈[K]

t−1∑
τ=1

Xτ · I (iτ = j)

σ2
j

/
ζ(t), (1)

where, again, we use the definition of the weighted number

of samples ζ(t) =
∑
j∈[K]

Nj(t)

σ2
j

.

Observe that the above estimator is a weighted average of
t − 1 samples coming from K possible different sources
(namely, arms played), where each sample is weighted by
the inverse variance of its source. Here, the weighted num-
ber of samples ζ(t) reflects the total “quality” of the infor-
mation collected up to time t, and generalizes the “number
of collected samples” – a critical notion in the standard
concentration results used in multi-armed bandits.

In the case where the number of samples from each type of
noise distribution is fixed, the following guarantee can be
trivially proved:
Fact 3.1. Assuming that the trajectory of the algorithm
(namely, the type of sources) up to and including time t− 1
is fixed and independent of the observed samples – thus, ζ(t)
is deterministic – the following inequality is true for any
ϵ > 0 and i ∈ [K]:

Pr[| µ̂(t)− µ| > ϵ] < 2 · exp
(
−ζ(t) · ϵ

2

2

)
.

In scenarios of active sampling, however, where the actions
depend on the history of observed rewards, the quantity ζ(t)
is also a random variable depending on the trajectory up
to time t − 1 – a fact that invalidates the use of the above
standard concentration result.

Remark. A usual approach in such settings is to apply a
union bound over all possible numbers of samples, bypass-
ing in that way the dependence between the trajectory and
the observed samples. However, given that in our case ζ(t)
can take

(
t+K−2
K−1

)
different values (since the reward of each

arm can be sampled in K different ways at each round), this
approach would result in an additional O(tK)-factor with
an undesirable exponential dependence on K in the bound
of Fact 3.1.

In order to overcome the above issue, we first prove an
auxiliary result, which includes concentration bounds for
active sampling related to the estimator in Equation (1).
Lemma 3.1. Let {Zt′}t′∈N be a sequence of random vari-
ables. We denote by Ft′ the σ-algebra generated by
{Zτ}τ≤t′ and by F = (Ft′)t′∈N the corresponding filtra-
tion. Each random variableZt′ is drawn independently from
a zero-mean sub-Gaussian distribution with variance proxy
σ2
t′ , where σt′ is an Ft′−1-measurable random variable. We

define Wt′ =
∑t′

τ=1
Zτ

σ2
τ

and ζt′ =
∑t′

τ=1
1
σ2
τ

.

(a) Let ϕ be an F-stopping time which satisfies either
ζϕ ∈ I for some interval I = [L,H] with H > L > 0,
or ϕ = t+ 1. Then, we have that

Pr

[
|Wϕ| >

√
2α ζϕ log t and ϕ ≤ t

]
≤ 2 · t−αL/H .



(b) Let ψ be an F-stopping time which satisfies either
ζψ ≥ r for some r ∈ R≥0, or ψ = t + 1. Then, for
any ϵ > 0, we have that

Pr

[
|Wψ| > ζψ ϵ and ψ ≤ t

]
≤ 2 · exp

(
−r · ϵ

2

2

)
.

Proof sketch. As an auxiliary result, we first prove that the
sequence (G̃t′)t′∈N, where G̃t′ = exp

(
λWt′ − λ2 ζt′

2

)
·

I (t′ ≤ t) for some λ ∈ R, is a super-martingale which sat-
isfies E

[
G̃t′
]
≤ 1 for any t′ ∈ N. For proving part (a), we

focus on bounding the probability that Wϕ >
√
2α ζϕ log t

and ϕ ≤ t, since the other tail bound follows symmetri-
cally. By denoting Gt′ = exp

(
λ(Wt′ −

√
2α ζt′ log t)

)
·

I (t′ ≤ t) for some λ > 0, and using Markov’s inequality,
we get that

Pr

[
Wϕ >

√
2α ζϕ log t and ϕ ≤ t

]
≤ E [Gϕ] .

In order to upper-bound E [Gϕ], by setting G̃t′ =

exp
(
λWt′ − λ2 ζt′

2

)
· I (t′ ≤ t), we first rewrite

Gt′ = G̃t′ · exp
(
λ2 ζt′

2
− λ

√
2α ζt′ log t

)
.

Note that, for t′ = ϕ, the event that ϕ ≤ t implies that
ζϕ ∈ I and, thus, L ≤ ζϕ ≤ H . Therefore, by setting
λ = 1

H

√
2αL log t, Gϕ can be upper-bounded as

Gϕ ≤ G̃ϕ · exp
(
−α · L

H
log t

)
.

The proof follows by using the fact that E
[
G̃ϕ

]
≤ 1 for any

λ > 0.

The proof of (b) follows by similar arguments.

In the next Lemma, we provide a concentration result for
our estimator in the case where the weighted number of
samples randomly depends on the trajectory of observed
realizations. The result holds in the case where we have at
least one sample from the source with minimum noise.

Lemma 3.2. Let α > 0. For any t ≥ 2, for the estimator
defined in Equation (1), if ζ(t) ≥ 1

(σmin)2 , where σmin =

minj∈[K] σj , then we have that

Pr

[
| µ̂(t)− µ| >

√
2α log t

ζ(t)

]
< 2 · ⌈log2(t− 1)⌉ · t−α/2.

Note that imposing conditions on ζ(t) or the source noise
is necessary in order to obtain any concentration results

for the estimator in Equation (1); for instance, we cannot
hope for concentration results in the case where all t sam-
ples come from a source with σ =∞ noise. The proof of
the above Lemma is based on an exponentially-spaced dis-
cretization of the possible range of values of ζ(t), combined
with Lemma 3.1.

We remark that another possible approach for obtaining
concentration guarantees for our estimator is through the
idea of the self-normalizing bound (Abbasi-yadkori et al.,
2011) combined with the assumptions of Lemma 3.2. How-
ever, this approach comes at an expense of a slightly worse
dependence on t.

4. Asymptotic Regret Lower Bound
In this section, we provide an asymptotic regret lower bound
for policies that are consistent with respect to any environ-
ment (µ,Σ). We recall the definition of consistent policies:

Definition 4.1. A policy is called consistent if, for any
environment (µ,Σ), its regret satisfies

lim
T→∞

RT (µ)

T p
= 0 for any p > 0.

In this section, we show that, in the asymptotic regime, the
problem of collecting sufficient information to distinguish
the suboptimality gaps of the arms, while paying the mini-
mum cost in terms of regret accumulated during suboptimal
plays, can be closely approximated by an LP. For any re-
ward vector µ, we define the following parameterized set of
constraints:

C(µ) =


∑
j∈[K]

cj
σ2
j,i
≥ 2

∆2
i (µ)

,∀i ̸= i∗(µ)

c ∈ RK≥0 : ∑
j∈[K]

cj
σ2
j,i
≥ 2

∆2
min(µ)

, i = i∗(µ)

 .

(2)

To provide some intuition on the above constraint set, we
recall the case of standard bandit feedback, where σi,i <∞
and σi,j = ∞ for any i ̸= j. There, for any suboptimal
arm i the corresponding constraint of C(µ) becomes ci ≥
2σ2

i,i

∆2
i (µ)

. This matches the multiplicative factor in the existing
lower bounds for the standard bandit feedback case, where
each arm must be played at least

2σ2
i,i

∆2
i (µ)

log(T ) times. In
our general feedback setting, for any arm i, in addition
to the information collected by playing the arm itself, the
constraints also take into account the information collected
by any other arm j ∈ [K] \ {i}, weighted by its inverse
variance.

A natural lower bound on the number of suboptimal plays
of each arm can be constructed using the minimum-cost
feasible vector in C(µ) with respect to the suboptimality



gaps, formally defined as

c∗(µ) = argmin
c∈C(µ)

∑
i∈[K]

ci∆i(µ). (3)

As we show in the following theorem, the optimal solution
of the LP in Equation (3) asymptotically characterizes a
lower bound on the number of plays of each suboptimal arm
relative to log(T ).

Theorem 4.1. For any environment (µ,Σ), the regret of
any consistent policy within T rounds satisfies

lim inf
T→∞

RT (µ)

log T
≥
∑
i∈[K]

c∗i (µ)∆i(µ).

In order to prove Theorem 4.1, first, we consider a reward
vector µ and identify a suboptimal arm k in µ. For some
ϵ > 0 we construct a vector µ′ such that

µ′
i =

{
µi, if i ̸= k

µ∗ + ϵ, if i = k.
(4)

Then, in the following proposition, we decompose the KL-
divergence of two distributions P,P′, each capturing the
interplay of a policy with environments (µ,Σ) and (µ′,Σ),
respectively.

Proposition 4.1. Let two Gaussian K-armed bandit in-
stances ν and ν′ with the same side information matrix
Σ and mean reward vectors µ and µ′, respectively. Let P
(resp. P′) be the distribution associated with the interplay
of ν (resp. ν′) and a policy π within t rounds. If µ and µ′

differ only in the reward of arm k, then the KL-divergence
of P with respect to P′ satisfies:

D(P||P′) =
∑
i∈[K]

E
ν
[Ni(t)]

(µk − µ′
k)

2

2σ2
i,k

. (5)

Theorem 4.1 follows by Proposition 4.1, Definition 4.1 and
an application of Bretagnolle-Huber inequality for distribu-
tions with mean rewards µ, µ′ as defined in Equation (4).

Before we proceed to the presentation of our algorithm,
we comment that any given solution c∗(µ) of the LP in
Equation (3) could be turned into an optimal Explore-Then-
Commit (ETC) strategy for our problem: by playing each
arm ⌈c∗i (µ) · log T ⌉ times, thus incurring regret at most∑
i∈[K] c

∗
i (µ)∆i(µ) log T +

∑
i∈[K] ∆i(µ), by Lemma 3.2

we have collected enough information to distinguish the
optimal arm with high probability. Hence, c∗(µ) readily
describes an optimal (up to rounding errors) arm-pulling
schedule with respect to the lower bound.

5. Algorithm and Regret Analysis
In this section we provide the first algorithm for the general
setting of Gaussian bandits with arbitrary side information
matrix Σ and prove its asymptotic optimality.

5.1. Description of the Algorithm and Main Results

The general idea behind our algorithm is the following: re-
call that in the ideal scenario where the suboptimality gaps
are known a priori, the linear program described in Equa-
tion (3) would directly provide an optimal (up to vanishing
rounding errors) exploration strategy, namely, a minimum-
regret arm-pulling schedule collecting the necessary infor-
mation to distinguish the optimal arm with high probability.
The above intuition, however, cannot be readily transformed
into an algorithm, since prior knowledge of the suboptimal-
ity gaps would trivialize our problem.

At a high level, our algorithm attempts to estimate the LP (in-
cluding constraints and objective) described in Equation (3)
up to some accuracy, while at the same time implement its
solution (i.e., play, for each arm, the indicated number of
samples) in an online manner. The choice of the desired ac-
curacy, up to which the LP must be estimated, is a key for the
success of our algorithm: the LP needs to be estimated well-
enough to allow the learner to take near-optimal decisions,
yet without suffering a significant estimation overhead. In
principle, our algorithm generalizes and extends that of (Wu
et al., 2015) for the simple case of graph-structured feed-
back, i.e., when each entry of Σ satisfies σi,j ∈ {σ,∞} for
some σ <∞.

Our algorithm is presented in pseudocode in Algorithm 1.
The algorithm starts by playing, for each arm j ∈ [K], the
arm ij ∈ [K] that provides the most accurate information
about j. For the rest of the rounds, the algorithm either ex-
ploits the already collected information, or further explores
the environment.

Greedy exploitation. Let µ̂(t) ∈ RK be the vector of
estimated means, where the coefficient µ̂i(t) for every i ∈
[K] is given in Equation (1) (note that in Section 3 we
have dropped any reference to i for generality). Recall that
C(µ̂(t)) is the constraint set of the estimated LP at time t,
constructed using the collected samples. In the case where
the collected number of samples for each arm provides (up
to proper scaling) a feasible solution to C(µ̂(t)) (see Case
(A) of Algorithm 1), the algorithm greedily plays the arm
with the maximum empirical mean reward.

Uniform and LP-dictated exploration. If the collected
samples are not feasible for C(µ̂(t)) (up to proper scaling),
then the algorithm enters an exploration phase where it
either attempts to refine the estimate of the LP, or to make
progress in exploring arms according to what the currently



estimated LP dictates. We refer to each case as Uniform
and LP-dictated exploration, respectively. Here, the player
needs to address the delicate issue that the total exploration
cost needs to be close to that of the optimal solution of the
LP. This is achieved by performing a relatively small number
of uniform exploration rounds, which allow the learner to
obtain a sufficiently good estimate of the LP.

The algorithm considers the LP to be sufficiently (uniformly)
explored if the weighted number of samples for each arm
satisfies a uniform lower bound. In particular, our algo-
rithm compares the minimum weighted number of samples
over all arms with a sublinear function of the total sam-
ple weight collected during all exploration rounds. For-
mally, Algorithm 1 inspects the weighted number of sam-
ples of each arm, and checks whether mini∈[K] ζi(t) <
1
Kβ (ne(t)), where β(x) = xγ

2 σ̄2 , with γ ∈ (0, 1) and
σ̄ = maxi∈[K] σ

min
i , and ne(t) is the total number of explo-

ration rounds up to time t. In the case where the arms are not
uniformly explored (see Case (B) of Algorithm 1), our algo-
rithm attempts to satisfy this uniform exploration bound, by
playing the arm which provides the less noisy information
about an arm i that has the minimum ζi(t) (breaking ties
arbitrarily).

On the other hand, if the arms are sufficiently uniformly
explored (see Case (C) of Algorithm 1), our algorithm com-
putes an optimal solution c∗(µ̂(t)) to the estimated LP, and
then plays any arm i such that Ni(t) < 4α · c∗i (µ̂(t)) log t,
namely, which is considered unexplored (again up to proper
scaling) according to the LP solution.

Main Results. Before we state the regret guarantee of
Algorithm 1, we introduce some useful definitions. For
any vector µ, we consider the family of vectors µ′ that are
guaranteed to be ϵ-close to µ with respect to the ℓ∞-norm,
that is, |µ′

i − µi| ≤ ϵ for all arms i ∈ [K]. Let c∗(µ′)
be the optimal solution of the minimization problem in
Equation (3) using parameters µ′. The following quantity
appears naturally in our regret guarantees:

Definition 5.1. For any vector µ, the worst-case ϵ-
approximate LP solution for arm j ∈ [K] is defined as

c∗j (µ, ϵ) = sup
µ′:∥µ′−µ∥∞≤ϵ

c∗j (µ
′).

Note that, by continuity, taking ϵ → 0 we get c∗j (µ, ϵ) →
c∗j (µ) for every arm j ∈ [K].

We prove the following regret upper bound for Algorithm 1:

Theorem 5.1. For any α > 4, γ ∈ (0, 1), and ϵ > 0, the

Algorithm 1 Asymptotically-Optimal Algorithm for Gaus-
sian Bandits with Side Observations

Input: K arms, Σ, β(x) = xγ

2 σ̄2 , γ ∈ (0, 1), α > 4.
Set ne(K + 1)← 0.
For each arm j ∈ [K], play arm ij ← argmini∈[K] σ

2
i,j .

for t = K + 1,K + 2, . . . do
if
(
N1(t)
4a log t , ...,

NK(t)
4a log t

)
∈ C(µ̂(t)) then

// Case (A): Greedy exploitation (event At in the
analysis).
Play arm it ← argmaxi∈[K] µ̂i(t).
Set ne(t+ 1)← ne(t).

else if mini∈[K] ζi(t) <
1
Kβ (ne(t)) then

// Case (B): Uniform exploration (event At
c,Bt in

the analysis).
Let i← argmink∈[K] ζk(t).
Play it ← argmink∈[K] σ

2
k,i.

Set ne(t+ 1)← ne(t) + 1.
else

// Case (C): LP-Dictated exploration (eventAt
c,Btc

in the analysis).
Compute
c∗(µ̂(t)) ← argminc∈C(µ̂(t))

∑
i∈[K] ci∆i(µ̂(t)).

Play it ← i for some i ∈ [K] such that
Ni(t) < 4α · c∗i (µ̂(t)) log t.

Set ne(t+ 1)← ne(t) + 1.
end if

end for

regret of algorithm Algorithm 1 satisfies

RT (µ) ≤
(
2K +

8K

α− 4
+ 2

)
∆max

+ 2∆maxK
∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)

+∆max

4α
∑
j∈[K]

c∗j (µ, ϵ) log T +K

γ

+ 4α
∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ) log T.

We remark that, in the restricting case of graph side-
information structure (i.e. each σi,j = σ or ∞), the
regret upper bound of Algorithm 1 also matches the
asymptotically-optimal regret shown in (Wu et al., 2015).
Further, notice that, as σ̄ = maxi∈[K] σ

min
i grows to infinity,

the dependence on T in the second term of the above bound
becomes linear. This is a natural effect, however, since hav-
ing a large σ̄ implies the existence of an arm i ∈ [K] with



large σmin
i , for which there is no possible way of collecting

accurate information.

The following corollary bounds the asymptotic regret of
Algorithm 1 in terms of the worst-case ϵ-approximate LP
solution.

Corollary 5.1. As the time horizon tends to infinity, the
regret of Algorithm 1 satisfies

lim sup
T→∞

RT (µ)

log T
≤ 4α

∑
j∈[K]

∆j(µ)c
∗
j (µ).

Notice that, although the above bound matches the lower
bound of Theorem 4.1 for ϵ = 0, we are not allowed to
directly use ϵ→ 0 in the bound of Theorem 5.1, since that
would make the term

∑
τ∈[T ] exp

(
− τγϵ2

4K σ̄2

)
linear in T .

However, by choosing ϵ to be a decreasing function of T , e.g.
ϵ ∼ log(T )−γ/4, the suboptimal terms in Theorem 5.1 are
vanishing as T →∞ and the regret bound in Corollary 5.1
matches the asymptotic regret lower bound (up to constant
factors).

5.2. Outline of the Regret Analysis

For the rest of this section, we provide an overview of our
regret analysis, while the complete proof can be found in
Appendix C.

Clearly, the first K rounds contribute at most a (K − 1) ·
∆max-additive loss in the regret. For each round t ≥ K +1,
we consider the following events:

At =

{(
N1(t)

4a log t
, . . . ,

NK(t)

4a log t

)
∈ C(µ̂(t))

}
,

Bt =
{
min
i∈[K]

ζi(t) <
1

K
β(ne(t))

}
.

Notice that the above events immediately characterize how
Algorithm 1 operates at each round. Specifically, for t ≥
K + 1, the algorithm enters in Case A when At holds, in
Case B when At

c,Bt, and in Case C, when At
c,Btc.

We also define the error event:

Ut =

{
| µ̂i(t)− µi| ≤

√
2a log t

ζi(t)
, ∀i ∈ [K]

}
.

As we show in Lemma 3.2 of Section 3, for any t the event
Ut holds with high probability. Therefore, we can assume
that Ut holds in every round, since the probability that Ut
does not hold at some round converges to a small O( K

α−4 ·
∆max)-additive loss in the regret.

Rounds satisfying Ut,At. When the event Ut holds, if
the algorithm enters Case A, it can be shown that it chooses

the optimal arm during the greedy selection. In particular,
the event Ut,At implies that for any arm i that is suboptimal
with respect to µ̂(t), that is, i ̸= i∗(µ̂(t)), we have that

µi − µ̂i(t) ≤
∆i(µ̂(t))

2
,

while for the optimal arm i∗(µ̂(t)), we get

µ̂i∗(µ̂(t))(t)− µi∗(µ̂(t)) ≤
∆min(µ̂(t))

2
.

Since each true parameter µi is ∆i(µ̂(t))
2 -close to the corre-

sponding estimate at time t, we can conclude that the arm
selected by Algorithm 1 in that case is the optimal. Hence,
the rounds such that Ut,At holds do not contribute to the
regret.

Rounds satisfying Ut,At
c,Bt. We now turn our focus

to the rounds where At
c,Bt holds, which implies that Algo-

rithm 1 enters Case B.

Through a counting argument we show that the above can
happen at most σ̄2 β(ne) + 1 times, where ne is the total
number of exploration rounds, i.e. ne =

∑T
t=K+1 I (At

c).
Specifically, we show the following:
Lemma 5.1. The following inequality holds:

T∑
t=K+1

I (At
c,Bt) ≤

1

2

(
T∑

t=K+1

I (At
c)

)γ
+ 1.

Notice that the fact that our algorithm plays the most in-
formative arm (i.e., the one with smaller noise) in order
to collect a sample for arm i = argmink∈[K] ζk(t) is cru-
cial for the above counting argument to hold. Thus, using
Lemma 5.1, we have that

T∑
t=K+1

I (Ut,At
c,Bt) ≤

T∑
t=K+1

I (At
c,Bt)

≤

(∑T
t=K+1 I (At

c)
)γ

2
+ 1. (6)

We now bound the regret accumulated during all exploration
rounds (that is, including Cases (2) and (3)). We have that

I (At
c) ≤ I (Utc)+ I (Ut,At

c,Btc)+ I (Ut,At
c,Bt) .

(7)

By combining Equation (6) with Equation (7), we can see
that in order to upper bound

∑T
t=K+1 I (Ut,At

c,Bt), it
suffices to provide a bound on

∑T
t=K+1 I (Ut,At

c,Btc).
By doing this we are able to conclude that, overall, the
number of rounds such that Ut,At

c,Bt holds is at most
order

K
∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)
+

α ∑
j∈[K]

c∗j (µ, ϵ) log T +K

γ

.



Rounds satisfying Ut,At
c,Btc. It remains to describe

how we bound the regret accumulated in rounds where
{At

c,Btc} holds, and thus the algorithm enters Case C.

We define the following event which states that, at time t,
the error in the mean estimates upper bounded by ϵ:

Et = {| µ̂i(t)− µi| ≤ ϵ, ∀i ∈ [K]} . (8)

In order to bound the error of case {Ut,At
c,Btc}, we fur-

ther distinguish two cases according to whether Et holds:

Recall that, when {At
c,Btc} holds, the algorithm selects

an arm j such that Nj(t)
4a log t < c∗j (µ̂(t)). For rounds where

{Ut,At
c,Btc, Et} holds, by Definition 5.1 in combination

with the definition of Et, we prove the following result:
Lemma 5.2. For every arm j ∈ [K], it holds that

T∑
t=K+1

I (Ut,At
c,Btc, Et, it = j) ≤ 4α · c∗j (µ, ϵ) log T.

The above results immediately implies that
the contribution to the regret of rounds t ≥
K + 1 such that {Ut,At

c,Btc, Et} is at most
4α
∑
j∈[K] ∆j(µ)c

∗
j (µ, ϵ) log T .

Finally, for the rounds such that {Ut,At
c,Btc, Etc} holds,

i.e., when the error in some of the estimates is greater than
ϵ, by applying a union bound over all arms, we get

I (Ut,At
c,Bt

c, Et
c)

≤
∑
i∈[K]

I
(
Ut,At

c, min
j∈[K]

ζj(t) ≥
β(ne(t))

K
, | µ̂i(t)− µi| > ϵ

)
.

Given that minj∈[K] ζj(t) ≥
β(ne(t))

K implies that
ζi(t) ≥

β(ne(t))
K for any arm i ∈ [K], using part (c)

of Lemma 3.1, we can upper bound the probability of
each term in the above summation by exp

(
− ϵ

2

2
1
Kβ(τ)

)
.

Thus, the total contribution to the regret of the rounds such
that {Ut,At

c,Btc, Etc} holds can be upper bounded by
∆maxK

∑
τ∈[T ] exp

(
− τγϵ2

4K σ̄2

)
.

The regret guarantee presented in Theorem 5.1 follows by
combining the above losses.

Conclusion and Further Directions
In this work, we revisit the general feedback model intro-
duced by Wu, Szepesvári, and György in (Wu et al., 2015)
and provide the first algorithm for the case of arbitrary feed-
back matrices. To the best of our knowledge, this is one
of the most general feedback models that appears in the
literature, modulo the Gaussian noise assumption.

A number of questions still remain open in the area of on-
line learning under rich feedback structures. For instance, it

would be interesting to explore the existence of algorithms
that achieve (minimax) optimal regret in the finite time
horizon regime. Another direction would be to examine
different noise models, other than Gaussian, or even general
sub-Gaussian noise with known variance proxies. We be-
lieve that our work could serve as a building block in the
above direction.
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Lattimore, T. and Szepesvári, C. Bandit Algorithms.
Cambridge University Press, 2020. doi: 10.1017/
9781108571401.

Li, S., Chen, W., Wen, Z., and Leung, K.-S. Stochastic
online learning with probabilistic graph feedback. ArXiv,
abs/1903.01083, 2020.

Lin, T., Abrahao, B., Kleinberg, R., Lui, J., and Chen,
W. Combinatorial partial monitoring game with linear
feedback and its applications. volume 3, 06 2014. doi:
10.13140/RG.2.1.1502.1521.

Liu, F., Buccapatnam, S., and Shroff, N. B. Information
directed sampling for stochastic bandits with graph feed-
back. In AAAI, 2018a.

Liu, F., Zheng, Z., and Shroff, N. B. Analysis of thompson
sampling for graphical bandits without the graphs. ArXiv,
abs/1805.08930, 2018b.
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A. ML Estimator and Concentration Bounds: Omitted Proofs
A.1. Proof of Lemma 3.1

Lemma 3.1. Let {Zt′}t′∈N be a sequence of random variables. We denote by Ft′ the σ-algebra generated by {Zτ}τ≤t′
and by F = (Ft′)t′∈N the corresponding filtration. Each random variable Zt′ is drawn independently from a zero-
mean sub-Gaussian distribution with variance proxy σ2

t′ , where σt′ is an Ft′−1-measurable random variable. We define
Wt′ =

∑t′

τ=1
Zτ

σ2
τ

and ζt′ =
∑t′

τ=1
1
σ2
τ

.

(a) Let ϕ be an F -stopping time which satisfies either ζϕ ∈ I for some interval I = [L,H] with H > L > 0, or ϕ = t+1.
Then, we have that

Pr

[
|Wϕ| >

√
2α ζϕ log t and ϕ ≤ t

]
≤ 2 · t−αL/H .

(b) Let ψ be an F-stopping time which satisfies either ζψ ≥ r for some r ∈ R≥0, or ψ = t+ 1. Then, for any ϵ > 0, we
have that

Pr

[
|Wψ| > ζψ ϵ and ψ ≤ t

]
≤ 2 · exp

(
−r · ϵ

2

2

)
.

Proof. Before we proceed to the main part of the proof, we first show the following auxiliary result:

Proposition A.1. Let G̃t′ = exp
(
λWt′ − λ2 ζt′

2

)
· I (t′ ≤ t) for some λ ∈ R. Then, (G̃t′)t′∈N is a super-martingale

satisfying E
[
G̃t′
]
≤ 1 for any t′ ∈ N.

Proof. In order to show that the sequence (G̃t′)t′∈N is a super-martingale satisfying E
[
G̃t′
]
≤ 1 for any t′ ∈ N, we

proceed by induction. For the base case where t′ = t + 1, we have E
[
G̃t+1 | Ft

]
= 0 ≤ G̃t. Let us now fix any time

t′ ≤ t. Given that σt′ is Ft′−1-measurable and Zt′ is sub-Gaussian with variance proxy σ2
t′ , for any λ′ ∈ R we have that

E
[
exp

(
λ′Zt′ −

λ′2σ2
t′

2

) ∣∣Ft′−1

]
≤ 1. Thus, by setting λ′ = λ

σ2
t′

, we get that E
[
exp

(
λZt′
σ2
t′
− λ2

2σ2
t′

) ∣∣Ft′−1

]
≤ 1. Using

that, we have

E
[
G̃t′ | Ft′−1

]
= E

[
exp

(
λWt′ −

λ2 ζt′

2

) ∣∣Ft′−1

]

= E

exp
 t′∑
τ=1

(
λ
Zτ
σ2
τ

− λ2

2σ2
τ

)∣∣Ft′−1


= G̃t′−1 · E

[
exp

(
λ
Zt′

σ2
t′
− λ2

2σ2
t′

) ∣∣Ft′−1

]
≤ G̃t′−1,

thus proving that (G̃t′)t′ is a super-martingale. In addition, since ϕ satisfies ϕ ≤ t+ 1 almost surely, by Doob’s optional
stopping theorem, we can conclude that E

[
G̃t′
]
≤ 1 for all t′ ∈ N.

(a) It suffices to upper-bound the probability that Wϕ >
√

2α ζϕ log t and ϕ ≤ t by t−α
L
H . Notice that the other tail bound

follows by symmetry and the factor of 2 in the desired bound results from a union bound over the two tails.

By denoting Gt′ = exp
(
λ(Wt′ −

√
2α ζt′ log t)

)
· I (t′ ≤ t) for some λ > 0, we get

Pr

[
Wϕ >

√
2α ζϕ log t and ϕ ≤ t

]
= Pr

[
Gϕ ≥ 1

]
≤ E [Gϕ],

where the last step above follows by Markov’s inequality, given that Gϕ is by construction a non-negative random variable.
Thus, in order to complete the proof, it suffices to upper-bound E [Gϕ].



By setting G̃t′ = exp
(
λWt′ − λ2 ζt′

2

)
· I (t′ ≤ t), we can rewrite

Gt′ = G̃t′ · exp
(
λ2 ζt′

2
− λ

√
2α ζt′ log t

)
.

Now, for t′ = ϕ, the event that ϕ ≤ t implies by definition that ζϕ ∈ I and, thus, L ≤ ζϕ ≤ H . Therefore, by setting
λ = 1

H

√
2αL log t, we get that

Gϕ = G̃ϕ · exp

(
λ2 ζϕ
2
− λ

√
2α ζϕ log t

)
≤ G̃ϕ · exp

(
λ2H

2
− λ

√
2αL log t

)
= G̃ϕ · exp

(
−α · L

H
log t

)
.

Finally, by using the fact that E
[
G̃ϕ

]
≤ 1 for any λ > 0, as proved in Proposition A.1, we have that E [Gϕ] ≤

exp
(
−α L

H log t
)
= t−α

L
H , which concludes the proof.

(b) As in the proof of part (a), we can focus on bounding the probability that Wψ > ζψ ϵ and ψ ≤ t, since the other tail
bound follows by symmetry. By denoting G′

t′ = exp (λ(Wt′ − ζt′ ϵ)) · I (t′ ≤ t) for some λ > 0, we get

Pr

[
Wψ > ζψ and ψ ≤ t

]
= Pr

[
G′
ψ ≥ 1

]
≤ E

[
G′
ψ

]
,

where the last step above follows by Markov’s inequality.

In order to upper-bound E
[
G′
ϕ

]
, by setting G̃t′ = exp

(
λWt′ − λ2 ζt′

2

)
· I (t′ ≤ t), we can rewrite

G′
t′ = G̃t′ · exp

(
λ2 ζt′

2
− λϵ ζt′

)
.

By setting λ = ϵ, we get that G′
t′ ≤ G̃t′ exp

(
− ζt′ ·ϵ

2

2

)
. Further, if ψ ≤ t, then by definition we have that ζψ ≥ r, which

implies that

G′
ψ ≤ G̃ψ · exp

(
−r · ϵ

2

2

)
.

The proof follows by taking expectation in the above expression and using the fact that E
[
G̃ψ

]
≤ 1 for any λ ∈ R, as we

show in Proposition A.1.

A.2. Proof of Lemma 3.2

Lemma 3.2. Let α > 0. For any t ≥ 2, for the estimator defined in Equation (1), if ζ(t) ≥ 1
(σmin)2 , where σmin =

minj∈[K] σj , then we have that

Pr

[
| µ̂(t)− µ| >

√
2α log t

ζ(t)

]
< 2 · ⌈log2(t− 1)⌉ · t−α/2.

Proof. Recall that ζ(t) is defined as ζ(t) =
∑
j∈[K]Nj(t)/σ

2
j and that σmin = minj∈[K] σj . Without loss of generality,

we can assume that σmin > 0, since, otherwise, by collecting any sample with σj = 0, the concentration inequality follows
trivially. Recalling that ζ(t) involves t− 1 samples, by definition, by time t ≥ 2, it is easy to see that

ζ(t) ∈
[

1

(σmin)2
,
t− 1

(σmin)2

]
≤

⋃
r∈[⌈log2(t−1)⌉]

[
2r−1

(σmin)2
,

2r

(σmin)2

]



and, hence, by using the above decomposition and applying union bound we get that

Pr

[
|µ̂(t)− µ| >

√
2a log t

ζ(t)

]
= Pr

 ⋃
r∈[⌈log2(t−1)⌉]

(
| µ̂(t)− µ| >

√
2a log t

ζ(t)
and ζ(t) ∈

[
2r−1

(σmin)2
,

2r

(σmin)2

])
≤

∑
r∈[⌈log2(t−1)⌉]

Pr

[
| µ̂(t)− µ| >

√
2a log t

ζ(t)
and ζ(t) ∈

[
2r−1

(σmin)2
,

2r

(σmin)2

]]

Notice that, by multiplying both sides with ζ(t), the inequality |µ̂(t)− µ| >
√

2a log t
ζ(t) is equivalent to

∣∣∣∑t−1
τ=1

Xτ−µ
σ2
iτ

∣∣∣ >√
2a ζ(t) log t. By setting Zt′ = Xt′ −µ, we can observe that the sequence {Zt′}t′≤t satisfies the conditions of Lemma 3.1.

For any fixed r ∈ [⌈log2(t− 1)⌉] let us define I(r) =
[

2r−1

(σmin)2 ,
2r

(σmin)2

]
. Hence, for L = 2r−1

(σmin)2 and H = 2r

(σmin)2 , then

the event that
∣∣∣∑t−1

τ=1
Xτ−µ
σ2
iτ

∣∣∣ > √
2a ζ(t) log t and ζ(t) ∈ I(r) implies that there must exist a stopping-time ϕ where

ζϕ ∈ I(r) as described in Lemma 3.1 for I = I(r), such that |Wϕ| >
√
2α ζϕ log ϕ and ϕ ≤ t− 1. Thus, by the result of

Lemma 3.1 we get

Pr

[
|µ̂(t)− µ| >

√
2a log t

ζ(t)
and ζ(t) ∈ I(r)

]
= Pr

[∣∣∣∣∣
t−1∑
τ=1

Xτ − µ
σ2
iτ

∣∣∣∣∣ >√2a ζ(t) log t and ζ(t) ∈ I(r)

]
.

≤ Pr
[
|Wϕ| >

√
2α ζϕ log ϕ and ϕ ≤ t− 1

]
< 2 · t−α 2r−1

2r = 2 · t−α
2 .

Therefore, we can conclude that:

Pr

[
| µ̂(t)− µ| >

√
2a log t

ζ(t)

]
< 2 · ⌈log2(t− 1)⌉ · t−α/2.

B. Asymptotic Regret Lower Bound: Omitted Proofs
B.1. Proof of Proposition 4.1

Proposition 4.1. Let two Gaussian K-armed bandit instances ν and ν′ with the same side information matrix Σ and mean
reward vectors µ and µ′, respectively. Let P (resp. P′) be the distribution associated with the interplay of ν (resp. ν′) and
a policy π within t rounds. If µ and µ′ differ only in the reward of arm k, then the KL-divergence of P with respect to P′

satisfies:

D(P||P′) =
∑
i∈[K]

E
ν
[Ni(t)]

(µk − µ′
k)

2

2σ2
i,k

. (5)

Proof. Recall that we denote by iτ the arm played at round τ by policy π. Let Pi (resp. P ′
i ) be the distribution over

the random vector of the observations obtained at any round where arm i is played under the instance ν (resp. ν′). By
working along the lines of Lemma 15.1 in (Lattimore & Szepesvári, 2020), it can be proved that the KL-divergence between
distributions P and P′ satisfies

D(P||P′) =

t∑
τ=1

E
ν

[
D(Piτ ||P ′

iτ )
]
=

t∑
τ=1

K∑
i=1

E
ν
[D(Pi||P ′

i ) I (iτ = i)] =

K∑
i=1

D(Pi||P ′
i )E

ν
[Ni(t)] .

In contrast to Lemma 15.1 in (Lattimore & Szepesvári, 2020), here Pk, P ′
k are multivariate distributions of K arms. We

denote by Pi,j the marginal distribution that corresponds to the reward observation of arm j, when arm i is played. Given



that the noisy reward observations are independent for each arm j ∈ [K], by using the additivity of the KL-divergence in
that case, we have that D(Pi||P ′

i ) =
∑K
j=1D(Pi,j , Pi′,j), which in turn leads to

D(P||P′) =

K∑
i=1

K∑
j=1

D(Pi,j , Pi′,j)E
ν
[Ni(t)] =

K∑
i=1

E
ν
[Ni(t)]

(µk − µ′
k)

2

2σ2
i,k

,

where the last equation follows by the fact that for any i ∈ [K], the distributions Pi,k and Pi′,k are both Gaussian with
means µk and µk′ , respectively, and the same variance σ2

i,j .

B.2. Proof of Theorem 4.1

Theorem 4.1. For any environment (µ,Σ), the regret of any consistent policy within T rounds satisfies

lim inf
T→∞

RT (µ)

log T
≥
∑
i∈[K]

c∗i (µ)∆i(µ).

Proof. Let us fix any consistent policy π. Let µ be a mean reward vector and let k be a suboptimal arm in µ. We define
vector µ′ such that

µ′
i =

{
µi, if i ̸= k

µ∗ + ϵ, if i = k
(9)

for some ϵ > 0. Moreover, let P and P′ be the measures induced by the interplay of π with the environments (µ,Σ)
and (µ′,Σ) respectively, and let us denote by E and E′ the corresponding expectations. For any event E , due to the
Bretagnolle-Huber inequality (Tsybakov, 2008), we have that

P[E ] + P′[Ec] ≥ 1

2
exp (−D (P || P′)) , (10)

where D (P || P′) is the KL-divergence of P with respect to P′.

Let us define the eventQ =
{
Nk(T ) >

T
2

}
, namely, the event that, by round T OP: or by time T +1?, arm k has being played

more than T/2 times. Since k is a suboptimal arm in µ and optimal in µ′, for the regret of policy π in the two environments
we have that

RπT (µ) +RπT (µ
′) ≥ T

2
P[Q] ∆k(µ) +

T

2
P′[Qc]ϵ.

By considering the minimum gap in the above two terms we obtain

RπT (µ) +RπT (µ
′) ≥ min{∆k(µ), ϵ} ·

T

2
· (P[Q] + P′[Qc])

≥ min{∆k(µ), ϵ} ·
T

4
· exp (−D (P || P′))

≥ min{∆k(µ), ϵ} ·
T

4
· exp

− ∑
i∈[K]

E [Ni(t)]
(∆k(µ) + ϵ)2

2σ2
i,k

 . (11)

where the second inequality follows by Equation (10), while the last inequality follows by Proposition 4.1. By rearranging
terms, we obtain ∑

i∈[K]

E [Ni(t)]

σ2
i,k

≥ 2

(∆k(µ) + ϵ)2
log

(
T ·min{∆k(µ), ϵ}
4(RπT (µ) +RπT (µ

′))

)
. (12)

We recall that for any consistent policy π, any environment (µ,Σ), and any p > 0, we have that

lim
T→∞

RπT (µ)

T p
= 0.



Thus, dividing Equation (12) by log T and taking the limit of T →∞, we get

lim inf
T→∞

1

log T

∑
i∈[K]

E [Ni(T )]

σ2
i,k

≥ lim inf
T→∞

1

log T

2

(∆k(µ) + ϵ)2
log

(
T ·min{∆k(µ), ϵ}
4(RπT (µ) +RπT (µ

′))

)

=
2

(∆k(µ) + ϵ)2
lim inf
T→∞

1

log T

(
log T − log (RπT (µ) +RπT (µ

′)) + log
min{∆k(µ), ϵ}

4

)
.

(13)

Now, observe that, by Definition 4.1 for consistent policies, we have that

lim inf
T→∞

1

log T

(
log T − log (RπT (µ) +RπT (µ

′)) + log
min{∆k(µ), ϵ}

4

)
= 1− lim inf

T→∞

log (RπT (µ) +RπT (µ
′))

log T
= 1,

and, therefore, the bound in Equation (13) becomes

lim inf
t→∞

∑
i∈[K]

E′[Ni(t)]
σ2
i,k

log t
≥ 2

(∆k(µ) + ϵ)2
.

Notice that the above analysis holds for any suboptimal arm and ϵ > 0 and thus is sufficient to conclude the theorem. To
illustrate:

Let us consider the reward vector µ and the following constraint set indicated by the above analysis:

C(µ) =

c ∈ RK≥0 :
∑
j∈[K]

cj
σ2
j,i

≥ 2

∆2
i (µ)

∀i ̸= i∗(µ)

 .

Suppose that the expected number of plays of policy π divided by log t do not satisfy the above constraints, i.e.(
E[N1(t)]
log t , ..., E[NK(t)]

log t

)
̸∈ C(µ). Then, w.l.o.g. we assume that the constraint of C(µ) that is not satisfied is the one

that corresponds to the k-th suboptimal arm, that is:∑
j∈[K]

E[Nj(t)]
σ2
j,k · log t

<
2

∆2
k(µ)

.

Then, we can write that
∑
j∈[K]

E[Nj(t)]

σ2
j,k

= 2 log t
(∆k(µ)+ϵ′)2

for some ϵ′ > 0. If we consider environments µ and µ′ as defined

in Equation (9) for some ϵ < ϵ′, by using Equation (11) we get that:

Rπt (µ) +Rπt (µ
′) ≥ t ·min{∆k(µ), ϵ}

4
exp

(
−

∑
i∈[K] E [Ni(t)]

2σ2
i,k

(∆k(µ) + ϵ)2

)

=
t ·min{∆k(µ), ϵ}

4
exp

(
− 2 log t

2(∆k(µ) + ϵ′)2
(∆k(µ) + ϵ)2

)
=
t ·min{∆k(µ), ϵ}

4
· t−

(
∆k(µ)+ϵ

∆k(µ)+ϵ′

)2

which is a contradiction to the fact that policy π is consistent.

Finally, by construction of the objective of the LP, we conclude that the optimal solution of the LP characterizes an
asymptotic lower bound on the regret of any consistent policy.

C. Algorithm and Regret Analysis: Omitted Proofs
C.1. Proof of Theorem 5.1

We prove the main result of Section 5:



Theorem 5.1. For any α > 4, γ ∈ (0, 1), and ϵ > 0, the regret of algorithm Algorithm 1 satisfies

RT (µ) ≤
(
2K +

8K

α− 4
+ 2

)
∆max

+ 2∆maxK
∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)

+∆max

4α
∑
j∈[K]

c∗j (µ, ϵ) log T +K

γ

+ 4α
∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ) log T.

Proof. As a first step, we define the following events which correspond to the conditions examined in Cases A and B of
Algorithm 1, respectively:

At =

{(
N1(t)

4a log t
, ...,

NK(t)

4a log t

)
∈ C(µ̂(t))

}
and Bt =

{
min
i∈[K]

ζi(t) <
1

K
β(ne(t))

}
.

Moreover, we consider the following error events for the ML estimator µ̂(t):

Ut =

{
| µ̂i(t)− µi| ≤

√
2a log t

ζi(t)
, ∀i ∈ [K]

}
and Et = {∥ µ̂(t)− µ∥∞ ≤ ϵ} .

Using the above definitions, we can provide an upper bound on the regret accumulated by Algorithm 1 within T rounds
through the following decomposition:

RT (µ) = Tµ∗ − E

∑
t∈[T ]

Xit,t

 = E

∑
t∈[T ]

∆t(µ)


≤ K∆max +

T∑
t=K+1

E [∆t(µ) (I (Utc)+ I (Ut,At)+ I (Ut,At
c,Bt)+ I (Ut,At

c,Btc, Et)+ I (Ut,At
c,Btc, Etc))] .

(14)

In the rest of this proof, we bound each of the above terms separately.

Regret due to Utc. The regret accumulated due to the event Utc over T rounds can be upper-bounded by via a union
bound over all arms and, then, by applying the concentration result proved in Lemma 3.2. In particular, we obtain that

T∑
t=K+1

I (Utc) ≤
T∑

t=K+1

∑
i∈[K]

Pr

[
| µ̂i(t)− µi| >

√
2a log t

ζi(t)

]
≤ K

T∑
t=K+1

2 · ⌈log2(t− 1)⌉ · t−α/2 ≤ 4K

α− 4
. (15)

Therefore, for the rest of the cases we can assume the the event Ut holds for every t ≥ K.

Regret due to Ut,At. When the events Ut and At hold, we show that the greedy arm selection in Case A of Algorithm 1
leads to the selection of the optimal arm. By using the definitions of the events Ut and At, we have that the error in the
mean estimate of any arm i ∈ [K] which is suboptimal in the vector of estimations µ̂(t) can be upper-bounded as

| µ̂i(t)− µi| ≤

√
2a log t

ζi(t)
≤
√

2a log t
8α log t
∆2

i (µ̂(t))

=
∆i(µ̂(t))

2
, ∀i ̸= i∗(µ̂(t)).



In particular, this implies that for any arm i ̸= i∗(µ̂(t)) (i.e., which is suboptimal with respect to estimates the µ̂(t)), we
have that

µi − µ̂i(t) ≤
∆i(µ̂(t))

2
. (16)

Similarly, by using the definitions of At and C(µ̂t), for the optimal arm of µ̂(t), i∗(µ̂(t)), we have

µ̂i∗(µ̂(t))(t)− µi∗(µ̂(t)) ≤
∆min(µ̂(t))

2
. (17)

By adding Equation (16) and Equation (17) we get

µi − µ̂i(t) + µ̂i∗(µ̂(t))(t)− µi∗(µ̂(t)) ≤
∆i(µ̂(t))

2
+

∆min(µ̂(t))

2
≤ ∆i(µ̂(t)).

Now, since ∆i(µ̂(t)) = µ̂i∗(µ̂(t))(t) − µ̂i(t) by definition, eliminating the identical terms in the above expression yields
µi ≤ µi∗(µ̂(t)).

By repeating the above analysis for each arm i ̸= i∗(µ̂(t)), we can conclude that the mean reward of i∗(µ̂(t)) satisfies
µi∗(µ̂(t)) ≥ maxi∈[K] µi, which in turn implies that i∗(µ̂(t)) also corresponds to the optimal arm of vector µ. Thus, the
rounds where the events Ut and At hold do not contribute to the regret, namely,

∆t(µ) I (Ut,At) = 0. (18)

Regret due to Ut,At
c,Bt. We focus on the regret accumulated during the rounds where Ut,At

c and Bt hold. These
correspond to the the rounds where Algorithm 1 attempts to ensure uniform exploration for all arms in terms of their
weighted numbers of samples.

In order to upper-bound the regret accumulated in the rounds where the events Ut,At
c and Bt hold, we relate the number of

rounds where At
c and Bt hold with the total number of “exploration rounds”, i.e., the number of times the algorithm enters

Case B or C (which happens only if At
c holds). We achieve the above via a counting argument, based on the following

proposition:

Proposition C.1. Let t2 > t1 > K. If
∑t2−1
t=t1

I (At
c,Bt) ≥ K, then mini∈[K] ζi(t2) ≥ mini∈[K] ζi(t1) +

1
σ̄2 .

In simple terms, Proposition C.1 states that if At
c and Bt hold (which corresponds to Case B of Algorithm 1) at least K

times within an interval [t1, t2 − 1], then the minimum weighted number of samples, ζi(t), over all arms i ∈ [K] after these
rounds, must have increased by at least 1/σ̄2.

Proof of Proposition C.1. The proposition follows from a pigeonhole argument. Let ℓ1 be the first round in the interval
[t1, t2 − 1], where At

c,Bt are satisfied and, hence, Algorithm 1 enters Case B. Let j = argmink∈[K] ζk(ℓ1) be the arm with
minimum weighted number of samples at the beginning of round ℓ1, which was chosen in Case B of Algorithm 1. At round
ℓ1, Algorithm 1 plays by construction an arm iℓ1 = argmink∈[K] σ

2
k,j and, hence, the weighted number of samples of arm

j at round ℓ1 + 1 must satisfy

ζj(ℓ1 + 1) = ζj(ℓ1) + max
k∈[K]

1

σ2
k,j

= ζj(ℓ1) +
1

(σmin
j )2

≥ ζj(ℓ1) +
1

σ̄2
≥ min
i∈[K]

ζi(t1) +
1

σ̄2
, (19)

where the last inequality follows by the fact that ζj(ℓ1) = mini∈[K] ζi(ℓ1) ≥ mini∈[K] ζi(t1), since the weighted number
of samples of any arm can only increase as time progresses.

Observe that, if at any round ℓ ∈ [ℓ1+1, t2− 1] arm i is again a minimizer of mink∈[K] ζk(ℓ), Equation (19) implies that, at
round t2, it has to be that mini∈[K] ζi(t2) ≥ ζj(ℓ1) ≥ mini∈[K] ζi(t1)+ 1/σ̄2, in which case the proposition follows directly.
Thus, we can assume that for any round ℓ ∈ [ℓ1 + 1, t2 − 1] only arms in [K] \ {j} are minimizers of mink∈[K] ζk(ℓ).

By repeatedly applying the above argument, it follows that each arm in [K] can be the minimizer of mink∈[K] ζk(ℓ) for at
most one round ℓ ∈ [t1, t2 − 1]. However, since

∑t2−1
t=t1

I (At
c,Bt) ≥ K, by assumption, this can only imply that each arm



j ∈ [K] is the minimizer of mink∈[K] ζk(ℓ) for at least one round ℓ ∈ [t1, t2 − 1]. In this case, the weighted number of
samples for each arm i ∈ [K] (including the minimizer of round t1) has been increased by at least 1/σ̄2 during the interval
[t1, t2 − 1], and thus

min
i∈[K]

ζi(t2) ≥ min
i∈[K]

(
ζi(t1) +

1

σ̄2

)
= min
i∈[K]

ζi(t1) +
1

σ̄2
,

which concludes the proof.

Lemma 5.1. The following inequality holds:

T∑
t=K+1

I (At
c,Bt) ≤

1

2

(
T∑

t=K+1

I (At
c)

)γ
+ 1.

Proof. Let K + 1 ≤ t′ ≤ T be the maximum round where the events At
c,Bt hold, that is,

t′ = max
t∈N
{t | I (At

c,Bt) = 1 and K + 1 ≤ t ≤ T}.

Due to Proposition C.1, we have that the minimum weighted number of samples of any arm i ∈ [K] at time t′ satisfies

min
i∈[K]

ζi(t
′) ≥ 1

σ̄2K

t′−1∑
t=K+1

I (At
c,Bt),

since the above minimum increases by at least 1/σ̄2 every K times the events At
c,Bt occur.

By rearranging terms in the above inequality and using the fact that, when At
c,Bt hold, we have that mini∈[K] ζi(t) <

1
Kβ (ne(t)), we obtain the following upper bound on the number of times the events At

c,Bt can occur over T rounds:

T∑
t=K+1

I (At
c,Bt) ≤

t′−1∑
t=K+1

I (At
c,Bt)+1 ≤ K σ̄2 min

i∈[K]
ζi(t

′) + 1 < σ̄2 β (ne(t
′)) + 1. (20)

Now using that ne(t′) =
∑t′−1
t=K+1 I (At

c), the definition of β(x) = xγ
/2, and that t′ ≤ T , we have

(20) = σ̄2 β

 t′−1∑
t=K+1

I (At
c)

+ 1 ≤ σ̄2 β

(
T∑

t=K+1

I (At
c)

)
+ 1

=
1

2

(
T∑

t=K+1

I (At
c)

)γ
+ 1,

which concludes the proof.

Equipped with Lemma 5.1 and using a decomposition of the event At
c, we can bound the term of the regret depending on

I (Ut,At
c,Bt) as follows:

T∑
t=K+1

I (Ut,At
c,Bt) ≤

T∑
t=K+1

I (At
c,Bt)

≤ 1

2

(
T∑

t=K+1

I (At
c)

)γ
+ 1

≤ 1

2

(
T∑

t=K+1

I (Utc,At
c)+ I (Ut,At

c,Bt)+ I (Ut,At
c,Btc, Et)+ I (Ut,At

c,Btc, Etc)

)γ
+ 1

≤ 1

2

T∑
t=K+1

(I (Utc)+ I (Ut,At
c,Bt)+ I (Ut,At

c,Btc, Etc)) +
1

2

(
T∑

t=K+1

I (Ut,At
c,Btc, Et)

)γ
+ 1,



where the last inequality comes from the fact that the function f(x) = xγ is subadditive for any γ ∈ (0, 1), and xγ ≤ x for
any integer x.

By rearranging and grouping terms we obtain the following bound:

T∑
t=K+1

I (Ut,At
c,Bt) ≤

T∑
t=K+1

(I (Utc)+ I (Ut,At
c,Btc, Etc)) +

(
T∑

t=K+1

I (Ut,At
c,Btc, Et)

)γ
+ 2. (21)

Thus, in order to bound the regret in the case where Ut,At
c and Btc hold, we need to bound the regret accumulated due to

the terms I (Ut,At
c,Btc, Etc) and I (Ut,At

c,Btc, Et).

Regret due to Ut,At
c,Btc, Et. In rounds where the events At

c and Btc hold and, thus, the constraints of the estimated
LP, C(µ̂(t)), are not satisfied, Algorithm 1 plays any arm j ∈ [K] that violates its corresponding constraint, i.e. Nj(t)

4a log t <

c∗j (µ̂(t)). In addition, we recall that the event Et implies that ∥ µ̂(t) − µ∥∞ ≤ ϵ, namely, all mean estimates are ϵ-close
to the true mean rewards. In that case, for any arm j ∈ [K] we can construct an ϵ-approximate LP, using the worst-case
ϵ-approximate LP solution introduced in Definition 5.1:

c∗j (µ, ϵ) = sup
µ′:∥µ′−µ∥∞≤ϵ

c∗j (µ
′).

Lemma 5.2. For every arm j ∈ [K], it holds that

T∑
t=K+1

I (Ut,At
c,Btc, Et, it = j) ≤ 4α · c∗j (µ, ϵ) log T.

Proof. Let t′ be the last round such that t′ ≤ T where {Ut,At
c,Btc, Et} holds and the algorithm plays arm j. Then we

have that:

T∑
t=K+1

I (Ut,At
c,Btc, Et, it = j) =

t′∑
t=K+1

I (Ut,At
c,Btc, Et, it = j) ≤ Nj(t′) ≤ 4αc∗j (µ̂(t

′)) log t′ ≤ 4αc∗j (µ, ϵ) log T,

where the second inequality comes from the fact that Nj(t
′)

4a log t′ < c∗j (µ̂(t
′)), by definition of j. The last follows from t′ ≤ T

and Definition 5.1 combined with the fact that ∥ µ̂(t′)− µ∥∞ ≤ ϵ.

By applying the above lemma for any arm j ∈ [K], we can bound the term of the regret depending on I (Ut,At
c,Btc, Et) as

follows:
T∑

t=K+1

∆t(µ) I (Ut,At
c,Btc, Et) ≤

∑
j∈[K]

∆j(µ)

T∑
t=K+1

I (Ut,At
c,Btc, Et, it = j)

≤ 4α
∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ) log T. (22)

Regret due to Ut,At
c,Btc, Etc. We can bound the term of the regret due to the events {Ut,At

c,Btc, Etc} as follows:

E

[
T∑

t=K+1

∆it(µ) I (Ut,At
c,Btc, Etc)

]
≤ ∆max E

[
T∑

t=K+1

I (Ut,At
c,Btc, Etc)

]

= ∆max E

[
T∑

t=K+1

I
(
Ut,At

c,Btc, ∃j ∈ [K] : | µ̂j(t)− µj | > ϵ
)]

≤ ∆max E

 ∑
j∈[K]

T∑
t=K+1

I
(
Ut,At

c,Btc, | µ̂j(t)− µj | > ϵ
), (23)



where the last inequality follows by a union bound on any possible arm j ∈ [K] satisfying | µ̂j(t)− µj | > ϵ.

For an easier manipulation of the bound in Equation (23), let us construct the following sets:

Λ =

{
t ∈ [T ] : Ut,At

c, min
i∈[K]

ζi(t) ≥
1

K
β (ne(t))

}
and the more refined

Λ(τ) =

{
t ∈ [T ] : Ut,At

c, min
i∈[K]

ζi(t) ≥
1

K
β (τ) , ne(t) = τ

}
.

Note that if t ∈ Λ(τ) then ζj(t) ≥ 1
Kβ (ne(t)) and that |Λ(τ)| ≤ 1 for any τ , by construction. In addition, Λ ⊆ ∪τ∈[T ]Λ(τ).

Then, let ϕτ be a stopping time such that ϕτ = t if Λ(τ) = {t} and ϕτ = T + 1 otherwise. We can write that:

E

∑
t∈[T ]

I (t ∈ Λ, | µ̂i(t)− µi| > ϵ)

 ≤ E

∑
τ∈[T ]

I (ϕτ ≤ T, | µ̂i(t)− µi| > ϵ)


=
∑
τ∈[T ]

Pr [ϕτ ≤ T, | µ̂i(t)− µi| > ϵ]

≤
∑
τ∈[T ]

2 exp

(
−ϵ

2

2

1

K
β(τ)

)
,

where in the last inequality we apply the result of Lemma 3.1.

Therefore, Equation (23) can be bounded as follows:

Equation (23) = ∆max E

∑
i∈[K]

T∑
t=K+1

I (t ∈ Λ, | µ̂i(t)− µi| > ϵ )


≤ ∆max

∑
i∈[K]

∑
τ∈[T ]

exp

(
−β(τ)ϵ

2

2K

)
(24)

= ∆max

∑
i∈[K]

∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)
. (25)

where in the last inequality we used the definition of β(·) function.

Combining everything. By combining the bounds in Equations (14), (15), (18), (21), (22) and (24), we can conclude that
the regret of Algorithm 1 can be upper bounded as follows:

RT (µ) ≤ K∆max +∆max
8K

α− 4
+ ∆max

4α
∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ) log T

γ

+ 2∆maxK
∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)
+ 4α

∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ) log T + 2.

C.2. Proof of Corollary 5.1

Corollary 5.1. As the time horizon tends to infinity, the regret of Algorithm 1 satisfies

lim sup
T→∞

RT (µ)

log T
≤ 4α

∑
j∈[K]

∆j(µ)c
∗
j (µ).



Proof. Recall that by Theorem 5.1:

RT (µ) ≤
(
2K +

8K

α− 4
+ 2

)
∆max +2∆maxK

∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)

+∆max

4α
∑
j∈[K]

c∗j (µ, ϵ) log T +K

γ

+ 4α
∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ) log T.

Observe that for any constant ϵ, σ̄ > 0 and γ ∈ (0, 1) we have that limT→∞
∑
τ∈[T ] exp

(
− τγϵ2

4K σ̄2

)
<∞. We emphasize

that, while σ̄ is a fixed (possibly unbounded) parameter of the problem instance, ϵ is only a component of the analysis.
Moreover, notice that we are not allowed to directly use ϵ→ 0 in the above regret upper bound, since that would make the
term

∑
τ∈[T ] exp

(
− τγϵ2

4K σ̄2

)
linear in T . However, if we choose ϵ to be a decreasing function of T , then the suboptimal

terms in Theorem 5.1 are vanishing as T →∞. In particular, choosing ϵ = (4K σ̄2)
1
2 log(T )−γ/4 gives

∑
τ∈[T ]

exp

(
− τγϵ2

4K σ̄2

)
=
∑
τ∈[T ]

exp

(
− τγ

(log T )γ/2

)

=
∑

τ∈[⌈(log T )1/2⌉]

exp

(
− τγ

(log T )γ/2

)
+

∑
τ∈[T ]\[⌈(log T )1/2⌉]

exp

(
− τγ

(log T )γ/2

)
≤ ⌈(log T )1/2⌉+

∑
n∈

[
T

(log T )1/2

] exp (−nγ)

where in the above expression the first term is o(log(T ) and the second term is bounded above by 1/
(
e

1
γ − 1

)
for any T .

Furthermore, the term 4α
∑
j∈[K]

c∗j (µ, ϵ) log T +K

γ

∈ o

4α
∑
j∈[K]

c∗j (µ, ϵ) log T +K


and thus when it is divided by log(T ) it vanishes asymptotically for T → ∞. Finally, for the value ϵ =

(4K σ̄2)
1
2 log(T )−γ/4 selected above, we have that ϵ→ 0 as T →∞, thus the leading term becomes

lim sup
T→∞

4α
∑
j∈[K] ∆j(µ)c

∗
j (µ, ϵ) log T

log T
= lim sup

T→∞
4α

∑
j∈[K]

∆j(µ)c
∗
j (µ, ϵ)

= 4α
∑
j∈[K]

∆j(µ)c
∗
j (µ)

by Definition 5.1 of the ϵ-approximate LP solution. Therefore, we conclude that

lim sup
T→∞

RT (µ)

log T
= 4α

∑
j∈[K]

∆j(µ)c
∗
j (µ).


