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Abstract
Traditional automated theorem proving systems
for first-order logic depend on speed-optimized
search and many handcrafted heuristics designed
to work over a wide range of domains. Machine
learning approaches in the literature either depend
on these traditional provers to bootstrap them-
selves, by leveraging these heuristics, or can strug-
gle due to limited existing proof data. The latter
issue can be explained by the lack of a smooth
difficulty gradient in theorem proving datasets;
large gaps in difficulty between different theo-
rems can make training harder or even impossible.
In this paper, we adapt the idea of hindsight expe-
rience replay from reinforcement learning to the
automated theorem proving domain, so as to use
the intermediate data generated during unsuccess-
ful proof attempts. We build a first-order logic
prover by disabling all the smart clause-scoring
heuristics of the state-of-the-art E prover and re-
placing them with a clause-scoring neural network
learned by using hindsight experience replay in
an incremental learning setting. Clauses are rep-
resented as graphs and presented to transformer
networks with spectral features. We show that
provers trained in this way can outperform pre-
vious machine learning approaches and compete
with the state of the art heuristic-based theorem
prover E in its best configuration, on the popular
benchmarks MPTP2078, M2k and Mizar40. The
proofs generated by our algorithm are also almost
always significantly shorter than E’s proofs.
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1. Introduction
I believe that to achieve human-level performance
on hard problems, theorem provers likewise must
be equipped with soft knowledge, in particular
soft knowledge automatically gained from previ-
ous proof experiences. I also suspect that this
will be one of the most fruitful areas of research
in automated theorem proving. And one of the
hardest. Schulz (2017, E’s author)

Automated theorem proving (ATP) is an important tool both
for assisting mathematicians in proving complex theorems
as well as for areas such as integrated circuit design, and
software and hardware verification (Leroy, 2009; Klein,
2009). Initial research on ATP dates back to the 1960s (e.g.,
Robinson (1965); Knuth & Bendix (1970)) and was moti-
vated partly by the fact that mathematics is a hallmark of
human intelligence. However, despite significant research
effort and progress, ATP systems are still far from human
capabilities (Loos et al., 2017). The highest performing ATP
systems (e.g., Cruanes et al. (2019); Kovács & Voronkov
(2013)) have been evolving for decades and have grown
to use an increasing number of manually designed heuris-
tics, mixed with some machine learning, to obtain a large
number of search strategies that are tried sequentially or
in parallel. Some recent works (Chvalovskỳ et al., 2019;
Jakubův et al., 2020; Loos et al., 2017) build on top of these
provers, using modern machine learning techniques to aug-
ment, select or prioritize their already existing heuristics,
with some success. However, these machine-learning based
provers usually require initial training data in the form of
proofs, or positive and negative examples (provided by the
high-performing existing provers) from which to bootstrap.
Other recent works do not build on top of other provers, but
still require existing proof examples as input (e.g., Goertzel
(2020); Polu & Sutskever (2020)). Such machine-learning-
based ATP systems can struggle to solve difficult problems,
partly due to the lack of problems of intermediate difficulty,
which could provide training data of varying difficulty.

In this paper, we propose an approach which can build a
strong theorem prover without relying on existing domain-
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specific heuristics or on prior input data (in the form of
proofs) to prime the learning. We strive to design a learning
methodology for ATP that allows a system to improve even
when there are large gaps in the difficulty of given set of
theorems. In particular, given a set of conjectures without
proofs, our system trains itself, based on its own attempts
and (dis)proves an increasing number of conjectures, an
approach which can be viewed as a form of incremental
learning.

Our approach is related in spirit to a particularly interesting
recent system, rlCop (Kaliszyk et al., 2018; Zombori et al.,
2020), which is based on the minimalistic leanCop ‘tableau’
theorem prover (Otten & Bibel, 2003) and uses reinforce-
ment learning in proof attempts without relying on domain
heuristics or proof data. It manages to surpass leanCop’s
performance—but falls short of better competitors such as E.
This motivated the TRAIL algorithm Crouse et al. (2021);
Abdelaziz et al. (2022), a prover trained using reinforcement
learning that is built on top of a stripped version of E, and
yields substantial improvements over previous results. Wu
et al. (2021) proposed TacticZero, which applies reinforce-
ment learning in an interactive theorem proving framework,
focusing on the case when few human examples are avail-
able. The TacticZero agent not only identifies promising
paths but also learns to discard bad proof states and restart
from previously found good alternatives in the search tree.

However, all these previous approaches learn exclusively
on successful proof attempts. When no new theorem can be
proven, the learner may not be able to improve anymore and
thus the system may not be able to obtain more training data.
This could in principle happen even at the very start of train-
ing, if all the theorems available are too hard. In an attempt
to tackle this issue, Aygün et al. (2020); Firoiu et al. (2021)
proposed to create synthetic theorem generators based on
the axioms used in actual conjectures, so as to provide a
large initial training set of theorems with diverse difficulty.
Unfortunately though, synthetic theorems can be very differ-
ent from real theorems of interest to people, making transfer
and generalization to target datasets difficult.

Contributions: In this paper, we propose a novel approach
for building a theorem prover that can incrementally and
continually improve itself, by applying the idea of hindsight
experience replay (HER) (Andrychowicz et al., 2017) to
ATP. Clauses reached during proof attempts (whether suc-
cessful or not) are turned into goals in hindsight, producing
a large amount of “auxiliary” theorems with proofs of varied
difficulties for the learner, even when no theorem from the
original set can be proven initially. This leads to a smoother
learning regime and a constantly improving learner.

We evaluate our approach on two popular benchmarks:
MPTP2078 (Alama et al., 2014) and M2k (Kaliszyk et al.,
2018) and compare it both with TRAIL (Abdelaziz et al.,

2022) as well as with E prover (Schulz, 2002; Cruanes et al.,
2019), one of the leading heuristic provers. Our proposed
approach substantially outperforms TRAIL (Abdelaziz et al.,
2022) on both datasets, surpasses E in the auto configura-
tion with a 100s time limit, and is competitive with E in
the autoschedule configuration with a 7 days time limit. In
addition, our approach finds shorter proofs than E in approx-
imately 99.5% of cases. We perform an ablation experiment
to highlight specifically the role of hindsight experience re-
play in the results. We also compare performance using mul-
tilayer perceptrons (MLP), graph neural networks (GNN)
and transformers with spectral and sequential features, all
combined with the same HER approach. Our best results
are obtained using transformers with spectral features.

2. Methodology
In this section, we describe the basic search algorithm used
by most of the traditional first-order automated theorem
provers, explain how we integrate our method into one of
these provers and finally, provide a detailed description of
our overall incremental learning system. For the reader
unfamiliar with first-order logic, we give a succinct primer
in Appendix A.

Given-clause algorithm. Almost all of the powerful auto-
mated theorem provers for first-order logic, including E, use
some variation of a given-clause search algorithm (Kovács
& Voronkov, 2013; Cruanes et al., 2019; McCune & Wos,
1997). This type of algorithm works by continuously choos-
ing a new given clause to expand, with the help of one or
more priority queues, until an empty clause (i.e. contradic-
tion) is reached. The given clause is combined according
to various logical operations (like resolution, factoring, etc.;
see Appendix A for more details) with previously chosen
active clauses to generate more clauses, which are conse-
quently added to the priority queues. Each priority queue
depends on a scoring function for sorting the clauses. At
every step, a queue is selected based on a schedule, which
usually consists of a simple cycle through all queues and
each queue occurs for a fixed number of pre-determined
steps within in each cycle. For example, the simplest sched-
ule could be round robin sampling of all queues where each
cycle consists of a single occurrence of each queue.

The two most basic types of queues are the FIFO queue and
the clause weight queue. The former keeps the clauses
sorted from oldest to youngest, guaranteeing that every
clause will be visited after some finite amount of time. The
latter uses a simple linear function that combines the num-
bers of various elements in the clauses (such as literals,
atoms, variables) to obtain a “weight” and sorts the clauses
from lightest to heaviest. The idea is to prioritize lighter
or smaller clauses which, empirically, helps in reaching the
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empty clause faster.

Using machine learning to improve provers that depend
on the given-clause algorithm. There are many ways to
incorporate machine learning into a prover that is based
on the given-clause algorithm. One option is to replace
the queues with a policy over clauses that has full control
over the search (Crouse et al., 2021; Abdelaziz et al., 2022).
Another option is to train a clause scoring function which
merely provides an additional queue that can be added to
any existing set of queues (Loos et al., 2017; Chvalovskỳ
et al., 2019).

Integrating our method into E. We take the latter ap-
proach in this work. We train a classifier that predicts the
probability of a clause appearing in the proof given a set
of initial clauses and use the predictions of this classifier to
construct a “learned queue”. We integrate this queue into
the popular open-source first-order prover E using remote
procedure calls (in a fashion similar to Enigma (Jakubův
& Urban, 2017)). This allows us to take advantage of the
sophisticated logic engine in E.

E, however, is more than its logic engine. It comes preloaded
with hundreds of thousands of lines of code for heuristics
(optimized for certain datasets) which help E pick the right
set of queues with the right set of ratios for the given prob-
lem. As our goal is to replace these complicated heuristics
with a single machine learning system, when we evaluate
our method, we use a simple, fixed queue structure: a FIFO
queue for completeness, a basic clause weight queue for
greedy search and a ‘learned’ queue for guided search.

2.1. Clause-scoring and hindsight experience replay

In order to perform clause-scoring, we use deep neural net-
works, which can be trained in many ways so as to find
proofs faster. A method utilized by Loos et al. (2017) and
Jakubův & Urban (2019) turns the scoring task into a clas-
sification task: a network is trained to predict whether the
clause to be scored will appear in the proof or not. In other
words, the probability predicted by an ‘in-proofness’ clas-
sifier is used as the score. To train, once a proof is found,
the clauses that participate in the proof (i.e., the ancestors
of the empty clause) are considered to be positive examples,
while all other generated clauses are taken as negative ex-
amples.1 Then, given as input one such generated clause x
along with the input clauses Cs, the network must learn to
predict whether x is part of the (found) proof.

There are two main drawbacks to this approach. First, if

1These examples are technically not necessarily negative, as
they may be part of another proof. But avoiding these examples
during the search still helps the system to attribute more signifi-
cance to the positive examples.

Algorithm 1 Distributed incremental learning. launch
starts a new process in parallel. For each conjecture an
instance of UBS decides the sequence of time limits for
solving attempts.

def main(conjectures):
# Launch and connect learners, actors and manager

with example buffer & task queue
example_buffer = create_example_buffer()
task_queue = create_task_queue()
learners = [for i = 1..10:

launch learner(example_buffer)]
for i = 1..1000: launch actor(task_queue,

learners, example_buffer)
actor_manager = launch actor_manager(conjectures,

task_queue)
wait for actor_manager to finish

def learner(example_buffer):
repeat forever:
# Sample a batch of examples and train the

network.
batch = sample_batch_uniformly(example_buffer)
minimize_classification_loss(batch) # we use

cross-entropy

def actor(task_queue, learners, example_buffer)
repeat forever:
# Fetch a task and attempt to prove the

conjecture.
conjecture, time_limit = get_task(task_queue)
learner = sample_uniformly(learners)
run E on conjecture

for at most time_limit seconds;
obtain generated_clauses

examples = sample_examples(generated_clauses) #
see Alg. 2

put_examples(example_buffer, examples)

def actor_manager(conjectures, task_queue):
schedulers = []
for conjecture in conjectures:
schedulers[conjecture] = initialize_UBS() # see

Section 2.2
repeat until all conjectures have been proven:
# Choose a random conjecture and enqueue it.
conjecture = sample_uniformly(conjectures)
scheduler = schedulers[conjecture]
time_limit = get_next_time_limit(scheduler)
put_task(task_queue, (conjecture, time_limit))

all conjectures are too hard for the initially unoptimized
prover, no proof is found and no positive examples are avail-
able, making supervised learning impossible. Second, since
proofs are often small (often a few dozen steps), only few
positive examples are generated. As the number of available
conjectures is often small too, there is far too little data to
train a modern high-capacity neural network. Moreover, for
supervised learning to be successful, the conjectures that
can be proven must be sufficiently diverse, so the learner
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can steadily improve. Unfortunately, there is no guarantee
that such a curriculum is available. If the difficulty suddenly
jumps, the learner may be unable to improve further. These
shortcomings arise because the learner only uses successful
proofs, and all the unsuccessful proof attempts are discarded.
In particular, the overwhelming majority of the generated
clauses become negative examples, and need to be discarded
to maintain a good balance with the positive examples.

To leverage the data generated in unsuccessful proof at-
tempts, we adapt the concept of hindsight experience replay
(HER) (Andrychowicz et al., 2017) from goal-conditioned
reinforcement learning to theorem proving. The core idea
of HER is to take any “unsuccessful” trajectory in a goal-
based task and convert it into a successful one by treating
the final state that happened to be reached as if it were the
goal state, in hindsight. A deep network is then trained with
this trajectory, by contextualizing the policy with this state
instead of the original goal. This way, even in the absence
of positive feedback, the network is still able to adapt to the
dataset, if not to the goal, thus having a better chance to
reach the goal on future tries.

Inspired by HER, we use the clauses generated during any
proof attempt as additional conjectures, which we call hind-
sight goals, leading to a supply of positive and negative
examples. Let D be any non-input clause generated during
the refutation attempt of Cs. We call D a hindsight goal.2

Then, the set Cs ∪ {¬D} can be refuted. Furthermore,
once the prover reaches D starting from Cs ∪ {¬D}, only a
few more resolution steps are necessary to reach the empty
clause; that is, there exists a refutation proof of Cs ∪ {¬D}
where D is an ancestor of the empty clause. Hence, we can
use the ancestors of D as positive examples for the negated
conjecture and axioms Cs ∪ {¬D}. This generates a very
large number of examples, allowing us to effectively train
the neural network, even with only a few conjectures at
hand.

Furthermore, to keep the network small, axioms are not
provided as input to the scoring network Although the set
of active clauses is an important factor in determining the
usefulness of a clause, we ignore it in the network input to
keep the network size smaller.

2.2. Incremental learning algorithm

Typical supervised learning ATP systems require a set of
proofs (provided by other provers) to optimize their model
(e.g., Loos et al. (2017); Jakubův et al. (2020); Aygün et al.
(2020)). Success is assessed by cross-validation. In contrast,
we formulate ATP as an incremental learning problem—see

2Note that, while the original version of HER (Andrychowicz
et al., 2017) only uses the last reached state as a single hindsight
goal, we use all intermediate clauses, providing many more data
points.

in particular Orseau & Lelis (2021); Jabbari Arfaee et al.
(2011). Given a pool of unproven conjectures, the objective
is to prove as many as possible, even using multiple attempts,
and ideally as quickly as possible. Hence, the learning sys-
tem must bootstrap directly from initially-unproven conjec-
tures, without any initial supervised training data. Success
is assessed by the number of proven conjectures, and the
time spent solving them. Hence, we do not need to split the
set of conjectures into train/test/validate sets because, if the
system overfits to the proofs of a subset of conjectures, it
will not be able to prove more conjectures.

Our incremental learning system is described in Algorithm 1.
Initially, all conjectures are unproven and the clause-scoring
network is initialized randomly. At this stage, we have no in-
formation on how long it takes to prove a certain conjecture,
or whether it can be proven at all. The prover attempts to
prove all conjectures provided using a scheduler (described
below), so as to vary time limits for each conjecture. This
ensures that proofs for easy conjectures are obtained early,
and the resulting positive and negative examples are then
used to train the clause-scoring network. As the network
learns, more conjectures can be proven, providing in turn
more data, and so on. This incremental learning algorithm
thus allows us to automatically build a capable prover for
a given domain, starting from a basic prover that may not
even be able to prove a single conjecture in the given set.

Time scheduling. All conjectures are attempted in parallel,
each on a CPU. For each conjecture, we use the uniform
budgeted scheduler (UBS) algorithm (Helmert et al., 2019,
section 7) to further simulate running in (pseudo-)parallel
the solver with varying time budgets, and restarting each
time the budget is exhausted. In the terminology of UBS, we
take T (k, r) = 3r2k−1 in seconds, but we cap k ≤ kmax =
10. A UBS instance simulates on a single CPU running kmax
restarting programs, by interleaving them: On a ‘virtual’
CPU of index k ∈ {1, . . . , kmax}, a program corresponds
to running the prover for a budget of 3 ·2k−1 seconds before
restarting it for the same budget of time and so on; r is
the number of restarts. Hence, as the network learns, each
conjecture is incrementally attempted with time budgets of
varying sizes (3s, 6s, 12s, . . . , 3072s), using no more than
one hour, while carefully balancing the cumulative time
spent within each budget (Luby et al., 1993; Helmert et al.,
2019). Once a proof has been found for a conjecture, the
scheduler is not stopped, so as to continue searching for
more (often shorter) proofs.

Distributed implementation. Our implementation consists
of multiple actors running in parallel, a manager that dis-
tributes tasks to the actors using the time scheduling algo-
rithm, and a task queue that handles manager-actors commu-
nication. We used ten learners training ten separate models
to increase the diversity of the search without having to
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Algorithm 2 Example sampling algorithm.

def sample_examples(generated_clauses):
# Estimate the number of examples that can be

consumed by the learner
target_num_examples =
time_elapsed_since_last_attempt ×

target_num_examples_per_second

# Remove the input clauses
hindsight_goals =
generated_clauses \ input_clauses

# Subsample the goals and the examples
examples = []
sizes = {tree_size(c) : c ∈ hindsight_goals}
for size in sizes:
size_goals = {c ∈ hindsight_goals :

tree_size(c) == size}
w_size = 1 / ln(size + e) - 1 / ln(size + e + 1)

# See Appendix B
num_examples = ceil(target_num_examples ×

w_size)
for _ in range(num_examples):
goal = uniform_sample(size_goals) # pick

hindsight goal of this size
anc = ancestors(goal)
examples += [positive_example(uniform_sample(

anc), goal)]
examples += [negative_example(uniform_sample(

hindsight_goals \ anc), goal)]
return examples

increase the number of actors. These learners are fed with
training examples from the actors and use them to update
their parameters of their clause-scoring networks. The ac-
tors share 10 inference servers with accelerators (Tensor
Processing Units (Jouppi et al., 2017)) for doing fast infer-
ence (except in the ablation experiments where the actors
do not use any accelerators).

Subsampling hindsight goals and examples. With HER,
the number of available examples is actually far too large:
if, after a proof attempt, n clauses have been generated (n
may be in the thousands), not only can each clause be used
as a hindsight goal, but there are about n2 pairs of the form
(positive example, hindsight goal), and far more negative
examples. This suddenly puts us in a very data-rich regime,
which contrasts with the data scarcity of learning only from
complete proofs of the given conjecture. Hence, we need
to subsample the examples in order to prevent overwhelm-
ing the learner (see Algorithm 2 in the appendix). To this
end, we first estimate the number of examples the learner
can consume per second before sampling. But there is an
additional difficulty: the number of possible clauses is ex-
ponentially large in the tree_size (number of nodes in
the clause tree) of the clause, while small clauses are likely
more relevant since the empty clause (which is the true tar-

get) has size 0. Moreover, clauses can be rather large: a
tree_size over 300 is quite common, and we observed
some tree_size values over 6 000. To correct for this,
we fix the proportion of positive and negative examples for
each hindsight goal clause size, ensuring that small hind-
sight goal clauses are favoured, while allowing a diverse
sample of large clauses, using a heavy-tail distribution ws

described in Appendix B. Finally, all the positive and nega-
tive examples thus sampled are added to the training pool
for the learners.

2.3. Representation

Our clause scoring network receives as input the clause
to score, x, the hindsight goal clause, g, and a sequence
of negated conjecture clauses Cs. Individual clauses are
transformed into directed acyclic graphs (an example is de-
picted in Figure 1) with five different node types : clause,
literal, atomic-term, variable-term or variable. First, there
is a clause node, whose children are literal nodes, corre-
sponding to all literals of the clause (each one is associated
with a predicate). The children of literal nodes represent
the arguments of the predicate; they are either variable-term
nodes if the argument is a variable, or atomic-term nodes
otherwise3. Children of atomic-term nodes follow the same
description. Finally, each variable-term node is linked to
a variable node, which has as many parents as there are
instances of the corresponding variable in the clause.

To each node, we associate a feature vector composed of the
following five components: (i) A one-hot vector of length
3, encoding if the node belongs to x, g or a member of Cs.
(ii) A one-hot vector of length 5 encoding the node type:
clause, literal, atomic-term, variable-term or variable. (iii)
A one-hot vector of length 2 encoding if the node belongs
to a positive or negative literal (null vector for clause and
variable nodes). (iv) A hash vector representing the pred-
icate name or the function/constant name respectively for
predicate or atomic-term nodes (null vector for other nodes).
(v) A hash vector representing the predicate/function argu-
ment slot in which the term is present (null vector for clause,
literal and variable nodes). Hash vectors are randomly sam-
pled uniformly on the 64 dimensional unit hyper-sphere,
using the name of the predicate, function or constant (and
the argument position for slots) as seed.

The node feature vectors are projected into a 64-dimensional
node embedding space using a linear layer that trains dur-
ing learning. We use a Transformer encoder architec-
ture (Vaswani et al., 2017) for the clause-scoring network,
whose input is composed of the set of node embeddings in
the current clause x, goal clause g and conjecture clauses
Cs, up to 128 nodes. For each node, we compute a spec-
tral encoding vector representing its position in the clause

3A constant argument is equivalent with a function of arity 0.
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Figure 1. Clause graph of a goal clause. Each node has five fea-
tures: clause type, node type, literal polarity, symbol hash and
argument slot hash. The parts of formula corresponding to each
node are shown outside of the nodes.

graph (Dwivedi & Bresson, 2020); this is given by the eigen-
vectors of the Laplacian matrix of the graph from which
we keep only the 64 first dimensions, corresponding to the
low frequency components. It replaces the traditional posi-
tional encoding of Transformers. Note that if there are more
than 128 nodes in the set of clause graphs, we prioritize
x, then g and Cs. Within each graph, we order the nodes
from top to bottom then left to right (e.g. the first nodes to
be filtered out would be variable- or atomic-term nodes of
the last conjecture clause). We only keep the transformer
encoder output corresponding to the root node of the target
clause and project it, using a linear layer, into a single logit,
representing the probability that x will be used to reach g
starting from Cs.

3. Experiments
To evaluate our approach, we use three popular datasets of
the Mizar Mathematical Library (Grabowski et al., 2015)
that has been used in previous works (Crouse et al., 2021;
Kaliszyk et al., 2018; Kaliszyk & Urban, 2015a): (i)
MPTP2078 (Alama et al., 2014) is a sample of larger Mizar
datasets which is a good mixture of hard and easy theo-
rems, (ii) M2k (Kaliszyk et al., 2018) is a relatively easier
benchmark which contains theorems that have already been
proven by at least one of the automated theorem provers in
the past, and (iii) Mizar40 (Kaliszyk & Urban, 2015b) is a
very large dataset of 57k theorems. The relative hardness of

these datasets is also illustrated by the fact that the state-of-
the-art E prover proves around 66% theorems in MPTP2078,
around 40% theorems in Mizar40 while it achieves proof
rate greater than 95% on M2k theorems.

We evaluate and compare our approach with both ma-
chine learning and heuristic based approaches on these two
datasets. We compare our approach with E, considered a
state-of-the-art heuristic based prover, in four configura-
tions: (i) E in its default mode without any sophisticated
heuristics and scheduling for 100s (referred to as E basic),
(ii) E in auto mode for 100s (the mode that was used by
Crouse et al. (2021) and Abdelaziz et al. (2022)4), (iii) E in
auto-schedule mode (which outperforms auto mode consis-
tently in our experience) for 100s, (iv) the best of different
runs of E in auto-schedule mode with time limits of 100s,
1 hour, 1 day and 7 days (referred to as E best). It should
be noted that we ran E best only with time limits up to 1
hour on Mizar40 due to resource constraints in proving 57k
theorems.

We used E prover version 2.5 (Cruanes et al., 2019) in each
of these configurations with a memory limit of 8192 GB.

We ran our incremental learning algorithm with hindsight ex-
perience replay (IL w/HER) for seven days on each dataset,
using 1000 actors where each attempt was allowed a max-
imum duration of 100 seconds. The hyperparameters for
all experiments are given in Appendix C. Every successful
attempt that leads to a proof during training is logged, along
with the time elapsed, the number of clauses generated, the
length of the proof, and the proof itself. In order to show the
importance of HER in achieving the results above, we ran
the same experiments with incremental learning but without
HER (IL w/o HER), by training the clause-scoring network
using solely the data extracted from proofs found for the
input problems. As another point of comparison, we include
the results of TRAIL, which is a top performing learning
method built on top of E prover, as reported in (Abdelaziz
et al., 2022). Like our approach, TRAIL does not rely on E’s
heuristics and does not use additional input data from which
to bootstrap, so it is directly comparable. Abdelaziz et al.
(2022) also reported numbers for other learning provers that
are similar in spirit, but since their performance is inferior
to TRAIL, we do not include their reported numbers. We
note that there are other machine-learning-based theorem
provers, such as ENIGMA (Jakubův et al., 2020) and its
variants, and the prover designed by Loos et al. (2017); but
these provers rely heavily either on E’s heuristics or on input
proof data to bootstrap from, and thus fall in a different cat-

4The exact results reported by Abdelaziz et al. (2022) for E
prover are significantly lower than what we obtained in our experi-
ment. This could be attributed to a difference in the version of E
prover, memory allocated or processor speed—the exact configu-
ration details are not reported in their paper.



Proving Theorems using Incremental Learning and Hindsight Experience Replay

Table 1. Number of conjectures proven on MPTP2078, M2k and Mizar40.

Domain Conjectures Heuristic Approaches ML Approaches
E basic E auto E auto-schedule E best TRAIL IL w/o HER IL w/HER
(100s) (100s) (100s) (100s–7d)

MPTP2078 2 078 555 1 139 1 289 1 369 1 213 1 278 1 424
M2k 2 003 1 451 1 845 1 911 1 934 1 808 1 814 1 895
Mizar40 57 880 - 17 346 21 693 23 173* - 23 070 24 363

* On Mizar40, the highest time limit used for E best was 1 hour instead of 7 days due to resource constraints.

Table 2. Problems uniquely solved by one method but not the other
(E best or IL w/HER) on both datasets.

Domain Only E best Only IL w/HER

MPTP2078 58 113
M2k 59 20
Mizar40 2 678 3 868

egory from ours, where the machine learning system based
on a basic prover should bootstrap on its own.

Conjectures proven. Table 1 shows the number of con-
jectures proven by each of these approaches as well as the
actual number of conjectures in each dataset. According
to these results, IL w/HER outperforms all other provers
that also use a 100 second time limit on all datasets except
M2k, where E auto-schedule solves 16 more problems. It
also manages to outperform E best, which is the best of
eight different runs of E with various configurations some
of which use time limits up to 7 days, on MPTP2078 as
well as Mizar40, and comes as close as 1% on M2k. IL
w/HER proves 2.6 times (1.3 times) as many problems as
the E basic, which it is based on, on MPTP2078 (on M2k),
improving its performance substantially purely via learn-
ing. Finally, IL w/HER significantly outperforms TRAIL on
both MPTP2078 and M2k. Interestingly, since using HER
is orthogonal to the methods used by TRAIL, one could
hope that combining both approaches will lead to even bet-
ter results—but we leave this as future work. As can be seen
in these results, we do not observe important gains from
learning on the M2k dataset. We believe that this is due to
M2k being a set of theorems that can already be proven by
ATPs. In other words, by construction, it consists of a subset
of Mizar40 on which E already performs well. Additionally,
TRAIL (Abdelaziz et al., 2022) reported their results only
on MPTP2078 and M2k which are taken directly from the
paper itself.

Unique theorems proved by our approach. Table 2
shows the number of theorems proven only by our approach
and not by E best, and vice versa. IL w/HER proves 113,
20 and 3868 additional theorems on MPTP2078, M2k and

Mizar40, respectively, which cannot proven by E in any of
the configurations that we have tried. This suggests that IL
w/HER can find strategies that are absent in E.

Without hindsight. In order to evaluate specifically the
impact of using HER, we also report the performance of
incremental learning alone which does not use any data
from unsuccessful proof attempts. As seen in Table 1, IL
w/o HER performed significantly worse, failing to prove
146 of the conjectures on MPTP2078, 81 of the conjectures
on M2k and 1293 of the conjectures on Mizar40 that can
be proven by IL w/HER. Without enough proofs of hard
theorems from which to learn, IL w/o HER underperformed
significantly on these domains compared to IL w/HER.

Training vs. searching. Figure 2 presents a comparison
of the progress of E and the improvement of our systems
as a survival plot over seven days of run time (wall-clock).
Unlike E, which performed up to seven days of proof search
per conjecture but has been under constant development
for almost two decades, IL w/HER spent the same time to
train provers based on a simple proof search algorithm from
scratch, and ended up finding as many proofs as E.

Quality of proofs. We also looked at the individual proofs
discovered by both systems. Incremental learning combined
with the revisiting of previously proven conjectures allowed
our system to discover shorter proofs continually. Figure 3
shows a scatter plot of the lengths of the shortest proofs
found by E vs. found by IL w/HER for each theorem on
MPTP2078 and M2k. The shortest proofs found by our
system were consistently shorter than those found by E.
Out of the 3140 conjectures proven by both systems, our
proofs were shorter for 3131 conjectures (99.7%) whereas
E’s proofs were shorter for only 4 conjectures, with 5 proofs
being of the same length.

Speed of search. E generated 5.72 times more clauses
per seconds than our provers. We believe that the only way
for our system to compete with E under these conditions
is to find scoring functions that are much stronger than the
numerous heuristics that have been built into E over time.
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Figure 2. Survival plot showing the progress of E and incremental learning with and without hindsight experience replay over the course
of seven days of training.
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Figure 3. Scatter plot of the shortest proof lengths achieved by E
vs. incremental learning with hindsight experience replay on the
conjectures that can be proven by both in MPTP2078 and M2k.

Comparison between different representations. In or-
der to understand the impact of the choice of network ar-
chitecture on the results, we compared different neural net-
works trained with the proposed approach. We compared
the spectral transformer representation described in Sec-
tion 2.3 with MLP (based on manually defined features),
Graph Neural Networks (GNNs) and a sequential text-based
representation of the logical formulae which is used in a
standard sequential transformer. On these experiments, we
did not use accelerated actors as GNNs were not benefitting
from acceleration as much as the other architectures, so the
results for spectral transformers are different than results in
Table 1. We used the same graph structure as the spectral
transformer described in Sec. 2.3 for GNNs but added an
additional root node at the top that connects the target clause
with the negated conjecture clauses in order to allow mes-
sage passing between different clauses. The details of each
representation along with the hyperparameters used are de-
scribed in Appendix C. Table 3 shows the conjectures solved
by using different representations trained with IL w/HER
using 1000 actors. We observe that GNNs outperform MLPs
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Table 3. Comparison of different neural network architectures in IL w/HER on MPTP2078 and M2k. All the experiments in this table are
performed without accelerators for a fair comparison which lead to a difference in performance of spectral transformers here compared to
Table 1.

Sequential Spectral
Domain Conjectures MLP GNN transformer transformer

MPTP2078 2 078 1 049 1 221 1 076 1 353
M2k 2 003 1 772 1 756 1 704 1 861

but fall short of the spectral transformer in our implementa-
tion on the MPTP2078 dataset. It should be noted that there
are multiple ways to represent logical formulae as graphs,
but we confine ourselves within the representation which
is closest to spectral transformers. A detailed investigation
of other graph representations proposed in the literature in
combination with IL w/HER is left for future work. Also,
we observe that spectral transformers outperform sequential
transformers significantly in all our experiments. This can
be attributed to the fact that spectral transformers capture
graphical structure, and hence exploit logical invariances in
formulae, in contrast to sequential transformers which treat
these formulae as text.

4. Discussion
In this work, we proposed a method for training a first or-
der logic theorem prover given a set of conjectures without
proofs. Our proposed method starts from a very simple
given-clause algorithm and uses hindsight experience re-
play (HER) to learn how to prove an increasing number
of conjectures in an incremental fashion. We train a trans-
former network using spectral features in order to provide
a useful scoring function for the prover. Our approach sig-
nificantly outperforms TRAIL (Abdelaziz et al., 2022) on
the MPTP2078 and M2k datasets, and surpasses the state-
of-the-art heuristic-based prover E in its best setting on the
MPTP2078 and Mizar40 datasets. Furthermore, our proofs
are almost always shorter than those generated by E.

An obvious area of improvement is to provide more side
information to the transformer network, so as to make de-
cisions more context-aware. Also, since HER is a generic
data-augmentation scheme, it appears plausible that a sim-
ilar approach could be used for other kinds of logic and
proof searchers, and it would be interesting to adapt our
methodology to higher-order logic in particular.
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A. A quick primer on first-order logic and
resolution calculus

First-order logic (FOL) is a formal language used to express
mathematical or logical statements. We give a brief intro-
duction to first-order logic here. For more information, see
(Fitting, 2012). Any statement expressed in first-order logic
is called first-order logic formula. For example the state-
ment: “for all people X,Y and Z, if X is a parent of Y and
Y is a parent of Z, then X is grandparent of Z” can be ex-
pressed as the FOL formula: ∀X,∀Y, ∀Z,parent(X,Y ) ∧
parent(Y,Z) ⇒ grandparent(X,Z). Here, X,Y, Z are
variables, and parent and grandparent are predicates. We
will only consider FOL formulas expressed in Conjunctive
Normal Form (CNF), as a conjunction (∧) of clauses, in
which all variables are implicitly universally quantified (∀).
Consider the following CNF formula:

(¬parent(X,Y ) ∨ ¬parent(Y, Z) ∨ grandparent(X,Z))︸ ︷︷ ︸
C1

∧ parent(alice, bob)︸ ︷︷ ︸
C2

∧ parent(bob, charlie)︸ ︷︷ ︸
C3

A clause is a disjunction (∨) of a number of literals; we will
also consider clauses to be sets of literals to simplify the
notation. C1, C2 and C3 are clauses. Note that C1 is equiv-
alent to the first FOL formula example above, expressed
as a clause. A literal is an atom, possibly preceded by the
negation ¬, in which case it is a negative literal (positive
otherwise). For example, parent(X,Y ) and ¬parent(Y, Z)
are literals. An atom is a predicate name of arity n ∈ N
followed by a list of n terms. A term is either a function
name of associated arity n ∈ N followed by a list of n terms,
or a constant (such as alice, bob), or a variable. We assume
that two different clauses of the same formula cannot share
variables. A clause C is a tautology if C contains both a
literal ` and its negation ¬`. Tautologies can be safely re-
moved from a CNF formula without changing its truth value.
The tree_size of a clause is the number is the number
of nodes when the clause is represented as a tree of terms.
For example, tree_size(parent(X, bob)) is 3.

A substitution is a set {V1  t1, V2  t2, . . . } where
V1, V2, . . . are variables and t1, t2, . . . are terms. The set
of variables {V1, V2, . . . } is the domain of the substitution.
The application σ(C) of a substitution σ to a clause C (or
also to a single literal) results in a new clause C ′ = σ(C)
where all occurrences of the variables (of the domain of σ)
in C are replaced with their corresponding terms according
to the substitution σ. For example, ifC = parent(X,Y ) and
σ = {X  alice, Y  Z} then σ(C) = parent(alice, Z).

Two literals `1 and `2 can be unified if there exists a sub-
stitution σ such that applying it to both literals result in
the same literal, that is, σ(`1) = σ(`2). In such a case,

the most general unifier mgu(`1, `2) of `1 and `2 is the
smallest substitution that unifies the two literals, and it
is unique (up to a renaming of the variables). For exam-
ple, the most general unifier of C = parent(X,Y ) and
C ′ = parent(alice, Z) is {X  alice, Y  Z}, such that
σ(C) = σ(C ′) = parent(alice, Z).

A clause C1 subsumes a clause C2 if there exists a sub-
stitution σ such that σ(C1) ⊆ C2 where the clauses
are considered to be sets of literals.5 For example the
clause p(X, a) subsumes the clause p(b, a) ∨ p(c, a), with
σ = {X  b} (or also with σ = {X  c}) as
σ({p(X, a)}) ⊆ {p(b, a), p(c, a)}.

The clause C ′ is a factor of a clause C if there exist a
substitution σ and two literals ` and `′ in C such that
σ = mgu(`, `′) and C ′ = σ(C \ {`}). The operation
factoring(C) returns the set of all factors (unique up to re-
naming of the variables) of C, with ‘fresh’ (never used) vari-
ables. For example, we can factor C1 on its first two literals
to obtain the clause ¬parent(Y ′, Y ′)∨ grandparent(Y ′, Y ′)
with the substitution {X  Y,Z  Y }. A clause is the
sole parent of its factors.

The clause C ′′ is a resolvent of two clauses C and C ′

if there exist a substitution σ, a positive literal ` in C
and a negative literal `′ in C ′ such that σ = mgu(`, `′)
and C ′′ = σ(C \ {`} ∪ C ′ \ {`′}). The operation
resolution(C,C ′) produces the set of all possible resolvents
ofC andC ′ (Robinson, 1965), with ‘fresh’ variables. For ex-
ample, the resolvents of C1 and C2 are {¬parent(bob, Z ′)∨
grandparent(alice, Z ′),¬parent(X ′, alice) ∨
grandparent(X ′, bob)}. The clauses C and C ′ are
called the parents of C ′′. The ancestors of a clause are its
parents, the parents of its parents and so on.

Together, resolution and factoring are sound and also suf-
ficient for refutation completeness, that is, they can only
produce clauses that are logically implied by the initial
clauses, and if the empty clause is logically implied by
the initial clauses, then the empty clause can be also be
produced by a sequence of resolution and factoring oper-
ations starting from the initial clauses. For example, sup-
pose that we want to prove that alice is the grandparent
of someone, that is, that grandparent(alice, A) can be sat-
isfied for some value of A. Then we negate this conjec-
ture to obtain the clause (implicitly universally quantified
over A) with a single literal: C4 = ¬grandparent(alice, A)
and we attempt to refute the CNF formula C1 ∧ · · · ∧ C4,
that is, to reach the empty clause using resolution and
factoring. First we can resolve C4 with C1 to obtain
C5 = ¬parent(alice, Y ′) ∨ ¬parent(Y ′, A′). Then we can
resolveC5 withC2 to obtainC6 = ¬parent(bob, A′′) and fi-

5We assume that syntactic duplicate literals are removed auto-
matically.
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nally we can resolve C6 with C3 to obtain the empty clause,
which means that indeed alice is the grandparent of some-
one.

B. A heavy-tail distribution over the integers
To ensure a preference for smaller clauses, while ensuring
some diversity of the clause sizes, we use the following
heavy-tail distribution for s ∈ {0, 1, 2 . . . }:

ws = 1/ ln(s+ e)− 1/ ln(s+ e+ 1) .

These weights constitute a telescoping series and ensure that∑∞
s=0 ws = 1 while, using ln(1 + 1/x) ≥ 1/(x+ 1),

ws =
ln
(

1 + 1
s+e

)
ln(s+ e) ln(s+ e+ 1)

≥ 1
(s+ e+ 1)(ln(s+ e+ 1))2 .

Thus, w is a heavy-tailed universal distribution over the
nonnegative integers in the sense that − lnws ∈ O(ln s),
similarly to Elias’ delta coding (Elias, 1975).

Tangentially, sampling according to ws is simple since its
cumulative distribution telescopes: Sample u uniformly in
[0, 1], then select the integer min{s ≥ 0 : 1− 1/ ln(s+ e+
1) ≥ u}, that is, select s = dexp(1/(1− u))− e− 1e.

C. Hyperparameters
For the transformer encoder, hyperparameter notations
from (Vaswani et al., 2017) are given in parenthesis for
reference. The model is trained using stochastic gradient
descent with the Adam optimizer (Kingma & Ba, 2015)
with β1 = 0.9, β2 = 0.999 and ε = 10−8. A subset of hyper-
parameters have been selected by an initial investigation
for smaller time duration, selected values are underlined:
number of layers (N ) in {3, 4, 5}, embedding size (dk, dv)
in {64, 128, 256}, hash vector size in {16, 64, 256}, learn-
ing rate in {0.003, 0.001, 0.0003}, probability of dropout
(Pdrop) in {0., 0.1, 0.2, 0.3, 0.5, 0.7}. The other hyperpa-
rameters were fixed: the batch size is 2560, the number
of attention heads (h) is 8, which leads to a dimensional-
ity (dmodel) of 512, the inner-layers have a dimensionality
(dF F ) of 1024. To ensure diversity in the training examples,
learners wait for the experience replay buffer to contain
at least 65536 examples and then sample uniformly from
it. The learners used Nvidia V100s GPUs with 16GB of
memory.

For the MLP architecture, we use the same architecture as
described in (Firoiu et al., 2021) with the same hyperparam-
eters.

The sequential transformer which represents every formula
as text we need to use a smaller batch size to fit on GPU

memory. We train our method with the maximum sequence
length of 400 and batch size of 512. The rest of the parame-
ters like number of layers, embedding size, hash vector size,
learning rate and dropout probability are same as spectral
transformer described above.

For GNNs, we use a simple architecture with node-update as
well as edge-update at each message passing step. The glob-
als are also updated at each step and used for final prediction.
After a preliminary hyperparameter search on number of
layers, number of message passing steps, embedding size,
aggregation function, we observe that number of layers=1,
steps=8, embedding size=64, aggregation function=max per-
forms best and is used for all experiments. We ue Adam
optimizer with learning rate of 3e-5.

For the actors, the age, weight, and learned-cost queues in
our given-clause algorithm are selected on average 1/13th,
3/13th and 9/13th of the steps, respectively. All actors and
E are limited at 8GB of memory on modern AMD 64-bit
platforms.


