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Abstract

While unbiased machine learning models are es-
sential for many applications, bias is a human-
defined concept that can vary across tasks. Given
only input-label pairs, algorithms may lack suf-
ficient information to distinguish stable (causal)
features from unstable (spurious) features. How-
ever, related tasks often share similar biases — an
observation we may leverage to develop stable
classifiers in the transfer setting. In this work,
we explicitly inform the target classifier about un-
stable features in the source tasks. Specifically,
we derive a representation that encodes the unsta-
ble features by contrasting different data environ-
ments in the source task. We achieve robustness
by clustering data of the target task according
to this representation and minimizing the worst-
case risk across these clusters. We evaluate our
method on both text and image classifications.
Empirical results demonstrate that our algorithm
is able to maintain robustness on the target task
for both synthetically generated environments and
real-world environments. Our code is available at
https://github.com/YujiaBao/Toful

1. Introduction

Automatic de-biasing (Sohoni et al.l 2020; |Creager et al.}
2021 |Sanh et al.| 2021)) has emerged as a promising direc-
tion for learning stable classifiers. The key premise here
is that no additional annotations for the bias attribute are
required. However, bias is a human-defined concept and
can vary from task to task. Provided with only input-label
pairs, algorithms may not have sufficient information to
distinguish stable (causal) features from unstable (spurious)
features.

To address this challenge, we note that related tasks are often
fraught with similar spurious correlations. For instance,
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when classifying animals such as camels vs. cows, their
backgrounds (desert vs. grass) may constitute a spurious
correlation (Beery et al.| 2018)). The same bias between
the label and the background also persists in other related
classification tasks (such as sheep vs. antelope). In the
resource-scarce target task, we only have access to the input-
label pairs. However, in the source tasks, where training
data is sufficient, identifying biases may be easier. For
instance, we may have examples collected from multiple
environments, in which correlations between bias features
and the label are different (Arjovsky et al.l|2019). These
source environments help us define the exact bias features
that we want to regulate.

One obvious approach to utilize the source task is direct
transfer. Specifically, given multiple source environments,
we can train an unbiased source classifier and then apply its
representation to the target task. However, we empirically
demonstrate that while the source classifier is not biased
when making its final predictions, its internal continuous
representation can still encode information about the un-
stable features. Figure |1| shows that in Colored MNIST,
where the digit label is spuriously correlated with the image
color, direct transfer by either re-using or fine-tuning the
representation learned on the source task fails in the target
task, performing no better than the majority baseline.

In this paper, we propose to explicitly inform the target clas-
sifier about unstable features from the source data. Specifi-
cally, we derive a representation that encodes these unstable
features using the source environments. Then we identify
distinct subpopulations by clustering examples based on
this representation and apply group DRO (Sagawa et al.|
2019) to minimize the worst-case risk over these subpop-
ulations. As a result, we enforce the target classifier to
be robust against different values of the unstable features.
In the example above, animals would be clustered accord-
ing to backgrounds, and the classifier should perform well
regardless of the clusters (backgrounds).

The remaining question is how to compute the unstable
feature representation using the source data environments.
Following Bao et al.|(2021)), we hypothesize that unstable
features are reflected in mistakes observed during classifier
transfer across environments. For instance, if the classifier
uses the background to distinguish camels from cows, the
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Figure 1: Transferring across tasks in Colored MNIST (Arjovsky et al.,|2019). On the source task, we learn a color-invariant
model that achieves oracle performance (given direct access to the unstable features). However, directly transferring
this model to the target task, by reusing or fine-tuning its feature extractor, severely overfits the spurious correlation and
underperforms the majority baseline (50%) on a test set where the spurious correlation flips. By explicitly transferring the
unstable features, our algorithm TOFU (Transfer OF Unstable features) is able to reach the oracle performance.

camel images that are predicted correctly would have a
desert background while those predicted incorrectly are
likely to have a grass background. More generally, we prove
that among examples with the same label value, those with
the same prediction outcome will have more similar unstable
features than those with different predictions. By forcing
examples with the same prediction outcome to stay closer
in the feature space, we obtain a representation that encodes
these latent unstable features.

We evaluate our approach, Transfer OF Unstable features
(TOFU), on both synthetic and real-world environments. Our
synthetic experiments first confirm our hypothesis that stan-
dard transfer approaches fail to learn a stable classifier for
the target task. By explicitly transferring the unstable fea-
tures, our method significantly improves over the best base-
line across 12 transfer settings (22.9% in accuracy), and
reaches the performance of an oracle model that has direct
access to the unstable features (0.3% gap). Next, we con-
sider a practical setting where environments are defined
by an input attribute and our goal is to reduce biases from
other unknown attributes. On CelebA, TOFU achieves the
best worst-group accuracy across 38 latent attributes, out-
performing the best baseline by 18.06%. Qualitative and
quantitative analyses confirm that TOFU is able to identify
the unstable features.

2. Related work

Removing bias via annotations: Due to idiosyncrasies
of the data collection process, annotations are often cou-
pled with unwanted biases (Buolamwini & Gebrul [2018;
Schuster et al.,|2019; McCoy et al.,2019;|Yang et al., 2019).
To address this issue and learn robust models, researchers
leverage extra information (Belinkov et al.| [2019; Stacey
et al., 20205 |[Hinton, 2002; |Clark et al.,[2019; [He et al.,[2019;
Mahabadi et al., 2019). One line of work assumes that the
bias attributes are known and have been annotated for each

example, e.g., group distributionally robust optimization
(DRO) (Hu et al., 2018 |Oren et al.l [2019; Sagawa et al.,
2020). By defining groups based on these bias attributes, we
explicitly specify the distribution family to optimize over.
However, identifying the hidden biases is time-consuming
and often requires domain knowledge (Zellers et al., 2019;
Sakaguchi et al.| [2020). To address this issue, another line
of work (Peters et al., [2016; [Krueger et al., |2020; (Chang
et al., 2020; Jin et al.| 2020; |Ahuja et al.| 2020; |Arjovsky
et al., 2019;Bao et al.| 2021} Kuang et al.,2020; [Shen et al.}
2020) only assumes access to a set of data environments.
These environments are defined based on readily-available
information of the data collection circumstances, such as lo-
cation and time. The main assumption is that while spurious
correlations vary across different environments, the associa-
tion between the causal features and the label should stay
the same. Thus, by learning a representation that is invariant
across all environments, they alleviate the dependency on
spurious features. In contrast to previous works, we don’t
have access to any additional information besides the labels
in our target task. We show that we can achieve robustness
by transferring the unstable features from a related source
task.

Automatic de-biasing A number of recent approaches
focus on a more common setting where the algorithm only
has access to the input-label pairs. [Li & Xul (2021) leverages
disentangled representations in generative models to iden-
tify biases. [Sanh et al.| (2021); Nam et al.[ (2020); [Utama!
et al.| (2020) find that weak models are more vulnerable
to spurious correlations as they only learn shallow heuris-
tics. By boosting from their mistakes, they obtain a more
robust model. |Q1ao et al.| (2020) uses adversarial learning to
augment the biased training data. |Creager et al.|(2021); [So4
honi et al.|(2020); |/ Ahmed et al.|(2020); [Matsuura & Harada
(2020); [Liu et al.|(2021)) propose to identify minority groups
by looking at the features produced by a biased model.
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Figure 2: Our algorithm TOFU 1) infers unstable features from the source task (Section [3.1) and 2) learns stable correlations
for the target task (Section[3.2). We create partitions for all environment pairs. For ease of illustration, we only depict using

f1 to partition E5. Best viewed in color.

These automatic approaches are intriguing as they do not
require additional annotation. However, we note that bias is
a human-centric concept and can vary from tasks to tasks.
For models that only have access to the input-label pairs,
they have no information to distinguish causal features from
bias features. For example, consider the Colored MNIST
dataset, where color and digit shape are correlated in the
training set but not in the test set. If our task is to predict
the digit, then color becomes the spurious bias that we want
to remove. Vice versa, if we want to predict the color, then
digit shape is spurious. |Creager et al. (2021); [Nam et al.
(2020) empirically demonstrate that they can learn a color-
invariant model for the digit prediction task. However, their
approaches will result in the same color-invariant model for
the color prediction task, and thus fail at test time, when
color and digit are no longer correlated. In this work, we
leverage source tasks to define the exact bias that we want
to remove for the target task.

Transferring robustness across tasks: Prior work has
also studied the transferability of adversarial robustness
across tasks. For example, [Hendrycks et al.|(2019); Shafahi
et al.| (2020) show that by pre-training the model on a large-

scale source task, we can improve the model robustness
against adversarial perturbations over [, norm. We note that
these perturbations measure the smoothness of the classifier,
rather than the stability of the classifier against spurious
correlations. In fact, our results show that if we directly
re-use or fine-tune the pre-trained feature extractor on the
target task, the model will quickly over-fit to the unstable
correlations present in the data. We propose to address this
issue by explicitly inferring the unstable features using the
source environments and use this information to guide the
target classifier during training.

3. Method

Problem formulation We consider the transfer problem
from a source task to a target task. For the source task, we as-
sume the standard setting (Arjovsky et al.,|2019) where the
training data contain n environments F1, ..., F,. Within
each environment F;, examples are drawn from the joint
distribution P;(z, y). Following [Woodward (2005)), we de-
fine unstable features Z(x) as features that are differentially
correlated with the label across the environments. We note
that Z(z) is unknown to the model.
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For the target task, we only have access to the input-label
pairs (x,y) (i.e. no environments). We assume that the
target label is not causally associated with the above un-
stable features Z. However, due to collection biases, the
target data may contain spurious correlations between the
label and Z. Our goal is to transfer the knowledge that Z is
unstable in the source task, so that the target classifier will
not rely on these spurious features.

Overview If the unstable features have been identified
for the target task, we can simply apply group DRO to
learn a stable classifier. By grouping examples based on
the unstable features and minimizing the worst-case risk
over these manually-defined groups, we explicitly address
the bias from these unstable features (Hu et al.| 2018 |Oren
et al.,[2019; [Sagawa et al., [2020). In our setup, while these
unstable features are not accessible, we can leverage the
source environments to derive groups over the target data
that are informative of these biases. Applying group DRO
on these automatically-derived groups, we can eliminate
the unstable correlations in the target task.

Our overall transfer paradigm is depicted in Figure [2| It
consists of two steps: inferring unstable features from the
source task (Section [3.1)) and learning stable correlations
for the target task (Section @]) First, for the source task
we use a classifier trained on one environment to partition
data from another environment based on the correctness
of its predictions. Starting from the theoretical results in
(Bao et al.|[2021)), we show that these partitions reflect the
similarity of the examples in terms of their unstable features:
among examples with the same label value, those that share
the same prediction outcome have more similar unstable
features than those with different predictions (Theorem [I)).
We can then derive a representation fz where examples
are distributed based on the unstable features Z. Next, we
cluster target examples into groups based on the learned
unstable feature representation fz. These automatically-
derived groups correspond to different modes of the unstable
features, and they act as proxies to the manually-defined
groups in the oracle setting where unstable features are
explicitly annotated. Finally, we use group DRO to obtain
our robust target classifier by minimizing the worst-case risk
over these groups.

3.1. Inferring unstable features from the source task

Given the data environments from the source task, we would
like to 1) identify the unstable correlations across these en-
vironments; 2) learn a representation fz(x) that encodes
the unstable features Z(z). We achieve the first goal by
contrasting the empirical distribution of different environ-
ments (Figure[2]S.1 and Figure[2]S.2) and the second goal
by metric learning (Figure [2]S.3).

Let E; and E; be two different data environments. |Bao et al.
(2021)) shows that by training a classifier f; on E; and using
it to make predictions on E;, we can reveal the unstable
correlations from its prediction results. Intuitively, if the
unstable correlations are stronger in F;, the classifier f; will
overuse these correlations and make mistakes on E; when
these stronger correlations do not hold.

In this work, we connect the prediction results directly to
the unstable features. We show that the prediction results of
the classifier f; on E; estimate the relative distance of the
unstable features.

Theorem 1 (Simplified). Consider examples in E; with
label value y. Let X 1/ , XQ/ denote two batches of examples
that f; predicted correctly, and let X3 denote a batch of
incorrect predictions. We use ~~ to represent the mean
across a given batch. Following the same assumption in
(Bao et al.| |2021), we have

IZ(X7") = Z(X3)2 < [Z2(X7) = Z(X3)2
almost surely for large enough batch size

The result makes intuitive sense as we would expect example
pairs that share the same prediction outcome should be more
similar than those with different prediction outcomes. We
note that it is critical to look at examples with the same label
value; otherwise, the unstable features will be coupled with
the task-specific label in the prediction results.

While the value of the unstable features Z(z) is still not
directly accessible, Theoremenables us to learn a feature
representation fz(x) that preserves the distance between
the examples in terms of their unstable features. We adopt
standard metric learning (Chechik et al., 2010) to minimize
the following triplet loss:

Lz(X{, X5, X5) = max(0,6 + | fz(X}") - fz(X5)13
= IF2(XY) = F= (X593,
1
where ¢ is a hyper-parameter. By minimizing Eq (I), we
encourage examples that have similar unstable features to
be close in the representation fz. To summarize, inferring
unstable features from the source task consists of three steps

(Figure 2]S):

S.1 For each source environment F;, train an environment-
specific classifier f;.

S.2 For each pair of environments F; and Ej, use classifier
fi to partition I into two sets: E;»‘/ and E;X , Where
E}“ contains examples that f; predicted correctly and
E;iX contains those predicted incorrectly.

!'See Appendix for the full theorem and proof.
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S.3 Learn an unstable feature representation fz by mini-
mizing Eq (I) across all pairs of environments E;, E;
and all possible label value y:

Table 1: Pearson correlation coefficient between the spuri-
ous feature Z and the label Y for each task. The validation
environment £ follows the same distribution as E'i". We
study the transfer problem between different task pairs. For

fz = argmin Z Exy xy xz [£2(X{", X5, X5)] the source task S, the model can access Efin(S), Eyain(S)

y,Ei#E;

where batches X}, X3 are sampled uniformly from
E?|, and batch X is sampled uniformly from E%*|,,
(-], denotes the subset of - with label value y).

3.2. Learning stable correlations for the target task

Given the unstable feature representation fz, our goal is to
learn a target classifier that focuses on the stable correla-
tions rather than using unstable features. Inspired by group
DRO (Sagawa et al., [2020) we minimize the worst-case
risk across groups of examples that are representative of
different unstable feature values. However, in contrast to
DRO, these groups are constructed automatically based on
the previously learned representation fz.

For each target label value y, we use the representation fz
to cluster target examples with label y into different clus-
ters (Figure 2] T.1). Since these clusters capture different
modes of the unstable features, they are approximations
of the typical manually-defined groups when annotations
of the unstable features are available. By minimizing the
worst-case risk across all clusters, we explicitly enforce
the classifier to be robust against unstable correlations (Fig-
ure 2] T.2). We note that it is important to cluster within
examples of the same label, as opposed to clustering the
whole dataset. Otherwise, the cluster assignment may be
correlated with the target label.

Concretely, learning stable correlations for the target task
has two steps (Figure 2]T).

T.1 For each label value y, apply K-means (l5 distance)
to cluster examples with label y in the feature space
fz. Weuse CY, ..., C}_ to denote the resulting cluster
assignment, where n. is a hyper-parameter.

T.2 Train the target classifier f by minimizing the worst-
case risk over all clusters:

[ = argminmax L(C}),
iy

where £(CY) is the empirical risk on cluster C?.

4. Experimental setup
4.1. Datasets and settings

Synthetic environments We start with controlled experi-
ments where environments are created based on the spuri-
ous correlation. We consider four datasets: MNIST (Le-
Cun et al., [1998), BeerReview (McAuley et al., [2012),

andAE"a'(S). For the target task 7', the model can access
Ef™(T) and EY(T).

p(2,Y) Task Eiein  piwin - pal et
MNIST ODD 0.87 075 087 -0.11
EVEN 087 075 0.87 -0.11
LOOK 0.60 080 0.60 | -0.80
BEER REVIEW " \roma [70:60" 10807 0:60 JE0I80
PALATE = 0.60  0.80 0.60 = -0.80

PENE. 0.31 052 031 0.00
INCI. 044 066 044 0.00
WATER =~ 036 @ 063 036 0.00
SEA 039 064 039 0.00

ASK2ME

WATERBIRD

ASK2ME (Bao et al.,|2019a)) and Waterbird (Sagawa et al.,
2019). In MNIST and BeerReview, we inject spurious
feature to the input (background color for MNIST and
pseudo token for BeerReview). In ASK2ME and Water-
bird, spurious feature corresponds to an attribute of the
input (breast_cancer for ASK2ME and background
for Waterbird).

For each dataset, we consider multiple tasks and study the
transfer between these tasks. Specifically, for each task, we
split its data into four environments: E{ain piain pral - piest
where spurious correlations vary across the two train-
ing environments E{" Efan  For the source task S,
the model can access both of its training environments
Elain(§) Fiain(S). For the target task 7', the model only
has access to one training environment £ (7). We note
that the validation set EY¥(T') plays an important role in
early-stopping and hyper-parameter tuning, especially when
the distribution of the data is different between training and
testing (Gulrajani & Lopez-Paz| [2020)). In this work, since
we don’t have access to multiple training environments on
the target task, we assume that the validation data EY4 fol-
lows the same distribution as the training data E{". TableE]
summarizes the level of the spurious correlations for differ-
ent tasks. Additional details can be found in Appendix

Natural environments We also consider a practical set-
ting where environments are directly defined by a given
attribute of the input, and our goal is to reduce model biases
from other latent attributes. We study CelebA (Liu et al.|
2015a) where each input (an image of a human face) is anno-
tated with 40 binary attributes. The source task is to predict
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Table 2: Target task accuracy of different methods. All methods are tuned based on a held-out validation set that follows
from the same distribution as the target training data. Bottom right: standard deviation across 5 runs. Upper right: source

task testing performance (if applicable).

SOURCE TARGET ERM REUSEp, FINETUNEy, MULTITASK TOFU ORACLE
& obp EVEN  123z06 144779 112000 116059 69.1+116  68.7+00
S Even ODD 9.7+06 1927030 11570 101799 668108 67.8+05
LOOK  AROMA 555:17 319790 537000 541050 759114 773413
2 LOOK  PALATE 469:0s 22807 493037 52838 738107 74.0:12
é AROMA  LOOK 63906 401559 652008 640002 80905 80.1+06
é AROMA  PALATE 469+03 140759 479032 500012 735411 74.0+102
“ PALATE  LOOK  639+o6 404572 430D 63179 810110  80.1%0s
PALATE ~AROMA 555:17 231992 545080 565079  769+15 773413
L PENE INcL 793+1s 717020 7932 710D 832415 84.8410
“INel PENE. 7T16i1s 64183 720830 610820 781414 783200
S WATER SEA  81.8+as 87807 8200 88000 93104 93.7:07
2 SEA WATER 750463 94673 782030 935027 99.0:04 989+05
Average 552 43.7 55.8 56.4 79.3 79.6
the Eyeglasses attribute and the target task is to predict Transfer methods Since the source task contains multiple

the BlondHair attribute. We use the Young attribute
to define two environments: E; = {Young = 0} and
E5 = {Young = 1}. In the source task, both environments
are available. In the target task, we only have access to
environment E; during training and validation. At test time,
we evaluate the robustness of our target classifier against
other latent attributes. Specifically, for each unknown at-
tribute such as Male, we partition the testing data into
four groups: {Male = 1,BlondHair = 0}, {Male =
0,BlondHair = 0}, {Male = 1,BlondHair = 1},
{Male = 0,BlondHair = 1}. Following (Sagawa et al.,
2019), We report the worst-group accuracy and the average-
group accuracy.

4.2. Baselines

We compare our algorithm against the following baselines.
For fair comparison, all methods share the same represen-
tation backbone and hyper-parameter search space. Imple-
mentation details are available at Appendix [C.2]

ERM baseline We learn a classifier on the target task from
scratch by minimizing the average loss across all examples.
Note that this classifier is independent of the source task.
Its performance reflects the deviation between the training
distribution and the testing distribution of the target task.

environments, we can learn a stable model on the source
task and transfer it to the target task. We use four algo-
rithms to learn the source task: DANN (Ganin et al.,|2016),
C-DANN (L1 et al., 2018b), MMD (Li et al.|[2018a), P1 (Bao
et al., 2021)). We consider three standard methods for trans-
ferring the source knowledge:

REUSE: We directly transfer the feature extractor of the
source model to the target task. The feature extractor is
fixed when learning the target classifier.

FINETUNE: We update the feature extractor when training
the target classifier. (Shafahi et al., |2020) has shown that
FINETUNE may improve adversarial robustness of the target
task.

MULTITASK: We adopt the standard multi-task learning
approach (Caruanal |1997) where the source model and the
target model share the same feature extractor and are jointly
trained together.

Automatic de-biasing methods For the target task, we
can also apply de-biasing approaches that do not require
environments. We consider the following baselines:

EIL (Creager et al., [2021): Based on a pre-trained ERM
classifier’s prediction logits, we infer an environment as-
signment that maximally violates the invariant learning prin-
ciple (Arjovsky et al.l 2019). We then apply group DRO to
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Table 3: Worst-group and average-group accuracy on CelebA. The source task is to predict Eyeglasses and the
target task is to predict BlondHair. We use the attribute Young to define two environments: F; = {Young = 0},
E5; = {Young = 1}. Both environments are available in the source task. In the target task, we only have access to E;
during training and validation.. We show the results for the first 3 attributes (alphabetical order). The right-most Average*
column is computed based on the performance across all 38 attributes. See Appendix E for full results.

METHOD ArchedEyebrows Attractive BagsUnderEyes Average”™
Worst Average Worst  Average Worst  Average  Worst  Average
ERM 75.43 88.52 75.00 88.94 70.91 87.09 61.01 85.07
REUSEp 53.71 64.05 52.13 64.85 52.50 66.88 47.58 64.14
REUSEpann 59.56 72.44 62.03 72.26 64.58 73.83 55.27 72.31
REUSEc-pann 56.02 67.07 57.78 67.90 57.50 68.33 53.22 68.56
é REUSEummp 48.91 59.80 48.46 61.51 58.74 63.11 50.61 61.27
% FINETUNEy, 71.86 87.02 72.73 87.34 62.50 84.10 63.07 85.27
& FINETUNEpay 65.38 83.89 63.35 84.98 56.86 81.34 50.60 80.49
FINETUNEcpany ~ 73.85 88.90 75.61 89.39 75.86 88.14 62.03 85.57
FINETUNEwup 76.07 88.80 74.33 89.74 78.57 88.61 66.80 86.81
MULTITASK 69.66 86.91 72.73 87.44 70.00 85.21 64.37 85.21
« EIIL 64.71 85.12 64.43 85.96 66.67 83.90 57.62 83.22
E GEORGE 74.73 87.89 73.66 87.70 77.78 87.97 63.34 85.04
E LFF 4541 60.23 47.67 60.16 42.59 60.72 42.52 62.04
£ M-ADA 64.61 83.33 67.33 83.59 70.34 85.34 54.55 80.77
- DG-MMLD 69.51 87.38 68.42 87.50 63.41 84.78 55.69 83.51
TOFU 85.66 91.47 88.30 92.76 90.38 92.41 84.86 91.71

minimize the worst-case loss over all inferred environments.

GEORGE (Sohoni et al.,|2020): We use the feature represen-
tation of a pre-trained ERM classifier to cluster the training
data. We then apply group DRO to minimize the worst-case
loss over all clusters.

LFF (Nam et al.| |2020): We train a biased classifier together
with a de-biased classifier. The biased classifier amplifies
its bias by minimizing the generalized cross entropy loss.
The de-biased classifier then up-weights examples that are
mis-labeled by the biased classifier during training.

M-ADA (Qiao et al.| 2020): We use a Wasserstein auto-
encoder to generate adversarial examples. The de-biased
classifier is trained on both the original examples and the
generated examples.

DG-MMLD (Matsuura & Harada, [2020): We iteratively di-
vide target examples into latent domains via clustering, and
train the domain-invariant feature extractor via adversarial
learning.

ORACLE For synthetic environments, we can use the
spurious feature to define groups and train an oracle

R ® blue
o green
- orange
~E

purple
brown

Figure 3: PCA visualization of the unstable feature repre-
sentation fz for examples in MNIST EVEN. fz is trained

on MNIST ODD. TOFU identifies the hidden spurious color
feature by contrasting different source environments.

model. For example, in task SEABIRD, this oracle model
will minimize the worst-case risk over the following four
groups: {seabird in water}, {seabird in land}
{landbird in water}, {landbird in land}. This
oracle model helps us analyze the performance of our pro-
posed algorithm separately from the inherent limitations
(such as model capacity and data size).
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Figure 4: Visualization of the unknown attribute Male on
CelebA. Left: distributions of Male in the training data.
Mid: partitions learned by TOFU. Right: partitions learned
by EIIL. TOFU generates partitions that are more informative
of the unknown attribute (14% vs. 2%). See Appendix [F for
results on more attributes.

5. Results

Table 2] summarizes our results on synthetic environments.
We observe that standard transfer methods fail to improve
over the ERM baseline. On the other hand, TOFU consistently
achieves the best performance across 12 transfer settings,
outperforming the best baseline by 22.9%. While TOFU
doesn’t have access to the unstable features, by inferring
them from the source environments, it matches the oracle
performance with only 0.30% absolute difference.

Table [3| presents our results on natural environments. This
task is very challenging as there are multiple latent spurious
attributes in the training data. We observe that most auto-
matic de-biasing methods underperform the ERM baseline.
With the help of the source task, INETUNE and MULTITASK
achieve slightly better performance than ERM. TOFU con-
tinues to shine in this real-world setting: achieving the best
worst-group and average-group performance.

Is TOFU able to identify the unstable features? Yes. For
synthetic environments, we visualize the unstable feature
representation produced by fz on MNIST EVEN. Figure 3|
demonstrates that while fz only sees source examples
(oDD) during training, it can distribute target examples
based on their unstable color features.

For natural environments, we visualize the distribution of
two latent attributes (Male and ArchedEyebrows) over
the generated clusters. Figure ] shows that the distribution
gap of the unknown attribute Male across the generated
partitions is 2% for EIIL, only marginally better than random
splitting (0%). By leveraging information from the source
task, TOFU learns partitions that are more informative of the
unknown attribute (14%).

How do the generated clusters compare to the oracle
groups? We quantitatively evaluate the generated clusters
based on three metrics: homogeneity (each cluster contain

Table 4: Quantitative evaluation of the generated clusters
against the ground truth unstable features. For compari-
son, the TRIPLET baseline (TRP) directly encourages source
examples with the same label to stay close to each other
in the feature space, from which we generate the clusters.
For both methods, we generate two clusters for each target
label value and report the average performance across all
label values. We observe that the TRIPLET representation,
while biased by the spurious correlations, fails to recover the
ground truth unstable features for some tasks. By explicitly
contrasting the source environments, TOFU derives clusters
that are highly-informative of the unstable features.

Homo. Complete. V-measure

SOURCE TARGET

TRP TOFU TRP
ODD EVEN 042 0.68 058 0.95 049 0.79
EVEN oDD 0.67 0.67 093 099 0.78 0.80
LOOK AROMA 0.33 092 028 0.92 030 0.92
LOOK PALATE 0.33 090 027 0.89 030 0.90
AROMA LOOK 0.33 1.00 028 1.00 030 1.00
AROMA PALATE 0.82 1.00 0.77 1.00 0.79 1.00
PALATE LOOK 0.83 098 0.77 098 0.80 0.98
PALATE AROMA 0.82 095 0.77 095 0.79 0.95

TOFU TRP TOFU

only examples with the same unstable feature value), com-
pleteness (examples with the same unstable feature value
belong to the same cluster), and V-measure (the harmonic
mean of homogeneity and completeness). From Table
we see that TOFU is able to derive clusters that resemble
the oracle groups on BEER REVIEW. In MNIST, since we
generate two clusters for each label value and there are five
different colors, it is impossible to recover the oracle groups.
However, TOFU still achieves almost perfect completeness.

6. Conclusion

Reducing model bias is a critical problem for many machine
learning applications in the real world. In this paper, we
recognize that bias is a human-defined concept. Without
additional knowledge, automatic de-biasing methods can-
not effectively distinguish causal features from spurious
features. The main departure of this paper is to identify
bias by using related tasks. We demonstrate that when the
source task and target task share the same set of biases,
we can effectively transfer this knowledge and improve the
robustness of the target model without additional human
intervention. Compared with 15 baselines across 5 datasets,
our approach consistently delivers significant performance
gain. Quantitative and qualitative analyses confirm that our
method is able to identify the hidden biases. Due to space
limitations, we leave further discussions to Appendix [A]
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A. Discussion

Are biases shared across real-world tasks? In this paper, we show that for tasks where the biases are shared, we can
effectively transfer this knowledge to obtain a more robust model. This assumption holds in many real world applications. For
example, in natural language processing, the same gender bias exist across many tasks including relation extraction (Gaut;
et al., 2020), semantic role labeling (Jia et al., [2020), abusive language detection (Park et al., |2018)) and sentiment
analysis (Kiritchenko & Mohammad, 2018). In computer vision, the same geographical bias exists across different object
recognition benchmarks such as ImageNet, COCO and Openlmages (de Vries et al., 2019).

When a single source task does not describe all unwanted unstable features, we can leverage multiple source tasks and
compose their individual unstable features together. We can naturally extend TOFU to accomplish this goal by learning the
unstable feature representation jointly across this collection of source tasks. We focus on the basic setting in our main paper
and leave this extension to Appendix

Our approach is not applicable in situations where the biases in the source task and the target task are completely disjoint.

What if the source task and target task are from different domains? In this paper, we focus on the setting where
the source task and the target task are from the same domain. If the target task is drawn from a different domain, we
can use domain-adversarial training to align the distributions of the unstable features across the source domain and the
target domain (Li et al.,|2018aZa). Specifically, when training the unstable feature representation f,, we can introduce an
adversarial player that tries to guess the domain label from f,. The representation f, is updated to fool this adversarial
player in addition to minimize the triplet loss in Eq (I)). We leave this extension to future work.

Can we apply domain-invariant representation learning (DIRL) directly to the source environments? Domain
invariant representation learning (Ganin et al., 2016} |Li et al., [2018bza) aims to match the feature representations across
domains. If we directly treat environments as domains and apply these methods, the resulting representation may still encode
unstable features.

For example, in CelebA, the attribute Ma le is spuriously correlated with the target attribute BlondHair (Women are more
likely to have blond hair than men in this dataset). Given the two environments {Young = 0} and {Young=1}, DIRL
learns an age-invariant representation. However, if the distribution of Ma le is the same across the two environments, DIRL
will encode this attribute into the age-invariant representation (since it is helpful for predicting the target BlondHair
attribute). In our approach, we realize that the the correlations between Male and BlondHair are different in the two
environments (The elderly may have more white hair). Even though the distribution of Male may be the same, we can still
identify this bias from the classifiers’ mistakes. Empirically, Table [3] shows that while DIRL methods improve over the
ERM baseline, they still perform poorly on minority groups (worst case acc 66.80% on CelebA).

What if the mistakes correspond to other factors such as label noise, distribution shifts, etc.? For ease of analysis, we
do not consider label noise and distribution shift in Theorem[Il One future direction is to model bias from the information
perspective (rather than looking at the linear correlations). This will enable us to relax the assumption in the analyses and
we can further incorporate these different mistake factors into the modeling.

We note that we do not impose this assumption in our empirical experiments. For example, we explicitly added label noise
into the MNIST data. In CELEBA, there is a distribution gap (from young people to the elderly) across the two environments.
We observe that our method is able to perform robustly in situations where the assumption breaks.

Is the algorithm efficient when multiple source environments are available? Our method can be generalized efficiently
to multiple environments. Given /N source environments, we first note that the complexities of the target steps T.1 and
T.2 are independent of N. For the source task, the N environment-specific classifiers (in S.1) can be learned jointly with
multi-task learning (Caruana, [1997). This significantly reduces the inference cost at S.2 as we only need to pass each input
example through the (expensive) representation backbone for one time. In S.3, we sample partitions when minimizing
the triplet loss, so there is no additional cost during training. In this paper, we focus on the two-environments setup for
simplicity and leave this generalization to future work.

Why does the baselines perform so poorly on MNIST? We note that the representation backbone (a 2-layer CNN)
on MNIST is trained from scratch while we use pre-trained representations for other datasets (see Appendix [C.2). Our
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hypothesis is that models are more prune to spurious correlations when trained from scratch.

B. Theoretical analysis
B.1. Partitions reveal the unstable correlation

We start by reviewing the results in (Bao et al.,2021)) which shows that the generated partitions reveal the unstable correlation.
We consider binary classification tasks where ) € {0, 1}. For a given input z, we use C(z) to represent its stable (causal)
feature and Z(x) to represent its unstable feature. In order to ease the notation, if no confusion arises, we omit the
dependency on x. We use lowercase letters ¢, z, y to denote the specific values of C, Z, ).

Proposition 1. For a pair of environments E; and Ej;, assuming that the classifier f; is able to learn the true conditional
P;(Y | C, Z), we can write the joint distribution P; of E; as the mixture ofP]N and P;*:

Pj(C,Z,y) = aéP;/(c,z,y) + (1 —Oé;-)P;X(C,Zvy),

where s = 3 Pj(c,z,y) - Pi(y | ¢c,z) and

¢,z,y

P;‘/(c,z,y) x Pj(e,2,y) - Pi(y | ¢, 2),
P]?’X(x,z,y) x Pj(c,z,y) - Pi(l—y|c,2).

Proof. See (Bao et al.,|2021)). O

Proposition [I]tells us that if f; is powerful enough to capture the true conditional in F;, partitioning the environment E; is
equivalent to scaling its joint distribution based on the conditional on FE;.

Now suppose that the marginal distribution of ) is uniform in all joint distributions, i.e., f; performs equally well on
different labels. Bao et al.| (2021]) shows that the unstable correlations will have different signs in the subset of correct
predictions and in the subset of incorrect predictions.

Proposition 2. Suppose Z is independent of C given Y. For any environment pair E; and Ej, if 3° Pi(z | y) =3, Pj(z |
y) for any z, then Cov(Z,Y; P;) > Cov(Z,Y; P;) implies

Cov(Z,V;P*) <0, and Cov(Z,Y;P/*)>0.
Proof. See (Bao et al.,[2021]). O

Proposition [2| implies that no matter whether the spurious correlation is positive or negative, by interpolating
P;/, P;X , PZ?/, P’ *, we can obtain an oracle distribution where the spurious correlation between Z and ) vanishes.
Since the oracle interpolation coefficients are not available in practice, Bao et al.|(2021)) propose to optimize the worst-case

risk across all interpolations of the partitions.

B.2. Partitions reveal the unstable feature

Proposition [2{ shows that the partitions E]i-/7 E;X , Ef /, EZJ * are informative of the biases. However these partitions are not
transferable as they are coupled with task-specific information, i.e., the label ). To untangle this dependency, we look at
different label values and obtain the following result.

Corollary 1. Under the same assumption as Proposition 2| if Cov(Z,Y; P;) > Cov(Z,Y;P;) > 0 and Z follows a
uniform distribution within each partition, then

ZszX(Z:z,y: 1) > ZZP;/(Z:Zvy:D’

Y 2P (Z2=2Y=0)<> 2P} (Z=2Y=0)
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Proof. By definition of the covariance, we have

Cov(2,Y) =) =yP(Z=2Y=y) - <Z zP(Z2 = Z)> (Z yP(Y = y))

z Y
Since we assume the marginal distribution of the label is uniform, we have Y yP(Y = y) = 0.5. Then we have

Cov(2,Y) =) 2P(Z2=2Y=1)-05) 2P(Z = z).

z

Using P(Z=2)=P(Z=2,Y=0)+ P(Z=2z)Y=1), we obtain

Cov(2,Y) =05 2P(Z2=2Y=1)-05) 2P(Z=2Y=0). 2)

From Proposition we have Cov(Z,Y; P;X) < 0. Note that this implies Cov(Z, Y; PJN) > 0 since Cov(Z,); P;) >0
and P; = o’ P}¥ + (1 — a})P;*. Combining with Eq (), we have

ZzP;X(Z:z,y: 1) < ZZP;X(Z:ZJ):O)’

z

Zzpjf(zzz,yzm>ZZP;/(Zzz,y:0). 3)

z z

Since we assume the marginal distribution of the unstable feature Z is uniform, we have

S P (Z2=2Y=1)+)Y PP (Z2=2Y=0)=)Y zP"(Z=2) =05,

z

ZZP;/(Z =2zY=1) +Zsz‘/(Z =2Y=0)= ZZP;/(Z =2)=0.5. 4)

z

z

z

Plugging Eq @) into Eq (4), we have

Y P (Z2=2Y=1)<025<Y zPX(Z=2Y=0),

z

Y P (2=2Y=1)>025>) 2P (2=2Y=0).

Combining the two inequalities finishes the proof. O
Corollary [T shows that if we look at examples within the same label value, then expectation of the unstable feature Z within

the set of correct predictions will diverge from the one within the set of incorrect predictions. In order to learn a metric
space that corresponds to the values of Z, we sample different batches from the partitions and prove the following theorem.

Theorem 1. (Full version) Suppose Z is independent of C given Y. We assume that Y and Z both follow a uniform
distribution within each partition.

Consider examples in E; with label value y. Let X Y, X denote two batches of examples that f; predicted correctly, and
let X3 denote a batch of incorrect predictions. If Cov(Z,Y; P;) > Cov(Z,Y; P;) > 0, we have

IZ(X7") = Z(X3)2 < 1Z2(X7) = Z(X3)2
almost surely for large enough batch size.

Proof. Without loss of generality, we consider y = 0. Let n denote the batch size of X7, X3 and Xy . By the law of large
numbers, we have

Z(X{),Z2(X5) == EP;“(ZI))) [Z2|Y=0 and Z(X;) EP_;‘X(ZD)) 2]y =0],
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as n — oo. Note that Corollary [T]tells us

Thus we have o o o o
IZ(X7) = Z(X)2 < IZ(XY) = Z(X3)|l2

almost surely as n — oco. O

We note that while we focus our theoretical analysis on binary tasks, empirically, our method is able to correctly identify the
hidden bias for multi-dimensional unstable features and multi-dimensional label values.

C. Experimental setup
C.1. Datasets and models
C.1.1. MNIST

Data We extend Arjovsky et al.| (2019)’s approach for generating spurious correlations and define two multi-class
classification tasks: EVEN (5-way classification among digits 0, 2, 4, 6, 8) and ODD (5-way classification among digits
1,3,5,7,9). For each image, we first map its numeric digit value y%" into its class id within the task: 353l = | ydigit /2],
This class id serves as the causal feature for the given task. We then sample the observed label 1, which equals to 322!
with probability 0.75 and a uniformly random other label value with the remaining probability. With this noisy label, we
now sample the spurious color feature: the color value equals y with n probability and a uniformly other value with the
remaining probability. We note that since there are five different digits for each task, we have five different colors. Finally,
we color the image according to the generated color value. For the training environments, we set 1) to 0.8 in E{" and 0.9 in
E4ain We set 7 = 0.1 in the testing environment £,

We use the official train-test split of MNIST. Training environments are constructed from training split, with 7370 examples
per environment for EVEN and 7625 examples per environment for ODD. Validation data and testing data is constructed
based on the testing split. For EVEN, both validation data and testing data have 1230 examples. For ODD, the number is 1267.
Following |Arjovsky et al.[(2019), We convert each grey scale image into a 5 x 28 x 28 tensor, where the first dimension
corresponds to the spurious color feature.

Representation backbone We follow the architecture from PyTorch’s MNIST exampleﬂ Specifically, each input image is
passed to a CNN with 2 convolution layers followed by 2 fully connected layers.

License The dataset is freely available at http://yann.lecun.com/exdb/mnist/|

C.1.2. BEER REVIEW

Data We consider the transfer among three binary aspect-level sentiment classification tasks: LOOK, AROMA and
PALATE (Lei et al., 2016). For each review, we follow Bao et al.|(2021)) and append a pseudo token (art _pos or art _neq)
based on the the sentiment of the given aspect (pos or neg). The probability that this pseudo token agrees with the
sentiment label is 0.8 in B4 and 0.9 in E§%". In the testing environment, this probability reduces to 0.1. Unlike MNIST,
there is no label noise added to the data.

We use the script created by Bao et al.[(2021) to generate spurious features for each aspect. Specifically, for each aspect, we
randomly sample training/validation/testing data from the dataset. Since our focus in this paper is to measure whether the
algorithm is able to remove biases (rather than label imbalance), we maintain the marginal distribution of the label to be
uniform. Each training environment contains 4998 examples. The validation data contains 4998 examples and the testing
data contains 5000 examples. The vocabulary sizes for the three aspects (look, aroma, palate) are: 10218, 10154 and 10086.

Representation backbone We use a 1D CNN (Kim, [2014)), with filter size 3, 4, 5, to obtain the feature representation.
Specifically, each input is first encoded by pre-trained FastText embeddings (Mikolov et al., 2018)). Then it is passed into a
convolution layer followed by max pooling and ReLU activation.

Zhttps://github.com/pytorch/examples/blob/master/mnist/main.py
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License This dataset was originally downloaded from |https://snap.stanford.edu/data/
web-BeerAdvocate.html. As per request from BeerAdvocate the data is no longer publicly available.

C.1.3. ASK2ME

Data ASK2ME (Bao et al.,[2019a)) is a text classification dataset where the inputs are paper abstracts from PubMed. We
study the transfer between two binary classification tasks: PENETRANCE (identifying whether the abstract is informative
about the risk of cancer for gene mutation carriers) and INCIDENCE (identifying whether the abstract is informative about
proportion of gene mutation carriers in the general population). By definition, both tasks are causally-independent of the
diseases that have been studied in the abstract. However, due to the bias in the data collection process, Deng et al.|(2019)
found that the performance varies (by 12%) when we evaluate based on different cancers. To assess whether we can remove
such bias, we define two training environments for each task based on the correlations between the task label and the
breast_cancer attribute (indicating the presence of breast cancer in the abstract). Script for generating the environments
is available in the supplemental materials. Note that the model doesn’t have access to the breast_cancer attribute during
training.

Following Sagawa et al.[(2019), we evaluate the performance on a balanced test environment where there is no spurious
correlation between breast _cancer and the task label. This helps us understand the overall generalization performance
across different input distributions.

We randomly split the data and use 50% for PENETRANCE and 50% for INCIDENCE. For PENETRANCE, there are 948
examples in ET" and EY¥, 816 examples in EY4" and 268 examples in E'*!, For INCIDENCE, there are 879 examples in
Efain and B4 773 examples in EY4" and 548 examples in £, The processed data will be publicly available.

Representationi backbone The model architecture is the same as the one for Beer review.

License MIT License.

C.1.4. WATERBIRD

Data Waterbird is an image classification dataset where each image is labeled based on its bird class (Welinder et al.|[2010)
and the background attribute (water vs. land). Following Sagawa et al.|(2019), we group different bird classes together
and consider two binary classification tasks: SEABIRD (classifying 36 seabirds against 36 landbirds) and WATERFOWL
(classifying 9 waterfowl against 9 different landbirds). Similar to ASK2ME, we define two training environments for each
task based on the correlations between the task label and the background attribute. Script for generating the environments
is available in the supplemental materials. At test time, we measure the generalization performance on a balanced test
environment.

Following [Liu et al.| (2015b), we group different classes of birds together to form binary classification tasks.

In WATERFOWL, the task is to identify 9 different waterfowls (Red breasted Merganser, Pigeon Guillemot, Horned Grebe,
Eared Grebe, Mallard, Western Grebe, Gadwall, Hooded Merganser, Pied billed Grebe) against 9 different landbirds
(Mourning Warbler, Whip poor Will, Brewer Blackbird, Tennessee Warbler, Winter Wren, Loggerhead Shrike, Blue winged
Warbler, White crowned Sparrow, Yellow bellied Flycatche). The training environment E{" contains 298 examples and the
training environment EY4" contains 250 examples. The validation set has 300 examples and the test set has 216 examples.

In SEABIRD, the task is to identify 36 different seabirds (Heermann Gull, Red legged Kittiwake, Rhinoceros Auklet, White
Pelican, Parakeet Auklet, Western Gull, Slaty backed Gull, Frigatebird, Western Meadowlark, Long tailed Jaeger, Red
faced Cormorant, Pelagic Cormorant, Brandt Cormorant, Black footed Albatross, Western Wood Pewee, Forsters Tern,
Glaucous winged Gull, Pomarine Jaeger, Sooty Albatross, Artic Tern, California Gull, Horned Puffin, Crested Auklet,
Elegant Tern, Common Tern, Least Auklet, Northern Fulmar, Ring billed Gull, Ivory Gull, Laysan Albatross, Least Tern,
Black Tern, Caspian Tern, Brown Pelican, Herring Gull, Eastern Towhee) against 36 different landbirds (Prairie Warbler,
Ringed Kingfisher, Warbling Vireo, American Goldfinch, Black and white Warbler, Marsh Wren, Acadian Flycatcher,
Philadelphia Vireo, Henslow Sparrow, Scissor tailed Flycatcher, Evening Grosbeak, Green Violetear, Indigo Bunting, Gray
Catbird, House Sparrow, Black capped Vireo, Yellow Warbler, Common Raven, Pine Warbler, Vesper Sparrow, Pileated
Woodpecker, Bohemian Waxwing, Bronzed Cowbird, American Three toed Woodpecker, Northern Waterthrush, White
breasted Kingfisher, Olive sided Flycatcher, Song Sparrow, Le Conte Sparrow, Geococcyx, Blue Grosbeak, Red cockaded
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Table 5: Data statistics of CelebA. The model has access to both F; and E5 on the source task. For the target task, only Fy
is available during training and validation.

source task Eyeglasses target task BlondHair
E; : {Young=0} FE5:{Young=1} E;:{Young=0} FEs:{Young=1}
Train 17955 63430 17973 63412
Val 2494 7442 2453 7480
Test 2452 7597 2444 7537

Woodpecker, Green tailed Towhee, Sayornis, Field Sparrow, Worm eating Warbler). The training environment E" contains
1176 examples and the training environment E%" contains 998 examples. The validation set has 1179 examples and the test
set has 844 examples.

Representation backbone We use the Pytorch torchvision implementation of the ResNet50 model, starting from pretrained
weights. We re-initalize the final layer to predict the label.

License This dataset is publicly available at |https://nlp.stanford.edu/data/dro/waterbird_
complete95_ forest2water2.tar.gz

C.1.5. CELEBA

Data CelebA (Liu et al.}|2015a) is an image classification dataset where each image is annotated with 40 binary attributes.
We consider Eyeglasses as the source task and BlondHair as the target task. We split the official train / val /
test set into two parts (uniformly at random) for each task. We use the attribute Young to create two environments:
E, = {Young = 0}, E5 = {Young = 1}. For the target task, the model only has access to E; during training and
validation. Table[3summarizes the data statistics.

License The CelebA dataset is available for non-commercial research purposes only. It is publicly available at https :
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

Representation backbone We use the Pytorch torchvision implementation of the ResNet50 model, starting from pretrained
weights. We re-initalize the final layer to predict the label.

C.2. Implementation details

For all methods: We use batch size 50 and evaluate the validation performance every 100 batch. We apply early stopping
once the validation performance hasn’t improved in the past 20 evaluations. We use Adam (Kingma & Ba, [2014) to optimize
the parameters and tune the learning rate € {10~3, 10~*}. For simplicity, we train all methods without data augmentation.
Following Sagawa et al.| (2019), we apply strong regularizations to avoid over-fitting. Specifically, we tune the dropout
rate € {0.1,0.3,0.5} for text classification datasets (Beer review and ASK2ME) and tune the weight decay parameters
€ {1071,1072, 1073} for image datasets (MNIST, Waterbird and CelebA).

DANN, C-DANN For the domain adversarial network, we use a MLP with 2 hidden ReLU layer with 300 neurons for each
layer. The representation backbone is updated via a gradient reversal layer. We tune the weight of the adversarial loss
€ {0.01,0.1,1}.

MMD We match the mean and covariance of the features across the two source environments. We use the
implementation from https://github.com/facebookresearch/DomainBed/blob/main/domainbed/
algorithms.py. We tune the weight of the MMD loss € {0.01,0.1, 1}.

MULTITASK For the source task, we first partition the source data into subsets with opposite spurious correlations (Bao
et al., 2021). During multi-task training, we minimize the worst-case risk over all these subsets for the source task and
minimize the average empirical risk for the target task. MULTITASK is more flexible than REUSE since we tune feature
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Figure 5: Accuracy of TOFU on ASK2ME as we vary the number of clusters n. generated for each label value. Empirically,
we see that while having more clusters doesn’t improve the performance, it helps reduce the variance.

extractor to fit the target data. Compared to FINETUNE, MULTITASK is more constrained as the source model prevents
over-utilization of unstable features during joint training.

Ours We fix § = 0.3 in all our experiments. Based on our preliminary experiments (Figure[3), we fix the number of clusters
to be 2 for all our experiments in Table[2]and Table[3] For the target classifier, we directly optimize the min — max objective.
Specifically, at each step, we sample a batch of example from each group, and minimize the worst-group loss. We found the
training process to be pretty stable when using the Adam optimizer.

Validation criteria For ERM, REUSE, FINETUNE and MULTITASK, since we don’t have any additional information (such as
environments) for the target data, we apply early stopping and hyper-parameter selection based on the average accuracy on
the validation data.

For TOFU, since we have already learned an unstable feature representation fz on the source task, we can also use it
to cluster the validation data into groups where the unstable features within each group are different. We measure the
worst-group accuracy and use it as our validation criteria.

For ORACLE, as we assume access to the oracle unstable features for the target data, we can use them to define groups on the
validation data as well. We use the worst-group accuracy as our validation criteria.

We also note that when we transfer from LOOK to AROMA in Table 2] both TOFU and ORACLE are able to achieve 75
accuracy on E™. This number is higher than the performance of training on AROMA with two data environments ( 68
accuracy in Table[2). This result makes sense since in the latter case, we only have in-domain validation set and we use
the average accuracy as our hyper-parameter selection metric. However, in both TOFU and ORACLE, we create (either
automatically or manually) groups over the validation data and measure the worst-group performance. This ensures that the
chosen model will not over-fit to the unstable correlations.

Computational resources: We use our internal clusters (24 NVIDIA RTX A6000 and 16 Tesla V100-PCIE-32GB) for
the experiments. It took around a week to generate all the results in Table [2]and Table [3]

D. Additional analysis

Why do the baselines behave so differently across different datasets? As|Bao et al.|(2019b) pointed out, the transferability
of the low-level features is very different in image classification and in text classification. For example, the keywords for
identifying the sentiment of LOOK are very different from the ones for PALATE. Thus, fine-tuning the feature extractor
is crucial. This explains why REUSE underperforms other baselines on text data. Conversely, in image classification, the
low-level patterns (such as edges) are more transferable across tasks. Directly reusing the feature extractor helps improve
model stability against spurious correlations. Finally, we note that since TOFU transfers the unstable features instead of the
task-specific causal features, it performs robustly across all the settings.

How many clusters to generate? We study the effect of the number of clusters on ASK2ME. Figure |5 shows that while
generating more clusters in the unstable feature space fz reduces the variance, it doesn’t improve the performance by much.
This is not very surprising as the training data is primarily biased by a single breast_cancer attribute. We expect that
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learning rate learning rate

0.001 0.0001 0.001 0.0001

0.1 0.4001
0.01 0.4294 0.3789

0.001 0.001

weight decay
weight decay

worst-group loss on the generated
partitions of the validation set

worst-group accuracy on the test set

Figure 6: Hyper-parameter selection for TOFU on CelebA (averaged across 5 runs). We use our learned unstable feature
representation fz to partition the validation set and use the worst-group validation loss as our hyper-parameter selection
criteria. Empirically, we observe that this criteria correlates well with the model robustness on the testing data.

Table 6: Ablation study on MNIST and BEER REVIEW.

SOURCE  TARGET FINETUNEp ABLATION TOFU

‘Z ODD EVEN 11.2 19.2 69.1
E EVEN OoDD 11.5 18.7 66.8
LOOK AROMA 53.7 71.4 75.9

E LOOK PALATE 49.3 64.6 73.8
> AROMA  LOOK 65.2 69.6 80.9
z AROMA  PALATE 47.9 50.3 73.5
E PALATE LOOK 64.3 70.1 81.0
PALATE ~ AROMA 54.5 57.9 76.9

having more clusters will be beneficial for tasks with more sophisticated underlying biases.

How do we select the hyper-parameter for TOFU? We cluster the validation data based on the learned unstable feature
representation fz and use the worst-group loss as our early stopping and hyper-parameter selection criteria. Figure [6]shows
our hyper-parameter search space. We observe that our validation criteria correlates well with the robustness of the model
on the testing data.

Ablation study The procedures in TOFU are interconnected. For example, we cannot apply group DRO (T.2) without
clustering the target examples (T.1). Nevertheless, we can empirically verify that TOFU provides cleaner separation in the
unstable feature space than a naive variant.

In Theorem 1, we show that it is necessary to compare example pairs with the same label value, as opposed to contrasting all
example pairs. Otherwise, the unstable features will be coupled with the task-specific information. To empirically support
our design choice, we consider a variant of TOFU that minimizes the hinge loss over all example pairs in S.3:

S.3 (ABLATION) Learn a feature representation fz by minimizing Eq (1) across all pairs of environments E;, E;:

. v Y
fz = argmin Z EX{,X{,XSX [ﬁz(Xl , X3 ,X;)},
E,#E;

where batches X, X3 are sampled uniformly from E;‘/ and batch X3 is sampled uniformly from E;X

We can think of ABLATION as directly transferring the partitions from the source task to the target task. Table[§ presents the
results on MNIST and BEER REVIEW. We observe that while ABLATION slightly improves over the fine-tuning baseline, it
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Figure 7: PCA visualizations of the feature representation fz for examples in MNIST EVEN (best viewed in color). fz is
trained on MNIST ODD. Compared with ABLATION (left), TOFU perfectly separates target examples based on their spurious
features (color).

" ABLATION

Table 7: Illustration of the tasks on MNIST for multiple source tasks experiments. In the source tasks (S, S2, S3), we want
to classify two digits where the label is spuriously correlated with a color pair (red-blue, red-green, blue-green). In the target
task 7', the goal is to learn a color-invariant model by using only one biased environment E{*".

Tasks Labels Eiain Elain Erest
g 0vs. 1 0000000000 0000000000 0000000000
1 ’ 1111111111 1111111111 1111111111
s 5 vs. 3 2222222222 2222222222 2222222222
2 ’ 3333333333 3333333333 3333333333
S e s 4444444440 44444444444 4444244444
3 : 5555555555 5555555555 5555555555
660666666606 66666666606
T 6vs. 7vs. 8 7777777777 NA T7777TTTTT

8688888888

significantly underperforms TOFU across all transfer settings. Figure 7] further confirms that the feature space learned by
ABLATION are not representative of the unstable color feature. We will include this ablation analysis in our updated version.
E. Multiple source tasks

One major limitation of our work is that the source task and the target task need to share the same unstable features. While a
single source task may not describe all unwanted unstable features, we can leverage multiple source tasks and combine their
individual unstable features together.

Extending TOFU to multiple source tasks We can naturally extend our algorithm by inferring a joint unstable feature
space across all source tasks.

MS.1 For each source task S and for each source environment ° E;, train an environment-specific classifier s fi

MS.2 For each source task S and for each pair of environments SE; and ¥ E;, use classifier o Ji to partition o E; into two
sets: 9B and ¥ E}*, where ® I contains examples that * f; predicted correctly and * E}* contains those predicted
incorrectly.

MS.3 Learn an unstable feature representation fz by minimizing Eq (T)) across all source tasks .S, all pairs of environments
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Table 8: Target task testing accuracy of different methods on MNIST with different combinations of the source tasks (see
Table 7| for an illustration of the tasks). Majority baseline is 33%. All methods are tuned based on a held-out validation set
that follows from the same distribution as the target training data. Bottom right: standard deviation across 5 runs. Upper
right: avg. source task testing performance (if applicable).

SOURCE ERM REUSEp; FINETUNEp; MULTITASK TOFU ORACLE
5 26.8:24 347720 35000 177899 57360 727107
S5 268224 346050 310080 14602 57885 727:0r
Sy 268224 341702 3360 129D 498,55 727:0r

Sy+ S, 268+24 340000 18352 22208 529, 727:0r

Sy+ S5 268+24 499703 4837 203028 534455 72.7:0r

So+ S5 26824 49570 509050 185720 534sa1 7270

Sy + Sy 455 268+24 341000 403055 264710 723:05 727107

SE;, S E; and all possible label value y:

fz=argminy > Ey, oo o [La(XY, X5 X)),
S y,5E;#5E;

where batches X}, X3 are sampled uniformly from © E}‘/ |, and batch X is sampled uniformly from E;X ly Cly
denotes the subset of - with label value v).

On the target task, we use this joint unstable feature representation fz to generate clusters as in Section[3.2] Since [z is
trained across the source tasks, the generated clusters are informative of all unstable features that are present in these tasks.
By minimizing the worst-case risks across the clusters, we obtain the final stable classifier.

Experiment setup We design controlled experiments on MNIST to study the effect of having multiple source tasks. We
consider three source tasks: S7 (0 vs. 1), S5 (2 vs 3) and S35 (4 vs. 5). For the target task 7', the goal is to identify 6, 7 and
8.

Similar to Section[d] we first generated the observed noisy label based on the digits. We then inject spurious color features
to the input images. For S7, S5 and Ss, the noisy labels are correlated with red/blue, red/green and blue/green
respectively. For the target task 7', the three noisy labels (6/7/8) are correlated with all three colors red/blue/green.
Table [7)illustrate the different spurious correlations across the tasks.

Baselines Since ERM and ORACLE only depend on the target task, they are the same as we described in Section 4] For
REUSE and FINETUNE, we first use multitask learning to learn a shared feature representation across all tasks. Specifically,
for each source task, we first partition its data into subsets with opposite spurious correlations by contrasting its data
environments Eir"“'“ and Egai“ (Bao et al.,[2021). We then train a joint model, with a different classifier head for each source
task, by minimizing the worst-case risk over all these subsets for each source task. The shared feature representation is
directly transferred to the target task. The baseline MULTITASK is similar to REUSE and FINETUNE. The difference is that
we jointly train the target task classifier together with all source tasks’ classifiers.

Results Table 8] presents our results on learning from multiple source tasks. Compared with the baselines, TOFU achieves
the best performance across all 7 transfer settings.

We observe that having two tasks doesn’t necessarily improve the target performance for TOFU. This result is actually not
surprising. For example, let’s consider having two source tasks S and S3. TOFU learns to recognize red vs. blue from S,
and red vs. green from Sy, but TOFU doesn’t know that b1ue should be separated from green in the unstable feature
space. Therefore, we shouldn’t expect to see any performance improvement when we combine .S; and S5. However, if we
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Figure 8: Visualization of the unknown attribute ArchedEyebrows and Attractive on CelebA. Left: distributions of
ArchedEyebrows and Attractive in the training data. Mid: partitions learned by TOFU. Right: partitions learned by
EIIL.

have one more source task 53 which specifies the invariance between blue and green, TOFU is able to achieve the oracle
performance.

For the direct transfer baselines, we see that MULTITASK simply learns to overfit the spurious correlation and performs
similar to ERM. REUSE and FINETUNE generally perform better when more source tasks are available. However, their testing
performance vary a lot across different runs.

F. Full results on CelebA
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Learning Stable Classifiers by Transferring Unstable Features
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