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Abstract
In this paper, we study the problem of sparse
mixed linear regression on an unlabeled dataset
that is generated from linear measurements from
two different regression parameter vectors. Since
the data is unlabeled, our task is not only to figure
out a good approximation of the regression param-
eter vectors but also to label the dataset correctly.
In its original form, this problem is NP-hard. The
most popular algorithms to solve this problem
(such as Expectation-Maximization) have a ten-
dency to stuck at local minima. We provide a
novel invex relaxation for this intractable problem
which leads to a solution with provable theoretical
guarantees. This relaxation enables exact recov-
ery of data labels. Furthermore, we recover a
close approximation of the regression parameter
vectors which match the true parameter vectors in
support and sign. Our formulation uses a carefully
constructed primal dual witnesses framework for
the invex problem. Furthermore, we show that the
sample complexity of our method is only logarith-
mic in terms of the dimension of the regression
parameter vectors.

1. Introduction
In this paper, we study sparse mixed linear regression where
the measurements come from one of the two regression
models depending upon the unknown label z˚i P t0, 1u. The
observation model can be described as follows:

yi “ z˚i xXi, β
˚
1 y ` p1´ z

˚
i qxXi, β

˚
2 y ` ei,@i P t1, ¨ ¨ ¨ , nu ,

(1)

where Xi P Rd, yi P R and ei P R is independent additive
noise. The regression parameter vectors β˚1 P Rd, β˚2 P Rd
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are sparse vectors with possibly non-overlapping supports.

Mixed linear regression models have been extensively used
in a wide range of applications (Grün et al., 2007) which
include but are not limited to behavioral health-care (Deb &
Holmes, 2000), market segmentation (Wedel & Kamakura,
2000), music perception studies (Viele & Tong, 2002) and
vehicle merging (Li et al., 2019). The main task of the prob-
lem is to estimate the regression parameter vectors and the
unknown labels accurately from linear measurements. How-
ever, the problem is NP-hard without any assumptions (Yi
et al., 2014). Being such a difficult problem, it also lends
itself to be used as a benchmark for many non-convex opti-
mization algorithms (Chaganty & Liang, 2013; Klusowski
et al., 2019).

Related Work. There have been many approaches to
solve the mixed linear regression problem after it was intro-
duced by (Wedel & DeSarbo, 1995). The most popular and
natural approach has been to use Expectation-minimization
(EM) based alternate minimization algorithms (see Ghosh
& Kannan (2020) and references therein). More broadly,
the problem can be modeled under the hierarchical mixtures
of experts model (Jordan & Jacobs, 1994) and solved using
EM based algorithms. All these methods run the risk of
getting stuck at local minima (Wu, 1983) without good ini-
tialization. (Yi et al., 2014) provides a good initialization for
the noiseless case under strict technical conditions, however
their method does not provide any guarantees for the noisy
case. Based on the recent work of (Anandkumar et al., 2014;
Hsu & Kakade, 2013), (Chaganty & Liang, 2013) have pro-
posed an approach which uses a third order moment method
based on tensor decomposition. Their approach suffers from
high sample complexity (up to Opd6q) due to tensor decom-
position. (Städler et al., 2010) proposed an `1-regularized
approach for the sparse case and showed the existence of a
local minimizer with correct support but there are no guaran-
tees that EM achieves this local minima. (Chen et al., 2014)
provided a convex relaxation involving nuclear norms for
the problem. They do not focus on providing guarantees for
exact label recovery and their results only hold for bounded
noise and require balanced samples (almost equal number
of samples for both labels). Besides, the optimization prob-
lems involving nuclear norms are computationally heavy
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and slow. The mixed linear regression problem can also
be modeled as a subspace clustering problem. But typi-
cally these problems require Opd2q measurements to have
a unique solution (Vidal et al., 2005; Elhamifar & Vidal,
2013).

Contribution. Broadly, we can categorize our contribu-
tion in the following points:

• A Combinatorial Problem: We view the problem as
a combinatorial version of a mixture of sparse linear
regressions. The exact label recovery is as important
for us as the recovery of regression vectors. This added
exact label recovery guarantee comes at no extra cost
in terms of the performance.

• Invex Relaxation: We solve a non-convex problem
which is known to be intractable. We propose a novel
relaxation of the combinatorial problem and formally
show that this relaxation is invex.

• Theoretical Guarantees: Our method solves two
sparse linear regressions and a label recovery prob-
lem simultaneously with theoretical guarantees. To
that end, we recover the true labels and sparse regres-
sion parameter vectors which are correct up to the sign
of entries with respect to the true parameter vectors. As
a side product, we propose a novel primal-dual witness
construction for our invex problem and provide theo-
retical guarantees for recovery. The sample complexity
of our method only varies logarithmically with respect
to dimension of the regression parameter vector.

• A Novel Framework: It should be noted that we are
providing a novel framework (not an algorithm) to
solve the problem. This opens the door for many algo-
rithms to be used for this problem.

2. Problem Setup
In this section, we collect the notations used throughout the
paper and define our problem formally. We consider a prob-
lem where measurements come from a mixture of two linear
regression problem. Let yi P R be the response variable
and Xi P Rd be the observed attributes. Let z˚i P t0, 1u
denote the unknown label associated with measurement i.
The response yi is generated using the observation model
(1) where ei P R is an independent noise term. We collect
a total of n linear measurements with n1 measurements be-
longing to label 1 and n2 measurements belonging to label 0.
Clearly, n “ n1`n2. We take }β˚1 }1 ď b1 and }β˚2 }1 ď b2.

Let rds denote the set t1, 2, ¨ ¨ ¨ , du. We assume Xi P

Rd to be a zero mean sub-Gaussian random vector (Hsu
et al., 2012) with covariance Σ P Sd`, i.e., there exists
a ρ ą 0, such that for all τ P Rd the following holds:

EpexppτᵀXiqq ď expp
}τ}22ρ

2

2 q. By simply taking τj “ r
and τk “ 0,@k ‰ j, it follows that each entry of Xi

is sub-Gaussian with parameter ρ. In particular, we will
assume that @j P rds , Xij?

Σjj
is a sub-Gaussian random

variable with parameter σ ą 0. It follows trivially that
maxjPrds

a

Σjjσ ď ρ. We will further assume that ei is
zero mean independent sub-Gaussian noise with variance
σe. Our setting works with a variety of random variables
as the class of sub-Gaussian random variable includes for
instance Gaussian variables, any bounded random variable
(e.g., Bernoulli, multinomial, uniform), any random variable
with strictly log-concave density, and any finite mixture of
sub-Gaussian variables.

The parameter vectors β˚1 P Rd and β˚2 P Rd are s1-sparse
and s2-sparse respectively, i.e., at most s1 entries of β˚1 are
non-zero whereas at most s2 entries of β˚2 are non-zero. We
receive n i.i.d. samples of Xi P Rd and yi P R and collect
them in X P Rnˆd and y P Rn respectively. Similarly,
z˚ P t0, 1un collects all the labels. Our goal is to recover
β˚1 , β

˚
2 and z˚ using the samples pX, yq.

We denote a matrix A P Rpˆq restricted to the columns and
rows in P Ď rps and Q Ď rqs respectively as APQ. Simi-
larly, a vector v P Rp restricted to entries in P is denoted as
vP . We use eigipAq to denote the i-th eigenvalue (1st being
the smallest) of matrix A. Similarly, eigmaxpAq denotes
the maximum eigenvalue of matrix A. We use diagpAq to
denote a vector containing the diagonal element of matrixA.
By overriding the same notation, we use diagpvq to denote a
diagonal matrix with its diagonal being the entries in vector
v. We denote the inner product between two matrices (or
vectors) A and B by xA,By, i.e., xA,By “ tracepAᵀBq,
where trace denotes the trace of a matrix. The notation
A ľ B denotes that A´B is a positive semidefinite matrix.
Similarly, A ą B denotes that A´B is a positive definite
matrix. For vectors, }v}p denotes the `p-vector norm of
vector v P Rd, i.e., }v}p “ p

řd
i“1 |vi|

pq
1
p . If p “ 8, then

we define }v}8 “ maxdi“1 |vi|. As is the tradition, we used
}v}0 to denote number of non-zero entries on vector v. It
should be remembered that `0 is not a proper vector norm.
For matrices, }A}p denotes the induced `p-matrix norm for
matrix A P Rpˆq. In particular, }A}2 denotes the spectral
norm of A and }A}8 fi maxiPrps

řq
j“1 |Aij |. For a matrix

A P Rpˆq, Ap:q P Rpq denotes a vector which collects all
entries of the matrix A. We define an operator signpAq for
a matrix(or vector) A, which returns a matrix (or a vector)
with entries being the sign of the entries of A. A function
fpxq is of order Ωpgpxqq and denoted by fpxq “ Ωpgpxqq,
if there exists a constant C ą 0 such that for big enough
x0, fpxq ě Cgpxq,@x ě x0. Similarly, a function fpxq
is of order Opgpxqq and denoted by fpxq “ Opgpxqq, if
there exists a constant C ą 0 such that for big enough x0,
fpxq ď Cgpxq,@x ě x0. For brevity in our notations, we
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treat any quantity independent of d, s and n as constant.
Detailed proofs for lemmas and theorems are available in
the supplementary material.

3. A Novel Invex Relaxation
In this section, we introduce a combinatorial formulation
for mixed linear regression (MLR) and propose a novel
invex relaxation for this problem. Since the measurements
come from a true observation model (1), we can write the
following optimization problem to estimate β˚1 , β

˚
2 and z˚.

Definition 3.1 (Standard MLR).

min
β1PRd,β2PRd,zPt0,1un

lpz, β1, β2q

such that }β1}0 “ s1, }β2}0 “ s2

(2)

where lpz, β1, β2q “
1
n

řn
i“1 zipyi´X

ᵀ
i β1q

2`p1´ziqpyi´
Xᵀ
i β2q

2.

Even without constraints, optimization problem (2) is a non-
convex NP-hard problem (Yi et al., 2014) in its current form.
In fact, a continuous relaxation of z P r0, 1sn does not help
and it still remains a non-convex problem (See Appendix A).
Furthermore, the sparsity constraints make it even difficult
to solve. To deal with this intractability, we come up with a
novel invex relaxation of the problem.

For ease of notation, we define the following quantities:

Si “

„

Xi

´yi



“

Xᵀ
i ´yi

‰

“

„

XiX
ᵀ
i ´Xiyi

´yiX
ᵀ
i y2

i



, (3)

We provide the following invex relaxation to the optimiza-
tion problem (2).

Definition 3.2 (Invex MLR).

min
t,W,U

fpt,W,Uq ` λ1gpt,W,Uq ` λ2hpt,W,Uq

such that
W ľ 0, U ľ 0

Wd`1,d`1 “ 1, Ud`1,d`1 “ 1
}t}8 ď 1

.

(4)

where fpt,W,Uq “
řn
i“1

1
2xSi,W ` Uy `

řn
i“1

1
2 tixSi,W ´ Uy, gpt,W,Uq “ }W p:q}1 and

hpt,W,Uq “ }Up:q}1 and λ1 and λ2 are positive
regularizers.

To get an intuition behind this formulation, one can think
of W and U as two rank-1 matrices which are defined as
follows:

W “

„

β1

1



“

βᵀ
1 1

‰

, U “

„

β2

1



“

βᵀ
2 1

‰

(5)

The variable t is simply a replacement of variable z, i.e.,
zi “

ti`1
2 . An analogous transformation exists between z˚i

and t˚i . Then after substituting t,W and U in fpt,W,Uq,
we get back lpz, β1, β2q. The `1-regularization of W p:q and
Up:q helps us ensure sparsity. Note that for fixed t, optimiza-
tion problem (4) is continuous and convex with respect toW
and U . Specifically, it merges two independent regularized
semidefinite programs. Unfortunately, problem (4) is not
jointly convex on t,W and U , and thus, it might still remain
difficult to solve. Next, we will provide arguments that de-
spite being non-convex, optimization problem (4) belongs
to a particular class of non-convex functions namely “in-
vex” functions. The “invexity” of functions can be defined
as a generalization of convexity (Hanson, 1981). Invex-
ity has been recently used by (Barik & Honorio, 2021) to
solve fair sparse regression problem with clustering. While,
we borrow some definitions from their work to suit our
context, we should emphasize that our problem is funda-
mentally different than their problem. They use two groups
in sparse regression which have different means and they try
to achieve fairness. While here, we have two groups with
the same mean and there is no unfairness in the problem.
We also model our parameter vectors with positive semidef-
inite matrices which is fundamentally different from their
approach.

Definition 3.3 (Invex function (Barik & Honorio, 2021)).
Let φptq be a function defined on a set C. Let η be a vector
valued function defined inCˆC such that ηpt1, t2qᵀ∇φpt2q,
is well defined @t1, t2 P C. Then, φptq is a η-invex function
if φpt1q ´ φpt2q ě ηpt1, t2q

ᵀ∇φpt2q, @t1, t2 P C.

Note that convex functions are η-invex for ηpt1, t2q “
t1 ´ t2. (Hanson, 1981) showed that if the objective func-
tion and constraints are both η-invex with respect to same
η defined in C ˆ C, then Karush-Kuhn-Tucker (KKT) con-
ditions are sufficient for optimality, while it is well-known
that KKT conditions are necessary. (Ben-Israel & Mond,
1986) showed a function is invex if and only if each of its
stationarity point is a global minimum.

In the next lemma, we show that the relaxed optimization
problem (4) is indeed η-invex for a particular η defined in
C ˆ C and a well defined set C. Let C “ tpt,W,Uq | t P
r´1, 1sn,W ľ 0, U ľ 0,Wd`1,d`1 “ 1, Ud`1,d`1 “ 1u.

Lemma 3.4. For pt,W,Uq P C, the functions
fpt,W,Uq “

řn
i“1

1
2xSi,W ` Uy `

řn
i“1

1
2 tixSi,W ´

Uy, gpt,W,Uq “ }W p:q}1 and hpt,W,Uq “ }Up:q}1 are

η-invex for ηpt, t̃,W,ĂW,U, rUq fi

»

–

ηt
ηW
ηU

fi

fl, where ηt “ 0 P

Rn, ηW “ ´ĂW and ηU “ ´rU . We abuse the vector/matrix
notation (by ignoring the dimensions) for clarity of presen-
tation, and avoid the vectorization of matrices.
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Now that we have established that optimization problem (4)
is invex, we are ready to discuss our main results in the next
section.

4. Main Results
In this section, we present our main results along with the
technical assumptions. Our main goal is to show that the
solution to optimization problem (4) recovers the labels t˚

exactly and also recovers a good approximation of β˚1 and
β˚2 . In that, we will show that the recovered β1 and β2 have
the same support and sign as β˚1 and β˚2 respectively and
are close to the true vectors in `2-norm. But before that, we
will describe a set of technical assumptions which will help
us in our analysis.

4.1. Assumptions

Our first assumption ensures that each sample can be as-
signed only one label. Formally,

Assumption 4.1 (Identifiability). For i P rns, ´ 1
2 pyi ´

Xᵀ
i β
˚
1 q

2 ` 1
2 pyi ´ Xᵀ

i β
˚
2 q

2 ě ε if z˚i “ 1 and 1
2 pyi ´

Xᵀ
i β
˚
1 q

2 ´ 1
2 pyi ´X

ᵀ
i β
˚
2 q

2 ě ε if z˚i “ 0 for some ε ą 0.

Clearly, if Assumption 4.1 does not hold for sample i, then
we can reverse the label of sample i without increasing
objective function of optimization problem (2). Another
equivalent way of expressing Assumption 4.1 is as follow-
ing: for i P rns, xSi,W˚y ă xSi, U

˚y if z˚i “ 1 and
xSi,W

˚y ą xSi, U
˚y if z˚i “ 0 where,

W˚ “

„

β˚1
1



“

β˚1
ᵀ 1

‰

, U˚ “

„

β˚2
1



“

β˚2
ᵀ 1

‰

. (6)

Let P denote the support of β˚1 , i.e., P “ ti |β˚1 i ‰
0, i P rdsu and let Q denote the support of β˚2 , i.e.,
Q “ ti |β˚2 i ‰ 0, i P rdsu. Similarly, we define
their complement as P c “ ti |β˚1 i “ 0, i P rdsu and
Qc “ ti |β˚2 i “ 0, i P rdsu . We take |P | “ s1, |P

c| “

d´ s1, |Q| “ s2 and |Qc| “ d´ s2. For ease of notation,
we define H fi EpXiX

ᵀ
i q@i P rns. Let I1 fi ti |z˚i “

1, i P rnsu and I2 fi ti |z˚i “ 0, i P rnsu. We define
pH1 fi 1

n1

ř

iPI1
XiX

ᵀ
i and pH2 fi 1

n2

ř

iPI2
XiX

ᵀ
i . As our

next assumption, we need the minimum eigenvalue of the
population covariance matrix of X restricted to rows and
columns in P (similarly in Q) to be greater than zero.

Assumption 4.2 (Positive Definiteness of Hessian).
HPP ą 0 and HQQ ą 0 or equivalently
minpeigminpHPP q, eigminpHQQqq “ Cmin ą 0. We
also assume that eigmaxpHq “ Cmax ą 0. Note that
maxpeigmaxpHPP q, eigmaxpHQQqq ď Cmax.

In practice, we only deal with finite samples and not popula-
tions. In the next lemma, we will show that with a sufficient

number of samples, a condition similar to Assumption 4.2
holds with high probability in the finite-sample setting.

Lemma 4.3. If Assumption 4.2 holds and
n1 “ Ωp s1`log d

C2
min

q and n2 “ Ωp s2`log d
C2

min
q , then

minpeigminp
pH1PP

q, eigminp
pH2QQ

qq ě Cmin

2 and
maxpeigmaxp

pH1PP
q, eigmaxp

pH2QQ
qq ď 3Cmax

2 with
probability at least 1´Op 1

d q.

As the third assumption, we will need to ensure that the
variates outside the support of β˚1 and β˚2 do not exert lot
of influence on the variates in the support of β˚1 and β˚2
respectively. For this, we use a technical condition com-
monly known as the mutual incoherence condition. It has
been previously used in many problems related to regular-
ized regression such as compressed sensing (Wainwright,
2009b), Markov random fields (Ravikumar et al., 2010),
non-parametric regression (Ravikumar et al., 2007), diffu-
sion networks (Daneshmand et al., 2014), among others.

Assumption 4.4 (Mutual Incoherence).
maxp}HP cPH

´1
PP }8, }HQcQH

´1
QQ}8q ď 1 ´ ξ for

some ξ P p0, 1s.

Again, we will show that with a sufficient number of sam-
ples, a condition similar to Assumption 4.4 holds in the
finite-sample setting with high probability.

Lemma 4.5. If Assumption 4.4 holds and n1 “

Ωp
s31plog s1`log dq
τpCmin,ξ,σ,Σq

q and n2 “ Ωp
s32plog s2`log dq
τpCmin,ξ,σ,Σq

q, then

maxp} pHP cP
pH´1
PP }8, }

pHQcQ
pH´1
QQ}8q ď 1´ ξ

2 with proba-
bility at least 1´Op 1

d q where τpCmin, ξ, σ,Σq is a constant
independent of n1, n2, d, s1 and s2.

4.2. Main Theorem

Now we are ready to state our main result.

Theorem 4.6. If Assumptions 4.1, 4.2 and 4.4 hold,
λ1 ě

64ρσe

ξ

?
n1 log d, λ2 ě

64ρσe

ξ

?
n2 log d and n1 “

Ωp
s31 log2 d

τ0pCmin,ξ,σ,Σ,ρq
q and n2 “ Ωp

s32 log2 d
τ0pCmin,ξ,σ,Σ,ρq

q, then
with probability at least 1´Op 1

d q the solution to the opti-
mization problem (4) satisfies the following properties:

1. The labels are recovered exactly, i.e.,

ti “ t˚i , @i P rns (7)

2. The regression parameter vectors are close to the true
vectors. Formally,

W “

„

β1

1



“

βᵀ
1 1

‰

, U “

„

β2

1



“

βᵀ
2 1

‰

(8)

such that β1 “
“

β1P
0P c

‰ᵀ
and β2 “

“

β2Q
0Qc

‰ᵀ



Sparse Mixed Linear Regression with Guarantees

and

}β1 ´ β
˚
1 }2 ď p2` b1q

2λ1
?
s1

Cminn1

}β2 ´ β
˚
2 }2 ď p2` b2q

2λ2
?
s2

Cminn2
.

(9)

In order to prove Theorem 4.6, we will have to show that the
labels are recovered exactly. We will also need to show that
W and U are rank-1 matrices with eigenvectors

“

β1 1
‰ᵀ

and
“

β2 1
‰ᵀ

respectively. Moreover, we will also need to
ensure that their supports match supports of the true vectors
and they are close to true vectors in `2-norm.

5. Theoretical Analysis
We use primal-dual witness approach to show our results.
The primal-dual witness approach was developed by (Wain-
wright, 2009a) for linear regression problem which has been
later used in many convex problems such as Markov ran-
dom fields (Ravikumar et al., 2010), non-parametric regres-
sion (Ravikumar et al., 2007), diffusion networks (Danesh-
mand et al., 2014) etc. The main idea is to start with a poten-
tial solution with certain properties and then later show that
these properties are indeed consistent with the final solution.
We extend this idea to our invex problem. To that end, we
start our proof with a potential solution which has certain
“consistency certificate”.

5.1. Consistency Certificate

We start by taking solutions W and U with the following
properties which we call consistency certificates:

C1. W and U are sparse. In particular, they have the fol-
lowing sparsity structure:

W “

»

–

WPP 0PP c WPd`1

0P cP 0P cP c 0P cd`1

Wd`1P 0d`1P c Wd`1,d`1

fi

fl

U “

»

–

UQQ 0QQc UQd`1

0QcQ 0QcQc 0Qcd`1

Ud`1Q 0d`1Qc Ud`1,d`1

fi

fl

(10)

We collect all the non-zero entries of W and U in
W P Rs1`1,s1`1 and U P Rs2`1,s2`1.

It should be noted that the consistency certificate C1 is not
another assumption. In that, eventually we will have to
show that it holds in the final solution. We can prove that C1
is consistent with the final solution by showing strict dual
feasibility for both W and U which we do in subsection 5.7.

5.2. A Modified Compact Invex Problem

Once we substitute W and U from C1 in optimization prob-
lem (4), we get a low dimensional optimization problem.

Definition 5.1 (Compact Invex MLR).

min
t,W,U

f̄pt,W ,Uq ` λ1ḡpt,W ,Uq ` λ2h̄pt,W ,Uq

such that
W ľ 0, U ľ 0

W s1`1,s1`1 “ 1, Us2`1,s2`1 “ 1
}t}8 ď 1

.

(11)

where f̄pt,W ,Uq “
řn
i“1

1
2 pxS

P

i ,W y ` xS
Q

i , Uyq `
řn
i“1

1
2 tipxS

P

i ,W y ´ xS
Q

i , Uyq, ḡpt,W ,Uq “ }W p:q}1,
h̄pt,W ,Uq “ }Up:q}1 and λ1 and λ2 are positive regu-
larizers.

Note that

S
P

i “

„

SiP,P
SiP,d`1

Sid`1,P
Sid`1,d`1



, S
Q

i “

„

SiQ,Q
SiQ,d`1

Sid`1,Q
Sid`1,d`1



.

(12)

For clarity, we will drop the superscripts from Si when
the context is clear. Next, we list down the necessary and
sufficient conditions to solve optimization problem (11).

5.3. Necessary and Sufficient KKT Conditions

First, we write the Lagrangian LpΘq for fixed λ1 ą 0 and
λ2 ą 0, where Θ “ pt,W ,U ; Π,Λ, α, γ, ν, µq is a collec-
tion of parameters.

LpΘq “f̄pt,W ,Uq ` λ1ḡpt,W ,Uq ` λ2h̄pt,W ,Uq

´ xΠ,W y ´ xΛ, Uy ` αpW s1`1,s1`1 ´ 1q`

γpUs2`1,s2`1 ´ 1q ´
n
ÿ

i“1

νipti ` 1q `
n
ÿ

i“1

µipti ´ 1q

(13)

Here Π ľ 0,Λ ľ 0, α P R, γ P R, νi ą 0 and µi ą
0 are the dual variables (of appropriate dimensions) for
optimization problem (11). Using this Lagrangian, the KKT
conditions at the optimum can be written as:

1. Stationarity conditions:

n
ÿ

i“1

ti ` 1

2
S
P

i ` λ1Z ´Π` Iα “ 0 (14)

where Z is an element of the subgradient set of }W p:
q}1, i.e., Z P

B}W p:q}1
BW

and }Zp:q}8 ď 1 and Iα P
Rs1`1,s1`1 has all zero entries except ps1 ` 1, s1 ` 1q
entry which is α.

n
ÿ

i“1

1´ ti
2

S
Q

i ` λ2V ´ Λ` Iγ “ 0 (15)
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where V is an element of the subgradient set of }Up:
q}1, i.e., V P

B}Up:q}1
BU

and }V p:q}8 ď 1 and Iγ P

Rs2`1,s2`1 has all zero entries except ps2 ` 1, s2 ` 1q
entry which is γ. For all i P rns, it holds that

1

2
xS

P

i ,W y ´
1

2
xS

Q

i , Uy ´ νi ` µi “ 0 (16)

2. Complementary Slackness conditions:

xΠ,W y “ 0, xΛ, Uy “ 0 (17)
νipti ` 1q “ 0, µipti ´ 1q “ 0 @i P rns (18)

3. Dual Feasibility conditions:

Π ľ 0, Λ ľ 0 (19)
νi ě 0, µi ě 0 @i P rns (20)

4. Primal Feasibility conditions:

W ľ 0, U ľ 0

W s1`1,s1`1 “ 1, Us2`1,s2`1 “ 1, }t}8 ď 1

(21)

Next, we will provide a setting for primal and dual variables
which satisfies all the KKT conditions.

5.4. Construction of Primal and Dual Variables

In this subsection, we will provide a construction of primal
and dual variables which satisfies the KKT conditions for
optimization problem (11). To that end, we provide our first
main result.
Theorem 5.2 (Primal Dual Variables Construction). If As-
sumptions 4.1, 4.2 and 4.4 hold, λ1 ě

64ρσe

ξ

?
n1 log d,

λ2 ě
64ρσe

ξ

?
n2 log d and n1 “ Ωp

s31 log2 d
τ0pCmin,ξ,σ,Σ,ρq

q and

n2 “ Ωp
s32 log2 d

τ0pCmin,ξ,σ,Σ,ρq
q, then the following setting of pri-

mal and dual variables:

• Primal Variables:

ti “ t˚i , @i P rns

W “

„

β̃1

1



“

β̃ᵀ
1 1

‰

, U “

„

β̃2

1



“

β̃ᵀ
2 1

‰

where

β̃1 “ arg min
βPRs1

n
ÿ

i“1

t˚i ` 1

2
pyi ´X

ᵀ
iP
βq2`

λ1p}β}1 ` 1q2

and

β̃2 “ arg min
βPRs2

n
ÿ

i“1

1´ t˚i
2

pyi ´X
ᵀ
iQ
βq2`

λ2p}β}1 ` 1q2

• Dual Variables:

νi “ 0, µi “ ´
1

2
xS

P

i ,W y `
1

2
xS

Q

i , Uy @i P I1

µi “ 0, νi “
1

2
xS

P

i ,W y ´
1

2
xS

Q

i , Uy @i P I2

Π “
n
ÿ

i“1

t˚i ` 1

2
S
P

i ` λ1Z ` Iα

Λ “
n
ÿ

i“1

1´ t˚i
2

S
Q

i ` λ2V ` Iγ

α “ ´x
n
ÿ

i“1

ti ` 1

2
S
P

i ` λ1Z,W y

γ “ ´x
n
ÿ

i“1

1´ ti
2

S
Q

i ` λ2V,Uy

satisfies all the KKT conditions for optimization prob-
lem (11) with probability at least 1 ´ Op 1

d q, where
τ0pCmin, α, σ,Σ, ρ, γq is a constant independent of
s1, s2, d, n1 and n2 and thus, the primal variables are a
globally optimal solution for (11). Furthermore, the above
solution is also unique.

Proof Sketch. The main idea behind our proofs is to ver-
ify that the setting of primal and dual variables in Theo-
rem 5.2 satisfies all the KKT conditions described in sub-
section 5.3. We do this by proving multiple lemmas in
subsequent subsections. The outline of the proof is as fol-
lows:

• It can be trivially verified that the primal feasibility
condition (21) holds. The stationarity conditions (14)
and (15) holds by construction of Π and Λ respec-
tively. Similarly, the stationarity condition (16) holds
by choice of νi and µi. Choice of t, νi, µi, α and γ
ensure that complementary slackness conditions (17)
and (18) also hold.

• In subsection 5.5, we use Lemmas 5.3, 5.5 and 5.6 to
verify that the dual feasibility conditions (20) and (19)
hold. We will also show in subsection subsection 5.5
that our solution is also unique.

5.5. Verifying Dual Feasibility

To verify dual feasibility, first we will show that µi ě 0,@i P
I1, νi ě 0,@i P I2. We define ∆1 fi β̃1 ´ β˚1P

and
∆2 fi β̃2 ´ β

˚
2Q

. Then, the following lemma holds true.

Lemma 5.3. If Assumptions 4.1, 4.2 and 4.4 hold,
and λ1 ě 8ρσe

?
n1 log d, λ2 ě 8ρσe

?
n2 log d,

n1 “ Ωp
s31 log d

τpCmin,ξ,σ,Σq
q, and n2 “ Ωp

s32 log d
τpCmin,ξ,σ,Σq

q then

}∆1}2 ď p2 ` b1q
2λ1

?
s1

Cminn1
and }∆2}2 ď p2 ` b2q

2λ2
?
s2

Cminn2
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with probability at least 1´Op 1
d q where τpCmin, ξ, σ,Σq

is a constant independent of s1, s2, d, n1 or n2.

Using the result of Lemma 5.3, we are going to prove that
the settings for dual variables µi and νi works with high
probability.

Lemma 5.4. If Assumptions 4.1, 4.2 and 4.4 hold, and
λ1 ě 8ρσe

?
n1 log d, λ2 ě 8ρσe

?
n2 log d, n1 “

Ωp
s31 log d

τpCmin,ξ,σ,Σq
q, and n2 “ Ωp

s32 log d
τpCmin,ξ,σ,Σq

q then µi ě

0,@i P I1 and νi ě 0,@i P I2 with probability at least
1´Op 1

d q where τpCmin, ξ, σ,Σq is a constant independent
of s1, s2, d, n1 or n2.

Now we will show that Π ľ 0 and Λ ľ 0. We will do this
in two steps. The first step is to show that both Π and Λ
have a zero eigenvalue. In particular,

Lemma 5.5. Both Π and Λ have zero eigenvalues corre-

sponding to eigenvectors
„

β̃1

1



and
„

β̃2

1



respectively.

Next, we show that all the other eigenvalues of both Π and
Λ are strictly positive.

Lemma 5.6. If Assumption 4.2 holds and n1 “ Ωp s1`log d
C2

min
q

and n2 “ Ωp s2`log d
C2

min
q, then the second eigenvalues of Π

and Λ are strictly positive with probability at least 1´Op 1
d q,

i.e., eig2pΠq ą 0 and eig2pΛq ą 0.

On the one hand, Lemma 5.6 ensures that Π ľ 0 and Λ ľ 0,
but on the other it also forces W and U to be rank-1 and
unique as both Π and W have to be positive semidefinite
and Π has exactly one vector in its nullspace (same with Λ
and U ).

5.6. Going back to Invex MLR

Now that we have the setting of ti,W and U for Compact
Invex MLR problem (11), we can extend these to the origi-
nal Invex MLR problem (4). Notice that all the other entries
of W and U are zeros, thus it readily follows that

W “

„

β1

1



“

βᵀ
1 1

‰

, U “

„

β2

1



“

βᵀ
2 1

‰

(22)

where β1 “

„

β̃1

0



and β2 “

„

β̃2

0



. Furthermore, result

from Lemma 5.3 extends directly and gives us

}β1 ´ β
˚
1 }2 ď p2` b1q

2λ1
?
s1

Cminn1

}β2 ´ β
˚
2 }2 ď p2` b2q

2λ2
?
s2

Cminn2
.

(23)

The last remaining thing is to show that consistency certifi-
cate C1 indeed holds which we will do in next subsection.

5.7. Validating Consistency Certificate

Observe that once we substitute ti “ t˚i in optimization
problem (4), it decouples into two independent convex op-
timization problems involving W and U respectively. Fur-
thermore, since we established that W and U are rank-1,
we can rewrite these independent problems in terms of β1

and β2. Our task is to show that β1Pc “ 0 and β2Qc “ 0. It
suffices to show it for β1 as arguments for β2 are the same.
Below, we consider the simplified optimization problem in
terms of β1:

β1 “ arg min
βPRd

ÿ

iPI1

pXᵀ
i β ´ yiq

2 ` λ1p}β}1 ` 1q2 (24)

Since we are only dealing with measurements in I1, we can
substitute yi “ Xᵀ

i β
˚ ` ei. Furthermore, β1 must satisfy

stationarity KKT condition which can be written as:

1

n1

ÿ

iPI1

XiX
ᵀ
i pβ1 ´ β

˚q ´
1

n1

ÿ

iPI1

Xiei`

1

n1
λ1p}β1}1 ` 1qζ “ 0,

(25)

where ζ is in the subdifferential set of }β1}1 and }ζ}8 ď 1.
Specifically, ζi “ signpβ1q,@i P P and ζi P r´1, 1s,@i P
P c. Our task is to show that ζ fulfills strict dual feasibility,
i.e., }ζP c}8 ă 1. We decompose equation (25) into two
parts – one corresponding to entries in P and the other
corresponding to entries in P c. For entries in P , we have

1

n1

ÿ

iPI1

XiPX
ᵀ
iP
pβ1P

´ β˚1P
q ´

1

n1

ÿ

iPI1

XiP ei

`
1

n1
λ1p}β1}1 ` 1qζP “ 0

(26)

Similarly, for entries in P c, we have

1

n1

ÿ

iPI1

XiPcX
ᵀ
iP
pβ1P

´ β˚1P
q ´

1

n1

ÿ

iPI1

XiPc ei

`
1

n1
λ1p}β1}1 ` 1qζP c “ 0

After rearranging the terms and substituting for pβ1P
´β˚1P

q

from equation (26), we get

λ1

n1
p1` }β1}1qζP c “ ´ pHP cP

pH´1
PP p

1

n1

ÿ

iPI1

XiP ei´

1

n1
λ1p}β1}1 ` 1qζP q `

1

n1

ÿ

iPI1

XiPc ei

Let λ̄1 “
λ1

n1
and note that }β1}1 ě 0, using norm inequali-
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(a) Misidentified labels (in ratio to n) (b) Support recovery of β˚
1 (c) Support recovery of β˚

2

Figure 1. Label and support recovery with control parameter Cp.

ties we can rewrite the above equation as:

}ζP c}8 ď } pHP cP
pH´1
PP }8p}

1

λ̄1

1

n1

ÿ

iPI1

XiP ei}8 ` }ζP }8q

` }
1

λ̄1

1

n1

ÿ

iPI1

XiPc ei}8

We know that } pHP cP
pH´1
PP }8 ď p1 ´ ξ

2 q for some
ξ P p0, 1s. The following lemma provides bounds on
} 1
λ̄1

1
n1

ř

iPI1
XiP ei}8 and } 1

n1

ř

iPI1
XiPc ei}8.

Lemma 5.7. Let λ1 ě
64ρσe

ξ

?
n1 log d. Then the following

holds true:

Pp}
1

λ̄1

1

n1

ÿ

iPI1

XiP ei}8 ě
ξ

8´ 4ξ
q ď Op1

d
q,

Pp}
1

λ̄1

1

n1

ÿ

iPI1

XiPc ei}8 ě
ξ

8
q ď Op1

d
q

It follows that }ζP c}8 ď 1 ´ ξ
4 with probability at least

1´Op 1
d q. Thus, the consistency certificate C1 indeed holds

with high probability.

6. Experimental Validation
Note that we are not proposing any new algorithm in our
paper. However, to validate our theoretical results we per-
formed experiments on synthetic data. We generated re-
sponse y using Gaussian random variables X and chose
regression parameter β˚1 (or β˚2 ) based on the label of the
samples. We fixed the sparsity s1 “ s2 “ 4, however
supports were not necessarily the same for both the regres-
sion parameter vectors. We varied n1 and n2 according to
our theorems, i.e., both were varied with 10Cp log2 d for
d “ 10, 20 and 50 where Cp is a control parameters. The
regularizers were kept according to our theorem and were
varied as Op

?
n1 log dq and Op

?
n2 log dq. We measured

performance of our algorithm based on the label recovery (in

ratio to supplied n) and support recovery for both parameter
vectors. The experiments were run three times indepen-
dently. Note how we make zero mistakes in label recovery
as we increase number of samples. Similarly, support recov-
ery (ratio of intersection and union with correct support) for
both parameter vectors goes to 1 as we increase sample size.
It should be noted that we do not propose any new algorithm
but our method is free of any initialization requirement. As
for specific algorithm for empirical verification, we use a
projected subgradient method (Duchi & Singer, 2009) to
check convergence for our problem which is achieved with-
out any requirement on initialization. In fact, any algorithm
which converges to a stationary point should work for our
framework.

7. Concluding Remarks
We provide a novel formulation of invex MLR. We show that
invexity of our optimization problem allows for a tractable
solution. We provide provable theoretical guarantees for
our solution. The sample complexity of our method is poly-
nomial in terms of sparsity and logarithmic in terms of the
dimension of the true parameter. Our method helps to iden-
tify labels exactly and recovers regression parameter vectors
with correct support and correct sign. It would be interesting
to think about extending our ideas to mixture of more than
two groups of regressions in future.
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Supplementary Material: Sparse Mixed Linear Regression with Guarantees:
Taming an Intractable Problem with Invex Relaxation

A. Continuous Relaxation of Standard MLR is non-convex
It suffices to prove that the objective function lpz, β1, β2q of optimization problem (2) is non-convex when zi is allowed to
be between 0 and 1. We note that

lpz, β1, β2q “
řn
i“1 zipyi ´X

ᵀ
i β1q

2 ` p1´ ziqpyi ´X
ᵀ
i β2q

2 (27)

where β1 P Rd, β2 P Rd and zi P r0, 1s,@i P rns. Let Θ “ pz, β1, β2, z̄, β̄1, β̄2q. We consider the following quantity:

F pΘq “ fpz, β1, β2q ´ fpz̄, β̄1, β̄2q ´

n
ÿ

i“1

Bf

Bz̄i
pzi ´ z̄iq ´

Bf

Bβ̄1

ᵀ

pβ1 ´ β̄1q ´
Bf

Bβ̄2

ᵀ

pβ2 ´ β̄2q (28)

where

Bf

Bz̄i
“ pyi ´X

ᵀ
i β̄1q

2 ´ pyi ´X
ᵀ
i β̄2q

2, @i P rns

Bf

Bβ̄1
“

n
ÿ

i“1

´2z̄iXipyi ´X
ᵀ
i β̄1q

Bf

Bβ̄2
“

n
ÿ

i“1

´2p1´ z̄iqXipyi ´X
ᵀ
i β̄2q

(29)

It suffices to show that F pΘq changes sign for different feasible values of Θ. We choose the following variables:

zi “ 0, z̄i “
1

2
@i P rns

β1k
“ u1, β1j “ 0,@j ‰ k

β2l
“ u2, β2j “ 0,@j ‰ l

β̄1k
“ w1, β̄1j “ 0,@j ‰ k

β̄2l
“ w2, β̄2j “ 0,@j ‰ l

u1 “ w1 ´ pu2 ´ w2q

(30)

Note that choice of w1, u2 and w2 can be arbitrary. This simplifies F pΘq:

F pΘq “
n
ÿ

i“1

pyi ´ u2Xilq
2 ´

n
ÿ

i“1

pyi ´ w2Xilq
2 (31)

Consider the case when Xil ą 0,@i P rns. Then choosing u2 ă w2 makes F pΘq ą 0 while choosing u2 ą w2 makes
F pΘq ă 0. This proves our claim.

B. Proof of Lemma 3.4
Lemma 3.4 For pt,W,Uq P C, the functions fpt,W,Uq “

řn
i“1

1
2xSi,W ` Uy `

řn
i“1

1
2 tixSi,W ´ Uy, gpt,W,Uq “

}W p:q}1 and hpt,W,Uq “ }Up:q}1 are η-invex for ηpt, t̃,W,ĂW,U, rUq fi

»

–

ηt
ηW
ηU

fi

fl, where ηt “ 0 P Rn, ηW “ ´ĂW and

ηU “ ´rU . We abuse the vector/matrix notation (by ignoring the dimensions) for clarity of presentation, and avoid the
vectorization of matrices.
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Proof. We know fpt,W,Uq “
řn
i“1

ti`1
2 xSi,W y `

1´ti
2 xSi, Uy. Then,

Bf

Bti
“

1

2
xSi,W ´ Uy

Bf

BW
“

n
ÿ

i“1

ti ` 1

2
Si

Bf

BU
“

n
ÿ

i“1

1´ ti
2

Si

(32)

To prove that fpt,W,Uq is invex, we need to show that

fpt,W,Uq ´ fpt̃,ĂW, rUq ´
n
ÿ

i“1

ηti
Bf

Bt̃i
´ xηW ,

Bf

BĂW
y ´ xηU ,

Bf

B rU
y ě 0 (33)

We take ηt “ 0 P Rn, ηW “ ´ĂW and ηU “ ´rU and expand LHS of equation (33) as follows:
n
ÿ

i“1

ti ` 1

2
xSi,W y `

1´ ti
2

xSi, Uy ´
n
ÿ

i“1

t̃i ` 1

2
xSi,ĂW y ´

1´ t̃i
2

xSi, rUy ` xĂW,
n
ÿ

i“1

t̃i ` 1

2
Siy ` xrU,

n
ÿ

i“1

1´ t̃i
2

Siy

“

n
ÿ

i“1

ti ` 1

2
xSi,W y `

1´ ti
2

xSi, Uy

ě 0

(34)

The last inequality holds because Si, W and U are all positive semidefinite and ti P r´1, 1s.

Similarly,

gpt,W,Uq ´ gpt̃,ĂW, rUq ´
n
ÿ

i“1

ηti
Bg

Bt̃i
´ xηW ,

Bg

BĂW
y ´ xηU ,

Bg

B rU
y

“ }W p:q}1 ´ }ĂW p:q}1 ` }ĂW p:q}1 ě 0

(35)

and

hpt,W,Uq ´ hpt̃,ĂW, rUq ´
n
ÿ

i“1

ηti
Bh

Bt̃i
´ xηW ,

Bh

BĂW
y ´ xηU ,

Bh

B rU
y

“ }Up:q}1 ´ }rUp:q}1 ` }rUp:q}1 ě 0

(36)

C. Proof of Lemma 4.3
Lemma 4.3 If Assumption 4.2 holds and n1 “ Ωp s1`log d

C2
min

q and n2 “ Ωp s2`log d
C2

min
q , then

minpeigminp
pH1PP

q, eigminp
pH2QQ

qq ě Cmin

2 and maxpeigmaxp
pH1PP

q, eigmaxp
pH2QQ

qq ď 3Cmax

2 with probability
at least 1´Op 1

d q.

Proof. We prove the Lemma for a general support S and samples n. The results follow when we substitute S by P and Q
and n by n1 or n2 based on the context. By the Courant-Fischer variational representation (Horn & Johnson, 2012):

eigminpEpXiX
ᵀ
i qSSq “ min

}y}2“1
yᵀEpXiX

ᵀ
i qSSy “ min

}y}2“1
yᵀpEpXiX

ᵀ
i qSS ´

1

n
Xᵀ
SXS `

1

n
Xᵀ
SXSqy

ď yᵀpEpXiX
ᵀ
i qSS ´

1

n
Xᵀ
SXS `

1

n
Xᵀ
SXSqy

“ yᵀpEpXiX
ᵀ
i qSS ´

1

n
Xᵀ
SXSqy ` y

ᵀ 1

n
Xᵀ
SXSy

(37)
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It follows that

eigminp
1

n
Xᵀ
SXSq ě Cmin ´ }EpXiX

ᵀ
i qSS ´

1

n
Xᵀ
SXS}2 (38)

The term }EpXiX
ᵀ
i qSS ´

1
nX

ᵀ
SXS}2 can be bounded using Proposition 2.1 in (Vershynin, 2012) for sub-Gaussian random

variables. In particular,

Pp}EpXiX
ᵀ
i qSS ´

1

n
Xᵀ
SXS}2 ě εq ď 2 expp´cε2n` sq (39)

for some constant c ą 0. Taking ε “ Cmin

2 , we show that eigminp
1
nX

ᵀ
SXSq ě

Cmin

2 with probability at least 1 ´

2 expp´
cC2

minn
4 ` |S|q. The specific results for n1 and n2 follow directly.

Remark: Similarly, it can be shown that eigmaxp
1
nX

ᵀ
SXSq ď

3Cmax

2 with probability at least 1´2 expp´
cC2

maxn
4 `|S|q.

D. Proof of Lemma 4.5
Lemma 4.5 If Assumption 4.4 holds and n1 “ Ωp

s31plog s1`log dq
τpCmin,ξ,σ,Σq

q and n2 “ Ωp
s32plog s2`log dq
τpCmin,ξ,σ,Σq

q, then

maxp} pHP cP
pH´1
PP }8, }

pHQcQ
pH´1
QQ}8q ď 1 ´ ξ

2 with probability at least 1 ´ Op 1
d q where τpCmin, ξ, σ,Σq is a constant

independent of n1, n2, d, s1 and s2.

Proof. We prove the Lemma for a general support S (and corresponding non-support Sc) and samples n. The results follow
when we substitute S by P and Q and n by n1 or n2 based on the context. Let |S| “ s and |Sc| “ d´ s. Before we prove
the result of Lemma 4.5, we will prove a helper lemma.

Lemma D.1. If Assumption 4.4 holds then for some δ ą 0, the following inequalities hold:

Pp} pHScS ´HScS}8 ě δq ď 4pd´ sqs expp´
nδ2

128s2p1` 4σ2qmaxl Σ2
ll

q

Pp} pHSS ´HSS}8 ě δq ď 4s2 expp´
nδ2

128s2p1` 4σ2qmaxl Σ2
ll

q

Pp}p pHSSq
´1 ´ pHSSq

´1}8 ě δq ď 2 expp´
cδ2C4

minn

4s
` sq ` 2 expp´

cC2
minn

4
` sq

(40)

Proof. Let Aij be pi, jq-th entry of pHScS ´HScS . Clearly, EpAijq “ 0. By using the definition of the } ¨ }8 norm, we can
write:

Pp} pHScS ´HScS}8 ě δq “ Ppmax
iPSc

ÿ

jPS

|Aij | ě δq

ď pd´ sqPp
ÿ

jPS

|Aij | ě δq

ď pd´ sqsPp|Aij | ě
δ

s
q

(41)

where the second last inequality comes as a result of the union bound across entries in Sc and the last inequality is due to the
union bound across entries in S. Recall that Xi, i P rds are zero mean random variables with covariance Σ and each Xi?

Σii
is

a sub-Gaussian random variable with parameter σ. Using the results from Lemma 1 of (Ravikumar et al., 2011), for some
δ P p0, smaxl Σll8p1` 4σ2qq, we can write:

Pp|Aij | ě
δ

s
q ď 4 expp´

nδ2

128s2p1` 4σ2qmaxl Σ2
ll

q (42)

Therefore,

Pp} pHScS ´HScS}8 ě δq ď 4pd´ sqs expp´
nδ2

128s2p1` 4σ2qmaxl Σ2
ll

q (43)
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Similarly, we can show that

Pp} pHSS ´HSS}8 ě δq ď 4s2 expp´
nδ2

128s2p1` 4σ2qmaxl Σ2
ll

q (44)

Next, we will show that the third inequality in (40) holds. Note that

}p pHScSq
´1 ´ pHScSq

´1}8 “ }pHSSq
´1pHSS ´ pHSSqp pHSSq

´1}8

ď
?
s}pHSSq

´1pHSS ´ pHSSqp pHSSq
´1}2

ď
?
s}pHSSq

´1}2}pHSS ´ pHSSq}2}p pHSSq
´1}2

(45)

Note that }HSS}2 ě Cmin, thus }pHSSq
´1}2 ď 1

Cmin
. Similarly, }HSS}2 ě Cmin

2 with probability at least

1 ´ 2 expp´
cC2

minn
4 ` sq. We also have }pHSS ´ pHSSq}2 ď ε with probability at least 1 ´ 2 expp´cε2n ` sq. Tak-

ing ε “ δ
C2

min

2
?
s

, we get

Pp}pHSS ´ pHSSq}2 ě δ
C2

min

2
?
s
q ď 2 expp´

cδ2C4
minn

4s
` sq (46)

It follows that }p pHSSq
´1´pHSSq

´1}8 ď δ with probability at least 1´2 expp´
cδ2C4

minn
4s `sq´2 expp´

cC2
minn
4 `sq.

Now we are ready to show that the statement of Lemma 4.5 holds using the results from Lemma D.1. We will rewrite
pHScSp pHSSq

´1 as the sum of four different terms:

pHScSp pHSSq
´1 “ T1 ` T2 ` T3 ` T4, (47)

where

T1 fi pHScSpp pHSSq
´1 ´ pHSSq

´1q

T2 fi p pHScS ´HScSqpHSSq
´1

T3 fi p pHScS ´HScSqpp pHSSq
´1 ´ pHSSq

´1q

T4 fi HScSpHSSq
´1 .

(48)

Then it follows that } pHScSp pHSSq
´1}8 ď }T1}8 ` }T2}8 ` }T3}8 ` }T4}8. Now, we will bound each term separately.

First, recall that Assumption 4.4 ensures that }T4}8 ď 1´ ξ.

Controlling T1. We can rewrite T1 as,

T1 “ ´HScSpHSSq
´1p pHSS ´HSSqp pHSSq

´1 (49)

then,

}T1}8 “ }HScSpHSSq
´1p pHSS ´HSSqp pHSSq

´1}8

ď }HScSpHSSq
´1}8}p pHSS ´HSSq}8}p pHSSq

´1}8

ď p1´ ξq}p pHSS ´HSSq}8
?
s}p pHSSq

´1}2

ď p1´ ξq}p pHSS ´HSSq}8
2
?
s

Cmin

ď
ξ

6

(50)

The last inequality holds with probability at least 1´ 2 expp´
cC2

minn
4 ` sq ´ 4s2 expp´

nC2
minξ

2

18432p1´ξq2s3p1`4σ2qmaxl Σ2
ll
q by

taking δ “ Cminξ
12p1´ξq

?
s
.
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Controlling T2. Recall that T2 “ p pHScS ´HScSqpHSSq
´1. Thus,

}T2}8 ď
?
s}pHSSq

´1}2}p pHScS ´HScSq}8

ď

?
s

Cmin
}p pHScS ´HScSq}8

ď
ξ

6

(51)

The last inequality holds with probability at least 1´ 4pd´ sqs expp´
nC2

minξ
2

4608s3p1`4σ2qmaxl Σ2
ll
q by choosing δ “ Cminξ

6
?
s

.

Controlling T3. Note that,

}T3}8 ď }p pHScS ´HScSq}8}pp pHSSq
´1 ´ pHSSq

´1q}8

ď
ξ

6

(52)

The last inequality holds with probability at least 1´ 4pd´ sqs expp´ nξ
768s2p1`4σ2qmaxl Σll2

q ´ 2 expp´
cξC4

minn
24s ` sq ´

2 expp´
cC2

minn
4 ` sq by choosing δ “

b

ξ
6 in the first and third inequality of equation (40). By combining all the above

results, we prove Lemma 4.5. The specific results for n1 and n2 follow directly.

E. Proof of Lemma 5.3
Lemma 5.3. If Assumptions 4.1, 4.2 and 4.4 hold, and λ1 ě 8ρσe

?
n1 log d, λ2 ě 8ρσe

?
n2 log d, n1 “

Ωp
s31 log d

τpCmin,ξ,σ,Σq
q, and n2 “ Ωp

s32 log d
τpCmin,ξ,σ,Σq

q then }∆1}2 ď p2 ` b1q
2λ1

?
s1

Cminn1
and }∆2}2 ď p2 ` b2q

2λ2
?
s2

Cminn2
with prob-

ability at least 1´Op 1
d q where τpCmin, ξ, σ,Σq is a constant independent of s1, s2, d, n1 or n2.

Proof. It suffices to prove the result for ∆1 as the result for ∆2 follows in the same way. Note,

β̃1 “ arg min
βPRs1

ÿ

i“1

t˚i ` 1

2
pyi ´X

ᵀ
iP
βq2 ` λ1p}β}1 ` 1q2

“ arg min
βPRs1

ÿ

iPI1

pyi ´X
ᵀ
iP
βq2 ` λ1p}β}1 ` 1q2

The optimal β̃1 must satisfy stationarity KKT condition at the optimum, i.e.,
ÿ

iPI1

XiP p´yi `X
ᵀ
iP
β̃1q ` zλ1pz

ᵀβ̃1 ` 1q “ 0

where }β̃1}1 “ zᵀβ̃1 and z is in the subdifferential set of }β̃1}1 and }z}8 ď 1. Since i P I1, we can substitute
yi “ Xᵀ

iP
β˚1P

` ei.

p
1

n1

ÿ

iPI1

XiPX
ᵀ
iP
`

1

n1
λ1zz

ᵀqpβ˚1P
´ β̃1q `

1

n1
p
ÿ

iPI1

XiP eiq `
1

n1
λ1zz

ᵀβ˚1P
`

1

n1
λ1z “ 0

Note that pH1PP
“ 1

n1

ř

iPI1
XiPX

ᵀ
iP

. Using norm-inequalities:

}∆1}2 ď }p pH1PP
`
λ1

n1
zzᵀq´1}2p}

1

n1
p
ÿ

iPI1

XiP eiq}2 ` }
1

n1
λ1zz

ᵀβ˚1P
}2 ` }

1

n1
λ1z}2q (53)

Using Lemma 4.3, eigminp
pH1PP

q ě Cmin

2 , and using Weyl’s inequality eigminp
pH1PP

` λ1

n1
zzᵀq ě Cmin

2 . It follows that

}p pH1PP
` λ1

n1
zzᵀq´1}2 ď

2
Cmin

.

}∆1}2 ď
2

Cmin
p}

1

n1
p
ÿ

iPI1

XiP eiq}2 `
λ1
?
s1

n1
}β˚1P

}1 `
λ1
?
s1

n1
q (54)
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We know that }β˚1 }1 ď b1. Thus,

}∆1}2 ď
2

Cmin
p}

1

n1
p
ÿ

iPI1

XiP eiq}2 `
λ1
?
s1

n1
b1 `

λ1
?
s1

n1
q (55)

It only remains to bound } 1
n1
p
ř

iPI1
XiP eiq}2 which we do in the following lemma.

Lemma E.1. If λ1 ě 8ρσe
?
n1 log d, then } 1

n1
p
ř

iPI1
XiP eiq}2 ď

?
s1
λ1

n1
with probability at least 1´Op 1

d q

Thus, it follows that

}∆1}8 ď }∆1}2 ď p2` b1q
2λ1
?
s1

Cminn1

(56)

F. Proof of Lemma E.1
Lemma E.1 If λ1 ě 8ρσe

?
n1 log d, then } 1

n1
p
ř

iPI1
XiP eiq}2 ď

?
s1
λ1

n1
with probability at least 1´Op 1

d q.

Proof. We will start with 1
n1

ř

iPI1
XiP ei. We take the i-th entry of 1

n1

ř

iPI1
XiP ei for some i P P , i.e., | 1n

ř

jPI1
Xjiej |.

Recall that Xji is a sub-Gaussian random variable with parameter ρ2 and ej is a sub-Gaussian random variable with
parameter σ2

e . Then, Xji

ρ
ej
σe

is a sub-exponential random variable with parameters p4
?

2, 2q. Using the concentration bounds
for the sum of independent sub-exponential random variables (Wainwright, 2019), we can write:

Pp|
1

n1

ÿ

jPI1

Xji

ρ

ej
σe
| ě tq ď 2 expp´

n1t
2

64
q, 0 ď t ď 8 (57)

Taking a union bound across i P P :

PpDi P P | |
1

n1

ÿ

jPI1

Xji

ρ

ej
σe
| ě tq ď 2s1 expp´

n1t
2

64
q

0 ď t ď 8

(58)

It follows that }} 1
n1
p
ř

iPI1
XiP eiq}2}2 ď

?
st with probability at least 1 ´ 2s expp´ nt2

64ρ2σ2
e
q for some 0 ď t ď 8ρσe.

Taking t “ λ1

n , we get the desired result.

G. Proof of Lemma 5.4
Lemma 5.4 If Assumptions 4.1, 4.2 and 4.4 hold, and λ1 ě 8ρσe

?
n1 log d, λ2 ě 8ρσe

?
n2 log d, n1 “ Ωp

s31 log2 d
τpCmin,ξ,σ,Σq

q,

and n2 “ Ωp
s32 log2 d

τpCmin,ξ,σ,Σq
q then µi ě 0,@i P I1 and νi ě 0,@i P I2 with probability at least 1 ´ Op 1

d q where
τpCmin, ξ, σ,Σq is a constant independent of s1, s2, d, n1 or n2.

Proof. We start with the setting of µi when i is in I1.

µi “ ´
1

2
xS

P

i ,W y `
1

2
xS

Q

i , Uy

“ ´
1

2
pyi ´X

ᵀ
iP
β̃1q

2 `
1

2
pyi ´X

ᵀ
iQ
β̃2q

2

“ ´
1

2
pyi ´X

ᵀ
iP
β˚1P

`Xᵀ
iP
pβ̃1 ´ β

˚
1P
qq2 `

1

2
pyi ´X

ᵀ
iQ
β˚2Q

`Xᵀ
iQ
pβ̃2 ´ β

˚
2Q
qq2

“ ´
1

2
ppyi ´X

ᵀ
iP
β˚1P

q2 ` pβ̃1 ´ β
˚
1P
qᵀXiPX

ᵀ
iP
pβ̃1 ´ β

˚
1P
q ` 2pyi ´X

ᵀ
iP
β˚1P

qXᵀ
iP
pβ̃1 ´ β

˚
1P
qq`

1

2
ppyi ´X

ᵀ
iQ
β˚2Q

q2 ` pβ̃2 ´ β
˚
2Q
qᵀXiQX

ᵀ
iQ
pβ̃2 ´ β

˚
2Q
q ` 2pyi ´X

ᵀ
iQ
β˚2Q

qXᵀ
iQ
pβ̃2 ´ β

˚
2P
qq

(59)
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Since i P I1, we can substitute yi “ Xᵀ
iP
β˚1P

` ei.

µi “´
1

2
pyi ´X

ᵀ
iP
β˚1P

q2 `
1

2
pyi ´X

ᵀ
iQ
β˚2Q

q2 ´
1

2
∆ᵀ

1XiPX
ᵀ
iP

∆1 `
1

2
∆ᵀ

2XiQX
ᵀ
iQ

∆2 ´ eiX
ᵀ
iP

∆1`

pXᵀ
iP
β˚1P

` ei ´X
ᵀ
iQ
β˚2Q

qXᵀ
iQ

∆2

“´
1

2
pyi ´X

ᵀ
iP
β˚1P

q2 `
1

2
pyi ´X

ᵀ
iQ
β˚2Q

q2 ´
1

2
∆ᵀ

1XiPX
ᵀ
iP

∆1 `
1

2
∆ᵀ

2XiQX
ᵀ
iQ

∆2 ´ eiX
ᵀ
iP

∆1`

eiX
ᵀ
iQ

∆2 ` pβ
˚
1 ´ β

˚
2 q

ᵀXiX
ᵀ
i pβ2 ´ β

˚
2 q

(60)

Using bounds on the eigenvalue of data matrix, Assumption 4.1 and bounds on }∆1}2 and }∆2}2, we can place a bound on
µi.

µi ě ε´
n13Cmax

2
}∆1}

2
2 `

n2Cmin

2
}∆2}

2
2 ´ |eiX

ᵀ
iP

∆1| ´ |eiX
ᵀ
iQ

∆2| ´
n3Cmax

2
}pβ˚1 ´ β

˚
2 q}2}∆2}2 (61)

We still need bound to bound |eiX
ᵀ
iP

∆1| and |eiX
ᵀ
iQ

∆2| which we do in the following lemma.

Lemma G.1. The following holds:

1. For fixed }∆1}2, Pp|eiXᵀ
iP

∆1| ď
ε
4 q with probability at least 1´Op 1

d q.

2. For fixed }∆2}2, Pp|eiXᵀ
iQ

∆2| ď
ε
4 q with probability at least 1´Op 1

d q.

Proof. Recall that Xᵀ
iP

∆1 is a sub-Gaussian random variable with parameter ρ2}∆1}
2
2 and ei is a sub-Gaussian random

variable with parameter σ2
e . Then,

Xᵀ
iP

∆1

ρ}∆1}2

ei
σe

is a sub-exponential random variable with parameters p4
?

2, 2q. Using the
concentration bounds for the sum of independent sub-exponential random variables (Wainwright, 2019), we can write:

Pp|
Xᵀ
iP

∆1

ρ}∆1}2

ei
σe
| ě tq ď 2 expp´

t2

64
q, 0 ď t ď 8 (62)

Taking t “ t
ρ}∆1}2σe

, we get

Pp|eiXᵀ
iP

∆1| ě tq ď 2 expp´
t2

64ρ2}∆1}
2
2σ

2
e

q, 0 ď t ď 8ρ}∆1}2σe (63)

We take t “ ε
4 , then

Pp|eiXᵀ
iP

∆1| ě
ε

4
q ď 2 expp´

ε2

16ˆ 64ρ2}∆1}
2
2σ

2
e

q, 0 ď ε ď 32ρ}∆1}2σe (64)

Since }∆1}2 is upper bounded with Opλ1

n1

?
s1q and n1 is of order Ops3

1 log2 dq, thus Pp|eiXᵀ
iP

∆1| ď
ε
4 q with probability at

least 1´Op 1
d q. Similarly, Pp|eiXᵀ

iQ
∆2| ď

ε
4 q with probability at least 1´Op 1

d q.

Till now, we have considered }∆1}2 and }∆2}2 to be fixed quantity, however they are also upper bounded by Opλ1

n1

?
s1q

with probability at least 1´Op 1
d q, thus the overall probability that ui ě 0, i P I1 is at least 1´Op 1

d q as long as

ε ě 3n1Cmax}∆1}
2
2 ´ n2Cmin}∆2}

2
2 ` 3nCmax}β

˚
1 ´ β

˚
2 }2}∆2}2 (65)

We need to take a union bound across entries in I1 which changes the probability to at least 1´Opexpp´ log d` log n1qq

which is still dominated by 1´Op 1
d q.
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H. Proof of Lemma 5.5

Lemma 5.5 Both Π and Λ have zero eigenvalues corresponding to eigenvectors
„

β̃1

1



and
„

β̃2

1



respectively.

Proof. It suffices to prove the result for Π as the result for Λ follows in the same way. Note,

β̃1 “ arg min
βPRs1

ÿ

i“1

t˚i ` 1

2
pyi ´X

ᵀ
iP
βq2 ` λ1p}β}1 ` 1q2

“ arg min
βPRs1

ÿ

iPI1

pyi ´X
ᵀ
iP
βq2 ` λ1p}β}1 ` 1q2

The optimal β̃1 must satisfy stationarity KKT condition at the optimum, i.e.,
ÿ

iPI1

XiP p´yi `X
ᵀ
iP
β̃1q ` zλ1pz

ᵀβ̃1 ` 1q “ 0

By little algebraic manipulation, we can rewrite the above as following:

p

n
ÿ

i“1

t˚i ` 1

2
S̄Pi ` λ1Z ` Iαq

„

β̃1

1



“ 0

where Z “
„

z
1



“

zᵀ 1
‰

“ signpW q. Clearly,

Π

„

β̃1

1



“ 0

Similarly, we can show

Λ

„

β̃2

1



“ 0

I. Proof of Lemma 5.6
Lemma 5.6 If Assumption 4.2 holds and n1 “ Ωp s1`log d

C2
min

q and n2 “ Ωp s2`log d
C2

min
q, then the second eigenvalues of Π and

Λ are strictly positive with probability at least 1´Op 1
d q, i.e., eig2pΠq ą 0 and eig2pΛq ą 0.

Proof. It suffices to prove the result for Π as similar arguments can be used to prove the result for Λ. We know

Π “
ÿ

iPI1

SPi ` λ1Z ` Iα

“
ÿ

iPI1

„

XiX
ᵀ
i ´Xiyi

´yiX
ᵀ
i y2

i



` λ1

„

zzᵀ z
zᵀ 1



` Iα

“

„ř

iPI1
XiX

ᵀ
i ` λ1zz

ᵀ ř

iPI1
´Xiyi ` λ1z

ř

iPI1
´yiX

ᵀ
i ` λ1z

ᵀ ř

iPI1
y2
i ` λ1 ` α



(66)

Also note that α “ ´x
ř

iPI1
SPi ` λ1Z,W y “ ´

ř

iPI1
pyi ´X

ᵀ
iP
β̃1q

2 ` λ1p}β̃1}1 ` 1q2. We also know that β̃1 satisfies
the stationarity KKT condition, i.e.,

ÿ

iPI1

XiP p´yi `X
ᵀ
iP
β̃1q ` zλ1pz

ᵀβ̃1 ` 1q “ 0

β̃1 “ ´p
ÿ

iPI1

XiX
ᵀ
i ` λ1zz

ᵀq´1p
ÿ

iPI1

´Xiyi ` λ1zq
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Using the stationarity KKT condition, we can simplify objective function value of optimization problem (11) at β̃1 to
ř

iPI1
y2
i ` p

ř

iPI1
´yiX

ᵀ
i ` λ1z

ᵀqβ̃1 ` λ1. Now, we invoke Haynesworth’s inertia additivity formula (Haynsworth, 1968)

to prove our claim. Let R be a block matrix of the form R “

„

A B
Bᵀ C



, then inertia of matrix R, denoted by InpRq, is

defined as the tuple p|eig`pRq|, |eig´pRq|, |eig0pRq|q where |eig`pRq| is the number of positive eigenvalues, |eig´pRq| is
the number of negative eigenvalues and |eig0pRq| is the number of zero eigenvalues of matrix R. Haynesworth’s inertia
additivity formula is given as:

InpRq “ InpAq ` InpC ´BᵀA´1Bq (67)

We take A “
ř

iPI1
XiX

ᵀ
i ` λ1zz

ᵀ, B “
ř

iPI1
´Xiyi ` λ1z and C “

ř

iPI1
y2
i ` λ1 ` α. It should be noted that

C ´BᵀA´1B evaluates to zero. Thus,

InpΠq “ Inp
ÿ

iPI1

XiX
ᵀ
i ` λ1zz

ᵀq ` Inp0q (68)

We note that 0 has precisely one zero eigenvalue and no other eigenvalues. Moreover, from Lemma 4.3 and Weyl’s inequality:

eigminp
ÿ

iPI1

XiX
ᵀ
i ` λ1zz

ᵀq ě
Cmin

2
ą 0 (69)

with probability at least 1´Op 1
d q as long as n1 “ Ωp s1`log d

C2
min

q. It follows that the second eigenvalue of Π is strictly positive.
Similar, arguments can be made for Λ.

J. Proof of Lemma 5.7
Lemma 5.7 Let λ1 ě

64ρσe

ξ

?
n1 log d. Then the following holds true:

Pp}
1

λ̄1

1

n1

ÿ

iPI1

XiP ei}8 ě
ξ

8´ 4ξ
q ď Op1

d
q,

Pp}
1

λ̄1

1

n1

ÿ

iPI1

XiPc ei}8 ě
ξ

8
q ď Op1

d
q

Proof. We will start with 1
n1

ř

iPI1
XiP ei. We take the i-th entry of 1

n1

ř

iPI1
XiP ei for some i P P , i.e., | 1n

ř

jPI1
Xjiej |.

Recall that Xji is a sub-Gaussian random variable with parameter ρ2 and ej is a sub-Gaussian random variable with
parameter σ2

e . Then, Xji

ρ
ej
σe

is a sub-exponential random variable with parameters p4
?

2, 2q. Using the concentration bounds
for the sum of independent sub-exponential random variables (Wainwright, 2019), we can write:

Pp|
1

n1

ÿ

jPI1

Xji

ρ

ej
σe
| ě tq ď 2 expp´

n1t
2

64
q, 0 ď t ď 8 (70)

Taking a union bound across i P P :

PpDi P P | |
1

n1

ÿ

jPI1

Xji

ρ

ej
σe
| ě tq ď 2s1 expp´

n1t
2

64
q

0 ď t ď 8

(71)

Taking t “ λ̄1t
ρσe

, we get:

PpDi P P | |
1

λ̄1

1

n1

n
ÿ

j“1

Xjiej | ě tq ď 2s1 expp´
n1λ̄

2
1t

2

64ρ2σ2
e

q

0 ď t ď 8
ρσe
λ̄1

(72)
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It follows that } 1
λ̄1

1
n1

ř

iPI1
XiP ei}8 ď t with probability at least 1´ 2s1 expp´

nλ̄2
1t

2

64ρ2σ2
e
q.

Using a similar argument, we can show that } 1
λ̄1

1
n1

ř

iPI1
XiPc ei}8 ď twith probability at least 1´2pd´s1q expp´

n1λ̄
2
1t

2

64ρ2σ2
e
q.

Taking t “ ξ
8´4ξ and ξ

8 in the first and second inequality of Lemma 5.7 and choosing the provided setting of λ1 and n1

completes our proof.

K. Additional Experiments

(a) Misidentified labels (b) Support recovery (c) `2 Norm error

Figure 2. Label and support recovery with control parameter Cp for high dimensional case d “ 100, 200). We also show that the norm
error indeed goes towards 0.

Following the setting mentioned in Section 6, we conduct further high dimensional (d “ 100, 200) experiments to validate
our theoretical results. We observe a similar trend, i.e., as we increase number of samples, we make zero mistakes in label
recovery and achieve 100% correct support recovery for both parameter vectors. Additionally, we also show that the norm
error, i.e., }βj ´ β˚j }2, j P t1, 2u goes towards zero in our experiments.


