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Abstract
As a prevalent distributed learning paradigm, Fed-
erated Learning (FL) trains a global model on a
massive amount of devices with infrequent com-
munication. This paper investigates a class of
composite optimization and statistical recovery
problems in the FL setting, whose loss function
consists of a data-dependent smooth loss and a
non-smooth regularizer. Examples include sparse
linear regression using Lasso, low-rank matrix
recovery using nuclear norm regularization, etc.
In the existing literature, federated composite op-
timization algorithms are designed only from an
optimization perspective without any statistical
guarantees. In addition, they do not consider com-
monly used (restricted) strong convexity in statis-
tical recovery problems. We advance the frontiers
of this problem from both optimization and statis-
tical perspectives. From optimization upfront, we
propose a new algorithm named Fast Federated
Dual Averaging for strongly convex and smooth
loss and establish state-of-the-art iteration and
communication complexity in the composite set-
ting. In particular, we prove that it enjoys a fast
rate, linear speedup, and reduced communication
rounds. From statistical upfront, for restricted
strongly convex and smooth loss, we design an-
other algorithm, namely Multi-stage Federated
Dual Averaging, and prove a high probability com-
plexity bound with linear speedup up to optimal
statistical precision. Numerical experiments in
both synthetic and real data demonstrate that our
methods perform better than other baselines. To
the best of our knowledge, this is the first work
providing fast optimization algorithms and statis-
tical recovery guarantees for composite problems
in FL.
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1. Introduction
Federated Learning (FL) is a popular learning paradigm in
distributed learning that enables a large number of clients
to collaboratively learn a global model without sharing indi-
vidual data (McMahan et al., 2017). The most well-known
algorithm in FL is called Federated Averaging (FedAvg). In
each round, FedAvg samples a subset of devices and runs
multiple steps of Stochastic Gradient Descent (SGD) on
these devices in parallel, then the central server updates the
global model by aggregation at the end of the communica-
tion round and broadcasts the updated model to clients. It
has been verified that FedAvg achieves similar performance
with fewer communication rounds compared with parallel
SGD (Li et al., 2019; Stich, 2019; Woodworth et al., 2020a).

Most of the research in FL mainly focuses on unconstrained
smooth optimization problems without a regularizer and
assumes each client has access to its local population dis-
tribution. However, people usually want the learned model
to have some patterns, such as (group) sparsity and low
rank. These desired patterns are usually achieved by solving
composite optimization problems, e.g., LASSO (Tibshirani,
1996), Graphical LASSO (Friedman et al., 2008), Elastic
net (Zou & Hastie, 2005), matrix completion (Candès &
Recht, 2009). So it is crucial to study how to solve these
composite problems under the FL environment in the cur-
rent big data era. This paper considers solving a composite
optimization problem in the FL paradigm where only infre-
quent communication is allowed. In particular, we aim to
solve

min
w∈Rp

ϕ(w) :=

K∑
k=1

πkLk(w) + h(w), (1)

where πk is the weight of the k-th client,
∑K

i=1 πk = 1,
Lk(w) = Eξ∼Pk

[f(w; ξ)] is the loss function evaluated at
the k-th client, Pk denotes the population distribution on the
k-th client, and h(w) is a non-smooth regularizer. The most
related works which can solve this problem in FL setting are
Yuan et al. (2021) and Tran-Dinh et al. (2021). Yuan et al.
(2021) proposed an algorithm called Federated Dual Averag-
ing (FedDA). In one round, each client in FedDA performs
dual averaging to update its primal and dual states for several
steps; then, the server aggregates the dual states and updates
the global primal state by a proximal step. However, they did
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Table 1. Comparison of related works under bounded heterogeneity (see Assumption 3). (R)SC and GC refer to (restricted) strongly
convex and general convex respectively. (R)SM refers to (restricted) smooth. N/A means not available. K: number of clients; L: smooth
parameter; µ: (restricted) strongly convex parameter; σ2: variance of stochastic gradient; ŵ: global minimizer of (1); ŵFast-FedDA: returned
solution from Algorithm 1 after running T iterations on each client; ŵMC-FedDA: returned solution from Algorithm 3 after running T
iterations on each client; w∗: ground-truth solution (5); ϵstat: optimal statistical precision in Proposition 3.1; Õ: hides logarithmic factors.

Algorithm Reference
Communication rounds
for linear speedup Problem Conditions

Convergence rate for
ϕ(ŵFast-FedDA)− ϕ(ŵ)

Iteration complexity for
∥ŵMC-FedDA −w∗∥2 ≤ ϵstat

Guarantee

FedAvg (Woodworth et al., 2020a) O(T 1/2K1/2) unconstrained SC, SM O(σ2/(µKT )) N/A Expectation
O(T 3/4K3/4) unconstrained GC, SM O(σ/

√
KT ) N/A Expectation

SCAFFOLD (Karimireddy et al., 2020a) Õ(L/µ) unconstrained SC, SM O(σ2/(µKT )) N/A Expectation
O(T 1/2K1/2) unconstrained GC, SM O(σ/

√
KT ) N/A Expectation

FedDA (Yuan et al., 2021) O(T 3/4K3/4) composite GC, SM O(σ/
√
KT ) N/A Expectation

Fast-FedDA Theorem 2.1 Õ(T 1/2K1/2) composite SC, SM O(σ2/(µKT )) N/A Expectation
MC-FedDA Theorem 3.2 Õ(T 1/2K1/2) composite RSC, RSM Õ(σ2/(µKT )) Õ(σ2/(µKϵstat)) High probability

not consider exploiting the strong convexity of the loss func-
tion and hence only ended up with a slow convergence rate
(i.e., O(1/

√
T )). Tran-Dinh et al. (2021) considered non-

convex loss and provided an algorithm that can converge to
a point with small gradient mapping, but it does not have any
global optimization guarantees. It remains unclear how to
improve the convergence rate further when solving strongly
convex composite problems in the FL setting. To answer
this question, we propose a new algorithm, namely Fast
Federated Dual Averaging (Fast-FedDA), with provable
fast rate, linear speedup and almost the same communica-
tion complexity achieved by FedAvg as in the unconstrained
strongly convex case without regularizer (Woodworth et al.,
2020a; Karimireddy et al., 2020a).

A fundamental assumption in FL literature is that it assumes
that every client can have access to its local population
distribution. However, it may not be the case in practice:
each client usually only has access to its local empirical
distribution (Negahban et al., 2012; Agarwal et al., 2012;
Wainwright, 2019). This motivates us to consider a more
challenging problem in FL: statistical recovery. It is de-
voted to recovering the ground-truth model parameter w∗

by only accessing the empirical distribution. It is much
more difficult than the typical results in FL since we need
to simultaneously deal with computational, statistical, and
communication efficiency. Statistical recovery is usually
achieved through solving a composite optimization problem
as

min
w∈Rp

ϕ(w) :=

K∑
k=1

πkLk(w) + λR(w), (2)

where Lk(w) = Eξ∼Dk
[f(w; ξ)] is the empirical loss at

k-th client 1, Dk is the corresponding empirical distribution
on the k-th client, λ is regularization parameter, and R(·)
is a non-smooth norm penalty. In addition, due to high
dimensionality and small sample size in each client, the
assumption of strong convexity might be demanding and

1We use Lk to denote the empirical loss in Section 3, and
denote the population loss in Section 2.

unrealistic. Hence we further consider the broadly used
restricted strong convexity (RSC) and restricted smooth
(RSM) conditions in statistical recovery problems (Agarwal
et al., 2012; Wang et al., 2014; Loh & Wainwright, 2015).

Distributed statistical recovery is an extensively studied
topic in recent years (Lee et al., 2017; Wang et al., 2017;
Jordan et al., 2018; Chen et al., 2020), but these works as-
sume that all clients have the same data distribution, and
they also assume that there is a closed-form solution for
some non-trivial optimization subproblems. The unique fea-
tures of FL are high heterogeneity in data among clients and
local updates to solve these subproblems explicitly. Hence
the algorithms and theoretical results of the literature men-
tioned above are not directly applicable in the FL regime. To
address this issue, under RSC and RSM conditions, we first
introduce an algorithm named Constrained Federated Dual
Averaging (C-FedDA) to solve aR-norm constrained sub-
problem. Then we introduce another algorithm called Multi-
stage Constrained Federated Dual Averaging (MC-FedDA),
which calls C-FedDA in multiple stages with adaptively
changing hyperparameter (e.g., shrinking radius ofR-norm
ball). In particular, after finishing one stage of C-FedDA,
we use the output as a warm-start for the next stage.

We summarize our contributions in the following:

1. For federated composite optimization problems with
strongly convex and smooth loss, we propose the
Fast-FedDA algorithm for solving (1) by access-
ing data sampled from population distribution. Un-
der the general bounded heterogeneity assumption,
we show that Fast-FedDA enjoys linear speedup,
and the communication complexity matches the lower
bound of FedAvg (up to some logarithmic factors)
for strongly convex problems without a regularizer
(Karimireddy et al., 2020a).

2. To obtain the statistical recovery results through solv-
ing (2), we propose an algorithm, namely MC-FedDA
in the FL setting by accessing data sampled from the
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empirical distribution. Under RSC and RSM condi-
tions, we prove that MC-FedDA enjoys optimal (high
probability) convergence rate Õ(σ2 log(1/δ)/(µTK))
to attain statistical error bound. We find that the typical
convergence rate in expectation in FL is insufficient for
achieving statistical recovery guarantees, and this is
the first high probability result for composite problems
in FL.

3. We conduct numerical experiments on linear regression
with ℓ1 penalty, low-rank matrix estimation with nu-
clear norm penalty, and multiclass logistic regression
with ℓ1 penalty. Both synthetic and real data show bet-
ter performances of Fast-FedDA and MC-FedDA
compared with other baselines.

A comparison of our results to related works is presented in
Table 1. For more related work, please refer to Appendix A.

Notations. For a vector w ∈ Rp, we use ∥w∥ to denote
the Euclidean norm. For a matrix W ∈ Rp1×p2 , we use
∥W ∥F to denote the Frobenius norm and use ∥W ∥nuc to
denote the nuclear norm. For two real positive sequences
an and bn, we write an ≲ bn if there exists some positive
constant c such that an ≤ cbn. We use an = O(bn) to hide
multiplicative absolute constant c and also use an = Õ(bn)
to hide logarithmic factors. In our paper, EP means taking
expectation with the randomness from true distribution P
and ED means taking expectation with the randomness from
empirical distribution D.

2. Fast Federated Composite Optimization
In this section, we focus on the composite optimization
problem in FL environment for strongly convex and smooth
loss. Given a user-specific loss function f(·) : Rp → R,
suppose there are K clients, let Lk(w) = Eξ∼Pk

[f(w; ξ)]
be the local population loss and πk be the local weight for
k = 1, ...,K. We consider the following composite problem

ŵ = arg min
w∈W

{
K∑

k=1

πkLk(w) + h(w)

}
, (3)

where W ⊆ Rp is the domain and h : Rp → R is a non-
smooth regularizer. From now on, we denote L(w) =∑K

k=1 πkLk(w) and write the global composite objective
as ϕ(w) = L(w) + h(w).
Assumption 1. The local loss functions Lk for k ∈ [K]
are L-smooth and µ-strongly convex, that is for any w,
w′ ∈ W , there exist 0 < µ ≤ L such that

Lk(w)−Lk(w
′)− ⟨∇Lk(w

′),w −w′⟩ ≥ µ

2
∥w −w′∥2

and

Lk(w)−Lk(w
′)−⟨∇Lk(w

′),w−w′⟩ ≤ L

2
∥w−w′∥2.

Algorithm 1 Fast-FedDA(w0, R, E, µ, L)
1: Input: Initial point w0, iteration number T , constants

(µ,L) and synchronized set I = {tr : 0 ≤ r ≤ R}.
2: Initialize: wk

0 = w0 for k ∈ [K], αt = t + 1, γt =
Lαt.

3: for Round r = 0 to R do
4: for Client k = 1 to K do
5: for t = tr to tr+1 − 1 do
6: Query Gk

t = ∇f(wk
t ; ξ

k
t ) for ξkt ∼ Pk.

7: Compute gk
t = gk

t−1 + αtG
k
t .

8: if t < tr+1 − 1 then
9: Update: wk

t+1 = Proxt(g
k
t − µw̃k

t /2) and
w̃k

t+1 = w̃k
t + αt+1w

k
t+1.

10: else
11: Send gk

tr+1−1 and w̃k
tr+1−1 to the server.

12: end if
13: end for
14: end for
15: Server aggregates: gtr+1−1 =

∑K
k=1 πkg

k
tr+1−1 and

w̃tr+1−1 =
∑k

k=1 πkw̃
k
tr+1−1.

16: Server updates: wtr+1 = Proxtr+1−1(gtr+1−1 −
µw̃tr+1−1/2) and w̃tr+1

= w̃tr+1−1 + αtr+1
wtr+1

.
17: Synchronization: gk

tr+1−1 ← gtr+1−1 and w̃k
tr+1
←

w̃tr+1
.

18: end for

To solve the problem (3) under strongly convex case, we
propose a new algorithm named Fast Federated Dual Aver-
aging (Fast-FedDA) in Algorithm 1. The main difference
between our algorithm and the FedDA algorithm in Yuan
et al. (2021) is that we employed a different dual-averaging
scheme in the local updates of Algorithm 1 (line 9). In par-
ticular, we not only use information on history cumulative
gradient gk

t as in Yuan et al. (2021) but also history model
parameter w̃k

t to leverage the strong convexity.

2.1. Fast Federated Dual Averaging

We begin with defining a proximal operator Proxt(z) for
t ≥ 0 as the solution of the following problem:

min
w∈W

{
⟨w, z − γtw0⟩+

(
µAt

2
+ γt

)
∥w∥2

2
+Ath(w)

}
,

where w0 is the initial point and At =
∑t

i=0 αi is the
summation of weights. For a loss function with strong
convexity coefficient µ > 0, classical stochastic dual aver-
aging (Tseng, 2008; Nesterov, 2009; Chen et al., 2012) up-
dates the model parameter by wt+1 = Proxt(gt − µw̃t/2)
where gt =

∑t
i=0 αi∇f(wi; ξi) is the weighted summa-

tion of past stochastic gradients and w̃t =
∑t

i=0 αiwi is
the weighted summation of past solutions. Denote the syn-
chronized step set by I = {tr | tr = rE for 0 ≤ r ≤ R},
where tR = (R + 1)E = T . Similar to FedAvg (McMa-
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han et al., 2017) and FedDA (Yuan et al., 2021), a natural
idea to develop a federated dual averaging algorithm for
strongly convex loss includes following local updates and
server aggregation and update:

• The k-th client updates its local solution by

wk
t+1 = Proxt

(
gk
t − µw̃k

t /2
)
,

for tr ≤ t ≤ tr+1 − 1.

• The server updates the global solution by

wtr+1
= Proxtr+1−1

(
K∑

k=1

πk(g
k
t − µw̃k

t /2)

)
.

For ease of reference, the detailed procedure of Fast-FedDA
is summarized in Algorithm 1. The definitions of gk

t and
w̃k

t are provided in line 7 and 9 respectively.

2.2. Main Results for Fast-FedDA

To establish the convergence results for Fast-FedDA, we
impose the following assumptions on the regularizer h, loss
function and stochastic gradients.
Assumption 2. The regularizer h : W → R is a closed
convex function.
Assumption 3. The global loss function is Λ-smooth, which
means ∥∇L(w) − ∇L(w′)∥ ≤ Λ∥w −w′∥. In addition,
there exists some positive constant H such that ∥∇L(w)−
∇Lk(w)∥ ≤ H for any w ∈ W and k = 1, ...,K.
Assumption 4. The stochastic gradient sampled from the
local population distribution Pk satisfies that: for any
w ∈ W , it holds that Eξ∼Pk

[∇f(w; ξ)] = ∇Lk(w) and
Eξ∼Pk

[∥∇f(w; ξ)−∇Lk(w)∥2] ≤ σ2.

Assumption 2 is very common in composite optimization lit-
erature (Tseng, 2008; Nesterov, 2009; Xiao, 2010). We use
Assumption 3 to bound the heterogeneity between clients,
which also appears in Woodworth et al. (2020a); Yuan &
Ma (2020). The next theorem provides the convergence rate
of Fast-FedDA in expectation, and the proof is deferred to
Appendix B.2.
Theorem 2.1. Under Assumptions 1-4, we assume the
domain is bounded by ρ > 0, that is W = {w ∈
Rp : ∥w∥ ≤ ρ}. We choose αt = t + 1 and
γt = Lαt in Algorithm 1. Considering ŵFast-FedDA =∑T

t=0 αt Proxt+1(
∑K

k=1 πk(g
k
t + µw̃k

t /2))/AT , it satis-
fies that

EP [ϕ(ŵFast-FedDA)− ϕ(ŵ)] ≲
LB

T
+
σ̄2

µT
+
LEσ2 log T

µ2T 2

+
LE2(H2 + Λ2 + µ2ρ2) log T

µ2T 2
,

(4)
where σ̄2 =

∑K
k=1 π

2
kσ

2 and B = ∥w0 − ŵ∥2.

Remark 2.1. The first two terms in (4) are the convergence
rate of the dual averaging method in the centralized setting
(Lan, 2012; Chen et al., 2012), and the last two terms are
incurred from infrequent communication. Now considering
the equal-weighted case, that is π1 = · · · = πK = 1/K,
the weighted variance is given by σ̄2 = σ2/K. In (4), we
may choose E = Õ(

√
T/K), and then the convergence

rate attains linear speedup with respective to K. Mean-
while, the communication complexity of Fast-FedDA is
Õ(T 1/2K1/2), which matches the lower bound for FedAvg
up to a logarithmic factor (see Theorem II in Karimireddy
et al. (2020a)). Under the same bounded heterogeneity as-
sumption, Yuan et al. (2021) only considered the quadratic
loss. In this vein, we investigate a more general loss function
in Theorem 2.1.

3. Fast Federated Statistical Recovery
In this section, we consider the statistical recovery via
composite optimization in FL framework. Let Pk for
k = 1, 2, ...,K be the unknown local population distribu-
tions, then the “true parameter” is defined as

w∗ = arg min
w∈W

K∑
k=1

πkEξ∼Pk
[f(w; ξ)]. (5)

Denote the i.i.d. dataset sampled from Pk by {ξi : i ∈
Hk and |Hk| = nk}. We may obtain the sparse/low-rank
estimator of w∗ through solving the following composite
problem

ŵ = arg min
w∈W

{
K∑

k=1

πkLk(w) + λR(w)

}
, (6)

where Lk(w) =
∑

i∈Hk
f(w; ξi)/nk is the local empirical

loss function and R(·) is a non-smooth norm regularizer.
Here we use Dk to denote the empirical distribution on the
k-th client, which means Lk(w) = Eξ∼Dk

[f(w; ξ)].

3.1. Illustrative Examples

In this subsection, we take two well known examples to
illustrate the statistical recovery problems in FL.
Example 3.1 (Sparse Linear Regression). The linear model
in each client is given by

yk
i = (xk

i )
⊤w∗ + εki for i ∈ [nk] and k ∈ [K],

where the covariate xk
i follows some unknown distribution

Pk and the noise εki ∼ N(0, 1) is independent of xk
i . We

assume the true regression coefficient w∗ is s-sparse, that is
∥w∗∥0 = s, and s ≪ p. Let πk = nk

N , then our goal is to
solve the following federated Lasso problem

ŵ = arg min
w∈W

1

2N

K∑
k=1

nk∑
i=1

(yk
i − (xk

i )
⊤w)2 + λ∥w∥1,
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where λ is the regularization parameter and W = {w :
∥w∥ ≤ ρ}.
Example 3.2 (Low-Rank Matrix Estimation). Let W ∗ ∈
Rp1×p2 be an unknown matrix with low rank r∗ ≪
min{p1, p2}. For each client, the response variable yk

i and
covariate matrix Xk

i are linked to the unknown matrix via

yki = ⟨Xk
i ,W

∗⟩+ εki for i ∈ [nk] and k ∈ [K],

where Xk
i is sampled from some unknown distribution Pk

and the noise εki ∼ N(0, 1) is independent of xk
i . Let

πk = nk

N , then our goal is to solve the following federated
trace regression problem

Ŵ = arg min
W∈W

1

2N

K∑
k=1

nk∑
i=1

(yk
i −⟨Xk

i ,W ⟩)2+λ∥W ∥nuc,

where λ is the regularization parameter and W = {W :
∥W ∥F ≤ ρ}.

3.2. Restricted Strong Convexity and Smoothness

To develop the techniques for the statistical properties of
regularization in FL, we introduce the definition of decom-
posable regularizer (Negahban et al., 2012).

Definition 1. Given a pair of subspaces in Rp such that
M ⊆ M̄, a norm regularizer R is decomposable with
respect to (M,M̄⊥) if

R(w+v) = R(w)+R(v) for all w ∈M and v ∈ M̄⊥.

The subspace Lipschitz constant with respect to the subspace
M̄ is defined by

Ψ(M̄) := sup
u∈M\{0}

R(u)
∥u∥

.

Assumption 5. The regularizer R(·) is a norm with dual
R∗(·), which satisfiesR∗(·) ≤ ∥ · ∥ ≤ R(·). There is a pair
of subspaceM⊆ M̄ such that the regularizer decomposes
over (M̄,M̄⊥). Moreover, we assume w∗ ∈M.

Remark 3.1. M̄ usually encodes structural information of
the regularizer. For example, for sparse linear model in
Example 3.1, the subspace is defined by M̄ ≡ M :=
{w ∈ Rp|wj = 0 for j ∈ S} for some subset S ⊆ [p]. Cor-
respondingly, the subspace Lipschitz constant is given by
Ψ(M̄) =

√
s, where s is the cardinality of the support set

S. And the regularizer is ∥ · ∥1, whose dual norm is ∥ · ∥∞.
Clearly, Assumption 5 is satisfied for sparse linear model
since ∥ · ∥∞ ≤ ∥ · ∥ ≤ ∥ · ∥1. In Example 3.2, Assumption
5 is also satisfied. Due to space limit, we refer to Negahban
et al. (2012) for more details aboutM and M̄ in low-rank
matrix estimation.

In the high-dimensional setting (p > nk), it is usually hard
to guarantee the strong convexity for the local empirical loss

Lk. Therefore, we consider the restricted strong convexity
in Assumption 6, which is widely used in statistical recovery
literature (Agarwal et al., 2012; Wang et al., 2014; Loh &
Wainwright, 2015; Cai et al., 2020). For k = 1, ..,K, denote
the first-order Taylor series expansion of Lk(w) around
Lk(w

′) by

Tk(w,w′) = Lk(w)− Lk(w
′)− ⟨∇Lk(w

′),w −w′⟩.

Assumption 6. The local loss functionsLk for k = 1, ...,K
are convex and satisfy the restricted strongly convex (RSC)
condition, that is for w, w′ ∈ W , there exist µ > 0 and
τk ≥ 0 such that

Tk(w,w′) ≥ µ

2
∥w −w′∥2 − τkR2(w −w′).

From Assumption 6, the global loss function L also satisfies
the RSC condition: for any w, w′ ∈ W

T (w,w′) = L(w)− L(w′)− ⟨∇L(w′),w −w′⟩

≥ µ

2
∥w −w′∥2 − τR2(w −w′),

(7)

where τ =
∑K

k=1 πkτk. We also introduce an analogous
notion of restricted smoothness.

Assumption 7. The local loss functionsLk for k = 1, ...,K
satisfy the restricted smooth (RSM) condition, that is for
any w, w′ ∈ W there exist L > 0 and νk ≥ 0 such that

Tk(w,w′) ≤ L

2
∥w −w′∥2 + νkR2(w −w′).

Similarly, under Assumption 7, the global loss L satisfies
the RSM condition with coefficient L and ν =

∑K
k=1 πkνk.

With the decomposable regularizer R and the RSC condi-
tion (7) for L, the statistical recovery results via solving the
composite problem (6) has been extensively investigated in
the past decade (see Negahban et al. (2012); Wainwright
(2019) and references therein). We present the optimal sta-
tistical error of global estimator ŵ in the following propo-
sition, which is a direct result of Corollary 1 in Negahban
et al. (2012) or Theorem 9.19 in Wainwright (2019). The
error bound in Proposition 3.1 is also the target precision to
achieve optimal statistical recovery.

Proposition 3.1. Under Assumptions 5 and 6. If
τΨ2(M̄) ≤ µ

64 holds, with choice λ = λopt ≥
2R∗(∇L(w∗)) in (6), the statistical error of ŵ can be
bounded by

∥ŵ −w∗∥ ≤ 3ϵstat and R(ŵ −w∗) ≤ 12Ψ(M̄)ϵstat,

where ϵstat = Ψ(M̄)λopt/µ.
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Algorithm 2 C-FedDA(w0, R, E, ϵ0, µ, L, λ)
1: Input: Initial point w0, iteration number T , constants

(ϵ0, γr, µ) and synchronized set I = {tr : 1 ≤ r ≤ R}.
2: Initialize: w̃0 = w̄0 = w0, αr = r + 1.
3: for Round r = 0 to R do
4: for Client k = 1 to K do
5: for t = tr to tr+1 − 1 do
6: Query Gk

t = ∇f(wk
t ; ξ

k
t ) for for ξkt ∼ Dk.

7: Update gk
t = gk

t−1 + αrG
k
t .

8: if t < tr+1 − 1 then
9: wk

t = CProxr(g
k
t − µEw̃r/2;w0, ϵ0, λ).

10: else
11: Send gk

tr+1−1 to the server.
12: end if
13: end for
14: end for
15: Server aggregates: gtr+1−1 =

∑K
k=1 πkg

k
tr+1−1.

16: Server updates:

w̄r+1 = CProxr(gtr+1−1 − µEw̃r/2;w0, ϵ0, λ)

and w̃r+1 = w̃r + αr+1w̄r+1.
17: Synchronization: gk

tr+1−1 ← gtr+1−1.
18: end for

3.3. Constrained Federated Dual Averaging

In light of Proposition 3.1, we aim to estimate the ground-
truth w∗ defined in (5) by solving the following composite
problem:

ŵopt = arg min
w∈W

{L(w) + λoptR(w)} (8)

where L(w) =
∑K

k=1 πkLk(w) and λopt ≥
2R∗(∇L(w∗)). Let ŵFed be the output of a feder-
ated algorithm, and we hope ∥ŵFed −w∗∥2 can attain the
optimal statistical precision ϵstat with iteration complexity
O(σ̄2/(µϵstat)). Similar to Woodworth et al. (2020b);
Yuan et al. (2021), Fast-FedDA also has a drawback. To
guarantee the fast convergence rate, the final estimator of
Algorithm 1 takes the weighted average of all iterations.
However, we cannot obtain this estimator in the FL setting,
since the server only has access to the solution wt for t ∈ I .
To address this issue, we first propose a new algorithm
named Constrained Federated Dual Averaging (C-FedDA)
in Algorithm 2 in subsection 3.3. In addition, to achieve
optimal statistical recovery guarantees, we propose another
algorithm named Multi-stage Constrained Federated Dual
Averaging (MC-FedDA) in Algorithm 3 in subsection 3.4,
which calls Algorithm 2 as a subroutine. We provide
convergence rate for Algorithm 2 and statistical recovery
results for Algorithm 3, both in high probability.

For the ease of representation, we define a constrained prox-
imal operator CProxr(z;w0, ϵ0, λ) for r ≥ 0 as the solu-

tion of the following constrained problem:

min
w∈W(ϵ0;w0)

{
⟨w, z − γrEw0⟩+

(
µAr

2
+ γr

)
E∥w∥2

2

+ArEλR(w)
}
,

whereW(ϵ0;w0) := {w ∈ W | R(w − w0) ≤ ϵ0}. Let
w̃r =

∑r
j=0 αjw̄j be the sum of past solutions obtained

on the server. In the r-th round, each client updates the
weighted cumulative gradient as gk

t = gk
t−1 + αrG

k
t and

updates the local solution by

wk
t+1 = CProxr

(
gk
t −

µE

2
w̃r;w0, ϵ0, λ

)
,

for tr ≤ t ≤ tr+1 − 1. At the end of the r-th round, the
server updates the global solution by

w̄r+1 = CProxr

(
K∑

k=1

πkg
k
tr+1−1 −

µE

2
w̃r;w0, ϵ0, λ

)
,

and the weighted cumulative variable w̃r+1 = w̃r +
αr+1w̄r+1. The details of C-FedDA is stated in Algo-
rithm 2, which can output a weighted estimator ŵFed =∑R

r=0 αrw̄r+1/AR with provable convergence rate. To
cope with the RSC and RSM conditions, we introduce the
following light-tailed condition to perform high-probability
analysis (Duchi et al., 2012; Chen et al., 2012; Lan, 2012).

Assumption 8. The stochastic gradient sampled from the
local empirical distribution Dk satisfies: for any w ∈ W , it
holds that Eξ∼Dk

[∇f(w; ξ)] = ∇Lk(w) and

Eξ∼Dk

[
exp

(
∥∇f(w; ξ)−∇Lk(w)∥2/σ2

)]
≤ 1.

The following theorem provides a high probability conver-
gence result for C-FedDA in Algorithm 2. The proof of
Theorem 3.1 can be found in Appendix B.3.

Theorem 3.1. Under Assumptions 3 and 5- 8, we assume
the initial point satisfiesR(w0 − ŵ) ≤ ϵ0 andW = {w ∈
Rp : ∥w∥ ≤ ρ} for ρ > 0. By choosing γr = (L + µ)αr

and αr = r + 1 in Algorithm 2, with probability at least
1 − δ, the output ŵC-FedDA =

∑R
r=0 αrw̄r+1/AR satisfies

that

ϕ (ŵC-FedDA)− ϕ(ŵopt) ≲
LEϵ20
T

+
σ̄2

2µT
+
σ̄ϵ0
√

log(1/δ)√
T

+
L log T

µ2T 2

(
Eσ2 log(1/δ) + E2(H + Λρ)2

)
+ (τ + ν)ϵ20

(9)
where σ̄2 =

∑K
k=1 π

2
kσ

2.

Remark 3.2. For the R.H.S. of (9), there are 6 terms. The
1st and 2nd terms come from the parallel dual averaging, the
3rd term comes from concentration inequality, the 4th and
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Algorithm 3 Multi-stage C-FedDA
Input: Initial point ŵ0, number of stages M , Rm and
Em for m ∈ [M ] and initial regularization parameter λ0.
for Stage m = 0 to M − 1 do

Update: λm = 2−mλ0 and ϵm = 108Ψ2(M̄)λm/µ.
Update estimator by calling C-FedDA

ŵm+1 = C-FedDA(ŵm, Rm, Em, ϵm, µ, L, λm).

end for

5th terms are due to skipped communication, and the 6-th
term (τ + ν)ϵ20 in (9) incurs an additional error regarding
the tolerances in RSC and RSM conditions. The 2nd term
σ̄
√
ϵ0 log(1/δ)/T is the best-known high probability rate

of centralized dual averaging (Xiao, 2010; Lan, 2012; Chen
et al., 2012). By choosing E = Õ(σ̄T 1/2) for Algorithm 2,
the discrepancy (the 4th and 5th term) from local updates
will be dominated by the concentration bound (the 3rd term).

3.4. Multi-stage Constrained Federated Dual Averaging

To reduce the error brought from the RSC and RSM condi-
tions, the first attempt is solving (8) by directly using shrink-
ing domain technique (Iouditski & Nesterov, 2014; Hazan
& Kale, 2011; Lan, 2012; Liu et al., 2018) according to
R(·)-norm. In each stage, we use the output of the previous
stage as the initial point and shrink the radius of the R(·)-
norm ball in C-FedDA. In particular, we need to guarantee
thatR2(ŵm − ŵopt) is also reduced with high probability
through controlling (ϕ(ŵm) − ϕ(ŵopt))/λopt at the m-th
stage (see Lemma B.8), since we need to make sure that ŵopt
always lies into the ball with high probability. However, it
can be only decreased up to (τ +ν)R2(ŵm−1− ŵopt)/λopt
according to the last term in (9), which could be very large
since λopt is usually very small. This indicates that we
cannot directly employ shrinking domain technique for solv-
ing (8).

To address this issue, our solution is motivated by the ho-
motopy continuation strategy (Xiao & Zhang, 2013; Wang
et al., 2014): we select a decreasing sequence of the regular-
ization parameter 2 λm = λ0 · 2−m, where λopt < λ0 and
λM = λopt. At the m-th stage, we call Algorithm 2 to solve
the following subproblem

min
w∈W(ŵm−1,rm)

{L(w) + λmR(w)} ,

where ŵm−1 is the output of previous stage and rm is the
current radius. By shrinking both the radius and regulariza-
tion parameter in each stage, a final estimator with optimal

2Here we set 1/2 as the contraction rate for technique conve-
nience. In practice, we may choose more flexible non-increasing
sequence λm.

statistical precision can be obtained. We present the de-
tailed procedure of Multi-stage Constrained Federated Dual
Averaging (MC-FedDA) in Algorithm 3.

3.5. Main Results for MC-FedDA

In this subsection, we present the statistical recovery results
of the algorithm MC-FedDA. The proof of Theorem 3.2 is
deferred to Appendix B.4.
Assumption 9. There exists some constant C > 0, such
that the averaged RSC and RSM coefficients satisfy C(τ +
ν)Ψ2(M̄) ≤ µ.
Theorem 3.2. Under the same conditions in Theorem 3.1
and Assumption 9. We assume the initial point satisfies
R(ŵ0 − ŵopt) ≤ 84Ψ2(M̄)λ0/µ and choose Em and Rm

such that E2
m ≲ σ̄2Tm/ log(Tm + 1) for Tm = EmRm.

When Algorithm 3 terminates (M = log2(λ0/λopt) + 1),
with probability3 at least 1−δ, the total number of iterations
T =

∑M
m=0 Tm is no more than (up to a constant factor)

4σ̄2(log2(λ0/λopt) + 1)

Ψ2(M̄)λ2opt
log

(
log2(λ0/λopt) + 1

δ

)
.

(10)
Let ŵMC-FedDA = ŵM from Algorithm 3, we can guarantee
that

ϕ(ŵMC-FedDA)− ϕ(ŵopt) ≤
Ψ2(M̄)λ2opt

µ
.

In addition, the estimation error can be bounded by

∥ŵMC-FedDA −w∗∥ ≤
4Ψ(M̄)λopt

µ
.

Remark 3.3. Notice that ϵstat = Ψ(M̄)λopt/µ converges to
0 as the total sample size N tends to infinity. Let ϵ = µϵ2stat,
if the total number of iterations satisfies T =

∑M−1
m=0 Tm =

Õ(σ̄2/(µϵ)), then we are guaranteed that ϕ(ŵMC-FedDA)−
ϕ(ŵopt) ≤ ϵ. Up to some logarithmic factors, this is equiv-
alent to the linear speedup convergence rate σ2/(µKT )
for the equal-weighted case (σ̄2 = σ2/K). Moreover,
with the choice Em = Õ(T 1/2

m /K1/2), the total commu-
nication complexity is bounded by

∑M−1
m=0 T

1/2
m K1/2 =

Õ(T 1/2K1/2). In fact, the total complexity is mainly due
to the complexity of the last stage.

Next, we illustrate the implications of Theorem 3.2 through
Example 3.1 and 3.2 in subsection 3.1.

Sparse Linear Regression. Under some regular condi-
tions, the RSC and RSM coefficients in each client are given
by τk = c log p/nk and νk = c log p/nk for some abso-
lute constant c (see Agarwal et al. (2012); Loh & Wain-
wright (2015)). With the weight choice πk = nk

N , we

3The randomness is from the empirical distribution D = {Dk :
k = 1, ...,K}.
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Figure 1. Recovery results for federated sparse linear regression problem with p = 1024 and s = 512. Except FedMiD, other methods
nearly achieve perfect support recovery. Our proposed three algorithms show faster numerical convergence in four metrics.
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Figure 2. Recovery results for federated low-rank matrix estimation problem with p1 = p2 = 32 and r∗ = 16. Except FedMiD, other
methods all recover the true rank of W ∗. Our proposed three methods also show faster convergence than other two baselines.

have τ = ν = cK log p/N . If the total sample size N
and the number of clients K satisfies sK ≲ N , then As-
sumption 9 will be satisfied. According to Proposition 3.1,
we need to choose the regularization parameter such that
λopt ≥ c

√
log p/N to guarantee the optimal statistical con-

vergence rate ∥ŵ−w∗∥ = O(
√
s log p/N) with high prob-

ability (Raskutti et al., 2009; Ye & Zhang, 2010). Therefore,
to attain the optimal statistical convergence rate, the iteration
complexity in Theorem 3.2 is given by Õ(N/(sK)).

Low-Rank Matrix Estimation. In this case, the sub-
space Lipschitz constant is Ψ(M̄) =

√
r∗. Under some

regular conditions, the averaged RSC and RSM coeffi-
cients are both τ = ν = c(p1 ∨ p2)K/N (Agarwal
et al., 2012; Wainwright, 2019). If the total sample
size N and the number of clients K satisfies r∗K(p1 ∨
p2) ≲ N , then Assumption 9 will be satisfied. To
achieve optimal statistical convergence rate ∥Ŵ −W ∗∥F =
O(
√
r∗(p1 ∨ p2) log(p1 ∨ p2)/N) with high probability

(Koltchinskii et al., 2011), we choose the regularization
parameter as λ ≥ c

√
(p1 ∨ p2) log(p1 ∨ p2)/N . Thus the

iteration complexity in Theorem 3.2 will be Õ(N/(r∗(p1 ∨
p2)K)).

4. Numerical Experiments
In this section, we investigate the empirical performance
of our proposed method with four experiments: two with
synthetic data and two with real world data. For Example

3.1 and 3.2, we generate heterogeneous synthetic data for
64 clients, and each client containing 128 independent sam-
ples. For federated sparse logistic regression, we use the
Federated EMNIST (Caldas et al., 2019) dataset of hand-
written letters and digits. We compare our proposed three al-
gorithms Fast-FedDA, C-FedDA and MC-FedDA with
Federated Mirror Descent (FedMiD) and Federated Dual
Averaging (FedDA) algorithms introduced in Yuan et al.
(2021). The detailed parameter tuning of the experiments in
this section is provided in Appendix F.

Federated Sparse Linear Regression. In this experiment,
we conduct experiments to Example 3.1 on synthetic data.
The true sparse regression coefficient is w∗ = (1⊤

s 0
⊤
p−s)

⊤.
In the k-th client, we first generate a heterogeneity vector δk
from N(0, Ip×p). The covariate is generated according to
xk
i = δk+zki for i = 1, 2, ..., nk, where zki is independently

sampled from N(0,Σ). The (i, j)-th element of the covari-
ance matrix Σ is given by σi,j = 0.5|i−j| for 1 ≤ i, j ≤ p.
Then the response variable yki is generated accordingly. At
each round, we sample 10 clients to conduct local updates
and the number of local updates is K = 10. In this experi-
ment, the batch size is 10 and the regularization parameter is
λ = 0.55. To evaluate the performance of different methods,
we record ℓ2 error, ℓ1 error, F1 score of support recovery
and training loss after each round and results are reported in
Figure 1.

Federated Low-Rank Matrix Estimation. In this sub-
section, we conduct experiments to Example 3.2 on syn-
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Figure 3. Results for federated sparse logistic regression on EMNIST-62 dataset. Our proposed algorithms Fast-FedDA and MC-FedDA
reach a lower loss and higher accuracy than the two baselines from (Yuan et al., 2021), and Fast-FedDA exhibits faster convergence.

thetic data. The p by p true low-rank matrix is given by
W ∗ = diag(1r∗ ,0p−r∗). At the k-th client, we first con-
struct a heterogeneity matrix Zk ∈ Rp×p with each entry
independently sampled from N(0, 1). Then we generate the
covariate matrix by Xk

i = Zk +Ak
i , where each entry of

Ak
i is also independently sampled from N(0, 1). As with

the previous experiment, 10 clients are sampled each round
to conduct local updates and K = 10. In this experiment,
the batch size is also 10 and the regularization parameter is
λ = 0.1. We choose estimation error in Frobenius norm, ℓ2
norm (operator norm), recovery rank, and training loss to
evaluate performances of different algorithms. The results
are plotted in Figure 2.

From the results in Figure 1 and 2, we can see that our
proposed three algorithms show faster convergence than
FedDA and FedMiD, which is consisting with our linear
speedup results. Except FedMiD, other methods nearly
achieve perfect support recovery. As we expected, the eval-
uation metrics of MC-FedDA converge to the same values
with other algorithms. It is worthwhile noting that F1 score
of MC-FedDA already converges to 1 after the first stage.
The reason is that the regularization parameter is larger,
which tends to output more sparse solution.

Federated Sparse Logistic Regression. We also provide
experimental results on real world data, namely the Feder-
ated EMNIST dataset (Caldas et al., 2019). This dataset is a
modification of the EMNIST dataset (Cohen et al., 2017) for
the federated setting, in which each client’s dataset consists
of all characters written by a single author. In this way,
the data distribution differs across clients. The complete
dataset contains 800K examples across 3500 clients. We
train a multi-class logisitc regression model on two versions
of this dataset: EMNIST-10 (digits only, 10 classes), and
EMNIST-62 (all alphanumeric characters, 62 classes). Fol-
lowing (Yuan et al., 2021), we use only 10% of the samples,
which is sufficient to train a logistic regression model. Our
subsampled EMNIST-10 dataset consists of 367 clients with
an average of 99 examples each, while EMNIST-62 con-
sists of 379 clients with an average of 194 examples each.
For both experiments, we use a batch size of 25, a regular-

ization parameter λ = 10−4, and we sample 36 clients to
perform local updates at each communication round. For
EMNIST-10, each sampled client performs K = 40 up-
dates per communication round for R = 15000 rounds. For
EMNIST-62, K = 10 and R = 75000. Comparisons of
algorithms for EMNIST-62 and EMNIST-10 are shown in
Figure 3 and Figure 4 (Appendix F). We can see that our
algorithms (Fast-FedDA, C-FedDA) outperforms base-
lines (FedDA and FedMid) in terms of convergence speed
on both training and test performance.

5. Conclusion
This paper investigates the composite optimization and sta-
tistical recovery problem in FL. For the composite opti-
mization problem, we proposed a fast dual averaging algo-
rithm (Fast-FedDA), in which we prove linear speedup
for strongly convex loss. For statistical recovery, we pro-
posed a multi-stage constrained dual averaging algorithm
(MC-FedDA). Under restricted strongly convex and smooth
assumption, we provided a high probability iteration com-
plexity to attain optimal statistical precision, equivalent to
the linear speedup result for strongly convex case. Several
experiments on synthetic and real data are conducted to
verify the superior performance of our proposed algorithms
over other baselines.
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A. Related Work
Federated Learning. As an active research area, a tremendous amount of research has been devoted to investigating
the theory and application of FL. The most popular algorithm in FL is the so-called Federated Averaging (FedAvg)
proposed by McMahan et al. (2017). For strongly convex problems, Stich (2019) provided the first convergence analysis
of FedAvg in a homogeneous environment and showed that the communication rounds can be reduced up to a factor of
O(
√
TK) without affecting linear speedup. Then Li et al. (2019; 2020) investigated the convergence rate in a heterogeneous

environment. Karimireddy et al. (2020b) introduced a stochastic controlled averaging for FL to learn from hetergeneous
data. Stich & Karimireddy (2019); Khaled et al. (2020) improved the analysis and showed O(Kpoly log(T )) rounds is
sufficient to achieve linear speedup. Recently, Yuan & Ma (2020) proposed an accelerated FedAvg algorithm, which requires
O(K1/3poly log(T )) to attain linear speedup. Recently, Li et al. (2021) investigated the statistical estimation and inference
problem for local SGD in FL. However, Li et al. (2021) focused on the unconstrained smooth statistical optimization, but we
considered a different problem with non-smooth regularizer aiming to recover the sparse/low-rank structure of ground-truth
model. For the strongly convex finite-sum problem, Mitra et al. (2021) proposed an algorithm named FedLin based on
the variance reduction technique and obtained the linear convergence rate. However, their analysis and algorithm are not
applicable in the composite setting, and they do not consider statistical recovery at all. A more recent work Spiridonoff et al.
(2021) showed that the number of rounds can be independent of T under homogeneous setting. Recently, there is a line of
work focusing on analyzing nonconvex problems in FL (Yu et al., 2019b;a; Basu et al., 2019; Haddadpour et al., 2019).
This list is by no means complete due to the vast amount of literature in FL. For a more comprehensive survey, please refer
to (Kairouz et al., 2019) and reference therein.

Distributed Statistical Recovery. With the increasing data size, statistical recovery in the distributed environment is
a hot topic in recent years. These works focus on the homogeneous setting. Lee et al. (2017) proposed an one-shot
debiasing method and required each client solve a composite problem using its own data. Other one-shot methods for
different tasks can be found in Battey et al. (2018); Bao & Xiong (2021); Zhu et al. (2021). Motivated by the approximated
Newton’s method (Shamir et al., 2014), Wang et al. (2017) proposed a multi-round algorithm, where each client only needs
to compute gradients and the server solves a shifted ℓ1 penalized problem. Meanwhile, Jordan et al. (2018) developed
Communication-efficient Surrogate Loss (CSL) framework for more general ℓ1-penalized problems. A series of statistical
recovery problems based on CSL scheme has also been studied (Liu et al., 2019; Chen et al., 2020; Tu et al., 2021).

B. Proof of Main Results
B.1. Concentration Inequalities for Martingale Differences

Let {ξi ∈ Rp}∞i=1 be a sequence of martingale differences with respective to the filtration {Fi}∞i=1. It satisfies that
E[ξi|Fi] = 0 and the light-tail condition ED[exp(∥ξi∥2/σ2)|Fi] ≤ 1 for some σ > 0. Under this condition, it follows from
Jensen’s inequality that

exp(ED[∥ξi∥2|Fi]/σ
2) ≤ ED[exp(∥ξi∥2/σ2)|Fi] ≤ 1.

Hence we have ED[∥ξi∥2|Fi] ≤ σ2.

The following three lemmas are used throughout in our proof, we defer the proof of Lemma B.3 to Section E.

Lemma B.1 (Lemma 5 in (Duchi et al., 2012)). Under the assumption of Theorem 3.1, for any positive and non-decreasing
sequence {at}∞t=0, we have

T∑
t=0

∥ξt∥2

at
≥

T∑
t=0

ED[∥ξt∥2]
at

+max

8σ2 log(1/δ)

a0
, 16σ2

√√√√ T∑
t=0

log(1/δ)

a2i


holds with probability at most δ ∈ (0, 1).

Lemma B.2 (Lemma 6 in (Lan, 2012)). Under the assumption of Theorem 3.1, for any sequence {wt}∞t=0 such that zt is
Ft−1-measurable, we have

T∑
t=0

⟨zt, ξt⟩ ≥
√

3 log(1/δ)

(
T∑

t=0

∥zt∥2
)1/2

holds with probability at most δ ∈ (0, 1).



Fast Composite Optimization and Statistical Recovery in Federated Learning

The following lemma is a martingale’s version of Lemma 3.1 in He & Shao (2000), and the proof is deferred to Section E.
Lemma B.3. If E[∥ξi∥2|Fi] <∞, then for any x > 0 it holds that,

P


∥∥∥∥∥

t∑
i=1

ξi

∥∥∥∥∥ ≥ x
Bt +

(
t∑

i=1

∥ξi∥2
)1/2

 ≤ 8 exp(−x2/8), (11)

where Bt = (
∑t

i=1 E(∥ξi∥2))1/2.

From now on, we use Ft to denote the σ-algebra generated by prior sequence {wk
i : 0 ≤ i ≤ t, 1 ≤ k ≤ K}.

B.2. Proof of Theorem 2.1

Let gt =
∑K

k=1 πkg
k
t , w̌t =

∑K
k=1 πkw

k
t and w̃t =

∑K
k=1 πkw̃

k
t =

∑t
i=0 αiw̌i, we define a virtual sequence:

wt+1 = arg min
w∈W

{
⟨w, gt −

µ

2
w̃t − γtw0⟩+

(
Atµ

2
+ γt

)
∥w∥2

2
+Ath(w)

}
. (12)

which can be also equivalently written as

wt+1 = arg min
w∈W

{
⟨w, gt⟩+

µ

4

t∑
i=0

αi∥w − w̌i∥2 +
γt
2
∥w −w0∥2 +Ath(w)

}
. (13)

According to Algorithm 1, wt+1 is exactly the solution updated by the server for t + 1 ∈ I. Next we define a pseudo
distance between w and w′ at the t-th step as

Dt(w;w′) = ⟨w −w′, gt−1⟩+
µ

4

t−1∑
i=0

αi

(
∥w − w̌i∥2 − ∥w′ − w̌i∥2

)
+
γt
2

(
∥w −w0∥2 − ∥w′ −w0∥2

)
+At−1(h(w)− h(w′)).

(14)

Let g−1 = 0, A−1 = 0 and
∑−1

i=0 = 0, we have D0(w;w0) = γ0

2 ∥w − w0∥2 for any w ∈ W . In addition, (13) also
implies that Dt(w;wt) ≥ 0 for any w ∈ W . The next lemma provide the one-step induction relation of Algorithm 2, which
is crucial to the proof of convergence rate. The proof of Lemma B.4 is deferred to Section C.1.
Lemma B.4 (One-Step Induction Relation). Under the conditions of Theorem 2.1, it holds that

αt[ϕ(wt+1)− ϕ(ŵ)] ≤Dt(ŵ;wt)−Dt+1(ŵ;wt+1) +
γt − γt−1

2
∥ŵ −w0∥2

+ αt⟨∆t, ŵ −wt⟩+
α2
t ∥∆t∥2

2(Atµ+ 2γt − 2Lαt)

+ αt

(
µ

2

K∑
k=1

πk∥wk
t − w̌t∥2 +

3L

2

K∑
k=1

πk∥wk
t −wt∥2

)
,

(15)

where ∆t =
∑K

k=1 πk(∇f(wk
i ; ξ

k
i )−∇Lk(w

k
i )).

We impose the following lemma to bound the discrepancy caused by skipped communication, and the proof is deferred to
Section D.1.
Lemma B.5. Under the conditions in Theorem 2.1, we have

ED[∥wk
t −wt∥2|Ft], ED[∥wk

t − w̌t∥2|Ft] ≤
4Eσ2α2

t

(µAt/2 + γt)2
+

4E2(H2 + Λ2 + µ2ρ2)α2
t

(µAt/2 + γt)2
.

Proof of Theorem 2.1. We first note that E[∆t|Ft] = 0 and

E[∥∆t∥2] = E[∥∆t∥2|Ft] =

K∑
k=1

π2
kE[∥∇f(wk

i ; ξ
k
i )−∇Lk(w

k
i )∥2|Ft] ≤

K∑
k=1

π2
kσ

2 = σ̄2,
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where the second equality follows from the independence between different clients. Taking conditional expectation on the
both sides of (15) results in

αtE[ϕ(wt+1)− ϕ(ŵ)|Ft] ≤E[Dt(ŵ;wt)−Dt+1(ŵ;wt+1)|Ft] +
γt − γt−1

2
∥ŵ −w0∥2

+ αt⟨E[∆t|Ft], ŵ −wt⟩+
α2
tE[∥∆t∥2|Ft]

2(Atµ+ 2γt − 2Lαt)

+ αt

{
L+ µ

2

K∑
k=1

πkE[∥wk
t − w̌t∥2|Ft] + L

K∑
k=1

πkE[∥wk
t −wt∥2|Ft]

}

≤E[Dt(ŵ;wt)−Dt+1(ŵ;wt+1)|Ft] +
γt − γt−1

2
∥ŵ −w0∥2

+
α2
t σ̄

2

2(Atµ+ 2γt − 2Lαt)
+

3L+ µ

2
α3
t

(
4Eσ2

(µAt/2 + γt)2
+

4E2(H2 + Λ2 + µ2ρ2)

(µAt/2 + γt)2

)
.

(16)
In the second inequality of (16), we used Lemma B.5. By substituting γt = Lαt and αt = t+ 1, we have

T∑
t=0

α2
t σ̄

2

2(Atµ+ 2γt − 2Lαt)
=

T∑
t=0

α2
t σ̄

2

2µAt
=

T∑
t=0

(t+ 1)2σ̄2

µ(t+ 1)(t+ 2)
≤ (T + 1)σ̄2

µ
,

and
T∑

t=0

α3
t

(µAt/2 + γt)2
=

T∑
t=0

(t+ 1)3

(µ(t+ 1)(t+ 2)/4 + L(t+ 1))2
≤ 16 log(T + 1)

µ2
.

In addition, it follows from DT+1(ŵ;wT+1) ≥ 0 and D0(ŵ;w0) = γ0∥ŵ −w0∥/2 that

T∑
t=0

{
Dt(ŵ;wt)−Dt+1(ŵ;wt+1) +

γt − γt−1

2
∥ŵ −w0∥2

}
=D0(ŵ;w0)−DT+1(ŵ;wT+1) +

γT − γ−1

2
∥ŵ −w0∥2

≤γ0
2
∥ŵ −w0∥2 +

γT
2
∥ŵ −w0∥2 ≤ γT ∥ŵ −w0∥2.

Let B = ∥w0 − ŵ∥2, telescoping (16) from time t = 0 to t = T gives rise to

1

AT

T∑
t=0

αtE[ϕ(wt+1)− ϕ(ŵ)] ≤ γT ∥ŵ −w0∥2

AT
+

1

AT

T∑
t=0

α2
t σ̄

2

2(Atµ+ 2γt − 2Lαt)

+
3L+ µ

2AT

T∑
t=0

α3
t

(
4Eσ2

(µAt/2 + γt)2
+

4E2(H2 + Λ2 + µ2ρ2)

(µAt/2 + γt)2

)
≤ 2LB

T + 1
+

2σ̄2

µ(T + 1)
+ 32(3L+ µ) log(T + 1)

(
4Eσ2

µ2T (T + 1)
+

4E2(H2 + Λ2 + µ2ρ2)

µ2T (T + 1)

)
,

Thus the result follows from Jensen’s inequality and the convexity of ϕ(·).

B.3. Proof of Theorem 3.1

Similar to the proof of Theorem 3.1, we define the following pseudo distance at the r-th communication step

Dr(w;w′) = ⟨gtr−1,w −w′⟩+ µE

4

r−1∑
j=0

αj(∥w − w̄j∥2 − ∥w′ − w̄j∥2)

+
γrE

2
(∥w − w̄0∥2 − ∥w′ − w̄0∥2) + EAr−1h(w),

(17)

where gtr−1 =
∑K

k=1 πkg
k
tr−1. Let g−1 = 0 and

∑−1
j=0 = 0, then we have D0(ŵ; w̄0) =

γrE
2 ∥ŵ − w̄0∥2 ≤ γr

2 ϵ0. The
following lemma characterizes the one round progress of Algorithm 2, and the proof is deferred to Section C.2.
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Lemma B.6 (One-Step Induction Relation). Under the conditions of Theorem 3.1, we have

Eαr[ϕ(w̄r+1)− ϕ(ŵ)] ≤ Dr(ŵ; w̄r)−Dr+1(ŵ; w̄r+1) +
(γr − γr−1)E

2
∥ŵ −w0∥2

+ αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r⟩+ 20Eαr(τ + ν)ϵ20

+
α2
r∥
∑tr+1−1

i=tr
∆i∥2

2(ArEµ+ 2γrE − 2(L+ µ)αrE)
+

3L+ 2µ

2
αr

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2,

(18)

where ∆i =
∑K

k=1 πk(G
k
i −∇Lk(w

k
i )).

Next lemma provides the upper bound for the discrepancy of local updates in Algorithm 2, and the proof is in Section D.2.

Lemma B.7. Under the conditions of Theorem 3.1, for any tr ≤ t ≤ tr+1 − 1, we have

∥wk
i − w̄r+1∥ ≤

4αr

EµAr/2 + γtE

(
4
√
Eσ log(2/δ) + E(H + Λρ)

)
holds with with probability at least 1− δ.

Proof of Theorem 3.1. Plugging the conclusion of Lemma B.7 into (18), it follows that

R∑
r=0

αr

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2 ≤

R∑
r=0

16Eα3
r

(µAr + 2γr)2
(
32E−1σ2 log2(2/δ) + 2(Λρ+H)2

)
≤

R∑
r=0

16E

µ2(r + 1)

(
32E−1σ2 log2(2/δ) + 2(Λρ+H)2

)
≤ 16E log(R+ 1)

µ2

(
32E−1σ2 log2(2/δ) + 2(Λρ+H)2

)
(19)

holds with probability at least 1− δ/3. Meanwhile, with the choice γr = (L+ µ)αr, the following summation is bounded
by

R∑
r=0

16α3
rE

(µAr + 2γr)2
≤

R∑
r=0

16E

µ2(r + 1)
≤ 32E log(R+ 1)

µ2
.

Then using the concentration inequality in Lemma B.1, with probability at least 1− δ/3, we have

R∑
r=0

αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r⟩ ≤ σ̄
√
3 log(3/δ)

(
R∑

r=0

α2
r

tr+1−1∑
i=tr

∥ŵ − w̄r∥2
)1/2

≤ σ̄
√

3 log(3/δ)

(
E

R∑
r=0

α2
rR2(ŵ − w̄r)

)1/2

≤ σ̄
√

6E log(3/δ)

(
R∑

r=0

α2
r(R2(ŵ −w0) +R2(w̄r −w0))

)1/2

≤ 2ϵ0σ̄
√
3 log(3/δ)E(R+ 1)3.

(20)

In the second inequality of (20), we used the assumption ∥ · ∥ ≤ R(·). And the last inequality of (20) follows from the
constraint in proximal stepR(w̄r −w0) ≤ ϵ0 and the assumptionR(ŵ −w0) ≤ ϵ0. Additionally, by Lemma B.3, with
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probability at least 1− δ/3, we also have∥∥∥∥∥αr

tr+1−1∑
i=tr

∆i

∥∥∥∥∥
2

≤ 8 log(6/(8δ))α2
r

(
tr+1−1∑
i=tr

EP∥∆i∥2 +
tr+1−1∑
i=tr

∥∆i∥2
)

≤ 8 log(6/(8δ))α2
r

(
2

tr+1−1∑
i=tr

EP∥∆i∥2 +max
{
8σ̄2 log(6/δ), 16σ̄2

√
E log(6/δ)

})
≤ 8 log(6/(8δ))α2

r

(
2Eσ̄2 + 16σ̄2

√
E log(6/δ)

)
≤ 16σ̄2 log(6/δ)α2

r

(
E + 8

√
E log(6/δ)

)
,

(21)

where the second inequality follows from Lemma B.1 and the fact E[∥∆i∥2] ≤ σ̄2. Then (21) results in

R∑
r=0

α2
r

∥
∑tr+1−1

i=tr
∆i∥2

2(ArEµ+ 2γrE − 2(L+ µ)E)
≤ 16σ̄2 log(6/δ)

(
E + 8

√
E log(6/δ)

) R∑
r=0

α2
r

2(ArEµ+ 2γrE − 2(L+ µ)E)

= 16σ̄2 log(6/δ)
(
E + 8

√
E log(3/δ)

) R∑
r=0

(r + 1)2

Eµ(r + 1)(r + 2)

≤ 16σ̄2 log(6/δ)

(
1 + 8

√
log(6/δ)

E

)
R+ 1

µ
,

(22)
where the equality holds due to γr = (L+ µ)αr and αr = r + 1. In addition, it follows from DR+1(ŵ; w̄R+1) ≥ 0 and
D0(ŵ; w̄0) = γ0∥ŵ −w0∥2/2 that

R∑
r=0

Dr(ŵ; w̄r)−Dr+1(ŵ; w̄r+1) +
(γr − γr−1)E

2
∥ŵ −w0∥2

=D0(ŵ; w̄0)−DR+1(ŵ; w̄R+1) +
(γR − γ0)E

2
∥ŵ −w0∥2

≤γRE∥ŵ −w0∥2.

(23)

Telescoping the induction relation (18) from r = 0 to r = R, in conjunction with bounds (19)-(23), we can guarantee with
probability at least 1− δ

1

AR

R∑
r=0

αr[ϕ (w̄r+1)− ϕ(ŵ)] ≤ 2γRϵ
2
0

(R+ 1)(R+ 2)
+ 32σ̄2 log(6/δ)

(
1 + 8

√
log(3/δ)

E

)
1

µE(R+ 2)

+
16(3L+ 2µ) log(R+ 1)

µ2(R+ 1)(R+ 2)

(
32E−1σ2 log2(2/δ) + 2(Λρ+H)2

)
+

8ϵ0σ̄
√
3 log(3/δ)E(R+ 1)3

E(R+ 1)(R+ 2)
+ 20(τ + ν)ϵ20

≲
Lϵ20E

T
+
σ̄2 log(1/δ)

µT
+
L log(T + 1)

µ2T 2

(
Eσ2 log2(1/δ) + E2(Λρ+H)2

)
+
ϵ0σ̄
√

log(1/δ)√
T

+ (τ + ν)ϵ20.

Therefore the conclusion follows from Jensen’s inequality.

B.4. Proof of Theorem 3.2

The following corollary is a direct result of Theorem 3.1
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Corollary B.1. Under the same conditions in Theorem 3.1, we choose the number of local iterations Em such that
E2

m ≲ σ̄2Tm for Tm = EmRm. Suppose the output of previous stage satisfiesR(ŵm−1 − ŵm) ≤ rm, then the excess risk
after the m-th stage is bounded by

ϕ(ŵm)− ϕ(ŵm) ≲
σ̄rm

√
log(1/δ)√
Tm

+ (τ + ν)r2m

with probability at least 1− δ.

The next lemma restricts the averaged optimization error to a cone-like set. The conclusion (24) is from the relation (83) in
the supplementary material to Agarwal et al. (2012).

Lemma B.8 (Lemma 3 and 11, Agarwal et al. (2012), modified). Let ŵ be any optimum of the following regularized
M-estimator

min
w∈W

{
K∑

k=1

πkLk(w) + λR(w)

}
,

where λ > R∗(
∑K

k=1 πk∇Lk(w
∗))/2. Denote v := 8Ψ(M̄)∥ŵ−w∗∥+2η/λ. If ϕ(w)−ϕ(ŵ) ≤ η for some η > 0 and

w∗ ∈ W , then we have
R(w −w∗) ≤ 4Ψ(M̄)∥w −w∗∥+ 2

η

λ
(24)

and (µ
2
− 32Ψ2(M̄)τ

)
∥w − ŵ∥2 ≤ 2τv2 + ϕ(w)− ϕ(ŵ).

for anyR-decomposable subspace pair (M,M̄⊤).

Proof of Theorem 3.2. In the first stage, we consider the following optimization problem

ŵ1 = arg min
w∈W(ŵ0;ϵ0)

{
K∑

k=1

πkLk(w) + λ0R(w)

}
. (25)

Note thatR(ŵ0 − ŵopt) ≤ 84Ψ2(M̄)λ0/µ, thus we have

R(ŵ0 − ŵ1) ≤ R(ŵ0 − ŵopt) +R(ŵopt −w∗) +R(ŵ1 −w∗)

≤ 84Ψ2(M̄)
λ0
µ

+ 12Ψ2(M̄)
λopt

µ
+ 12Ψ2(M̄)

λ0
µ
≤ 108Ψ2(M̄)

λ0
µ

= ϵ0,

where we used the fact λ0 ≥ λopt. Choosing R0 and E0 in Algorithm 3 such that

T0 = R0E0 =
8× 542σ̄2 log(8M/δ)

Ψ2(M̄)ϵ20
,

Corollary B.1 yields that with probability at least 1− δ/(2M)

ϕ(ŵ1)− ϕ(ŵ1) ≤
σ̄ϵ0
√

log(8M/δ)√
T0

+ (τ + ν)ϵ20

≤
σ̄ϵ0
√
log(8M/δ)√
T0

+
1

2µ
Ψ2(M̄)λ0 ≤

1

µ
Ψ2(M̄)λ0 := η1,

where we used the assumption µ(τ + ν)ϵ20 ≤ Ψ2(M̄)λ0. In fact, w∗ is also feasible for (25) since

R(w∗ − ŵ0) ≤ R(w∗ − ŵopt) +R(ŵopt − ŵ0)

≤ 12Ψ2(M̄)
λopt

µ
+ 84Ψ2(M̄)

λ0
µ
≤ ϵ0.
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In addition, we assume λopt > R∗(∇L(w∗)) in Proposition 3.1, hence λ0 > R∗(∇L(w∗)). Applying Lemma B.8, we can
obtain that

R2(ŵ1 −w∗) ≤ 32Ψ2(M̄)∥ŵ1 −w∗∥2 + 2η21
λ20

≤ 64Ψ2(M̄)∥ŵ1 − ŵ1∥2 + 64Ψ2(M̄)∥ŵ1 −w∗∥2 + 2η21
λ20

(a)

≤ 64τΨ2(M̄)

µ

(
8Ψ(M̄)∥ŵ1 −w∗∥+ 2

η1
λ0

)2

+ 64Ψ2(M̄)∥ŵ0 −w∗∥2 + 2η21
λ20

(b)

≤ 128Ψ2(M̄)∥ŵ1 −w∗∥2 + 4η21
λ20

(c)

≤ 128× 9Ψ4(M̄)
λ20
µ2

+
4η21
λ20
≤ 482Ψ4(M̄)

λ20
µ2
.

(26)

where (a) follows from the second conclusion in Lemma B.8, (b) follows from 128Ψ2(M̄)τ ≤ µ and (c) follows from
Proposition 3.1. Let λm = λ0 · 2−m, then we consider the following optimization problems

ŵm+1 = arg min
w∈W(ŵm;rm)

{
K∑

k=1

πkLk(w) + λmR(w)

}
(27)

where rm = 108Ψ2(M̄)λm/µ for m ≥ 0. We define the following good events: for any m = 0, 1, ...,M − 1

Am =

{
R(ŵm+1 −w∗) ≤ 48

Ψ2(M̄)λm
µ

}
.

Now we prove P(Ac
m) ≤ δ

2 + mδ
2M . Recall the definition of η0, then it follows from (26) that P(Ac

0) ≤ δ/2. Now we assume
P(Ac

m−1) ≤ δ
2 + (m−1)δ

2M holds. Under the event Am−1, note that

R(ŵm − ŵm+1) ≤ R(ŵm −w∗) +R(ŵm+1 −w∗) ≤ 48Ψ2(M̄)
λm−1

µ
+ 12Ψ2(M̄)

λm
µ

= 96Ψ2(M̄)
λm
µ

+ 12Ψ2(M̄)
λm
µ

= rm,

(28)

where we applied Proposition 3.1 toR(ŵm −w∗). We may choose Rm and Em in Algorithm 3 satisfies that

Tm = RmEm =
8× 542Ψ2(M̄)σ̄2 log(2M/δ)

µ2r2m
,

then Corollary B.1 guarantees there exists some Borel set Cm such that P(Ccm) ≤ δ/(2M). Under the event Am−1 ∩ Cm,
we have

ϕ(ŵm+1)− ϕ(ŵm+1) ≤
σ̄rm

√
log(2M/δ)√
Tm

+ (τ + ν)r2m

≤
σ̄rm

√
log(1/δ)√
Tm

+
µ

8× 542Ψ2(M̄)
r2m ≤

Ψ2(M̄)λ2m
µ

:= ηm+1.

In the first inequality above, we used ŵm−1 is the initial point of the m-th stage and the relation (28). In the second
inequality above, we used the Assumption 9. Recall that R(ŵm−1 − w∗) ≤ 48Ψ2(M̄)λm/µ ≤ rm, thus w∗ is also
feasible for problem (27). Applying Lemma B.8 again, we have

R2(ŵm −w∗) ≤ 128× 9Ψ4(M̄)
λ2m
µ2

+
4η2m+1

λ2m
≤ 482Ψ4(M̄)

λ2m
µ2

. (29)

Hence we have proved (Am−1 ∩ Cm) ⊆ Am, then it follows that

P(Ac
m) ≤ P(Ac

M−1) + P(CM ) ≤ δ

2
+

(m− 1)δ

2M
+

δ

2M
=
δ

2
+
mδ

2M
.
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We choose the number of stages such that λM−1 = λopt, which means M = log2(λ0/λopt) + 1. In fact, at the M -th stage,
ŵM = ŵ since λM = λopt. Under the event AM with P(Ac

M ) ≤ δ, we are guaranteed that

ϕ(ŵM )− ϕ(ŵM ) = ϕ(ŵM )− ϕ(ŵopt) ≤
Ψ2(M̄)λ2opt

µ
:= ηM .

Together with the second conclusion in Lemma B.8, we have

∥ŵM − ŵopt∥2 ≤
6τ

µ

(
8Ψ(M̄)∥ŵopt −w∗∥+ η2M

λ2opt

)2

+
3

µ
ηM

≤ ∥ŵopt −w∗∥2 + 6

µ
ηM = ∥ŵopt −w∗∥2 +

6Ψ2(M̄)λ2opt

µ2
.

In addition, from the definition of AM , we also have

R(ŵM −w∗) ≤ 48Ψ2(M̄)λM
µ2

=
48Ψ2(M̄)λopt

µ2
.

Now we consider the total complexity,

T =

M−1∑
m=0

Tm =

M−1∑
m=0

16× 542Ψ2(M̄)σ̄2 log(2M/δ)

µ2r2m

≤
M−1∑
m=0

4σ̄2 log(2M/δ)

Ψ2(M̄)λ2m
≤M · 22M 4σ̄2 log(2M/δ)

Ψ2(M̄)λ2opt

≤
4σ̄2(log2(λ0/λopt) + 1)

Ψ2(M̄)λ2opt
log

(
log2(λ0/λopt) + 1

δ

)
.

C. One-Step Induction Relation
Lemma C.1 (Proposition 1 in the appendix of (Chen et al., 2012)). Given any proper lsc convex function ψ(x) and a
sequence of {zi}ti=0 with each zi ∈ W , if

z+ = arg min
w∈W

{
ψ(w) +

t∑
i=0

ηi
2
∥w − zi∥2

}
,

where {ηi ≥ 0}ti=1 is a sequence of parameters, then for any w ∈ W:(
1

2

t∑
i=0

ηi

)
∥w − z+∥2 ≤ ψ(w) +

t∑
i=0

ηi
2
∥w − zi∥2 −

{
ψ(z+) +

t∑
i=0

ηi
2
∥z+ − zi∥2

}
. (30)

C.1. Deferred Proof of Lemma B.4

Proof of Lemma B.4. According to the definition of Dt+1(ŵ;wt+1) in (14), we note that

Dt+1(ŵ;wt+1) =⟨ŵ −wt+1, gt⟩+
µ

4

t∑
i=0

αi

(
∥ŵ − w̌i∥2 − ∥wt+1 − w̌i∥2

)
+
γt
2

(
∥ŵ −w0∥2 − ∥wt+1 −w0∥2

)
+At(h(ŵ)− h(wt+1)).
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Recall the fact At = At−1 + αt, then simple arrangement gives rise to the following decomposition

Dt+1(ŵ;wt+1) =⟨ŵ −wt, gt−1⟩+
µ

4

t∑
i=0

αi

(
∥ŵ − w̌i∥2 − ∥wt − w̌i∥2

)
+
γt−1

2

(
∥ŵ −w0∥2 − ∥wt −w0∥2

)
+At−1(h(ŵ)− h(wt))

−⟨wt+1 −wt, gt−1⟩ −
µ

4

t−1∑
i=0

αi

(
∥wt+1 − w̌i∥2 − ∥wt − w̌i∥2

)
−γt−1

2

(
∥wt+1 −w0∥2 − ∥wt −w0∥2

)
−At−1(h(wt+1)− h(wt)))

+αt

{
⟨Gt, ŵ −wt+1⟩+ h(ŵ) +

µ

4
∥ŵ − w̌t∥2 −

µ

4
∥wt+1 − w̌t∥2 − h(wt+1)

}
+
γt − γt−1

2
(∥ŵ −w0∥2 − ∥wt+1 −w0∥2).

From the definitions of Dt(ŵ;wt) and Dt(wt+1;wt) in (14), together with γt ≥ γt−1 we have

Dt+1(ŵ;wt+1) ≤ Dt(ŵ;wt)−Dt(wt+1;wt) + αt⟨∆t, ŵ −wt+1⟩+
γt − γt−1

2
∥ŵ −w0∥2

+ αt

{
L(wt) +

K∑
k=1

πk⟨∇Lk(w
k
t ), ŵ −wt⟩+

µ

4
∥w̌t − ŵ∥2 + h(ŵ)

}
︸ ︷︷ ︸

A1

− αt

{
L(wt) +

K∑
k=1

πk⟨∇Lk(w
k
t ),wt+1 −wt⟩+ h(wt+1)

}
︸ ︷︷ ︸

A2

,

(31)

where ∆t =
∑K

k=1 πk[∇f(wk
t ; ξ

k
t )−∇Lk(w

k
t )]. By µ-strong convexity and L-smoothness of local loss Lk, we get

Lk(w
k
t ) + ⟨∇Lk(w

k
t ), ŵ −wk

t ⟩+
µ

4
∥ŵ − w̌t∥2 ≤ Lk(ŵ) +

µ

4
∥ŵ − w̌t∥2 −

µ

2
∥ŵ −wk

t ∥2

≤ Lk(ŵ) +
µ

2
∥ŵ −wk

t ∥2 +
µ

2
∥w̌t −wk

t ∥2 −
µ

2
∥ŵ −wk

t ∥2

= Lk(ŵ) +
µ

2
∥w̌t −wk

t ∥2,

and

Lk(wt) + ⟨∇Lk(w
k
t ),w

k
t −wt⟩ ≤ Lk(w

k
t ) +

L

2
∥wk

t −wt∥2.

Summing the two inequalities above and taking average over k, together with the definition ϕ(ŵ) = L(ŵ) + h(ŵ), we can
bound A1 in (31) as

A1 ≤ϕ(ŵ) +
µ

2

K∑
k=1

πk∥wk
t − w̌t∥2 +

L

2

K∑
k=1

πk∥wk
t −wt∥2. (32)

Using the convexity and L-smoothness of Lk again, we can obtain that

Lk(wt) ≥ Lk(w
k
t ) + ⟨∇Lk(w

k
t ),wt −wk

t ⟩,

and

Lk(w
k
t ) ≥ Lk(wt+1) + ⟨∇Lk(w

k
t ),w

k
t −wt+1⟩ −

L

2
∥wk

t −wt+1∥2.
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Summing two inequalities displayed above gives the bound of A2, that is

A2 = L(wt) +

K∑
k=1

πk⟨∇Lk(w
k
t ),wt+1 −wt⟩+ h(wt+1)

≥ ϕ(wt+1)−
L

2

K∑
k=1

πk∥wk
t −wt+1∥2

≥ ϕ(wt+1)− L∥wt −wt+1∥2 − L
K∑

k=1

πk∥wk
t −wt∥2.

(33)

Plugging (32) and (33) into (31) results in

Dt+1(ŵ;wt+1) ≤Dt(ŵ;wt)−Dt(wt+1;wt) + αt[ϕ(ŵ)− ϕ(wt+1)]

+αtL∥wt −wt+1∥2 + ⟨∆t, ŵ −wt+1⟩+ αt
γt − γt−1

2
∥ŵ −w0∥2

+αt

(
µ

2

K∑
k=1

πk∥wk
t − w̌t∥2 +

3L

2

K∑
k=1

πk∥wk
t −wt∥2 + 4(4τ + 3ν)ϵ20

)
.

(34)

To apply Lemma C.1, we let ψ(w) = ⟨w, gt⟩, ηi = µαi/2 for i ≤ t−1 and ηt = γt/2, zi = w̌i for i ≤ t−1 and zt = w0.
Recalling the definition of wt in (13), that is

wt = arg min
w∈W

{
ψ(w) +

t∑
i=0

ηi
2
∥w − zi∥2

}
,

which implies that

(µ
2
At + γt

)
∥wt+1 −wt∥2 ≤ ψ(wt+1) +

t∑
i=0

ηi
2
∥wt+1 − zi∥2 −

{
ψ(wt) +

t∑
i=0

ηi
2
∥wt − zi∥2

}
= Dt(wt+1;wt).

In addition, using the simple inequality: −ax2 + bx ≤ b2

4a for a > 0, we have

−Dt(wt+1;wt) + Lαt∥wt −wt+1∥2 + αt⟨∆t, ŵ −wt+1⟩

≤ −
(µ
2
At + γt − Lαt

)
∥wt −wt+1∥2 + αt∥∆t∥∥wt+1 −wt∥+ αt⟨∆t, ŵ −wt⟩

≤ α2
t ∥∆t∥2

2(µAt + 2γt − 2Lαt)
+ αt⟨∆t, ŵ −wt⟩.

Then plugging above inequality into (34) yields

αt[ϕ(wt+1)− ϕ(ŵ)] ≤Dt(ŵ;wt)−Dt+1(ŵ;wt+1) +
γt − γt−1

2
∥ŵ −w0∥2

+αt⟨∆t, ŵ −wt⟩+
α2
t ∥∆t∥2

2(Atµ+ 2γt − 2Lαt)

+αt

(
µ

2

K∑
k=1

πk∥wk
t − w̌t∥2 +

3L

2

K∑
k=1

πk∥wk
t −wt∥2

)
.

(35)

Thus we have complete the proof of Lemma B.4.
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C.2. Deferred Proof of Lemma B.6

Proof of Lemma B.6. We first recall the definition of Dr+1(ŵ; w̄r+1)

Dr+1(ŵ; w̄r+1) =⟨gtr+1−1, ŵ − w̄r+1⟩+
µE

4

r∑
j=0

αj(∥ŵ − w̄j∥2 − ∥w̄r+1 − w̄j∥2)

+
γrE

2
(∥ŵ − w̄0∥2 − ∥w̄r+1 − w̄0∥2) +ArE[h(ŵ)− h(w̄r+1)].

Using Ar = Ar−1 + αr, we may write Dr+1(ŵ; w̄r+1) as

Dr+1(ŵ; w̄r+1) = ⟨gtr−1, ŵ − w̄r⟩+
µE

4

r−1∑
j=0

αj(∥ŵ − w̄j∥2 − ∥w̄r − w̄j∥2)

+
γr−1E

2
(∥ŵ − w̄0∥2 − ∥w̄r − w̄0∥2) +Ar−1E[h(ŵ)− h(w̄r+1)]

− ⟨gtr−1, w̄r+1 − w̄r⟩ −
µE

4

r−1∑
j=0

αj(∥w̄r+1 − w̄j∥2 − ∥w̄r − w̄j∥2)

− γr−1E

2
(∥w̄r+1 − w̄0∥2 − ∥w̄r − w̄0∥2)−Ar−1E[h(w̄r+1)− h(w̄r+1)]

+ ⟨gtr+1−1 − gtr−1, ŵ − w̄r+1⟩+ αrE
(µ
4
∥ŵ − w̄r∥2 −

µ

4
∥w̄r+1 − w̄r∥2 + h(ŵ)− h(w̄r+1)

)
+

(γr − γr−1)E

2
(∥ŵ − w̄0∥2 − ∥w̄r+1 − w̄0∥2).

From the definition of Dr(ŵ; w̄r), Dr(w̄r; w̄r+1) and gtr+1−1 − gtr−1 = αr

∑tr+1−1
i=tr

∑K
k=1 πkG

k
i , we have

Dr+1(ŵ; w̄r+1) ≤ Dr(ŵ; w̄r)−Dr(w̄r+1; w̄r) + αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r+1⟩

+ αr

tr+1−1∑
i=tr

{
L(w̄r) +

K∑
k=1

πk⟨∇Lk(w
k
i ), ŵ − w̄r⟩+

µ

4
∥w̄r − ŵ∥2 + h(ŵ)

}
︸ ︷︷ ︸

B1

− αr

tr+1−1∑
i=tr

{
L(w̄r) +

K∑
k=1

πk⟨∇Lk(w
k
i ), w̄r+1 − w̄r⟩+ h(w̄r+1)

}
︸ ︷︷ ︸

B2

,

(36)

where ∆i =
∑K

k=1 πk(G
k
i −∇Lk(w

k
i )). By the RSC and RSM of Lk, it follows that for any tr ≤ i ≤ tr+1 − 1

Lk(w
k
i ) + ⟨∇Lk(w

k
i ), ŵ −wk

i ⟩+
µ

4
∥ŵ − w̄r∥2

≤Lk(ŵ) +
µ

4
∥ŵ − w̄r∥2 −

µ

2
∥ŵ −wk

i ∥2 + τkR2(ŵ −wk
i )

≤Lk(ŵ) +
µ

2
∥w̄r −wk

i ∥2 + 2τkR2(ŵ − w̄r+1) + 2τkR2(w̄r+1 −wk
i )

≤Lk(ŵ) + µ∥w̄r+1 −wk
i ∥2 + µ∥w̄r − w̄r+1∥2 + 2τkR2(ŵ − w̄r+1) + 2τkR2(w̄r+1 −wk

i ),

and

Lk(w̄r) + ⟨∇Lk(w
k
i ),w

k
i − w̄r⟩ ≤ Lk(w

k
i ) +

L

2
∥wk

i − w̄r∥2 + νkR2(wk
i − w̄r)

≤ Lk(w
k
i ) + L∥w̄r+1 − w̄r∥2 + 2νkR2(w̄r+1 − w̄r)

+ L∥wk
i − w̄r∥2 + 2νkR2(wk

i − w̄r+1).
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Summing the two inequalities above and taking average over k, together with the definition τ =
∑K

k=1 πkτk, we can bound
B1 in (36) as

B1 ≤Eϕ(ŵ) + E(L+ µ)∥w̄r+1 − w̄r∥2 + 2EνR2(w̄r+1 − w̄r) + 2EτR2(ŵ − w̄r+1)

+(L+ µ)

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2 +

tr+1−1∑
i=tr

K∑
k=1

πk2(τk + νk)R2(wk
i − w̄r+1)

≤Eϕ(ŵ) + (L+ µ)E∥w̄r+1 − w̄r∥2 + (L+ µ)

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2 + 16E(τ + ν)ϵ20.

(37)

We used the constrainR(w− w̄0) ≤ ϵ0 in the proximal operator and the assumptionR(ŵ− w̄0) ≤ ϵ0 in the last inequality
of (37). Applying the convexity and RSM of Lk again, we can obtain that

Lk(w̄r) ≥ Lk(w
k
i ) + ⟨∇Lk(w

k
i ), w̄r −wk

i ⟩,

and

Lk(w
k
i ) ≥ Lk(w̄r+1) + ⟨∇Lk(w

k
i ),w

k
i − w̄r+1⟩ −

L

2
∥wk

t − w̄r+1∥2 − νkR2(wk
t − w̄r+1).

In conjunction with the definition ν =
∑K

k=1 πkνk, two inequalities displayed above shows that

B2 ≥ Eϕ(w̄r+1)−
L

2

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2 −

K∑
k=1

πkνkR2(wk
i − w̄r+1)

≥ Eϕ(w̄r+1)−
L

2

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2 − 4Eνϵ20.

(38)

According to Lemma C.1, we may guarantee that

−Dr(w̄r+1; w̄r) + (L+ µ)Eαr∥w̄r+1 − w̄r∥2 + αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r+1⟩

≤ − E
(µ
2
Ar + γr − (L+ µ)αr

)
∥w̄r+1 − w̄r∥2 − αr

tr+1−1∑
i=tr

⟨∆i, w̄r+1 − w̄r⟩+ αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r⟩

≤
α2
r∥
∑tr+1−1

i=tr
∆i∥2

2(ArEµ+ 2γrE − 2(L+ µ)E)
+ αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r⟩,

(39)

where we used the inequality −ax2 + bx ≤ b2

4a for a > 0 in the last inequality. Plugging three upper bounds (37), (38) and
(39) into (36), we have

Dr+1(ŵ; w̄r+1)−Dr(ŵ; w̄r) ≤Eαr[ϕ(ŵ)− ϕ(w̄r+1)] +
(γr − γr−1)E

2
∥ŵ − w̄0∥2

+αr

tr+1−1∑
i=tr

⟨∆i, ŵ − w̄r⟩+
∥α2

r

∑tr+1−1
i=tr

∆i∥2

2(ArEµ+ 2γrE − 2(L+ µ)E)

+αr
3L+ 2µ

2

tr+1−1∑
i=tr

K∑
k=1

πk∥wk
i − w̄r+1∥2 ++20αrE(τ + ν)ϵ20.

(40)
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D. Upper Bound for Discrepancy
Lemma D.1 (Proposition B.5, (Yuan et al., 2021)). Let ω : Rd → R ∪ {+∞} be a closed µω-strongly convex function, for
z ∈ Rd we define

∇(ω + h)∗(z) = argmin
w
{⟨−z,w⟩+ ω(w) + h(w)} ,

then it holds that

∥∇(ω + h)∗(z)−∇(ω + h)∗(y)∥ ≤ 1/µω∥z − y∥∗.

D.1. Deferred Proof of Lemma B.5

Proof of Lemma B.5. Reacll the definitions of wk
t and wt

wk
t = arg min

w∈W(ϵ0;w0)

{
⟨w, gk

t−1 −
µ

2
w̃k

t−1 − γt−1w0⟩+
(
At−1µ

2
+ γt−1

)
∥w∥2

2
+At−1h(w)

}
and

wt = arg min
w∈W(ϵ0;w0)

{
⟨w, gt−1 −

µ

2
w̃t−1 − γt−1w0⟩+

(
At−1µ

2
+ γt−1

)
∥w∥2

2
+At−1h(w)

}
.

Since the synchronization at step tr, we have gk
t−1 − gt−1 =

∑t−1
i=tr

αi(G
k
i −

∑K
l=1 πlG

l
i) and w̃k

t−1 − w̃t−1 =∑t−1
i=tr

αi(w
k
i −

∑K
l=1 πlw

l
i) for tr ≤ t− 1 ≤ tr+1 − 1. Then applying Lemma D.1, it holds that

∥wk
t −wt∥ ≤

1

µAt−1/2 + γt−1

(
∥gk

t−1 − gt−1∥+
µ

2
∥w̃k

t−1 − w̃t−1∥
)

≤ 1

µAt−1/2 + γt−1

(∥∥∥∥∥
t−1∑
i=tr

αi(Gi −Gk
i )

∥∥∥∥∥+ µ

2

∥∥∥∥∥
t−1∑
i=tr

αi(w
k
i − w̌i)

∥∥∥∥∥
)

≤ 1

µAt−1/2 + γt−1

(
K∑
l=1

πl

∥∥∥∥∥
t−1∑
i=tr

αi(G
l
i −Gk

i )

∥∥∥∥∥+ µρ(At−1 −Atr−1)

)
,

(41)

where we used ρ-bounded domain in the last inequality. Let ∆k
i = Gk

i −∇Lk(w
k
i ), then we may decompose the difference

of local stochastic gradients as∥∥∥∥∥
t−1∑
i=tr

αi(G
l
i −Gk

i )

∥∥∥∥∥ ≤
∥∥∥∥∥
t−1∑
i=tr

αi∆
k
i

∥∥∥∥∥+
∥∥∥∥∥
t−1∑
i=tr

αi∆
l
i

∥∥∥∥∥+
t−1∑
i=tr

αi

∥∥∇Ll(w
l
i)−∇Lk(w

k
i )
∥∥

≤

∥∥∥∥∥
t−1∑
i=tr

αi∆
k
i

∥∥∥∥∥+
∥∥∥∥∥
t−1∑
i=tr

αi∆
l
i

∥∥∥∥∥+
t−1∑
i=tr

αi

∥∥∇Ll(w
l
i)−∇L(wl

i)
∥∥

+

t−1∑
i=tr

αi

∥∥∇Lk(w
k
i )−∇L(wk

i )
∥∥+ t−1∑

i=tr

αi

∥∥∇L(wl
i)−∇L(wk

i )
∥∥

≤

∥∥∥∥∥
t−1∑
i=tr

αi∆
k
i

∥∥∥∥∥+
∥∥∥∥∥
t−1∑
i=tr

αi∆
l
i

∥∥∥∥∥+ 2(At−1 −Atr−1)(H + Λρ),

(42)

where the third inequality follows from the bounded heterogeneity assumption and Λ-smoothness of global loss L. By the
conditional dependence, we have

ED

∥∥∥∥∥
t−1∑
i=tr

αi∆
k
i

∥∥∥∥∥
2

|Ftr

 =

t−1∑
i=tr

α2
iED[E(∥∆k

i ∥2|Fi)|Ftr ] ≤ Eα2
tσ

2
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Taking expectation on both sides of (42) and using the relation above, we have

ED

∥∥∥∥∥
t−1∑
i=tr

αi(G
l
i −Gk

i )

∥∥∥∥∥
2 ∣∣∣Ftr

 ≤ 2ED

∥∥∥∥∥
t−1∑
i=tr

αi∆
k
i

∥∥∥∥∥
2

+

∥∥∥∥∥
t−1∑
i=tr

αi∆
l
i

∥∥∥∥∥
2 ∣∣∣Ftr

+ 4(At−1 −Atr−1)
2(H + Λρ)2

≤ 4Eα2
tσ

2 + 4α2
tE

2(H + Λρ)2,
(43)

where the last inequality follows from (At−1 −Atr−1)/αt ≤ E. Combining (41) and (43), together with ∥wk
i −wl

i∥ ≤ 2ρ,
we are guaranteed that

ED[∥wk
t −wt∥2] ≤

4Eσ2α2
t

(µAt/2 + γt)2
+

4α2
tE

2(H + Λρ)2

(µAt/2 + γt)2
.

Similarly, ED[∥w̌t −wk
t ∥2] shares the same upper bound with E[∥wk

t −wt∥2] due to the following relation

∥wk
t − w̃t∥ ≤

K∑
l=1

πl∥wk
t −wl

t∥

≤ 1

µAt−1/2 + γt−1

K∑
l=1

πl

(∥∥∥∥∥
t−1∑
i=tr

αi(G
k
i )−Gl

i

∥∥∥∥∥+ µ

2

∥∥∥∥∥
t−1∑
i=tr

αi(w
k
i −wl

i)

∥∥∥∥∥
)
.

D.2. Deferred Proof of Lemma B.7

Proof of Lemma B.7. Recalling the definitions of w̄r and wk
i for tr ≤ i ≤ tr+1 − 1:

w̄r+1 = arg min
w∈W(ϵ0;w0)

⟨w, gtr+1−1 −
µE

2

r∑
j=0

αjw̄j − γrEw̄0⟩+
(
Arµ

2
+ γr

)
E
∥w∥2

2
+ArEh(w)


wk

i = arg min
w∈W(ϵ0;w0)

⟨w, gk
i−1 −

µE

2

r∑
j=0

αjw̄j − γrEw̄0⟩+
(
Arµ

2
+ γr

)
E
∥w∥2

2
+ArEh(w)

 ,

where gtr+1−1 = gtr−1 +
∑tr+1−1

j=tr
αrGj and gk

i = gtr−1 +
∑i

j=tr
αrG

k
j . Using Lemma D.1 and similar decomposition

in (42), we have

∥wk
i − w̄r+1∥ ≤

1

ArEµ/2 + γrE
∥gk

i−1 − gtr+1−1∥ ≤
1

ArEµ/2 + γrE

∥∥∥∥∥∥
tr+1−1∑
j=i

αr(Gj −Gk
j )

∥∥∥∥∥∥
≤ 1

ArEµ/2 + γrE

K∑
l=1

πl

∥∥∥∥∥∥
tr+1−1∑
j=i

αr(G
l
j −Gk

j )

∥∥∥∥∥∥
≤ αr

ArEµ/2 + γrE

K∑
l=1

πl

∥∥∥∥∥∥
tr+1−1∑
j=i

∆k
j

∥∥∥∥∥∥+
∥∥∥∥∥∥
tr+1−1∑
j=i

∆l
j

∥∥∥∥∥∥+ 2(tr+1 − i)(H + Λρ)

 .

(44)

Applying Lemma B.3, we can obtain that∥∥∥∥∥∥
tr+1−1∑
j=i

∆k
j

∥∥∥∥∥∥ ≤ 2
√
2 log(1/(4δ))


tr+1−1∑

j=i

E∥∆k
j ∥2
1/2

+

tr+1−1∑
j=i

∥∆k
j ∥2
1/2

 (45)

holds with probability at least 1 − δ/2. Using the light-tailed assumption and Lemma B.1, we are guaranteed that
E∥∆k

j ∥2 ≤ σ2 and
tr+1−1∑
j=i

∥∆k
j ∥2 ≤ Eσ2 +max

{
8σ2 log(2/δ), 16σ2

√
E log(2/δ)

}
(46)
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holds with probability at least 1− δ/2. Substituting (45) and (46) into (44), it holds that

∥wk
i − w̄r+1∥ ≤

2αr

EµAr/2 + γtE

(√
2 log(1/(4δ))

(
2
√
Eσ + 4

√
Eσ
√
log(2/δ)

)
+ 2E(H + Λρ)

)
≤ 2αr

EµAr/2 + γtE

(
8
√
Eσ log(2/δ) + 2E(H + Λρ)

)
with probability at least 1− δ.

E. Proof of Lemma B.3
This lemma is a martingale’s version of Lemma 3.1 in (He & Shao, 2000), we provide the proof for completeness.

Proof of Lemma B.3. Without loss of generality, we consider that x > 16. If x ≤ 16, we may modify the tail probability in
Lemma B.3 as 100 exp(−x2/100). Let {ζi}∞i=1 be an independent copy of {ξi}∞i=1, which is also adapted to {Fi}∞i=1. By
Chebyshev’s inequality, we have

P

(∥∥∥∥∥
t∑

i=1

ζi

∥∥∥∥∥ ≤ 2Bt,

t∑
i=0

∥ζi∥2 ≤ 2B2
t

)
≥1− P

(∥∥∥∥∥
t∑
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ζi

∥∥∥∥∥ > 2Bt

)
− P

(
t∑

i=0

∥ζi∥2 > 2B2
t

)

≥1− P

(∥∥∥∥∥
t∑

i=1

ζi

∥∥∥∥∥ > 2Bt

)
− 1

2

≥1−
E
∥∥∥∑t

i=1 ζi

∥∥∥2
4B2

t

− 1/2

≥1− 1/4− 1/2 = 1/4,

(47)

where the last inequality follows from B2
t = E∥

∑t
i=1 ζi∥2 =

∑t
i=1 E∥ζi∥2 due to the martingale property. Let {εi}ti=1 be

a Rademacher sequence independent of {ξi}ti=1 and {ζi}ti=1. With slightly abusing notation, we denote St = (
∑t

i=1(∥ξi −
ζi∥2))1/2. We assume the following event holds
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(b)
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2

(
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,

where the inequality (a) follows from the triangle inequality and the inequality (b) holds since x > 16. The relation above
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implies that 
∥∥∥∥∥

t∑
i=1

ξi

∥∥∥∥∥ ≥ x
Bt +

(
t∑

i=1

∥ξi∥2
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2
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(48)

Using the dependence of ξi and ζi, we have

P

∥∥∥∥∥
t∑

i=1

ξi

∥∥∥∥∥ ≥ x
Bt +

(
t∑

i=1

∥ξi∥2
)1/2


=P

∥∥∥∥∥
t∑

i=1

ξi

∥∥∥∥∥ ≥ x
Bt +

(
t∑

i=1

∥ξi∥2
)1/2

 ,

∥∥∥∥∥
t∑

i=1

ζi

∥∥∥∥∥ ≤ 12Bt,

t∑
i=0

∥ζi∥2 ≤ 2B2
t


×P

(∥∥∥∥∥
t∑

i=1

ζi

∥∥∥∥∥ ≤ 12Bt,

t∑
i=0

∥ζi∥2 ≤ 2B2
t

)

≤4P

(∥∥∥∥∥
t∑

i=1

ξi − ζi

∥∥∥∥∥ ≥ x
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)
,

(49)

where the last inequality follows from (47) and (48). Note that {ξi − ζi}ti=1 is a symmetric martingale difference sequence.
Then using double expectation (given Ft, ξi and ζi for 1 ≤ i ≤ t are fixed), we have

P

(∥∥∥∥∥
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8
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−x

2

8

)
,

where the first inequality follows from the exponential inequality for Rademacher sequence (see, e.g., Ledoux & Talagrand
(1991), p.101). Plugging this upper bound into (49), we are guaranteed that

P

∥∥∥∥∥
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Bt +

(
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 ≤ 8 exp

(
−x

2

8

)
.

F. Additional Results in Section 4
Federated sparse linear regression. For MC-FedDA, we set the number of stages M = 3 and use the regularization
sequence {0.53, 0.54, 0.55} for regularization parameters in 3 stages. For other methods, the regularization parameter is
λ = 0.55. The hyperparameters for Fast-FedDA are µ = 0.1 and L = 550. For C-FedDA and MC-FedDA, we choose
µ = 0.1 and L = 600. For FedDA and FedMiD, we set the server learning rate ηs = 1.0 and tuned the client learning rate
ηc by selecting the best performing value over the set {0.0001, 0.001, 0.01, 0.1}, which was 0.001 for both baselines.

Federated low-rank matrix estimation. For MC-FedDA, we set the number of stages M = 3 and use the sequence
{0.3, 0.15, 0.1} for regularization parameters in 3 stages. For other methods, the regularization parameter is λ = 0.1. The
choices for hyperparameters follow the same setting in sparse linear regression.



Fast Composite Optimization and Statistical Recovery in Federated Learning

Federated sparse logistic regression. The experimental results on EMNIST-10 and EMNIST-62 are reported in Figure 4
and Figure 3 respectively. For the two baselines (FedMid and FedDA), we set the server learning rate ηs = 1.0 and tuned
the client learning rate ηc by selecting the best performing value over the set {0.001, 0.003, 0.01, 0.03, 0.1}, which was ηc =
0.01 for both baselines. For our proposed algorithms, we tuned µ and γ by selecting the best performing values over the sets
{0.0001, 0.0005, 0.001, 0.005, 0.01} and {10, 25, 50, 100}, respectively. The best values were µ = 0.001 and γ = 25 for
all proposed algorithms. For MC-FedDA, we use the regularization sequence {0.000225, 0.00015, 0.0001, 0.0001, 0.0001}.
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Figure 4. Results for federated sparse logistic regression on EMNIST-10 dataset. Our proposed algorithms Fast-FedDA and C-FedDA
reach a lower loss and higher accuracy than the two baselines from (Yuan et al., 2021), and exhibit faster convergence.


