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Abstract
Many existing imitation learning datasets are col-
lected from multiple demonstrators, each with
different expertise at different parts of the environ-
ment. Yet, standard imitation learning algorithms
typically treat all demonstrators as homogeneous,
regardless of their expertise, absorbing the weak-
nesses of any suboptimal demonstrators. In this
work, we show that unsupervised learning over
demonstrator expertise can lead to a consistent
boost in the performance of imitation learning al-
gorithms. We develop and optimize a joint model
over a learned policy and expertise levels of the
demonstrators. This enables our model to learn
from the optimal behavior and filter out the subop-
timal behavior of each demonstrator. Our model
learns a single policy that can outperform even
the best demonstrator, and can be used to estimate
the expertise of any demonstrator at any state.
We illustrate our findings on real-robotic contin-
uous control tasks from Robomimic and discrete
environments such as MiniGrid and chess, out-
performing competing methods in 21 out of 23
settings, with an average of 7% and up to 60%
improvement in terms of the final reward.

1. Introduction
Reinforcement learning provides a powerful and general
framework for tasks such as autonomous vehicles, assistive
robots, or conversation agents, by optimizing behavior with
respect to user-specified reward functions. However, online
interaction with the environment can be costly or even un-
safe (Sutton & Barto, 2018; Mihatsch & Neuneier, 2002;
Hans et al., 2008; Garcıa & Fernández, 2015), and specify-
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ing reward functions can be difficult in practice (Hadfield-
Menell et al., 2017). Instead, one can mitigate these issues
by viewing the problem through the lens of offline learn-
ing, where the learner either has access to demonstrations
of the task along with the corresponding reward values as
in offline reinforcement learning (Levine et al., 2020), or
only has access to expert demonstrations without any re-
ward information as in imitation learning (Pomerleau, 1991;
Argall et al., 2009). In this work, we focus on the imitation
learning setting—only assuming access to demonstrations.

The success of offline methods crucially depends on the
availability of a large and diverse dataset (Pinto & Gupta,
2016; Fu et al., 2020) and as such, there has been a flurry
of work in collecting vast amounts of expert demonstra-
tions in various domains (Sharma et al., 2018; Zhang et al.,
2018; Mandlekar et al., 2019; Fu et al., 2020; Mandlekar
et al., 2021). A common finding from these works is the
need for crowd-sourced data collection, both for scale and
for diversity (Sharma et al., 2018). For example, Robo-
turk (Mandlekar et al., 2019) reports data-collection from
54 different humans, and Robomimic (Mandlekar et al.,
2021) organizes its data into 6 different types of demonstra-
tors with varying levels of expertise. Other works such as
CARLA (Dosovitskiy et al., 2017) use a mix of human and
autonomous agents for collecting demonstrations.

These crowd-sourced data collection pipelines inevitably
generate a diverse dataset of behavior from users with vary-
ing levels of expertise. Yet, current imitation learning algo-
rithms typically treat these datasets as homogeneous. By
assuming all demonstrations are equally optimal, these al-
gorithms may be blindly learning from the weaknesses of
suboptimal demonstrators. Instead, our work asks the ques-
tion: can we make use of the knowledge that the trajectories
come from different demonstrators with various levels of
suboptimality? More specifically, can we use the informa-
tion of which demonstrator provided which demonstration
to improve learning?

Our key insight is that imitation learning frameworks should
account for the varying levels of suboptimality in large of-
fline datasets by leveraging information about demonstrator
identities. For example, say we learn to play chess by imi-
tating from a large dataset of games. We do not know the
expertise levels of the players, but we do know which player



Imitation Learning by Estimating Expertise of Demonstrators

Figure 1. Left: State embeddings encode the skills associated with states of the environment. Middle: A demonstrator’s expertise ρ at a
state is a function of the state embedding and the demonstrator embedding. Right: Using the expertise levels, the model improves the
learned policy πθ , which in turn helps better estimate the state/demonstrator embeddings (ϕ and ω) and the expertise level (ρ).

played which games. Some players could be highly skilled
Grandmasters, in which case we should treat their demon-
strations seriously, but some could be novices, in which
case we might ignore their demonstrations. Although we
are not given their expertise levels, we can rely on infor-
mation about which player played which games to estimate
their expertise levels in an unsupervised manner. These esti-
mated expertise levels can then be used to more effectively
learn a chess-playing policy.

We propose ILEED, Imitation Learning by Estimating Ex-
pertise of Demonstrators, to imitate the trajectories in the
dataset, while simultaneously learning to account for the
different demonstrators’ suboptimalities without any prior
knowledge of their expertise (Fig. 1). ILEED optimizes a
joint model over a learned policy and expertise levels, and
recovers not just a single expertise value for each demon-
strator, but a state-dependent expertise value that reveals
which demonstrators are better at acting in specific states.
We provide our implementation of ILEED online (Beliaev
& Shih, 2022).

Our main contributions are as follows:

• We develop an imitation learning algorithm that jointly
optimizes for an imitating policy and the expertise lev-
els of the demonstrators. The joint model can estimate
state-dependent expertise of demonstrators, identifying
which demonstrator can perform well in which states.

• We theoretically show that our model generalizes stan-
dard behavioral cloning, and that our algorithm can
recover the optimal policy via maximum likelihood if
the suboptimal demonstrations align with our model’s
generative process.

• We experimentally show the success of our method
compared to standard baselines on 1) simulated
datasets for grid-world, 2) human datasets for continu-
ous control, and 3) human datasets for chess endgames.
We empirically demonstrate that our learned policy out-

performs policies trained without taking into account
demonstrator identities, and is comparable to policies
trained only on high-quality demonstrations.

2. Related Work
First we discuss imitation learning, an instance of offline
learning without the use of reward information. Since our
work is concerned with learning from suboptimal demon-
strations, we then discuss connections to modeling expertise
in more general supervised learning settings.

Imitation Learning. There is a large body of work which
approaches offline learning by relying on expert trajectories
composed solely of state-action pairs, avoiding the need for
labeling with a reward signal (Argall et al., 2009; Pomer-
leau, 1991; Ross et al., 2011; Finn et al., 2016; Ho & Ermon,
2016; Ding et al., 2019). The main challenge for IL ap-
proaches is the reliance on access to large amounts of expert
demonstrations. In addition to this challenge, many real-
world applications require the execution of multiple skills,
where expert demonstrations are even more limited. Several
lines of work aim to solve this: multi-task and meta imita-
tion learning (Babes et al., 2011; Dimitrakakis & Rothkopf,
2011; Hausman et al., 2017; Li et al., 2017) as well as few
shot learning (Duan et al., 2017; James et al., 2018; Singh
et al., 2020) tackle the data efficiency problem in IL by con-
sidering both transfer learning to unseen skills and learning
diverse sets of skills from multiple expert policies. Although
similar to our setting due to the dependence on multiple
demonstrators, unlike our method these approaches often
assume oracle demonstrations, and in some cases access to
online fine-tuning.

Stepping away from traditional imitation learning work that
assumes access to oracle demonstrations, we are specif-
ically concerned with learning from crowd-sourced data,
where suboptimal demonstrations are unavoidable. Sev-
eral works have considered this setting (Brown et al., 2019;
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2020; Chen et al., 2020; Zhang et al., 2021; Cao & Sadigh,
2021), analyzing the impact of suboptimal demonstrations,
and developing novel methods which can relax the amount
of supervision required. Unlike our method, all of these
approaches require environment dynamics to train on the
attained reward signal, and in some cases knowledge about
rankings over the set of demonstrations. We emphasize that
our method does not rely on knowledge of environment
dynamics or expertise rankings, and we leverage only the
demonstrator identity of each demonstration.

We discuss two recent works that also address the subopti-
mal setting without utilizing environment dynamics. The
first uses behavioral cloning (BC) to learn an ensemble
policy directly from noisy demonstrations (Sasaki & Ya-
mashina, 2021). Unlike our work that learns individual
expertise levels of demonstrators, this work is mainly con-
cerned with learning the best policy over noise-injected
demonstrations without modeling the demonstrator identity
or expertise. The second work (TRAIL) (Yang et al., 2021)
tackles this setting by leveraging suboptimal data to extract
a latent action space, which is used alongside standard BC
to train a policy on a small set of “near-optimal” expert
demonstrations. In contrast, our approach does not rely on
access to such near-optimal expert demonstrations.

Unsupervised Estimation of Expertise. The problem of
inferring ground truth labels from crowd-sourced human
data has been studied in biostatistics, education, and more
recently computer vision, and NLP. These works generally
tackle the problem using the Expectation Maximization
(EM) algorithm to solve for the individual error rates of the
human annotators (Dawid & Skene, 1979). Furthermore,
similar approaches have been applied to the crowd sourcing
problem of labeling large image datasets (Whitehill et al.,
2009; Raykar et al., 2010; Welinder et al., 2010), learning a
model over annotators to generate more accurate estimates.
Specifically, one paper models each annotator and task using
multidimensional variables representing difficulty, compe-
tence, expertise, and bias (Welinder et al., 2010). Inspired
by this, we apply a similar formulation to IL, addressing
several challenges that go beyond the scope of supervised
learning. More precisely, in the image domain, one can
collect multiple annotator labels for many images and com-
pare them to the ground truth. In our imitation learning
setting, on the other hand, demonstrators may not visit the
same states, states are intertwined through dynamics, and
the optimal policy may give action distributions instead of a
single optimal action.

3. Joint Estimation of Policy and Expertise
In this section we describe a joint model that learns from
a dataset consisting of a mixture of demonstrations from
demonstrators with varying, but unknown, levels of exper-

tise. Our model both infers state-dependent expertise levels
of the different demonstrators in the dataset, and recovers a
single policy learned from all the demonstrations.

3.1. Problem Setup

Dataset. We collect a set Di of trajectories τ =
(s0, a0, . . . , st, at) of varying length from each demonstra-
tor i. We assume the trajectories from demonstrator i are
sampled from some fixed underlying policy πi. The full
dataset D = {(i,Di)}mi=1 is the union of the dataset from
each of them demonstrators, labeled by the demonstrator in-
dex. Generally speaking, each trajectory could exhibit close
to random behavior, but could also come from a demon-
strator with high expertise. We would like a model that
identifies when demonstrations are suboptimal, to better
learn a single policy from the mixed bag of demonstrations.

Demonstrator Model. Our demonstrator model should be
able to express state-dependent expertise. For example,
demonstrator A may be adept at washing the dishes, while
demonstrator B may be adept at vacuuming the floor, and
modeling this state-dependent expertise can allow us to
recognize and combine their strengths in different states. To
model such suboptimal policies, we will define two main
components: 1) the expertise level of a demonstrator at a
given state and 2) the demonstrator’s action distribution at a
state as a function of their expertise level and the optimal
action distribution at that state.

1) Expertise Levels. Drawing inspiration from annotator
models (Welinder et al., 2010), we model expertise levels
using two embeddings: a d–dimensional state embedding
using a deterministic map fϕ : S → Rd (parameterized by
ϕ) from states to embeddings, and demonstrator embeddings
ω ∈ Rm×d, where ωi is a d–dimensional vector capturing
the aptitude of demonstrator i. Using these embeddings, we
quantify the expertise level of demonstrator i at state s as:

ρϕ(s, ωi) = σ(⟨fϕ(s), ωi⟩), (1)

where σ : R → (0, 1) is the sigmoid function and ⟨·, ·⟩
denotes the inner product.

We can interpret each dimension of the embedding vector
fϕ(s) as a weighting of how relevant a latent skill is in acting
correctly at that state s. A demonstrator’s skill set is the
d-dimensional embedding ωi that expresses how adept the
demonstrator is at each skill. This way we can measure how
qualified demonstrator i is at acting in state s by computing
the inner product ⟨fϕ(s), ωi⟩ between the task encoding of
the state, and the demonstrator’s skill set ωi.

2) Demonstrator’s Action Distribution. We now define the
demonstrator’s suboptimal policy as a function of their ex-
pertise level and the optimal policy πθ⋆ .

We would like the expertise level 0 ≤ ρϕ(s, ωi) ≤ 1 of
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demonstrator i at state s to be correlated with how close their
action distribution is to the true action distribution πθ⋆(a|s),
with ρϕ(s, ωi) = 1 corresponding to exactly πθ⋆(a|s) and
ρϕ(s, ωi) = 0 corresponding to a uniformly random distri-
bution. We can satisfy this desiderata, separately for discrete
and continuous action spaces, using the following models.

Discrete Action Space. When the action space is discrete,
we use ρϕ(s, ωi) to interpolate between the optimal policy
and the uniformly random policy which assigns probability
1/|A| to each action.

π(a|s, ωi, ϕ, πθ⋆) = ρϕ(s, ωi)πθ⋆(a|s) + 1−ρϕ(s,ωi)
|A| (2)

Continuous Action Space. For continuous action spaces,
we will focus on Gaussian Mixture Model (GMM) action
distributions, as in Mandlekar et al. (2021). Specifically, at
a given state s the optimal policy πθ⋆(a|s) outputs a proba-
bility distribution over actions a ∈ A in the form of a GMM
with k mixtures πθ⋆(a|s) =

∑︁k
j=1 αjN (a;µ⋆j (s), σ

⋆
j (s)).

Then, given a demonstrator with expertise level ρϕ(s, ωi) at
state s, we simply scale the variance of the optimal policy’s
GMM (equally for each component) by 1/ρϕ(s, ωi). Thus,
the probability of the demonstrator actions π(a|s, ωi, ϕ)
modifies πθ⋆ as follows:

π(a|s, ωi, ϕ, πθ⋆) =
∑︁k
j=1 αjN (a;µ⋆j (s), σ

⋆
j (s)/ρϕ(s, ωi)) (3)

An expertise level of 1 corresponds to an expert whose
recommendations align with the optimal policy, whereas
an expertise level approaching 0 corresponds to an expert
with close to uniformly random actions. More complex
models of expertise can be explored, but we find that our
simple single-valued expertise model already gives good
improvements.

3.2. Learning the Optimal Policy and Expertise Levels

So far we have defined the model of demonstrators with
respect to some optimal policy πθ⋆(a|s), i.e., a demonstra-
tor’s expertise level correlates with how close their pol-
icy is to πθ⋆(a|s). However, we do not have access to
πθ⋆(a|s). Hence, we will define a parametric family of poli-
cies {πθ : θ ∈ Θ}, and try to recover πθ⋆(a|s). For the
analysis in the rest of the section we will assume that Θ
is well-specified (i.e. θ⋆ ∈ Θ), and that all demonstrators
explore all states with non-zero probability. Put together,
we will be jointly learning θ, ϕ, ω: the optimal policy, the
state embedding network, and the demonstrator embeddings.
Using a maximum likelihood approach, we optimize these
variables with the loss corresponding to the negative log-
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Figure 2. We observe the state, action, and demonstrator index
i. Diamond nodes are deterministically computed. From the
state embedding fϕ(s) and the demonstrator embedding ωi, we
compute the expertise level ρ. We combine ρ with the estimate πθ

of the optimal policy to obtain the demonstrator policy π. The loss
L (Eq. 4) of π on state s and action a is back-propagated to update
the parameters θ, ϕ, ω.

likelihood (NLL) of data.

L(θ, ϕ, ω) = −Ei,(s,a)
[︂
log π(a|s, ωi, ϕ, πθ)

]︂
(4)

≈ − 1

|D|
∑︂
i

∑︂
(s,a)∈Di

log π(a|s, ωi, ϕ, πθ) (5)

Although we can simply rely on the loss in Eq. 4 to learn
the state embedding fϕ (used in Eq. 1), it can be beneficial
to consider the dynamics of the MDP environment as well,
which may reveal more about the difficulty of each state.
One popular approach is the DeepMDP framework (Gelada
et al., 2019), which uses an auxiliary loss to predict the
environment dynamics in latent space. At a high level, this
process uses the trajectories in our dataset as samples of the
MDP dynamics to help learn a better state embedding fϕ.
The details of this framework is described in Appendix A.

The overall learning framework can be seen in Fig. 2, where
for demonstrator i, we compute an expertise level ρϕ(s, ωi),
that is then combined with our estimate πθ of the optimal
policy to derive the demonstrator policy π(a|s, ωi, ϕ, πθ) in
Eq. 4. We update all the parameters (θ, ϕ, ω) to optimize
our loss function.

To see why our loss function is suitable, we can rewrite the
joint optimization equivalently only over θ, and show that
the following objective serves as a proper loss function.

L(θ) = −max
ϕ,ω

Ei,(s,a)
[︂
log π(a|s, ωi, ϕ, πθ)

]︂
(6)

In other words, θ⋆ is the (non-unique) minimizer of L(θ).
Proposition 3.1. L(θ) is a proper loss function.

In addition, it is easy to see that our framework general-
izes standard behavioral cloning. If we set the embedding
vectors to large positive values everywhere, then the exper-
tise levels ρϕ(s, ωi) for all states and all demonstrators will
approach 1, in which case L(θ) approaches LBC(θ).
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Remark 3.2. ILEED recovers the standard behavioral
cloning framework by setting all expertise levels to 1.

Moreover, we will recover a different policy than behavioral
cloning unless all demonstrators have identical policies.

Proposition 3.3. We have that minθ LBC(θ) > minθ L(θ)
unless all demonstrators have identical policies.

Hence, in the presence of different demonstrators, our frame-
work will incorporate their varying expertise levels into its
estimate of the optimal policy.

We have shown several nice properties of our loss func-
tion: 1) θ⋆ minimizes L(θ), and 2) L(θ, ϕ, ω) generalizes
LBC(θ), and 3) our framework incorporates varying exper-
tise levels. However, we have not shown that L(θ) is strictly
proper, i.e., θ⋆ may not be the unique minimizer and there-
fore it is unclear if we will recover the optimal policy. To
this end, we show that if we have knowledge of the state
embedding fϕ(s), then under some assumptions, we can
uniquely recover the optimal policy πθ⋆ .

Lemma 3.4. Let ϕ be the ground truth state embedding
parameters, and let Lϕ(θ) be the loss in Eq. 6 using fixed ϕ.

L(θ) = −max
ω

Ei,(s,a)
[︂
log π(a|s, ωi, ϕ, πθ)

]︂
Under both the discrete and continuous action model (Eq. 2
& 3), Lϕ(θ) is a strictly proper loss function if for all states
s0, there exists a set of other states s1:r such that

fϕ(s0) = α1fϕ(s1) + α2fϕ(s2) + . . .+ αrfϕ(sr) (7)

and no set of constants C0:r, with C0 ̸= 1, satisfies the
following conditions. ∀i ∈ {1, . . . ,m}:

σ−1(ρϕ(s0, ωi)/C0) =

r∑︂
k=1

αkσ
−1(ρϕ(sk, ωi))/Ck).

Intuitively, the challenge in uniquely recovering the opti-
mal policy is that the true action distribution πθ⋆(·|s) at a
state may be expressed as a low-expertise version of another
distribution π̃(·|s). Our model might incorrectly recover
π̃(·|s), and compensate by decreasing the expertise levels
of all demonstrators in a precise way. If all the state embed-
dings are linearly independent (e.g. basis vectors in high-
dimensions), then our model can fully control the demonstra-
tor expertise levels ρϕ(s, ωi) by tweaking the demonstrator
embeddings ω. On the other hand, the above result says
that if the state embeddings are intertwined (Eq. 7), then the
model cannot fully control ρϕ(s, ωi). Therefore the model
cannot mistake πθ⋆(·|s) for π̃(·|s) since it cannot compen-
sate for the different expertise levels. We include the proofs
of these results in Appendix D.

Moreover, note that the constraints on C0:r are less likely to
hold as the number of demonstrators m grows. In other
words, assuming we have learned the correct state em-
beddings, if the embeddings are intertwined enough then
ILEED can recover the optimal policy. On the other hand,
BC will be unable to recover the optimal policy in the pres-
ence of suboptimality. We include a concrete example in
Appendix B showing the improvement of our method in the
presence of demonstrators with varying optimalities.

Summary. We defined a model of suboptimal demonstra-
tors, where the action distribution of demonstrator i at a
state s is determined by the state embedding fϕ(s), the ex-
pertise embedding ωi, and the optimal action distribution
πθ⋆(a|s) (Eq. 2, 3). Our method generalizes the standard
BC framework to the case of demonstrators with varying
expertise levels, enabling us to better handle demonstrators
with varying state-dependent optimalities. Finally, we show
the recoverability of the optimal policy when we have knowl-
edge of the state embeddings, and integrate unsupervised
techniques for learning these state embeddings.

4. Experiments
We will test if our algorithm can: (1) learn a policy from
a mixture of simulated demonstrations with varying levels
of proficiency, (2) learn a policy from a mixture of human
demonstrations with varying levels of proficiency, (3) re-
cover human expertise levels even when learning an optimal
policy is too challenging, and (4) learn a policy for multi-
ple skills from a mixture of simulated demonstrations with
state-dependent noise.

Note that we can use ILEED to learn either state-dependent
expertise levels, or state-independent expertise levels where
we assume a demonstrator has a single expertise value that
is the same at all states. Out of the four aforementioned ex-
periments in the paper, only the last experiment learns state-
dependent expertise levels. For the first three experiments,
we found that adding state-dependence did not improve
performance. For the fourth experiment, state-dependent
expertise was important due to the multi-skill nature of the
task, and a state-independent approach did poorly. We show
this by including an ablation along with the last experiment
that studies the individual effect of state embeddings and
demonstrator identities on ILEED’s performance. Before
going over our results, we briefly detail the specific environ-
ments and datasets used in our experiments.

4.1. Environments and Datasets

For the first and last experiment we rely on simulated data,
using 4 MiniGrid (Chevalier-Boisvert et al., 2018) environ-
ments along with pre-trained policies with various levels of
injected noise. All 4 environments use a partially observ-
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(a) (i) Empty - The agent starts at a random position.
The objective is to reach the green square.
(ii) Lava - The agent must pass through a narrow gap
in a vertical strip of lava to. Touching the lava ter-
minates the episode with a zero reward, making this
environment useful for studying safe exploration.
(iii) Obstacles - A large penalty is subtracted if the
agent collides with an obstacle and the episode fin-
ishes, resulting in a possible negative reward.
(iv) Unlock - The agent must unlock the door by first
picking up a key and then entering the door.

(b) We utilized the low dimension Multi-
Human (MH) Robomimic dataset which
contains 50 demonstrations from 6 hu-
mans, split up into three groups based
on their proficiency. We used the Square
environment, a continuous control task
in which a robotic arm must pick up a
square nut and place it on a rod, and a
binary reward is awarded for complet-
ing the task in the allotted time. The
images shown were directly taken from
the study (Mandlekar et al., 2021).

(c) We examine games from the lichess
database (McIlroy-Young et al., 2020),
consisting of ∼10M games in 2019 from
players with rating ranging from 1k to
2k. We limit ourselves to endgame po-
sitions with only kings and pawns. We
encode the state into a discrete vector
and use a 3-layer MLP policy network
and 2-dimensional state and expertise
embeddings. We divide the dataset into
5 bins based on rating percentile (e.g.
bottom 20% of players in the first bin).

Figure 3. Environments used throughout our work: MiniGrid, Robomimic, and chess.

able view with 3 input values per visible grid cell, and a
maximum reward of one is given if the objective is reached
with a small penalty subtracted for the number of steps to
reach the goal. The environments are depicted in Fig. 3(a),
along with a brief description for each. For the second
experiment, which relies on suboptimal human data, we
use the Robomimic dataset and codebase (Mandlekar et al.,
2021) which consists of various continuous control robotics
environments along with corresponding sets of suboptimal
human data. We depict the environment used and briefly
describe the dataset in Fig. 3(b). For the third experiment
we derive player rankings using human chess game-ending
data provided by the lichess database (McIlroy-Young et al.,
2020), which is briefly explain in Fig. 3(c).

4.2. Baselines

Throughout the experiments we compare our model with 3
other IL algorithms (BC, BC-RNN, GAIL), as well as one
recent offline learning algorithms IRIS (Mandlekar et al.,
2020). To the best of our knowledge, there are no IL algo-
rithms which show good performance on suboptimal human
datasets besides BC-based approaches. Current approaches
that tackle this setting either rely on the reward signal (Fu-
jimoto et al., 2019; Kumar et al., 2020; Mandlekar et al.,
2020) (BCQ, CQL, IRIS), or break the offline assumption by
using environment simulations (Ho & Ermon, 2016; Brown
et al., 2019; 2020; Chen et al., 2020; Fu et al., 2017) (GAIL,
D-REX, T-REX, SSRR, AIRL). In addition, recent work has
shown that BC-based approaches perform better compared
to other offline learning techniques in settings with subopti-
mal demonstrations (Mandlekar et al., 2021; Florence et al.,
2021). We thus treat BC-based approaches as our main

baselines for the simulated experiments. To further test our
model against the aforementioned recent algorithms, we
directly compare with the results from Robomimic.

4.3. Learning from Simulated Data

We first study how our algorithm performs on simulated
suboptimal data, where we vary the optimality level by in-
jecting noise into pre-trained policies. When simulating
data, we use a set of m state-independent expertise levels
βi for i ∈ {1, . . . ,m}, and collect a fixed number of state-
action pairs from each. Specifically βi = ρϕ(s, ωi) ∀s ∈ S ,
where we use the discrete action space model defined in
Eq. 2 to interpolate between a random policy β = 0 and
the pre-trained policy β = 1. All of the MiniGrid experi-
ments use fully-connected neural networks with the Adam
optimizer, with specific parameters left to Appendix E. For
the four aforementioned environments, the respective per-
formance of the pre-trained policies along with their noised
version are listed in Table 5 in Appendix C.

Before moving on to our first experiment, we tested the
relationship between the learned policy’s performance and
the corresponding NLL defined in Eq. 4. By varying the
number of restarts and choosing the policy with the highest
likelihood, we can empirically test if our defined loss in
Eq. 4 can also serve as a good validation metric for the
final policy’s performance. We display this in Table 4 of
Appendix C.1, where we see that as the number of restarts
increases, the policy’s performance improves as well. Based
on this insight, we set the number of restarts to 20. As for
the two baselines in this experiment, BC and GAIL, we also
restart BC as many times as ILEED, choosing the policy
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Table 1. Effect of Varying Population Expertise β
We compute mean episodic reward of policies from different IL
algorithms, over 20 trials (for BC and ILEED).
β Empty Obstacles

BC GAIL ILEED BC GAIL ILEED
1 0.81 0.96 0.97 0.18 −0.82 0.91
5 0.97 0.96 0.97 0.66 −0.77 0.94
10 0.97 0.96 0.97 0.63 −0.01 0.94

unif 0.97 0.96 0.97 0.80 −0.84 0.90

with the lowest loss. In contrast, we only ran GAIL once,
because unlike BC and ILEED, GAIL optimizes for a saddle
point as opposed to a minimum, so we cannot use the lowest
loss as a validation metric for choosing between restarts.

We want to study how varying the population of demon-
strators using simulated noise affects the performance of
selected algorithms. To test this, we chose several sets
of m demonstrators, each with a different predefined set
of expertise levels β = {β1, . . . , βM}. The four chosen
sets are denoted as: β-1:{β1 = 0.99, β2:10 = 0.01}, β-
5:{β1:5 = 0.99, β6:10 = 0.01}, β-10:{β1:10 = 0.99}, β-
unif :{βi = 0.05 + 0.1(i− 1)}. By keeping the noise levels
constant and re-sampling state-action pairs for each trial, we
study how different distributions of expertise levels affect
performance, showing this result in Table 1.

Our algorithm outperforms both BC and GAIL in all 4 popu-
lation settings when testing on the Empty and Obstacles Min-
iGrid environments. For the simpler Empty environment,
we see all algorithms were able to match the pre-trained
policy’s performance, though the BC struggled in the β-1
population shown on the first row, where only 1 of the 10
demonstrators is competent. In the more challenging Obsta-
cles environment, we see both GAIL and BC are unable to
imitate the policy even when noise is diminished to 1% in
the β-10 population shown on the third row, where all 10
demonstrators are fairly competent. Meanwhile ILEED is
able to achieve consistent performance even for the noisier
populations. Overall GAIL showed inconsistent results and
did not perform well in the Obstacles environment, and we
note again that GAIL also assumes access to environment
dynamics. We include these comparisons for Lava and Un-
lock in Appendix C.2. Note that the rankings derived from
the estimated expertise levels of the demonstrators corre-
late with the performance of the final policy as we show in
Appendix C.3.

4.4. Learning from Suboptimal Human Data

Next, we test our model on the continuous control task
Square depicted in Fig. 3(b), where the dataset provided
contains suboptimal human demonstrations. Specifically,
the demonstrations used consists of three subsets of 100

Table 2. Suboptimal Human Data for Continuous Control
Our method outperforms all other methods in all settings. We copy
results for the two strongest methods (Mandlekar et al., 2021), and
average ILEED over 3 trials as done in the Robomimic study.

Dataset BC-RNN IRIS ILEED (ours)

All 78.0± 4.3 52.7± 5.0 78.0± 1.6

Worse 39.3± 3.8 38.7± 0.9 46.7± 4.7
Okay 45.3± 2.5 42.0± 3.3 53.3± 2.5
Better 66.0± 2.8 60.0± 1.6 72.7± 3.8

Worse-Okay 55.3± 0.9 43.3± 2.5 59.3± 3.8
Worse-Better 73.3± 6.2 56.7± 3.4 77.3± 6.8
Okay-Better 74.0± 2.8 56.7± 3.8 77.3± 0.9

Total 61.6± 3.3 50.0± 2.9 66.4± 3.4

demonstrations provided by: two “better” quality operators,
two “okay” operators, and two “worse” operators. Like the
original study, we use different combinations of the smaller
subsets to investigate how suboptimal human data affects
performance. Using this dataset, we are able to compare
our method with three IL algorithms (BC, BC-RNN, HBC),
as well as three recent offline learning algorithms (BCQ,
CQL, IRIS) which differ from the IL setup by also utilizing
reward information. Nonetheless, we are able to outperform
all six methods for every combination of the suboptimal
dataset, and hence only include results for the strongest
baselines of each group: BC-RNN and IRIS. This result is
displayed in Table 2, where we note that no restarts were
used in our model for fair comparison with results reported
from (Mandlekar et al., 2021).

We can see from the results that modeling human expertise
levels as done by ILEED provides consistent improvement
over other IL algorithms. As noted by the cited study: BC-
RNN is a strong baseline on suboptimal human data, but
there is room for improvement. We see from Table 2 that
ILEED does in fact improve over BC-RNN as it is better at
utilizing suboptimal demonstrations. Finally, we can see that
ILEED outperforms BC-RNN in all settings with an average
4.8% increase in final reward. This shows that learning a
model for demonstrator’s expertise can significantly boost
performance by taking more advantage of suboptimal data
compared to methods that ignore demonstrator expertise.

4.5. Estimating Expertise from Human Data

For our second human experiment, we explore the ambi-
tious task of learning to play chess endgames purely from
data (McIlroy-Young et al., 2020), without access to the
environment (i.e., without knowing the rules of the game or
accessing rewards). This task is extremely difficult, since
most chess-playing agents assume access to the game’s rules
and rely on some form of self-play or tree-search to reach
good performance (Pascutto et al., 2018; Romstad et al.,
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2021). Nevertheless, this task serves as a good benchmark
for validating our model’s estimation of the expertise level of
demonstrators. After splitting our dataset into 5 bins based
on rating percentile (Fig. 3(c)), we recover the expertise ρ
of the bins.

Bins 1 2 3 4 5

Expertise .9207 .9274 .9298 .9328 .9329

In the above table, we see that our predicted expertise levels
(averaged over states in the dataset) of the bins align with
the ground truth skill levels of the bins – the higher the
ground truth rating of the bins, the higher our estimated
expertise level. This suggests that our framework can serve
a dual purpose as an estimator of demonstrator expertise
levels. Though these expertise values seem close in absolute
terms, we note that a difference of a few percentage points
in accuracy can lead to a large rating difference (cf. Fig.
3 in (McIlroy-Young et al., 2020)), and that the takeaway
of our experiment is the monotonicity of our recovered
expertise values. Lastly, in Table 8 (in Appendix C.4), we
check that our method also outperforms BC in terms of the
performance of the learned policy, as measured by treating
StockFish evaluations as the reward in the environment.
Though we did not expect to recover a good policy, given
the difficulty of the task, the improvement over BC may be
interesting for further investigation.

4.6. Learning from Expertise in Different Skills

So far, we have not used our model’s state-dependent com-
ponents, namely the state embedding fϕ(s) and the auxiliary
loss provided by the DeepMDP framework. In fact, we note
that surprisingly, the simulated MiniGrid experiments per-
formed in Section 4.3 produced near-identical results with
and without the auxiliary loss. Thus before concluding, we
study the state dependent components by simulating an en-
vironment with multiple skills, where each skill can be seen
as achieving an independent task within the environment.

In this experiment, we utilize the environments Unlock,
Lava, and Empty. We note that these three environments
exhibit the need for independent skills, i.e., a policy trained
on one of them does not necessarily do well on the other two.
The reason we focus on independent skills is to ensure train-
ing a policy on each and all task will lead to full coverage
over all the desired states and skills; however, our method
can also generalize to settings with non-independent skills
as well. We place the 3 environments in succession, such
that an agent must successfully perform all 3 tasks to receive
a reward of 1. When collecting trajectories, we allow con-
tinuation to the next environment even if the policy failed
in the current environment. For evaluation, we average the
agents’ performance on all environments. For the datasets
we use 3 demonstrators, one being an expert in each skill.

Table 3. Learning Multiple Skills from Suboptimal Data
Mean and standard deviation of episodic reward (over 100 trials)
for all demonstrators, the best demonstrator and ILEED.

β All Demons. Best Demons. ILEED

0.01 0.40± 0.04 0.44± 0.04 0.70± 0.06
0.10 0.52± 0.05 0.58± 0.05 0.80± 0.06
0.20 0.67± 0.04 0.76± 0.04 0.86± 0.05
0.50 0.85± 0.03 0.90± 0.01 0.86± 0.04
1.00 0.94± 0.01 0.94± 0.01 0.89± 0.04

Specifically, we collect 10000 state action pairs from all 3
demonstrators, where they act according to the optimal (pre-
trained) policy in the environments they are skilled in, and
suboptimally in the other two environments. We control the
level of suboptimality by β, which refers to the probability
that the demonstrator acts optimally for the environments
they are unskilled in. For example, a demonstrator skilled
in Unlock with β = 0.1 will always act according to the
pre-trained policy when in the Unlock environment, while
only following the corresponding pre-trained policies 10%
of the time in the other two environments (acting randomly
otherwise). This way, the noisiest dataset at β = 0 still con-
tains some optimal demonstrations for all 3 environments,
and as we increase β to 1, all demonstrations come from the
corresponding pre-trained policy. We show the result for 5
values of expertise β in Table 3.

We can see that our model consistently outperforms the
average demonstrator for β < 1, and even the best demon-
strator for β < 0.5. This is expected for lower β, as even
the best demonstrator can only be successful at one of the
tasks due to the independence of tasks. We note that the
optimal dataset at β = 1 contains no noisy demonstrations,
in which case our model is able to come within 5% of the
best demonstrator. As we decrease β, each demonstrator
provides more suboptimal state-action pairs for 2 of the 3
environments, but our model is still able to combine their
expertise and learn a policy which is skilled in multiple en-
vironments. We show trajectories in Fig. 4 of the Appendix,
noting that for all settings our learned policy adequately
performs on 2 environments, failing mostly in Unlock. Ad-
ditionally, we provide an ablation study in Appendix C.5 to
test the individual effect of state embeddings and demonstra-
tor identities on ILEED’s performance, showing that both
components contribute to the high performance of ILEED in
this multi-skill experiment.

5. Discussion
Summary. We present ILEED – an approach for IL from
demonstrators with varying but unknown state-dependent
expertise. By jointly optimizing for the optimal policy and
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demonstrator expertise, we learn a better policy as compared
to imitation learning baselines, and also are able to recover
accurate estimates of the ground-truth expertise levels.

Our framework highlights the important problem of IL from
datasets with multiple demonstrators. Datasets collected
from different demonstrators are already prevalent across
continuous control and discrete tasks (Mandlekar et al.,
2021; McIlroy-Young et al., 2020), and will only increase
in relevance as the need for large and diverse datasets in-
evitably grows (Sharma et al., 2018). We show that in these
settings, unsupervised estimation of the demonstrator exper-
tise gives a large boost in performance.

Limitation and Future Work. Our work is limited in a
number of ways. First, some of our model’s theoretical
properties and predictive power rely on recovering effective
state embeddings, which can be challenging in practice, e.g.,
when the state space is not fully explored by the demon-
strators. Moreover, we have yet to analyze the relationship
between recovered expertise values ρ and demonstrators’
true expertise levels for environments with state-dependent
expertise. Finally, our method currently has a simple model
of suboptimality that uses a single-valued expertise level
at each state. More complex demonstrator models can be
explored to capture different modes of suboptimality in
demonstrators.

Nevertheless, we believe our framework provides a novel
and effective approach for addressing the prevalent problem
of learning from demonstrators with varying levels of ex-
pertise. Our framework is general, and lends itself to many
possible directions of future work. As part of future work,
we plan to model the uncertainty over the expertise lev-
els and consider different notions of suboptimality beyond
noisy action distributions.
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A. Learning State Embeddings from
Transitions

Although we can simply rely on the NLL loss defined in
Eq. 4 to learn the state embedding fϕ (used in Eq. 1), it
can be beneficial to consider the dynamics of the MDP
environment as well, which may reveal more about the
difficulty of each state. We do not have access to the MDP
dynamics, but we can use the provided state transitions as
samples from the dynamics to better learn state embeddings.

One popular approach is the DeepMDP framework (Gelada
et al., 2019), which attempts to predict the environment
dynamics in latent space. Using DeepMDP as an auxiliary
task in the Atari 2600 domain has shown large performance
improvements over model-free RL (Gelada et al., 2019).
DeepMDP trains an embedding function by minimizing two
losses: prediction of rewards and prediction of the distri-
bution over next latent states. In our case, we do not have
access to the rewards, so instead we replace the DeepMDP
reward loss with our log-likelihood loss in Eq. 4.

First, we define a latent transition network gψ : Rd ×A →
Rd parametrized by ψ, which takes as input the current state
embedding fϕ(s) and the action a, and outputs the predicted
next-state embedding. Then, we take a transition tuple
(s, a, s′) and minimize the distance between the predicted
next-state embedding gψ(fϕ(s), a) and the true next-state
embedding fϕ(s′) on a metric D, which we choose to be
the smooth L1 metric.

L(ψ, ϕ) = E(s,a,s′)

[︂
D
(︁
gψ(fϕ(s), a), fϕ(s

′)
)︁]︂

(8)

We augment our loss in 4 with this auxiliary loss L(ψ, ϕ) to
help us learn the parameters ϕ used for the state embedding
fϕ. Intuitively, L(ψ, ϕ) encourages the learned embeddings
fϕ to admit predictable transitions, which hopefully pushes
the embeddings of similar states close together. At a high
level, this process uses the trajectories in our dataset as
samples of the MDP dynamics to help learn a better state
embedding fϕ.

B. Concrete Example of Embedding Values
We show a concrete example on a simple 3-state and 3-
action task. First, we show the state embedding and the
optimal action distribution for the three states, one per row.

State Embedding and Optimal Policy
fϕ(s) a1 a2 a3
{1,0} .8 .1 .1
{1,1} .0 .5 .5
{0,1} .1 .1 .8

Next, we assume that we have two demonstrators, who
are suboptimal w.r.t. the optimal action distribution. Note
that demonstrator 1 is optimal in the first two states, and

demonstrator 2 is optimal in the last two states.

Demonstrator 1 Demonstrator 2
a1 a2 a3
.8 .1 .1
.0 .5 .5
.3 .3 .4

a1 a2 a3
.4 .3 .3
.0 .5 .5
.1 .1 .8

Given a large dataset of demonstrations from demonstrators
1 and 2, ILEED and BC can recover the following policies.

ILEED(left) vs BC (right) recovery
ω1

{50,-1.79}
ω2

{-1.79,50}

a1 a2 a3
.8 .1 .1
.0 .5 .5
.1 .1 .8

a1 a2 a3
.6 .2 .2
.0 .5 .5
.2 .2 .6

log-likelihood: -0.807 -0.865

ILEED can learn the demonstrators embeddings (e.g.
demonstrator 1 is better at skill 1, and demonstrator 2 is
better at skill 2), and account for their suboptimalities to
recover the optimal action distribution in all three states.
The model can recover this via maximum likelihood, since
it gives a better log-likelihood than standard BC. On the
other hand, BC will average the demonstrations, and act
suboptimally in the first and third state.

C. Additional Experiments
C.1. Relationship between reward and log-likelihood

First we test the relationship between the learned policy’s
performance and the corresponding NLL defined in Eq. 4.
We did this by varying the number of restarts, and evalu-
ating the performance of the policy with the highest like-
lihood. We ran this over 100 trials, each time collecting
a new set of 1000 state-action pairs from 10 independent
demonstrators with uniformly generated noise levels rang-
ing α ∼ U(0, 0.5). From this we estimated two values, the
probability of the policy exceeding the mean demonstrator
performance denoted by p, and the probability of the policy
exceeding the best demonstrator’s performance denoted by
p∗. The results are provided in Table 4.

Table 4. Effect of Restarting
Estimated values for p and p∗ computed over 100 trials.

Environment Num. of Restarts

1 5 20

Empty 0.94, 0.82 1.00, 1.00 1.00, 1.00
Lava 0.79, 0.63 0.99, 0.87 1.00, 0.95

Obstacles 0.37, 0.11 0.77, 0.31 0.84, 0.29
Unlock 0.25, 0.00 0.48, 0.00 0.59, 0.00

Note that because the pre-trained policy’s performance on
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Table 5. Pre-trained Policy Performance
Mean episodic reward computed over 1000 runs.

Environment Expertise level β

1.0 0.9 0.5 0.1

Empty 0.97 0.97 0.90 0.44
Lava 0.95 0.88 0.67 0.05

Obstacles 0.95 0.94 0.86 0.31
Unlock 0.87 0.90 0.83 0.27

the Unlock environment is particularly sensitive to noise, as
shown by Table 5, we expect our algorithm to do relatively
worse on this environment. On top of this, we see the pre-
trained policy (β = 1.0) for Unlock does slightly worse
than the noisy policy with β = 0.9. This is because the
pre-trained MLP policy does not fully solve Unlock as it has
no history component, getting stuck at certain states, hence
adding a small amount of noise helps the policy escape such
states.

As we increase the number of restarts, the policy’s perfor-
mance improves as well. Not only does this result show that
our method is able to outperform the best demonstrator, it
implies that our defined NLL is a good metric for evaluating
the optimal policy. Based on this, we set the number of
restarts to 20, where we note that given the small sizes of
the datasets we utilize, restarting does not drastically affect
computation time. Following this, we compared how our
algorithm performed with respect to other baselines.

C.2. MiniGrid Lava and Unlock

We show the remainder of the results from Section 4.3 in Ta-
ble 6. Overall GAIL showed inconsistent results for the Un-
lock environment, and performed poorly on Lava. Overall,
ILEED was able to to take advantage of the noisy demon-
strations, while BC suffered as β decreased.

Table 6. Effect of Varying Population Expertise β
We compute mean episodic reward of policies from different IL
algorithms, 20 trials (for BC and ILEED).
β Lava Unlock

BC GAIL ILEED BC GAIL ILEED
1 0.95 0.00 0.95 0.15 0.96 0.57
5 0.95 0.00 0.95 0.75 0.18 0.81
10 0.95 0.07 0.95 0.49 0.74 0.79

unif 0.95 0.00 0.95 0.79 0.01 0.78

C.3. MiniGrid Recovered Rankings

Our third experiment described in Section 4.5 of the pa-
per showed that ILEED can learn to rank demonstrators.
Here, we examine if a good ranking of the demonstrators

Table 7. Pre-trained Policy Performance
Mean episodic reward computed over 1000 runs.

Env: Obstacles

Range Reward Rank Loss

low 0.73 0.27
high 0.86 0.00

correlates with good performance of the final policy. Using
grid-world Obstacles as setup in Section 4.3, we designed
two demonstrator populations with the same average ex-
pertise, but one has low range (0.15 to 0.85) (harder to
rank) and one has high range (0.05 to 0.95) (easier to rank).
Table 7 suggests that lower ranking loss relates to better
reward, which is interesting since the average expertise of
the two populations are identical.

C.4. Chess policy

In Table 8 we show results for the chess-playing policy
learned via imitation learning on the lichess database. As
mentioned before, learning to play chess without knowing
the rules of the game is extremely challenging, since we
cannot improve via self-play. As a result, both BC and
ILEEDlearn relatively poor policies (though still better than
random). To interpret the results, note that we took the
chess endgame positions from the database and polled a
chess move from the learned policies. Then, we measured
the difference in StockFish evaluation (ran for 2 seconds
for each position) between the starting and ending positions.
We set the evaluation of positions with inevitable mate to
−100. One very crude way to interpret the results is that
ILEED will blunder into an inevitable mate around 3% of
the time, compared to 4% for BC and 12% for random. We
note that this is not the most precise interpretation, since it
ignores the change in evaluation of non-mating positions.

Table 8. Chess Policy Evaluation: average pawn loss per move.

Random BC ILEED

−12.30± 0.11 −4.00± 0.11 −3.27± 0.09

C.5. Ablation Studies

Lastly, we show our ablation studies discussed in Section 4.6.
Using the same experimental setup as Table 3, we conducted
an additional study to test the individual effect of state em-
beddings and demonstrator identities on ILEED’s perfor-
mance. In Table 9, SInd is the state-independent variant of
ILEED that does not use the state embeddings, while DInd
is the demonstrator-independent variant of ILEED that uses
state embeddings but removes the demonstrator identities
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treating them uniformly. As shown in the table, for varying
levels of β (demonstrator suboptimality), both SInd and
DInd are worse but each contribute to the high performance
of ILEED in this multi-skill experiment.

Table 9. Performance of ILEED Ablations
Mean of episodic reward over 20 trials for the best demonstrator
(BestD), BC, ILEED, as well as the state independent (SInd) and

demonstrator independent (DInd) versions of ILEED.

β BestD BC SInd DInd ILEED

.01 0.44 0.10 0.19 0.10 0.70

.20 0.76 0.68 0.74 0.64 0.86
1.0 0.94 0.88 0.89 0.87 0.89

D. Proofs
Proof of Proposition 3.1

Proof. We write the expectation as sampling first a demon-
strator i and a state s, and then sampling an action from the
ground truth policy π(a|s, ω⋆i , ϕ⋆, πθ⋆):

L(θ) = −max
ϕ,ω

Ei,sEπ(a|s,ω⋆
i ,ϕ

⋆,πθ⋆ )

[︂
log π(a|s, ωi, ϕ, πθ)

]︂
The inner expectation corresponds to the log-loss scoring
rule, which we know is strictly proper. Hence, ω⋆i , ϕ

⋆, θ⋆

maximizes the log term of each inner expectation. Therefore,
by taking the max over ϕ, ω, we have that θ⋆ is a minimizer
of L(θ). (But may not be the unique minimizer since ϕ and
ω do not necessarily have to take on the values ϕ⋆, ω⋆).

Proof of Proposition 3.3

Proof. Since L(θ) is proper (Proposition 3.1) and Θ is well-
specified, we know that at minθ L(θ) we have:

min
θ

L(θ) = −Ei,sEπ(a|s,ω⋆
i ,ϕ

⋆,πθ⋆ )

[︂
log π(a|s, ω⋆i , ϕ⋆, πθ⋆)

]︂
On the contrary, behavioral cloning uses a single policy to
model all demonstrators.

L(θBC) = −Ei,sEπ(a|s,ω⋆
i ,ϕ

⋆,πθ⋆ )

[︂
log πθBC

(a|s)
]︂

Since the inner log-loss is a strictly proper loss func-
tion, the equality minθ L(θ) = L(θBC) only holds when
πθBC

(a|s) = π(a|s, ω⋆i , ϕ⋆, πθ⋆) for all i, meaning that all
the demonstrators must have identical policies.

Proof of Lemma 3.4

Proof. We need to show that under the conditions in
Lemma 3.4,

Lϕ(θ⋆) = −max
ω

Ei,(s,a)
[︂
log π(a|s, ωi, ϕ, πθ⋆)

]︂
< Lϕ(θ′) = −max

ω
Ei,(s,a)

[︂
log π(a|s, ωi, ϕ, πθ′)

]︂
for all θ′ ̸= θ⋆, where demonstrations (s, a) for demonstra-
tor i are drawn from π(a|s, ωi, ϕ, πθ⋆).

Again using the fact that log-loss is strictly proper, the
equality Lϕ(θ⋆) = Lϕ(θ′) only holds when the inner poli-
cies are equivalent for all states, i.e., π(a|s, ωi, ϕ, πθ⋆) =
π(a|s, ω′

i, ϕ, πθ′) for all i, s, a.

Recall that in the discrete action model:

π(a|s, ωi, ϕ, πθ⋆) = ρϕ(s, ωi)πθ⋆(a|s) +
1− ρϕ(s, ωi)

|A|

and in the continuous action model:

π(a|s, ωi, ϕ, πθ⋆) =
k∑︂
j=1

αjN (a;µj(s), σj(s)/ρϕ(s, ωi))

To simplify notation, we will write the policy π(·|·, ωi, ϕ, π)
as NOISE(π, ρϕ(s, ωi)). Conveniently, from the form of
either the discrete/continuous action model, we see that
NOISE(πθ⋆ , ρϕ(s, ωi)) = NOISE(πθ′ , ρϕ(s, ω

′
i)) if and only

if πθ′ = NOISE(πθ⋆ ,
ρϕ(s,ωi)
ρϕ(s,ω′

i)
), since the noise is multiplica-

tive. In other words, an incorrect policy πθ′ can achieve
optimal loss iff it is a noised version of the true policy πθ⋆ ,
and that the ratio of the expertise levels correspond to the
noise of πθ′ relative to πθ⋆ . Moreover, this also tells us
that the ratio must be the same for all demonstrators, so
ρϕ(s,ωi)
ρϕ(s,ω′

i)
=

ρϕ(s,ωj)
ρϕ(s,ω′

j)
for all i, j.

However, when the expertise levels are intertwined, it may
not be possible to set each expertise level to correspond to
the desired noise. Recall that the expertise levels ρϕ(s, ω) =
σ(⟨fϕ(s), ω⟩).

Suppose that at a state s

fϕ(s0) = α1fϕ(s1) + α2fϕ(s2) + . . .+ αrfϕ(sr)

Then if NOISE(πθ, ρϕ(s, ω)) = NOISE(πθ′ , ρϕ(s, ω
′)) for

all states s0:m, we have that

∀i, j, k :
ρϕ(sk, ωi)

ρϕ(sk, ω′
i)

=
ρϕ(sk, ωj)

ρϕ(sk, ω′
j)

Or equivalently,

∀i, k :
ρϕ(sk, ωi)

ρϕ(sk, ω′
i)

= Ck
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Next we will rewrite to isolate the inner product.

ρϕ(sk, ω
′
i) = ρϕ(sk, ωi)/Ck

σ(⟨fϕ(sk), ω′
i⟩) = ρϕ(sk, ωi)/Ck

⟨fϕ(sk), ω′
i⟩ = σ−1(ρϕ(sk, ωi)/Ck)

Now we can apply the linear dependence between s0 and
s1:r to get a relationship between the constants C0:r. In
particular, for all i:

⟨fϕ(s0), ω′
i⟩ =

r∑︂
k=1

αk⟨fϕ(sk), ω′
i⟩

σ−1(ρϕ(s0, ωi)/C0) =

r∑︂
k=1

αkσ
−1(ρϕ(sk, ωi))/Ck)

Therefore, if no settings of the constants C0:r can satisfy
the above conditions, then we cannot set the expertise levels
to accommodate a noised version of the true optimal policy
πθ⋆ . In such a case, θ⋆ is the unique minimizer of L(θ).

E. Implementation Details
Overall we performed 3 sets of experiments corresponding
to the simulated MiniGrid environments, the continuous
control task Square from the Robomimic study, and chess.
We go over these three sets of experiments, detailing the
framework and parameter setup used to run our method
ILEED as well as any other baselines we used for compari-
son. We note that working implementations of ILEED and
BC are provided in our supplementary material, with code
that can be used to reproduce the MiniGrid results. For
GAIL, we utilized an implementation built on top of rllab’s
codebase (Duan et al., 2016), where the specific installation
instruction are provided in the supplementary material. For
experiments utilizing the Robomimic study we refer readers
to the original codebase (Mandlekar et al., 2021), noting
that to implement ILEED on top of their GMM policy class
required minor changes to their framework which we detail
below.

MiniGrid Experiments
For all MiniGrid experiments we relied on the provided
Gym implementation (Chevalier-Boisvert et al., 2018) to
simulate the environments, and used the well known stable
baselines library (Raffin et al., 2021) to train our policies
with PPO. We list the specific hyperparameters in Table 10,
where we note that we used flattened observations for all
MiniGrid experiments, relying on the standard ‘MlpPolicy’
class provided by stable baselines. To run ILEED and BC
on the MiniGrid environments as discussed in Section 4.3
and 4.6 we utilized our own policy class consisting of a

Table 10. Parameters used for PPO
Default implementation provided by stable baselines 3 (Raffin
et al., 2021), where below we list the specific parameters we
changed.

Parameter Description

Policy Class MlpPolicy
Update Steps 128

Num. of Environments 8
Batch Size 4

Learning Rate 0.00025
Timesteps 200000

3–layer MLP with 4 neurons in the hidden layer, ReLU non-
linearities between, and a softmax at the output. For training,
we ran 2000 iterations utilizing two Adam (Kingma & Ba,
2017) optimizers, one for parameters θ, ϕ, and ψ with a
learning rate of 1e-3, and the other for the expertise param-
eters ω with a smaller learning rate of 1e-2. For all experi-
ments we relied on a two dimensional state-embedding fϕ
which was paremetrized by a 3–layer MLP just like the pol-
icy. We list these parameters in Table 11 below, noting that
our implementation is provided as part of the supplementary
material. The parameters for GAIL are listed separately in
Table 12, where we note that we utilized the recommended
set of parameters provided by the implementation.

Table 11. Parameters used for ILEED
Implementation parameters for ILEED are listed below. For BC
we utilized the same parameters, removing the unnecessary
components.

Parameter Description

Policy 3–layer MLP + Softmax
Activation ReLU

Hidden Size(s) 4
Num. Iterations 2000

Learning Rate θ, ϕ, ψ 0.001
Learning Rate ω 0.01

State Embedding Dimension 2

Robomimic Experiments
As stated in the main text, we utilized the implemen-
tation provided by the original study (Mandlekar et al.,
2021), creating an instance of ILEED by changing the
RNN-GMM policy class to match the annotator model
we defined in Eq. 3. Specifically, we edited the file
robomimic/models/policy nets.py, changing the RNNGM-
MActorNetwork class by adding an optional scaling param-
eter to the variance which is outputted by the policy. We
then utilized a separate Adam optimizer with a learning
rate of 1e-4 to learn this parameter as done in the MiniGrid
implementation. Although we do not include this specific
implementation of ILEED in our supplementary material
due to the size of the Robomimic library, we plan to up-
load our algorithm directly to the Robomimic codebase. To
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Table 12. Parameters used for GAIL
Implementation parameters for GAIL are listed below.

Parameter Description

Policy Categorical MLP
Hidden Size(s) 32, 32

Latent Dimension 2
Batch Size 8000

Critic Wassertstein
Critic Epochs 50

Critic Learning Rate 0.0001
Critic Dropout Prob. 0.6

Critic Penalty 1
Critic Gradient Norm 50
Recognition Epochs 50

Recognition Learning Rate .0001
Scheduler k 20

TRPO Step Size 0.01

run our experiments, we utilize the exact same setup as the
original study.

Chess Experiments
For the experiments on chess, we detail the architecture and
parameters in Table 13 below.

Table 13. Parameters used for ILEED on chess
Implementation parameters for ILEED when used with chess are
listed below. For BC we utilized the same parameters, removing
the unnecessary components.

Parameter Description

Policy 3–layer MLP + Softmax
Activation ReLU

Hidden Size(s) 8
Num. Iterations 4000

Learning Rate θ, ϕ, ψ 0.001
Learning Rate ω 0.01

State Embedding Dimension 2

Computational Resources
All of the experiments were performed on a machine with
the 8C/16T Intel-9900K CPU, 32GB RAM, and an RTX-
3080 GPU.
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Figure 4. Trajectories corresponding to the MiniGrid experiments performed in Section 4.6. For each environment, we show the trajectory
of the policy learned by ILEED on top and place the demonstrator trajectories below. The yellow bordered frames signify when the agent
has successfully reached the goal. Since β = 0.01 corresponds to the nosiest setting, we see the demonstrators only act optimally in the
environment they are skilled in. For example, we see that other than ILEED, the Lava expert is the only one to succeed in Lava. On the
other hand, we see ILEED performing adequately in Lava and Empty, even showing some performance in the more challenging Unlock
environment despite the poor quality of the dataset. Specifically we see for the Unlock environment, the policy trained by ILEED is able to
unlock the yellow door, but fails to unlock the red door. We emphasize again that the results shown are for the worst setting of β = 0.01.
As we increase β the demonstration quality improves, making it easier for ILEED to imitate multiple skills as shown in Table 3.


