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Abstract
Recent investigations in noise contrastive estima-
tion suggest, both empirically as well as theoreti-
cally, that while having more “negative samples”
in the contrastive loss improves downstream clas-
sification performance initially, beyond a thresh-
old, it hurts downstream performance due to a
“collision-coverage” trade-off. But is such a phe-
nomenon inherent in contrastive learning? We
show in a simple theoretical setting, where posi-
tive pairs are generated by sampling from the un-
derlying latent class (introduced by Saunshi et al.
(ICML 2019)), that the downstream performance
of the representation optimizing the (population)
contrastive loss in fact does not degrade with the
number of negative samples. Along the way, we
give a structural characterization of the optimal
representation in our framework, for noise con-
trastive estimation. We also provide empirical
support for our theoretical results on CIFAR-10
and CIFAR-100 datasets.

1. Introduction
Unsupervised representation learning aims to extract seman-
tically meaningful features from complex high-dimensional
inputs without a supervised signal (Bengio et al., 2013).
These representations are then meant to be useful for a host
of downstream supervised tasks. The benefits of success-
fully executing such a paradigm for learning are twofold:
(1) labelled data is expensive and in contrast, unlabelled
data is abundant and easy to get, (2) rather than building a
specialized model for each downstream task we get to learn
a general-purpose representation which makes solving each
downstream task simpler which makes it possible to scalably
solve multiple downstream tasks in an efficient manner.

Noise contrastive estimation (NCE) (Gutmann & Hyvärinen,
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2010) (also known as Contrastive Learning) has emerged
as a highly effective approach for unsupervised representa-
tion learning using deep networks (Chen et al., 2020; Chen
& Li, 2020; Tian et al., 2021; Grill et al., 2020). This
approach tries to minimize the distance between represen-
tations of semantically similar inputs, while maximizing
the distance between the representations of semantically
dissimilar inputs. More concretely, a mathematical abstrac-
tion for representation learning with Noise Contrastive Es-
timation (NCE) for an input space X is: (1) a single NCE
example consists of k + 2 raw inputs, (x, x+, x−1 , . . . , x

−
k ),

where (x, x+) are “semantically similar” and x−i are sam-
pled from the same marginal distribution as x, (2) the
representation f : X → Rd is trained to encourage
f(x)⊤f(x+) ≫ f(x)⊤f(x−i ) for each i. This second step
can be done with standard classification objectives, such as
the cross-entropy loss, where the model is viewed as a clas-
sifier over k + 1 labels. For example, a candidate objective
to minimize (called NCE loss) is

E
x,x+,x−

1:k

log

(
ef(x)

⊤f(x+) +
∑k

i=1 e
f(x)⊤f(x−

i )

ef(x)⊤f(x+)

)
(1)

To have a sense of scale it is assumed that ∥f(x)∥2 = 1
for all x. Such a normalization is also standard in practice
(Chen et al., 2020; Wang & Isola, 2020; Zimmermann et al.,
2021). Following standard terminology, we will refer to
(x, x+) as a positive pair and x−i as negative examples.

Contrastive learning combined with deep neural networks
has recently shown highly promising empirical results in the
vision and NLP paradigms (Smith & Eisner, 2005; Mikolov
et al., 2013; Schroff et al., 2015; Chen et al., 2020; Oord
et al., 2018; Wang et al., 2021; Clark et al., 2020). Despite
this empirical success, it is not well understood why a good
representation learnt in this manner works well for down-
stream tasks. In particular, there are many design choices
present in the formulation which can affect the quality of
the representations learnt. Some of the salient ones are the
number of negative examples per sample k, the choice of
the architecture, the distribution of positive pairs (x, x+),
the hyper-parameters of the optimization algorithm among
others. In this paper, we focus primarily on the number of
negative examples k.

Prior empirical work observed that increasing k helps im-
prove the quality of the representations (Chen et al., 2020).
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However, in a theoretical framework proposed by (Saun-
shi et al., 2019) to analyze the properties of NCE, it is
argued that increasing k beyond a certain point can degrade
performance due to an increased chance of seeing negative
samples which have the same latent features as x, x+. These
are unintended collisions and Saunshi et al. (2019) argue
that too many collisions might make it harder for the model
to learn good representations, evidenced by the degradation
of an upper bound they show on the supervised learning
loss in terms of the NCE loss.

The follow-up work of (Ash et al., 2022) also re-iterates this
message by proposing that although the quality of the learnt
representation initially improves with increasing k due to
improved coverage, beyond a point it starts to degrade ex-
ponentially fast with k. Hence the work of Ash et al. (2022)
proposes that a collision-coverage trade-off is inherent in
contrastive learning, suggesting that the optimal value of
k should scale with the number of underlying concepts in
the data. Again, this is evidenced by the degradation of an
upper bound they show on supervised learning loss in terms
of the NCE loss. However, this line of reasoning has an
issue that the supervised loss is bounded, even for a fixed
representation, whereas the contrastive loss can grow to ∞
as k → ∞, even for the “best” representation (see Section 6
for more details). Ash et al. (2022) also provide an example
setting of two representations such that the relative order of
the NCE loss of these representations changes with k, which
shows that NCE loss is not consistent about which repre-
sentation is better when we vary k. However, this example
does not consider representations that minimizes the NCE
loss. Moreover, the upper bounds in these works hold for
all representations, whereas the representation of interest
are only the ones found by minimizing a loss function such
as the one defined in Eq. (1), which we refer to as an NCE
optimal representation.

Inspired from the above work, we study the following fun-
damental question:
Do more negative samples necessarily hurt the downstream

performance of the NCE optimal representations?

Our Contributions. To answer the above question we
study the framework of contrastive learning with latent
classes as introduced by Saunshi et al. (2019) (also stud-
ied by (Ash et al., 2022)). Under this model we show the
following results.

▷ In Section 3, we obtain structural results characterizing
the NCE optimal representation under certain assump-
tions on the data distribution. In particular, in Theo-
rem 3.5, we show that when the latent classes are non-
overlapping, the optimal NCE representation maps all
points in the same class to the same vector and points in
different classes map to different vectors. Moreover, we

give a precise characterization of the NCE optimal repre-
sentation in a specific setting where the distribution over
latent classes is uniform (Theorem 3.8), and show that its
performance on the downstream classification task in fact
does not degrade with increasing k. We conjecture that
this holds even in the case of a non-uniform distribution
over latent classes.

▷ In Section 4, we show empirical evidence towards our
conjecture using numerical simulations of NCE optimal
representations and their corresponding supervised learn-
ing loss. In order to do so, we use our structural results to
formulate the task of finding the NCE optimal representa-
tion as a tractable convex optimization problem.

▷ In Section 5, we corroborate our structural characteriza-
tion results with experiments on the CIFAR10 and the
CIFAR 100 datasets (Krizhevsky et al., 2009) which show
that to a large extent the structural properties in Theo-
rem 3.8 we showed for the minimizer of the population
NCE loss hold true on real data.

While our assumptions are admittedly restrictive and does
not correspond to practical use-cases of contrastive learning,
our main goal is to shed light on the “collision-coverage”
trade-off in this simplified example. Our observations sug-
gest that the “collision-coverage” trade-off is not inherent
in contrastive learning and perhaps the phenomena of more
negative samples hurting downstream performance has more
to do with other aspects of a contrastive learning algorithm,
such as the implicit bias of optimizing with gradient based
methods, generalizing from finite samples, choice of net-
work architecture, etc.

2. Contrastive Learning with Latent Classes
We consider the following theoretical framework of latent
classes, as introduced by Saunshi et al. (2019) and also stud-
ied by Ash et al. (2022). Let C be a set of latent classes with
|C| =: C. With each latent class c ∈ C we will associate a
distribution Dc over the input space X , which we view as
the distribution over data conditioned on belonging to latent
class c. We will also assume a distribution ρ on C. We let D
be the mixture distribution obtained by sampling an input
x ∼ Dc for a class c ∼ ρ.

We assume access to similar data points in the form of
pairs (x, x+) and k negative data points x−1 , . . . , x

−
k . To

formalize this, an unlabeled sample from DNCE is generated
as follows:

▷ Sample class c ∼ ρ and draw i.i.d. samples x, x+ ∼ Dc.

▷ Draw x−i according to D for i ∈ {1, . . . , k}.

▷ Return (x, x+, x−1 , . . . , x
−
k ).

NCE objective. The goal of contrastive learning is to
learn a good representation using unsupervised data; we
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consider the set of representations f : X → Sd−1 that
map the input to unit vectors in d dimensions. This is done
using the following objective, which intuitively encourages
representations of similar inputs to be close to each other,
and distinguishes it from representations of random inputs.

Definition 2.1. The NCE loss for a representation f on the
distribution DNCE is defined as1

L(k)
NCE(f) := E

DNCE

[
ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)]
.

The empirical NCE loss with a finite set S of samples
(x, x+, x−1:k) drawn from DNCE is

L̂(k)
NCE(f) := 1

|S|
∑
S

ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)
We restrict ℓ to be one of two standard loss functions,
hinge loss ℓβhinge(v) = max {0,maxi {1− βvi}} and lo-
gistic loss ℓβlog(v) = log(1 +

∑
i exp(−βvi)), where β is a

scale (or “inverse-temperature”) parameter; we often drop
the superscript of β; all our theorems hold for all values
of β. Note that both these losses are convex in v and non-
increasing in each vi. Both of these losses have been used in
practical NCE implementations (Schroff et al., 2015; Chen
et al., 2020).

Our goal in this paper is to understand the role of negative
samples in the NCE loss, in the performance of the repre-
sentation in downstream supervised learning tasks. While
algorithms in practice aim to minimize the empirical NCE
loss, we focus on understanding the role of negative samples
theoretically at the population level, namely, we consider
both the population NCE loss as well as the population
supervised learning loss. This allows us to bypass the is-
sue of generalizing from finite samples and fundamentally
understand the role of negative samples.

Downstream supervised learning task. We consider the
performance of a representation as measured on the down-
stream supervised learning task of classifying a data point
into one of the classes in C using a linear predictor over the
representation. In particular, let Dsup be the distribution
over (x, c) obtained by sampling c ∼ ρ and x ∼ Dc.

Definition 2.2. For any representation f : X → Sd−1, the
supervised learning loss is given as

Lsup(f) := inf
{wc|c∈C}
∥wc∥2≤1

Lsup(f, ⟨wc⟩c∈C)

where Lsup(f, ⟨wc⟩c∈C) is given as

Lsup(f, ⟨wc⟩c∈C) := E
(x,c)∼Dsup

ℓ
(〈

f(x)⊤(wc − wc′)
〉
c′ ̸=c

)
1We use the notation ⟨ai⟩ki=1 to denote the tuple (a1, . . . , ak).

This downstream task is exactly the same as the one consid-
ered by Ash et al. (2022). On the other hand, Saunshi et al.
(2019) consider a a slightly different downstream task of
classifying into k+1 classes (sampled from ρ). We go with
above formulation as it disentangles the number of negatives
in the NCE loss from the downstream task, and moreover
allows for the number of negatives to be arbitrarily large
(even more than the number of latent classes). However,
this means that Lsup in a sense has a “different scale” than
L(k)
NCE, and any direct comparison of the two kinds of losses

has to adjust for the scale.

Note that we consider the restriction of ∥wc∥2 ≤ 1, to
have some sense of scale.2 The constant 1 is arbitrary as
it is interchangeable with the scale parameter β in the loss
function.

2.1. Related Work

Unsupervised representation learning has a long and rich
history including the study of classical methods such as
clustering (Coates & Ng, 2012), dictionary learning and
non-negative matrix factorization (Mairal et al., 2009; Pen-
nington et al., 2014; Lee & Seung, 1999), and modern deep
learning based techniques such as contrastive learning (Chen
et al., 2020) and masked language modeling (Devlin et al.,
2018). Here we discuss the works most relevant to our
setting.

While contrastive learning has shown impressive empirical
performance in recent years (Chen et al., 2020), its effec-
tiveness is poorly understood from a theoretical perspec-
tive. Wang & Isola (2020) present a theoretical study of
contrastive learning under certain assumptions on the data
distribution showing that asymptotically (as k → ∞) the
NCE optimal representation balances a trade-off between be-
ing uniformly distributed on the hypersphere and a property
called alignment: the learnt representations of a positive pair
(x, x+) are close to each other. Zimmermann et al. (2021)
show that under a natural data generation model involving
latent variables, optimizing the NCE loss corresponds to a
form of non-linear independent component analysis (ICA)
and the learnt representations can disentangle the latent
space. von Kügelgen et al. (2021) study the data augmen-
tation process in contrastive learning, i.e., the process of
generating positive pairs and negative examples; assuming
that the feature space consists of a content part that is in-
variant to augmentations and a style part. They show that
optimizing the NCE loss can learn to separate these parts of
the feature representations.

2Without such a restriction, Lsup(f) can be 0 for trivial reasons.
For example, if the class marginals Dc have disjoint supports, then
for any f that maps points of different classes to different vectors
has Lsup(f) = 0 for both the logistic loss and the hinge loss of 0
by scaling up ∥wc∥ arbitrarily.
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The closest to our work are the theoretical results of Saunshi
et al. (2019) and the recent work of Ash et al. (2022). Saun-
shi et al. (2019) proposed a natural model for contrastive
learning and provided upper bounds on the supervised loss
of a representation f in terms of the bound on the NCE loss
of f . Ash et al. (2022) further improved this upper bound,
with sharper theoretical analysis. Based on the provided
upper bounds these results indicate that the performance
of a representation learned via contrastive learning can de-
grade with k, the number of negative samples, beyond a
certain point. Working in the same model, our results show
that the full picture is more subtle and if one could exactly
optimize the NCE loss then the degradation with k may
not occur at all. In particular, our main result shows that
under certain uniformity assumptions, the NCE optimal rep-
resentation corresponds to the simplex ETF structure (with
perfect downstream classification accuracy), that has also
been observed in representations learned via standard super-
vised learning (Papyan et al., 2020). After the publication
of our work, we were made aware of the works of Bao
et al. (2021); Nozawa & Sato (2021) which improve the
bounds from (Ash et al., 2022) and support our message that
increasing the number of negative samples need not hurt
downstream classification performance. Our techniques dif-
fer from these works though. In Section 6 we provide a
more detailed discussion of our results in the context of the
results of Saunshi et al. (2019) and Ash et al. (2022). We
also discuss the relation of our results with those of (Nozawa
& Sato, 2021; Bao et al., 2021) in Section 6.

HaoChen et al. (2021) relax certain conditional indepen-
dence assumptions made in prior works (Saunshi et al.,
2019) and design a new “spectral contrastive loss” function
that has similarities to the traditional NCE loss, and show
that optimizing the new loss using techniques from spectral
graph theory can lead to near optimal downstream accuracy
under certain assumptions. Saunshi et al. (2022) argue that
in practically relevant settings, the distribution of the posi-
tive example x+ corresponding to different x’s have little
to no overlap, and explaning the success of the representa-
tions learnt on downstream supervised tasks cannot be done
without accounting for specific inductive biases in the con-
trastive learning procedure; note that the setting we consider
does not fall in this regime since any two inputs in the same
latent class have the same distribution of positive examples.
Finally, there has also been recent work exploring whether
contrastive learning can be performed without the use of
negative samples while avoiding the phenomenon of feature
collapse (Tian et al., 2021; Grill et al., 2020).

3. Structural Results
We prove structural results about the representation f :

X → Sd−1 that minimizes the (population) L(k)
NCE(·) loss.

We do so under some simplifying assumptions about the set
of class distributions {Dc}c∈C and the distribution ρ over
classes C.

3.1. Non-overlapping Latent Classes

Our first structural result considers the case when the distri-
butions Dc have mutually disjoint supports.

Assumption 3.1 (Non-Overlapping Latent Classes). The
distributions {Dc : c ∈ C} have mutually disjoint supports.
In this case, we let c(x) denote the unique latent class c such
that x lies in the support of Dc.

We show that under this assumption, there exists an optimal
representation that maps all points in the support of Dc to
the same representation vector, whenever the loss satisfies
certain simple properties (both logistic and hinge losses
satisfy these conditions).

Property 3.2. For a loss function ℓ : Rt → R≥0 it holds
for all subsets S ⊆ {1, . . . , t} and v ∈ Rt that

ℓ(v) ≥ 1
|S| ·

∑
j∈S

ℓ(vS←j) where, vS←j
i :=

{
vi if i /∈ S
vj if i ∈ S

.

In words, a loss ℓ satisfies Property 3.2 if for all inputs v and
all subsets S of the coordinates, substituting all coordinates
in S by vj for some uniformly random j ∈ S on average
does not increase the loss.

Observation 3.3. ∀β > 0 : ℓβlog and ℓβhinge satisfy Prop-
erty 3.2.

Observation 3.3 is proved in Appendix A.1.3 Our structural
result is stated using the notion of latent-indistinguishable
representations.

Definition 3.4. Under Assumption 3.1, a representation
f : X → Sd−1 is said to latent-indistinguishable if
f(x) = f(x′) for all x, x′ satisfying c(x) = c(x′). Sim-
ilarly, f is said to be almost latent-indistinguishable if
Prc∼ρ ,x,x′∼Dc

[f(x) = f(x′)] = 1.

Our first structural result shows that under the assump-
tion of non-overlapping classes, there exists a latent-
indistinguishable representation that minimizes the popula-
tion NCE loss.

Theorem 3.5. Under Assumption 3.1, for any convex, non-
increasing loss ℓ satisfying Property 3.2, it holds for all
representations f : X → Sd−1, that there exists a latent-
indistinguishable representation f̃ : X → Sd−1 such that
L(k)
NCE(f̃) ≤ L(k)

NCE(f). Moreover, if ℓ is strictly convex (e.g.
logistic loss), then the inequality above is strict, unless f is
almost latent-indistinguishable.

3Not all convex functions satisfy Property 3.2; e.g. ℓ(v1 +
v2) = (v1 + v2)

2 is convex, but violates Property 3.2 for S =
{1, 2} and v = (0, 1).
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Proof Sketch. We show the existence of f̃ in an existential
manner. For a fixed latent class c∗ ∈ C, sample x∗ ∼ Dc∗

and define a representation fx∗ : X → Sd−1 that maps all
inputs in the same class as x∗ to f(x∗) leaving all other
representations intact, namely,

fx∗(x) :=

{
f(x∗) if c(x) = c∗

f(x) if c(x) ̸= c∗

We show that

E
x∗∼Dc

[
L(k)
NCE(fx∗)

]
≤ L(k)

NCE(f) . (2)

This implies the existence of an x∗ in support of Dc∗ such
that L(k)

NCE(fx∗) ≤ L(k)
NCE(f). Iteratively repeating this

argument for each latent class c∗ ∈ C, shows the existence
of a latent-indistinguishable f̃ with L(k)

NCE(f̃) ≤ L(k)
NCE(f).

In order to show (2), we consider two cases depending on
the latent class of the sampled positive pair (x, x+): (i)
c(x) = c(x+) = c∗ and (ii) c(x) = c(x+) ̸= c∗. In case
(i), the argument holds for any convex and non-increasing
loss. In case (ii), the argument holds for any loss satisfying
Property 3.2. We defer the proof details to Appendix A.1.

3.2. Uniform distribution over latent classes

Our second structural result considers the case when in
addition to non-overlapping latent classes, the distribution ρ
over the latent classes is uniform.

Assumption 3.6 (Uniform Latent Classes). ρ is uniform
over the latent classes C.

Here, we show that the NCE optimal representations are
precisely characterized by Simplex ETFs (van Lint & Seidel,
1966; Papyan et al., 2020).

Definition 3.7 (Simplex ETF Representation). Under As-
sumption 3.1, f : X → Sd−1 is a Simplex Equiangular
Tight Frame (Simplex ETF) representation for a distribution
D, if the following conditions hold:

▷ f is latent-indistinguishable, and

▷ f(x)⊤f(x′) = −1/(C−1) for all x, x′ s.t. c(x) ̸= c(x′).

f is an almost Simplex ETF representation if there exists
a Simplex ETF representation f ′ such that Prx∼D[f(x) =
f(x′)] = 1.

A latent-indistinguishable representation is said to be
equiangular if f(x)⊤f(x′) = α for all x, x′ such that
c(x) ̸= c(x′), for some value of α. A Simplex ETF rep-
resentation achieves the smallest value of α, among all
equiangular representations. Our second structural result
shows that under the assumption of non-overlapping and
uniform latent classes, Simplex ETF representations are
NCE optimal.

Theorem 3.8. Under Assumptions 3.1 and 3.6, any Simplex
ETF representation f minimizes L(k)

NCE(f) for any convex
and non-increasing loss ℓ satifying Property 3.2. Moreover,
if ℓ is also strictly convex (e.g. logistic loss), then (almost)
Simplex ETF representations are the only minimizers of
L(k)
NCE(f).

Theorem 3.8 follows immediately from combining Theo-
rem 3.5 with the following claim.

Claim 3.9. Under Assumptions 3.1 and 3.6, for any con-
vex, non-increasing loss ℓ, it holds for all (almost) latent-
indistinguishable representations f : X → Sd−1, that
L(k)
NCE(f̃) ≤ L(k)

NCE(f) for any Simplex ETF f̃ : X → Sd−1.
Moreover if ℓ is strictly convex (e.g. logistic loss), then
equality holds only if f is an (almost) Simplex ETF repre-
sentation.

Proof Sketch. Let uc denote the (common) representation
for all x in latent class c, namely f(x) = uc(x). Observe
that ∥

∑
c∈C uc∥22 = C +

∑
c̸=c′ u

⊤
c uc′ ≥ 0 and hence

Ec,c′∼ρ[u
⊤
c uc′ | c ̸= c′] ≥ −1/(C − 1) (under Assump-

tion 3.6 that ρ is uniform over C). Let f̃ be an equiangular
representation given as f̃(x) = ũc(x) satisfying

ũ⊤c ũc′ =

{
1 if c = c′

Ec,c′∼ρ[u
⊤
c uc′ | c ̸= c′] if c ̸= c′

,

We show that L(k)
NCE(f̃) ≤ L(k)

NCE(f) for any convex loss ℓ
(via Jensen’s inequality). Finally, for any non-increasing
loss ℓ, any Simplex ETF minimizes L(k)

NCE(·) among all
equiangular representations, as it achieves the smallest value
of u⊤c uc′ . We defer the proof details to Appendix A.2.

3.3. Downstream performance of NCE Optimal
Representations

From Theorem 3.8, we have that the NCE optimal repre-
sentation in the case of non-overlapping latent classes with
uniform distribution over them, in fact does not depend on
k, the number of negatives in L(k)

NCE(·). And hence, for
fk := argminf L

(k)
NCE(f), it holds that Lsup(fk) is indepen-

dent of k. But what about the case where the marginal over
the latent classes is not uniform? We conjecture that just
under Assumption 3.1, the supervised learning loss of the
NCE optimal representation is non-increasing in k.

Conjecture 3.10. For all C ≥ 3, under Assumption 3.1,
for all distributions ρ over classes C: Lsup(fk) is non-
increasing in k, where fk := argminf L

(k)
NCE(f).

Note that the statement of the conjecture holds trivially for
C = 2, even under non-uniform distribution ρ, since in
this case, fk is a latent-indistinguishable representation that
maps points of the two classes to anti-podal points. Thus, fk
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is the same for all k and hence Lsup(fk) is non-increasing
(in fact constant) in k.

While we are unable to prove this conjecture formally, we
provide empirical evidence towards this conjecture in Sec-
tion 4 by numerically computing NCE optimal representa-
tions.

4. Empirical Evaluation of the Supervised
Loss of NCE Optimal Representations

The high dimensional space of representations poses a chal-
lenge for numerically computing the NCE optimal represen-
tation L(k)

NCE(·) for any k. However, under Assumption 3.1,
using our structural result (Theorem 3.5), we can reformu-
late the goal as a convex optimization problem over a small
number of variables.

For any latent-indistinguishable representation, let uc de-
note the (common) representation for all x in latent class
c, namely f(x) = uc(x). Let Z ∈ RC×C be a matrix given
by Zc,c′ := u⊤c uc′ for c, c′ ∈ C. Note that Z encodes a
latent-indistinguishable representation if and only if Z is a
correlation matrix, that is, Z is positive semi-definite with
Zc,c = 1 for all c ∈ C.

The key observation is that L(k)
NCE(f) is convex when for-

mulated in terms of Z:

L(k)
NCE(f) = E

c,c1:k∼ρ

[
ℓ(⟨1− Zc,ci⟩

k
i=1)

]
(3)

Details of the Numerical Simulation. In order to empir-
ically validate our proposed Conjecture 3.10 we vary the
number of classes C ∈ {3, 9}. For each c ∈ C, we gener-
ate a class distribution drawn from a Dirichlet prior with a
uniform parameter α. We vary alpha from 1 to 4 to get four
class distributions for each value of C.

Next for each C and class distribution we numerically es-
timate the minimizer Z of (3) by performing projected
stochastic gradient descent over the space of C × C corre-
lation matrices, with a decaying step size (as suggested by
Lacoste-Julien et al. (2012)). We sample stochastic gradi-
ents by averaging the gradients ∇Z ℓ(⟨1− Zc,ci⟩

k
i=1) over

independently sampled mini-batches of (c, c1:k) ∼ ρk+1 at
each step. The projection to the space of correlation ma-
trices is done via the algorithm of Higham (2002). In our
experiments, we fix the mini batch size to be 10000, and
perform 1000 steps of projected gradient descent with an
initial step size of 50. We compute the mean of the Z ma-
trices computed across 400 independent runs of projected
gradient descent and then extract the per class embeddings
⟨uc⟩c∈C via a Cholesky decomposition of the mean matrix.
Finally, we optimize the class weighted logistic loss over
⟨wc⟩c∈C to compute the value of the supervised loss.

In Figure 1 we plot for each c ∈ C, the supervised loss
as a function of k for across values of α. We find that the
downstream supervised loss obtained via the NCE optimal
representation is essentially non-increasing in k. In particu-
lar, 22 out of the 28 curves in Figure 1 are strictly decreasing
in k. However, the remaining 6 curves are non-monotonic at
some values of k, which seems to contradict our conjecture.
But we suspect that this is likely because of imprecision in
our numerical simulation procedure.

5. Experiments with CIFAR datasets
CIFAR-10 and CIFAR-100 are two well-known image clas-
sification benchmark datasets. They are both balanced and
contain examples from 10 (100) classes, provide 5000 (500)
train examples per class and 1000 (100) test examples per
class respectively (Krizhevsky et al., 2009). We perform
experiments of contrastive loss minimization on CIFAR-10
and CIFAR-100 datasets to test to what extent the simplex
ETF structure manifests at the end of training. We also
measure the downstream classification performance of the
learnt classifier on the respective test sets.

Experimental Setting. We train a ResNet-18/50 architec-
ture with a projection head as our encoder (similar to (Chen
et al., 2020)). We use the logistic loss for training and we
train for 400 epochs. We modify the positive pair genera-
tion process to match our theoretical setting. Two randomly
sampled images with the same label now form a positive
pair. We do not apply any other perturbations such as crop-
ping, blurring etc. This allows us to study to what extent
our theoretical predictions manifest on complex real data.
Once the encoder is trained, we then train a linear layer
for standard downstream classification task of respective
dataset. To measure proximity to the Simplex ETF struc-
ture, we record two metrics. (i) First, for each class c, we
record the mean intraclass variance among representations
belonging to c (henceforth referred to as Intra-Varc) and (ii)
second, we record the cosine similarities between the mean
representation vectors of different classes c1, c2 (referred
to as CS(c1, c2)) for all c1 ̸= c2. Formally Intra-Varc is
defined as

Intra-Varc =
nc∑
i=1

1

nc
∥ri − r̄∥22 (4)

where ri is the representation corresponding to the ith exam-
ple from class c and r̄ =

∑nc

i=1 ri/nc. To visually interpret
a particular value of Intra-Varc = α, we use the rough ap-
proximation that the angle made by a random representation
vector of class c with its class mean is arccos((2− α)/2).
More details on the setting are presented in Appendix B.

Results on CIFAR-100. On CIFAR-100 our model
reaches a downstream classification accuracy of 64.76%.
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Figure 1. The figure shows how the supervised loss of the NCE optimal representation varies with k for different multiclass settings
corresponding to C ∈ {3, 4, . . . , 9}. The four plots correspond to four different parameter settings of the class weights obtained via
sampling from a Dirichlet prior with parameter α.

The expected value of CS(c1, c2) for any c1 ̸= c2 in this
setting will be −1/(C−1) = −1/99 ≊ 0.01. We observe a
mean CS value of 0.003± 0.04 (note that CS can vary from
[−1, 1]). The average Intra-Varc across all 100 classes is
0.52 which implies that a random representation from class
c makes an angle ≈ 42◦. Although not a perfect simplex
ETF structure due to the relatively high intra-class variance,
this still shows that the inter-class cosine similarities are
remarkably close to what is to be expected.

Results on CIFAR-10. On CIFAR-10 we perform a more
extensive set of experiments scaling the values of the num-
ber of negative samples k. We also sub-sample CIFAR-10 to
contain fewer than 10 classes and investigate how the struc-
ture of the resulting representations change. In our setup, we
observe a steady increase in the downstream performance
all the way from k = 1 up to k = 512 (Figure 2). Fig-
ure 3 shows how the average CS and Intra-Variancec values
change with the total number of classes C. The average CS
value in particular is strongly in line with what is predicted
by our theory.

Figure 2. Downstream classification accuracy of contrastively
learnt representations on CIFAR-10 improves with increasing the
number of negative examples k.

6. Comparing our Results with Prior Work
Here we discuss our results and their implications in context
of prior work studying the impact of negative samples in
contrastive learning.
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Figure 3. The change in the average inter-classes cosine similarities and average intraclass variances of the representations is plotted
for different values of the number of classes C while the number of negative samples k is fixed at 1022. Experiments were done by
sub-sampling CIFAR-10 to have fewer classes. The orange line in the graph on the left plots what our theory predicts.

Comparing with prior empirical observations. Some
empirical phenomena suggest that while more negative sam-
ples help initially, when increased beyond a certain point,
they can start to hurt (Ash et al., 2022; Mitrovic et al., 2020).
On the other hand, as we observe in our paper, if we an-
alyze the representation minimizing the population NCE
loss, larger number of negative samples continues to help
improve the downstream supervised learning task, or at
least does not hurt it. How do we then reconcile these two
observations?

There are three important ways in which our analysis simpli-
fies what happens in the real world. The first is by assuming
that our optimizer (typically a variant of stochastic gradient
descent) has reached a global minimum. This might not al-
ways hold in practice. In particular, the optimizer might find
it harder to reach a global minima with increasing values
of k. The second aspect is that perhaps the class of deep
neural nets optimized by SGD is not expressive enough to
be able to perfectly satisfy our structural characterization of
the minimizer. This corresponds to the setting when there is
an approximation error as we minimize among a restricted
class of functions. On the other hand, if the class is highly
expressive, then there remains the question of finite sample
generalization of the empirical NCE optimal representation.
And lastly, the positive pair generation process may be quite
different to the one we considered which could lead to quite
different properties of the minimizer.

Apart from these three reasons, another factor to consider
is our assumption of non-overlapping latent classes which
might not hold perfectly in practice leading to small incon-
sistencies in observed performance. Moreover, the story is
not very clear on the empirical side as well. In works which
report experiments showing that a large number of nega-
tive samples hurt performance beyond a point (Ash et al.,
2022; Saunshi et al., 2019), the degradation in performance

is quite small (1− 2% drop in accuracy) and it is unclear if
it cannot be attributed to noise introduced during training.
Mitrovic et al. (2020) also report a small amount of degra-
dation at higher k but their positive pair generation process
is different from what we consider in our setting. In addi-
tion, experiments performed in the works of Nozawa & Sato
(2021); Bao et al. (2021) seem to indicate that increasing k
does not hurt downstream classification performance.

Comparing with prior theoretical observations. The
theoretical work closest to ours is that of (Saunshi et al.,
2019; Ash et al., 2022) who work with a similar framework
as ours. The main results in these works are upper bounds
on the supervised loss of any representation in terms of its
NCE loss. That is, they show that, for any representation
function f ,

Lsup(f) ≤ α(k, ρ) ·
(
L(k)
NCE(f)− τ(k)

)
. (5)

where in the setting of uniform distribution ρ over latent
classes, α(k, ρ) ≊ 4 logC(C−1)ηk

k for η = 1+1/(C−1) > 1
and hence for large k, α(k, ρ) grows exponentially with k,
and τ(k) := 1 − (1 − 1

C )k < 1. However, this is just an
upper bound on the downstream performance. In contrast,
our result shows that for the minimizer f∗ of the popula-
tion NCE loss, Lsup(f

∗) does not increase with k under
Assumption 3.6 and we give supporting evidence through
simulations that this monotonic behavior persists even with-
out the uniformity assumption. Moreover in Theorem C.2
(in Appendix C), we improve the above result in the case of
logistic loss by showing that for any f ,

Lsup(f) ≤ β(k, ρ) · L(k)
NCE(f)

where β(k, ρ) is in fact non-increasing in k and becomes
a constant for large enough k. We emphasize that while
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our result does not have the τ(k) term, it doesn’t affect
the asymptotic behavior with respect to k, since τ(k) ≤ 1

whereas L(k)
NCE(f) increases with k. However, we note

again that Lsup (which is a classification objective over C
classes) has a different scale than L(k)

NCE (which is a classifi-
cation objective over k classes). In particular, Lsup(f) is at
most logC for a (trivial) constant representation, whereas
L(k)
NCE(f) grows as ∼ log k even for the NCE optimal rep-

resentation. Hence it may not be meaningful to prove an
upper bound on the downstream supervised loss of a rep-
resentation directly in terms of the NCE loss, and instead
study the representations that are NCE optimal (or close to
one) directly as we do in this paper.

To support their proposition that a worsening of performance
with increased k is unavoidable, both Saunshi et al. (2019);
Ash et al. (2022) present example representation functions
and distributions where the representation giving better NCE
loss yields a worse supervised loss. However these are not
formal lower bounds on the performance of the optimal rep-
resentation that minimizes the NCE loss. Indeed, our results
suggest that such a formal lower bound might not exist as
the performance does not degrade with k (Conjecture 3.10).
In addition, the examples provided in these works some-
times rely on unnormalized representations which is not
what works well in practice.

After the publication of our work, we were informed about
the works of Nozawa & Sato (2021); Bao et al. (2021) which
provide sharper theoretical bounds for the supervised loss
in terms of the contrastive loss. Bao et al. (2021) provide
upper and lower bounds on the supervised loss of any rep-
resentation in terms of the contrastive loss obtained on that
representation. In the regime of large k, these upper and
lower bounds differ by a constant which is independent of
C, k. We compare and contrast these results with ours across
two settings: (i) uniform class distribution: in this setting,
our structural characterization in Theorem 3.8 provides an
exact understanding of the downstream loss of the NCE
optimal representation. On the other hand, the bounds pro-
vided in Nozawa & Sato (2021); Bao et al. (2021) (which
applies to any representation) do not in particular imply
that the performance of the NCE optimal representation on
the downstream task does not degrade at all with increas-
ing k; (ii) non-uniform class distributions: in this setting,
we are not able to show that the downstream performance
does not degrade with increasing k. The bounds in Bao
et al. (2021) continues to provide a sharp characterization
of the supervised loss of any representation, but as far as we
know, Conjecture 3.10 remains open. At a broader level, the
message in the works of (Nozawa & Sato, 2021; Bao et al.,
2021) is aligned with the message in our work that more
negative samples in contrastive learning do not necessarily
hurt downstream performance.

To conclude, we analyzed normalized representations and
see a much nicer structure emerge in the population NCE
optimal representation. Our investigation suggests that the
“collision-coverage” tradeoff is not sufficient on its own for
explaining the non-monotonic behavior in the downstream
performance as a function of the number of negative samples
that is observed in practice.
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A. Proof of Structural Results
A.1. Non-overlapping Latent Classes

Observation 3.3. ∀β > 0 : ℓβlog and ℓβhinge satisfy Property 3.2.

Proof. We consider the case of β = 1. The case of general β follows immediately.

For ℓlog(v) := log(1+
∑

i exp(−vi)), using concavity of log (Jensen’s inequality), and denoting T := 1+
∑

j /∈S exp(−vj),
we have

ℓlog(v) = log
(
T +

∑
i∈S exp(−vi)

)
≥ 1
|S|
∑

i∈S log (T + |S| · exp(−vi)) = 1
|S|
∑

i∈S ℓlog(v
S←i)

For ℓhinge(v) := max {0, 1 + max {−vi}}, using the simple property that max {a1, . . . , ak} ≥ (
∑

ai)/k, we have

ℓ(v) = max
{
0, 1 + maxi∈S {−vi} , 1 + maxj /∈S {−vj}

}
≥ 1
|S|
∑

i∈S max
{
0, 1− vi, 1 + maxj /∈S {−vj}

}
= 1
|S|
∑

i∈S ℓhinge(v
S←i)

Theorem 3.5. Under Assumption 3.1, for any convex, non-increasing loss ℓ satisfying Property 3.2, it holds for all
representations f : X → Sd−1, that there exists a latent-indistinguishable representation f̃ : X → Sd−1 such that
L(k)
NCE(f̃) ≤ L(k)

NCE(f). Moreover, if ℓ is strictly convex (e.g. logistic loss), then the inequality above is strict, unless f is
almost latent-indistinguishable.

Proof. We show the existence of f̃ in an existential manner. For a fixed latent class c∗ ∈ C, sample x∗ ∼ Dc∗ and define a
representation fx∗ : X → Sd−1 as

fx∗(x) :=

{
f(x∗) if c(x) = c∗

f(x) if c(x) ̸= c∗
(6)

We will show that Ex∗∼Dc
L(k)
NCE(fx∗) ≤ L(k)

NCE(f). This implies the existence of an x∗ in support of Dc∗ such that
L(k)
NCE(fx∗) ≤ L(k)

NCE(f).

We can rewrite the NCE loss as

L(k)
NCE(f) = E

c,c1:k∼ρ
E

x,x+∼Dc

E
⟨x−

i ∼Dci⟩
ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)
︸ ︷︷ ︸

=: Lc,c1:k
(f)

(7)

We will show that for each c, c1:k, it holds that Ex∗∼Dc∗ Lc,c1:k(fx∗) ≤ Lc,c1:k(f).

Case c = c∗: For ease of notation let c1, . . . , cq = c∗ and cq+1, . . . , ck ̸= c∗. We have

Lc,c1:k(f) = E
x,x−

q+1:k

E
x+,x−

1:q

ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)
(8)

≥ E
x,x−

q+1:k

E
x+,x−

1:q

ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉q
i=1

◦
〈
1− f(x)⊤f(x−i ))

〉k
i=q+1

)
(9)

≥ E
x,x−

q+1:k

ℓ

(〈
E

x+,x−
1:q

f(x)⊤(f(x+)− f(x−i ))

〉q

i=1

◦
〈
1− f(x)⊤f(x−i ))

〉k
i=q+1

)
(10)

= E
x,x−

q+1:k

ℓ
(
⟨0⟩qi=1 ◦

〈
1− f(x)⊤f(x−i ))

〉k
i=q+1

)
(11)

where, (9) holds because f(x)⊤f(x+) ≤ 1 and ℓ(v) is non-increasing in each vi, (10) holds due to convexity of ℓ
(Jensen’s inequality), and (11) holds because Ex+,x−

i ∼Dc∗
[f(x+)− f(x−i )] = 0. Finally, we observe that the quantity
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in (11) is precisely Ex∗∼Dc∗ Lc,c1:k(fx∗), since

E
x∗∼Dc∗

Lc,c1:k(fx∗) = E
x∗∼Dc∗

E
x,x−

q+1:k

E
x+,x−

1:q

ℓ
(〈

fx∗(x)⊤(fx∗(x+)− fx∗(x−i ))
〉k
i=1

)
(12)

= E
x∗∼Dc∗

E
x,x−

q+1:k

ℓ
(
⟨0⟩qi=1 ◦

〈
1− f(x∗)⊤f(x−i ))

〉k
i=q+1

)
(13)

which is same as the quantity in (11) up to renaming x by x∗ (note: both x, x∗ ∼ Dc∗ here). For a strictly convex loss,
note that our application of Jensen’s inequality is tight only when Pr[f(x)⊤(f(x+)− f(x−i )) = 0] = 1, which is the
case only if Prx,x′∼Dc∗ [f(x) = f(x′)] = 1.

Case c ̸= c∗: Again, for ease of notation let c1, . . . , cq = c∗ and cq+1, . . . , ck ̸= c∗. We have

Lc,c1:k(f) = E
x,x+x−

q+1:k

E
x−
1:q∼Dc∗

ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)
(14)

E
x∗∼Dc∗

Lc,c1:k(fx∗) = E
x,x+x−

q+1:k

E
x∗∼Dc∗

ℓ
(〈

f(x)⊤(f(x+)− f(x∗))
〉k
i=1

)
(15)

We will show that for all x, x+, x−q+1:k, for any loss ℓ satisfying Property 3.2 it holds that

E
x−
1:q∼Dc∗

ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)
≥ E

x∗∼Dc∗
ℓ
(〈

f(x)⊤(f(x+)− f(x∗))
〉k
i=1

)
For ease of notation, consider a random variable Z that is distributed as f(x)⊤(f(x+)− f(x−)) for x− ∼ Dc∗ (for
fixed x and x+). For any loss ℓ satisfying Property 3.2, we have that

E
Z1:q

ℓ
(
⟨Zi⟩qi=1 ◦

〈
f(x)⊤(f(x+)− f(x−i ))

〉k
i=q+1

)
≥ E

Z1:q

1
q

k∑
j=1

ℓ
(
⟨Zj⟩qi=1 ◦

〈
f(x)⊤(f(x+)− f(x−i ))

〉k
i=q+1

)
= E

Z
ℓ
(
⟨Z⟩qi=1 ◦

〈
f(x)⊤(f(x+)− f(x−i ))

〉k
i=q+1

)
Thus, we have Ex∗∼Dc∗ L

(k)
NCE(fx∗) ≤ L(k)

NCE(f), thereby completing the proof. The existence of f̃ follows by iteratively
repeating this argument for each latent class c∗ ∈ C.

Moreover, if ℓ is strictly convex loss and f is not latent-indistinguishable, then we have a strict inequality in the case of
c = c∗ for at least one c∗ in this iterative process. Thus, in the case of a strictly convex loss ℓ, the only NCE optimal
representations are almost latent-indistinguishable.

A.2. Uniform distribution over classes

Claim 3.9. Under Assumptions 3.1 and 3.6, for any convex, non-increasing loss ℓ, it holds for all (almost) latent-
indistinguishable representations f : X → Sd−1, that L(k)

NCE(f̃) ≤ L(k)
NCE(f) for any Simplex ETF f̃ : X → Sd−1.

Moreover if ℓ is strictly convex (e.g. logistic loss), then equality holds only if f is an (almost) Simplex ETF representation.

Proof. We prove the statement for latent-indistinguishable representations f . The proof for almost latent-indistinguishable
representations follows similarly.

Let uc denote the (common) representation for all x in latent class c, namely f(x) = uc(x). Observe that ∥
∑

c∈C uc∥22 =

C +
∑

c̸=c′ u
⊤
c uc′ ≥ 0 and hence Ec,c′∼ρ[u

⊤
c uc′ | c ̸= c′] ≥ −1/(C − 1) (under Assumption 3.6 that ρ is uniform over C).

Let f̃ be an equiangular representation given as f̃(x) = ũc(x) satisfying

ũ⊤c ũc′ =

{
1 if c = c′

Ec,c′∼ρ[u
⊤
c uc′ | c ̸= c′] if c ̸= c′

.
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We will show that L(k)
NCE(f̃) ≤ L(k)

NCE(f) for any convex loss ℓ. Observe that since f and f̃ are latent-indistinguishable, we
can write L(k)

NCE(f) in the following simplified form

L(k)
NCE(f) = E

c,c1,...,ck∼ρ

[
ℓ(1− u⊤c uc1 , 1− u⊤c uc2 , . . . , 1− u⊤c uck)

]
For any permutation π over C, let fπ denote the representation obtained by permuting the representations of the latent
classes, namely, fπ(x) := uπ(c(x)). We have the following

L(k)
NCE(f) = E

π

[
L(k)
NCE(fπ)

]
= E

c,c1,...,ck∼ρ
E
π

[
ℓ(1− u⊤π(c)uπ(c1), 1− u⊤π(c)uπ(c2), . . . , 1− u⊤π(c)uπ(ck))

]
≥ E

c,c1,...,ck∼ρ

[
ℓ(1− E

π
[u⊤π(c)uπ(c1)], 1− E[u⊤π(c)uπ(c2)], . . . , 1− E

π
[u⊤π(c)uπ(ck)])

]
= E

c,c1,...,ck∼ρ

[
ℓ(1− ũ⊤c ũc1 , 1− ũ⊤c ũc2 , . . . , 1− ũ⊤c ũck)

]
= L(k)

NCE(f̃)

where the third step follows from Jensen’s inequality, using convexity of ℓ.

Finally, for any non-increasing loss ℓ, it is easy to see that among all equiangular representations, the representation
minimizing L(k)

NCE(·) is a Simplex ETF. Moreover, when ℓ is strictly convex our application of Jensen’s inequality is strict
unless u⊤c uc′ is the same for all c ̸= c′, in other words, the representation is equiangular.

B. More Details about the CIFAR-10/100 Experiments
We describe our experimental setup in full detail. For most of our experiments we train with a ResNet-18 (He et al., 2016)
backbone and a 2-layer projection head affixed on top of it with a ReLU in the middle. The training setup closely follows
that of Chen et al. (2020). We do not use any weight decay as it might bias us away from seeing a simplex ETF structure.
We train using the logistic form of NCE loss and use LARS optimizer (You et al., 2017) with a batch size of 512, learning
rate of 0.2 which is decayed using a cosine decay after 10 warmup epochs. Departing from the setting of Chen et al. (2020),
the final output of the projection head is taken as the representation as this is the vector which is used in computing the loss.
This is a 128 dimensional vector which is normalized to lie inside the unit ℓ2 ball.

In addition to the results listed in Section 5, we present a few additional observations here. In Table 1 we present the cosine
similarities matrix for a run with 5 classes. In Figure 4 we show how the average CS and Intra-Varc values scale with the
number of negative samples for a fixed batch size.

Figure 4. The change in the average cosine similarities is plotted for different values of the number of negative samples k. All experiments
are done for CIFAR-10 with total number of classes=10.
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1.0 -0.156 -0.204 -0.342 -0.3413
-0.156 1.0 -0.373 -0.343 -0.327
-0.204 -0.373 1.0 -0.126 0.06
-0.342 -0.343 -0.126 1.0 -0.173

-0.3413 -0.327 0.06 -0.173 1.0

Table 1. The cosine similarities between the mean representations of different classes. Shown here for contrastive learning run on a subset
of 5 classes from CIFAR-10. Diagonal values are always 1.0. Our theory expects the off diagonal entries to be −0.25

C. Improving Theorem 5 of Ash et al. (2022)
In our work, we showed that in the case of uniform latent classes, the NCE optimal representation doesn’t get worse with k
in terms of the downstream classification error. However, we could also try to upper bound the Lsup(f) by some factor G
times the L(k)

NCE(f) for any representation f . This is precisely the form of the result obtained by Ash et al. (2022); Saunshi
et al. (2019). In both these works the factor G grows exponentially in k. We show that in the case of logistic loss, we can
improve this to a factor that is non-increasing and in fact becomes a constant for large enough k.

We use the vector ρ to denote the class distribution and ρmax = max ρi and ρmin = min ρi. Here we first re-state Theorem
5 of (Ash et al., 2022) using our notation and then proceed to show a stronger result for the setting of k ≥ ρmin when we
work with the logistic loss. Recall that in this setting, 1/(1−ρmax)

k from their theorem grows exponentially in k suggesting
that for large values of k, a small L(k)

NCE(f) may not correspond to a small Lsup(f). We will show a drastic improvement on
this exponential growth with respect to k.

Theorem C.1 (Restatement of Theorem 5 of (Ash et al., 2022)). For the logistic loss and any representation f : X → Sd−1,

Lsup(f) ≤
2max

(
1, 2(1−ρmin) logC

kρmin

)
(1− ρmax)k

(
L(k)
NCE(f)− τk E

c,c−i ∼ρk+1
[log (1 + |I|) |I ̸= ϕ]

)
,

where I is the set of collisions among the k negative samples.

We prove an improved version of Theorem C.1 below. Note that we don’t have the τk Ec,c−i ∼ρk+1 [log (1 + |I|) |I ̸= ϕ]

term but the coefficient in front is vastly improved from
2max

(
1,

2(1−ρmin) log C

kρmin

)
(1−ρmax)k

to 4max
(
1, 2(1−ρmin) logC

k(1−ρmax)ρmin

)
.

Theorem C.2 (Improved Theorem 5 of (Ash et al., 2022)). Let k ≥ 1/ρmax. For the logistic loss, for any f : X → Sd−1,

Lsup(f) ≤ 4max

(
1,

2(1− ρmin) logC

k(1− ρmax)ρmin

)
· L(k)

NCE(f) .

Proof. We recall the sub-addivitity property of logistic loss.

Lemma C.3 (Sub-additivity of Logistic Loss (Lemma 1, (Ash et al., 2022))). Let v ∈ Rk be a vector. For all I1, I2 ⊂ [k],
and S = I1 ∪ I2, we have that

ℓ({vi}i∈I1) ≤ ℓ({vi}i∈S) ≤ ℓ({vi}i∈I1) + ℓ({vi}i∈I2) .

Following (Ash et al., 2022), we begin with an application of Jensen’s inequality to get

L(k)
NCE(f) = E

DNCE

[
ℓ
(〈

f(x)⊤(f(x+)− f(x−i ))
〉k
i=1

)]
≥ E

c,c−i ∼ρk+1,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k
i=1

)]
, (16)

where µc = Ex∼Dc [f(x)]. Given k negative samples, if the last k1 of them are collisions, we have from the sub-additivity
of the logistic loss,

ℓ
(〈

f(x)⊤
(
µc − µ−ci

)〉k
i=1

)
= ℓ

(〈
f(x)⊤

(
µc − µ−ci

)〉k−k1

i=1
◦ ⟨0⟩ki=k−k1+1

)
≥ ℓ

(〈
f(x)⊤

(
µc − µ−ci

)〉k−k1

i=1

)
. (17)
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Now for any fixed c, the probability of a collision for a randomly drawn negative sample is ρc. Given k negative samples, let
Ic denote the set of collisions among the negative samples. For simplicity, we will assume that kρmax is an integer. For the
most likely class, |Imax| is distributed as Bin(k, ρmax) and its median is precisely kρmax. Therefore, we have that

Pr [|Imax| > kρmax] ≤ 1/2 . (18)

Let k′ = k(1− ρmax). Now,

L(k)
NCE(f) ≥ E

c,c−i ,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k
i=1

)]

= E
c∼ρ

[
Pr [|Ic| ≤ kρmax] · E

c−i ∼ρk,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k
i=1

) ∣∣∣ |Ic| ≤ kρmax

]]

+ E
c∼ρ

[
Pr [|Ic| > kρmax] · E

c−i ∼ρk,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k
i=1

) ∣∣∣ |Ic| > kρmax

]]

≥ E
c∼ρ

[
Pr [|Ic| ≤ kρmax] · E

c−i ∼ρk′
−c,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k′

i=1

)]]
(19)

≥ Pr [|Imax| ≤ kρmax] · E
c∼ρ,c−i ∼ρk′

−c,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k′

i=1

)]
. (20)

Next, we use Lemma 4 from (Ash et al., 2022) which gives that for any c ∈ C and any x

E
c−i ∼ρk′

−c

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k′

i=1

)]
≥ 1

2
⌈

2(1−ρ(c)) logC
(k′)minc′ ̸=c ρ(c′)

⌉ · ℓ
(〈

f(x)⊤(µc − µc′)
〉
c′∈C\{c}

)
. (21)

Substituting these above, we get

L(k)
NCE(f) ≥

1

2
E

c∼D,c−i ∼Dk′
−c,x∼Dc

[
ℓ

(〈
f(x)⊤(µc − µc−i

)
〉k′

i=1

)]
(22)

≥ 1

2
E

c∼D

1

2
⌈
2(1−ρmin) logC

(k′)ρmin

⌉ · ℓ
(〈

f(x)⊤(µc − µc′)
〉
c′∈C\{c}

)
(23)

≥ 1

4
⌈
2(1−ρmin) logC

(k′)ρmin

⌉ · Lsup(f, ⟨µc⟩c∈C) (24)

≥ 1

4
⌈
2(1−ρmin) logC

(k′)ρmin

⌉ · Lsup(f) (25)

which gives us the claimed result.


