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Abstract
Continuous Normalizing Flows (CNFs) are a class
of generative models that transform a prior dis-
tribution to a model distribution by solving an
ordinary differential equation (ODE). We propose
to train CNFs on manifolds by minimizing prob-
ability path divergence (PPD), a novel family of
divergences between the probability density path
generated by the CNF and a target probability
density path. PPD is formulated using a logarith-
mic mass conservation formula which is a linear
first order partial differential equation relating the
log target probabilities and the CNF’s defining
vector field. PPD has several key benefits over
existing methods: it sidesteps the need to solve
an ODE per iteration, readily applies to manifold
data, scales to high dimensions, and is compatible
with a large family of target paths interpolating
pure noise and data in finite time. Theoretically,
PPD is shown to bound classical probability diver-
gences. Empirically, we show that CNFs learned
by minimizing PPD achieve state-of-the-art re-
sults in likelihoods and sample quality on existing
low-dimensional manifold benchmarks, and is the
first example of a generative model to scale to
moderately high dimensional manifolds.

1. Introduction
One of the core domains of machine learning research are
density estimation and generative modeling, which view
data from a probabilistic perspective. The deep-learning
revolution fostered a significant advancement in the field,
leading to the emergence of powerful generative models for
images, language, audio, and other data types represented in
Euclidean spaces. While early literature primarily focused
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on Euclidean data, the need to model data in non-Euclidean
spaces arises in many scientific fields. For instance, occur-
rences of natural phenomena on earth can be modeled as a
distribution on a sphere (Mathieu & Nickel, 2020), protein
structure prediction requires angle predictions (Mardia et al.,
2008) and motion and position of robots can be modeled
with a product of Euclidean spaces and spheres. There-
fore, constructing generative models over manifolds is an
important problem with many potential applications.

A generative model can be described as a function φ that
transforms a simple probability distribution (the prior or
base) to a more complicated one (the model) so to best rep-
resent some empirical set of data observations. Among the
large toolkit of deep generative models, innate candidates for
designing generative models on manifolds are Normalizing
Flows (NFs) (Rezende & Mohamed, 2015) and Continuous
Normalizing Flows (CNFs) (Chen et al., 2018). In these
approaches φ is a diffeomorphism, i.e., a smooth bijection
with a smooth inverse. Therefore, the model density can be
expressed in terms of the prior density and the determinant
of the Jacobian of φ, also known as the change of variable
formula, which can be naturally adapted to the manifold
case. Recently, (Rezende et al., 2020; Bose et al., 2020)
devised NF models for sphere, tori and hyperbolic spaces.
In a parallel line of works, (Mathieu & Nickel, 2020; Lou
et al., 2020; Falorsi & Forré, 2020) developed CNFs over
Riemannian manifolds.

Like Euclidean NF models, manifold NFs suffer from lim-
ited expressive power due to the representation of φ as a
composition of a restricted set of invertible transformations.
On the other hand, CNFs model diffeomorphisms as flows
along parametric tangent vector fields, v, represented as neu-
ral networks, lifting the architectural restriction and allow-
ing maximal expressive power. Nonetheless, training a CNF
by minimizing negative log-likelihoods, or equivalently, the
KL-divergence of the data and model densities, requires
log model densities evaluated at observation points. Com-
puting the log model densities entails solving an ordinary
differential equation (ODE) during training, which results
in a substantial time and memory burden, as well as intro-
duces an extra challenge when the data lies on a manifold.
Rozen et al. (2021) suggested a different parametrization
of CNFs via the divergence of unrestricted vector fields,
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where both training and computing model probabilities do
not require solving an ODE. However, scaling this method
to even moderately high dimensions is challenging since it
is formulated with a density function rather than log density,
which can cause numerical issues as density values decrease
exponentially with dimension.

This work aims to alleviate some of the limitations of previ-
ous approaches by introducing the Probability Path Diver-
gences (PPD), a new type of divergence defined between
an arbitrary target probability path, p, and the probability
path generated by the CNF, q. To define the PPD we first
introduce the Logarithmic Mass Conservation (LMC) for-
mula, a Partial Differential Equation (PDE) that couples
log q and the CNF’s vector field. Then, the PPD is defined
as the extent to which log p and the CNF’s vector field fail
to satisfy the LMC. PPD has the following desirable prop-
erties: (i) It is a proper divergence in the sense that it is
non-negative, and zero iff p ≡ q. (ii) It does not require
evaluating q during training; it is defined solely in terms of
the parametric vector field v, its first order derivatives, and
the target path’s log density, log p. This provides a speed
up of 1− 2 orders of magnitude in evaluating the PPD and
its derivatives, compared to, e.g., log likelihood. (iii) It is
readily applicable to manifolds and higher dimensional data.
(iv) The PPD has a single parameter ` ≥ 1. PPD with ` = 1
upper bounds the total-variation divergence comparing p
and q at arbitrary times; PPD with 1 < ` <∞ bounds their
α-divergence; and PPD with ` =∞ bounds their reversed
KL-divergence.

We call the minimization problem of the PPD between a
target path p and a CNF density q CNF Matching (CNFM),
and use it to train CNFs. The main design choice in CNFM
is the target path p. The requirements from p are: that it
transforms a simple prior (pure noise) to an approximation
of the unknown data distribution; that samples can be drawn
from each pt, where pt represents the density at time t; and
that we can compute or approximate the derivatives of log pt.
Any p satisfying these requirements can be used to train a
CNF in the CNF Matching framework. Other methods that
try to fit generated probability density path to a target one
are Score and Diffusion based methods (Song & Ermon,
2019; Ho et al., 2020; Song et al., 2020). However, these
methods require target paths that are generated by Stochatsic
Differential Equations (SDEs) or known diffusion processes
which limits their applicability on manifolds. We elaborate
this discussion in Section 4.2, after introducing our method.

We test our framework on several low and moderately
high dimensional manifold data including Euclidean spaces,
spheres/hyperspheres, and product of spheres, demonstrat-
ing state-of-the-art sample quality and likelihoods in stan-
dard low-dimensional manifold datasets. We demonstrate
that CNFM is considerably faster to optimize than state of

the art CNF training algorithm, allowing to scale CNF train-
ing to considerably larger network architectures. Lastly, we
demonstrate that CNFM can train CNFs on moderately high
dimensional manifolds, in contrast to previous methods of
generative modeling on manifold that mostly worked with
low dimensional manifolds.

2. Preliminaries
LetM be a d-dimensional smooth Riemannian manifold
with a metric g and induced volume form dV , the volume
of M is |M| =

∫
M dVx. We consider strictly positive,

smooth probability densities over M, µ : M → R>0,
satisfying

∫
M µ(x)dVx = 1. The tangent space at point

x ∈ M is denoted TxM; the tangent bundle, which is the
disjoint union of all tangent spaces ofM is denoted TM.
The metric g defines an inner product for pairs of vectors
ξ, η ∈ TxM denoted by 〈ξ, η〉; a norm of a tangent vector
is defined by |ξ| = 〈ξ, ξ〉1/2. The Riemannian gradient of
a smooth function f :M→ R is denoted∇f(x) ∈ TxM.
A time-dependent vector field v(t, x) is a smooth function
v : [0, 1] × M → TM such that v(t, x) ∈ TxM for
all t ∈ [0, 1] and x ∈ M. We denote the collection of
bounded time dependent smooth vector fields overM by
X(M); by bounded we mean that for each v ∈ X(M)
there exists a constant M > 0 so that |v(t, x)| ≤M for all
x ∈ M, t ∈ [0, 1]. The Riemannian divergence (w.r.t. x)
of a smooth vector field v ∈ X(M) is denoted div(v). We
denote by expx : TxM→M, and logx :M→ TxM the
Riemannian exponential and logarithmic maps. Note these
should not be confused with the standard exp, log that are
written without subscript.

Given a time dependent vector field v ∈ X(M), a one
parameter diffeomorphism family φt : M → M can be
defined via the Ordinary Differential Equation (ODE):{

d
dtφt(x) = v(t, φt(x))

φ0(x) = x
(1)

In the context of generative models, the diffeomorphism φt
is called a Continuous Normalizing Flow (CNF) (Chen et al.,
2018; Mathieu & Nickel, 2020; Lou et al., 2020; Falorsi &
Forré, 2020; Rozen et al., 2021) and is used to push-forward
or pull-back probability densities. An event A ⊂ M is
pushed forward by φt to the event φt(A), and pulled back to
φ−1
t (A). Given a probability density η overM its pushed

forward density is denoted φt∗η, and its pulled back density
by φt is denoted φ∗t η. Let P(M) denote all probability
paths on M, that is functions p : [0, 1] × M → R>0,
smooth in t and satisfying

∫
M p(t, x)dVx = 1.

Definition 1. We say that a CNF φt generates a probability
density path q ∈ P(M) if for all t ∈ [0, 1]

qt = φt∗q0, or equivalently φ∗t qt = q0, (2)
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Figure 1. CNFM on a manifold (sphere): the trained CNF φt is pushing noise x ∼ p0 to data φt(x) (top, from left t = 0 to right t = 1);
and the reverse time CNF taking data x ∼ pdata to noise φ1−t(x) (bottom).

3. Matching CNF and target probability
We start by considering a target probability density path
p ∈ P(M). We will use the notation pt to denote the den-
sity at time t, namely, pt = p(t, ·). In a typical target path p,
p0 is some simple prior distribution, e.g., a distribution rep-
resenting pure noise, and p1 approximates the unknown data
distribution, denoted pdata and is practically approximated
by some empirical set of samples.

Our goal is to match p and the density path q ∈ P(M),
generated by a CNF φt from the prior p0. The CNF φt
is defined by equation 1 via a learnable time dependent
vector field vθ ∈ X(M), with parameters θ ∈ Rp. In more
detail, we define the CNF Matching (CNFM) problem as
the following optimization problem:

min
θ

d(p ‖ q) (3a)

s.t. qt = φt∗p0, t ∈ [0, 1] (3b)

where d is a probability divergence between probability
density paths. That is, for density paths p, q ∈ P(M),
d(p, q) ≥ 0, and d(p, q) = 0 iff pt ≡ qt for all t ∈ [0, 1].

Adapting existing CNF approaches to optimize equation 3
would require evaluating qt, which is provided only through
solutions to an ODE (see also the discussion in Section 4.1),
and will therefore introduce a substantial computational
challenge. Instead, we construct a novel divergence d, called
the Probability Path Divergence (PPD), that does not require
sampling of q or enforcing equation 3b explicitly, and there-
fore sidesteps the need for solving ODE during training.
Furthermore, we will show that PPD bounds standard prob-
ability divergences such as total variation, α, and reverse
KL. Figure 1 depicts an example of a CNF, φt, trained with
CNFM and PPD using a target path p that is interpolating
between uniform and checkerboard data over the sphere. In
the top row we depict random uniform samples over the
sphere x ∼ p0 (left) pushed by the CNF, i.e., φt(x), for
several times t ∈ [0, 1], reaching the desired checkerboard
distribution at t = 1 (right). The bottom row shows the
CNF pulling, i.e., φ1−t(x), data samples x ∼ pdata (left),
reaching a uniform distribution at time t = 1 (right).

3.1. Logarithmic Mass Conservation

As a first step in constructing the PPD we derive a Partial
Differential Equation (PDE) involving the log density path
log p and a vector field v, such that it is satisfied iff the CNF
φt, defined by v, generates p. We name this equation the
Logarithmic Mass Conservation (LMC) formula.

Theorem 1. Consider a CNF φt : M → M defined by
a smooth, time dependent vector field v ∈ X(M) as in
equation 1, and a probability density path p ∈ P(M).
Then p is generated by φt, i.e.,

pt = φt∗p0, ∀t ∈ [0, 1] (4)

if and only if the LMC formula holds over [0, 1]×M:

∂t log pt + 〈∇ log pt, v〉+ div(v) = 0 (5)

The LMC formula can be proved with the aid of the mass
conservation formula, also known as the continuity equation
and equivalent to equation 5 (Villani, 2009):

∂tpt + div(ptv) = 0, (6)

where div denotes the divergence operator over the manifold
M. We assumed p > 0 and therefore dividing both sides by
pt leads to

∂tpt
pt

+
〈∇pt, v〉+ ptdiv(v)

pt
= 0,

where we also used the fact that div(fv) = 〈∇f, v〉 +
fdiv(v). Finally noting that ∂t log pt = ∂tpt

pt
, and

∇x log pt = ∇xpt
pt

we get that equation 5 is equivalent to
equation 6. See Appendix A for more details.

The benefit of using the LMC formula over the standard
mass conservation formula is that it is formulated directly in
terms of the log probability log pt, which reduces numerical
issues for high dimensions.
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3.2. Probability path divergence

Plugging a fixed target path p ∈ P(M) in the LMC formula
(equation 5) provides a necessary and sufficient condition
for v to generate p via a CNF. Motivated by this observation,
we define a family of probability path divergences (PPD),
parameterized by an integer ` ≥ 1, comparing p, q ∈ P(M)
where qt = φt∗p0:

d`(p ‖ q)=Et,x∼pt
∣∣∣∂t log pt+〈∇log pt, v〉+div(v)

∣∣∣` (7)

where t is distributed over [0, 1], e.g., uniform t ∼ U [0, 1].
d`(p ‖ q) ≥ 0 by construction, and Theorem 1 implies that
d`(p ‖ q) = 0 iff pt ≡ qt for all t ∈ [0, 1]. Using this path
divergence in the CNFM problem (equation 3) we arrive to
the following instantiation:

min
θ

Et,x∼pt
∣∣∣∂t log pt + 〈∇ log pt, vθ〉+ div(vθ)

∣∣∣` (8)

where vθ is the learnable vector field defining the CNF φt
generating qt. Importantly, evaluating the PPD d`(p ‖ q)
and its derivatives with respect to θ does not require access
to q and φt, and therefore sidesteps solving the ODE in
equation 1 during training.

The following Theorem relates the path divergence d` to
standard divergences of probability densities. We consider
f -divergences (Ali & Silvey, 1966; Csiszár, 1967) of two
probability densities µ, ν defined by

Df (µ ‖ ν) =

∫
M
f

(
µ(x)

ν(x)

)
ν(x)dVx (9)

where f : R≥0 → R is a strictly convex function satisfying
f(1) = 0. f -divergences satisfy the standard statistical
divergence properties: Df (µ ‖ ν) ≥ 0, and Df (µ ‖ ν) = 0
iff µ ≡ ν. f -divergences generalize standard divergences
such as KL (with the choice f(t) = t log t), reverse KL
(f(t) = − log t), total variation (f(t) = |t− 1|), and α-
divergences (f(t) = 1− tα with α 6= 1, 0). We prove:

Theorem 2. Consider paths p, q ∈ P(M) where q is gen-
erated by a CNF φt :M→M, and q0 = p0. Then for all
T ∈ [0, 1]

d`(p ‖ q)
1
` ≥ Df (pT ‖ qT ) (10)

where

f(t) =


|t− 1| ` = 1 (total variation)

`
(

1− t 1
`

)
1 < ` <∞ (α)

− log t ` =∞ (reverse KL)

Theorem 2 shows that the path divergence d` bounds
the respective f -divergences of pT and qT for all
times T ∈ [0, 1]. Figure 2 visualizes four in-
stances of f corresponding to different choices of `.

Reverse KL

Total Variation

Alpha
Alpha

Figure 2. f instances,
see Theorem 2.

Note, that with the exception of
` = 1, all f are differentiable
and have the same derivative at
1, which means they have similar
value and derivatives when eval-
uating the divergence of nearby
probability densities. As ` → ∞
we can see the f functions gets
close to the − log t limit.

Specifically, in the ` =∞ case of
Theorem 2, we mean that the inequality equation 10 holds
in the limit as `→∞, or more precisely,

lim inf
`→∞

d`(p ‖ q)1/` ≥ Df (pT ‖ qT ),

where we also assume that Df (pT ‖ qT ) < ∞. To prove
this theorem we will use the following lemma, proved in
Appendix B.

Lemma 1. Consider paths p, q ∈ P(M) where q is gen-
erated by a CNF φt : M → M, and q0 = p0. Then the
following holds:

d`(p ‖ q) = Ex∼p0
∫ 1

0

pt(φt(x))

qt(φt(x))

∣∣∣∣∂t [log
pt(φt(x))

qt(φt(x))

]∣∣∣∣` dt
We now use Lemma 1 to prove each case of Theorem 2:

` = 1 case. For ` = 1, Lemma 1 provides the following
form for d1:

d1(p ‖ q) = Ex∼p0
∫ 1

0

∣∣∣∣∂t [pt(φt(x))

qt(φt(x))

]∣∣∣∣ dt (11)

which shows that for ` = 1 the path divergence is equivalent
to the Total Variation norm of the density ratio pt/qt along
trajectories of the flow. Second, Jensen’s inequality with the
convex function |·| provides for every T ∈ [0, 1]

d1(p ‖ q) ≥ Ex∼p0
∫ T

0

∣∣∣∣∂t [pt(φt(x))

qt(φt(x))

]∣∣∣∣ dt
≥ Ex∼p0

∣∣∣∣pT (φT (x))

qT (φT (x))
− 1

∣∣∣∣ = Ex∼qT

∣∣∣∣pT (x)

qT (x)
− 1

∣∣∣∣
= Df (pT , qT )

where the first inequality is due to the fact that we integrate
over the smaller interval [0, T ], in the first equality we used
the fact that φT (x) ∼ qT if x ∼ p0, and in the last equality
we took f(t) = |t− 1|.
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1 < ` <∞ case. Lemma 1 again with Jensen’s inequality
of the convex function |·|` provides

d`(p ‖ q)
1
` ≥

∣∣∣∣∣Ex∼p0
∫ T

0

[
pt(φt(x))

qt(φt(x))

] 1
`

∂t

[
log

pt(φt(x))

qt(φt(x))

]
dt

∣∣∣∣∣
=

∣∣∣∣∣Ex∼p0
∫ T

0

`∂t

[
pt(φt(x))

qt(φt(x))

] 1
`

dt

∣∣∣∣∣
=

∣∣∣∣∣Ex∼p0`
([

pT (φT (x))

qT (φT (x))

] 1
`

− 1

)∣∣∣∣∣
=

∣∣∣∣∣Ex∼qT `
([

pT (x)

qT (x)

] 1
`

− 1

)∣∣∣∣∣ (12)

= Df (pT ‖ qT )

with f(t) = `(1− t 1
` ).

` =∞ case. First, we note that for any t > 0, `(1−t 1
` )↗

− log(t), that is, `(1− t 1
` ) is monotonically increasing and

converging to − log(t) as ` → ∞ (see Appendix C for a
proof). Next, consider equation 12 and move to the limit
`→∞:

lim inf
`→∞

d`(p ‖ q)
1
` ≥ lim

`→∞

∣∣∣∣∣Ex∼qT `
(

1−
[
pT (x)

qT (x)

] 1
`

)∣∣∣∣∣
= −Ex∼qT log

pT (x)

qT (x)
(13)

= Df (pT ‖ qT )

with f(t) = − log(t). The previous to last equality (integral
and limit switch) is justified in Appendix C; the minus sign
is due to the fact that Df (pT ‖ qT ) ≥ 0.

3.3. Target paths

The last ingredient needed for defining the probability path
divergence (equation 7) is the target path p ∈ P(M). In
our framework, p should be defined satisfying the following
requirement:

(i) p0 is pure noise, e.g., a standard Gaussian or uniform.

(ii) p1 approximates the unknown data distribution pdata.

(iii) We have an efficient generation procedure for x ∼ pt.

(iv) We have an approximation procedure for the time (∂t)
and space (∂x) derivatives of log pt(x).

Note that these requirements do not mean we know of an
SDE, generating random variables distributed as pt, nor a
PDE (Fokker-Planck) with pt as its solution. In fact, below
we construct paths for which an SDE/PDE characterization

is not known. In that context the target paths we consider
are general; see discussion in Section 4.2.

In the following we construct target paths p ∈ P(M) for
several manifolds of interest. At the base of our construction
is a kernel pτ (x|y), namely a probability density in x ∈M,
centered at y ∈M, with scale τ > 0. We define our (ideal)
target path p ∈ P(M) by

pt(x) =

∫
M
pτ (x | γt(y))pdata(y)dVy (14)

where τ = τ(t), t ∈ [0, 1], is a time-dependent scale func-
tion, and γ : [0, 1] ×M →M is some differentiable in t
map. In practice we don’t know pdata, rather, we have an
empirical sample {yi}mi=1, drawn i.i.d. from pdata. There-
fore we use the following approximation of equation 14

pt(x) =
1

m

m∑
i=1

pτ (x | γt(yi)) (15)

Note, that if we know how to compute or approximate
log pτ (x|γt(yi)) then log pt(x), required for the computa-
tion of the PPD, has the form

log pt(x)=logsumexp{log pτ (x|γt(yi)}mi=1− logm

Depending on the type of manifold, we consider two basic
target path constructions that differ in their prior p0: Uni-
modal, where the prior probability p0 is centered around a
single designated point inM. Unimodal prior is mainly suit-
able to non-compact manifolds with infinite volume such as
Euclidean or hyperbolic spaces. Uniform, where the prior p0

is the uniform density overM. A uniform prior is suitable
to compact manifolds such as spheres.

Unimodal prior. Let o ∈ M be some designated point,
σ0, σ1 ≥ 0 initial and target scales. We define p according
to equation 15 by making the choices:

γt(y) = expo(t logo y) , σ(t) = σ1−t
0 σt1 (16)

where τ = σ is the scaling function, and γt(y) moves y to
the center o along a geodesic (we assume the Riemannian
expo, logo are defined in a sufficiently large neighborhood
of o and ToM). With these choices, pt starts with a single
mode density p0, centered at o ∈M, and then splits the unit
mass, moving each 1

m part towards the empirical sample yi
along a geodesic while concentrating the density.

Euclidean. Let us instantiate the unimodal path for the Eu-
clidean space,M = Rd, with the standard metric 〈v, u〉 =
vTu, where v, u ∈ Rd are (always) column vectors. Our
kernel in this case is the Gaussian, pσ(x|y) = N (x|y, σ2I)
with mean y ∈ Rd and covariance σ2I . Furthermore, for
o ∈ Rd, expo(t logo yi) = o+ t(yi − o) = (1− t)o+ tyi.
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Therefore, equation 15 takes the form

pt(x) =
1

m

m∑
i=1

N (x | (1− t)o+ tyi, σ
2I) (17)

and we take σ0 = 1 to represent a standard Gaussian prior,
i.e., σ(t) = σt1, and σ1 > 0 is the (only) hyper-parameter.

Uniform prior. In this family of paths we consider com-
pact manifoldsM and start from the uniform density p0.
We assume in this case we have a kernel pκ(x|y) such that
there exists a finite κ0 ≥ 0, for which pκ0

(x|y) ≡ |M|−1

for all y ∈M, i.e., pκ0
represents the uniform density. One

way to construct such a kernel on compact submanifolds
of Rd+1,M⊂ Rd+1, is by restricting an Euclidean Gaus-
sian in Rd+1 toM; we discuss such a construction on the
sphere below. In this case we define the target path using
equation 15 again by making the choices

γt(y) = y , κ(t) = (1− κ0 + κ1)t + κ0 − 1 (18)

where τ = κ is the scaling function, and γt(y) leaves sam-
ples at their original location.

Sphere. We instantiate the uniform prior paths to the unit
spheresM = Sd ⊂ Rd+1 with the induced metric from
the Euclidean Rd+1. The von Mises-Fisher (vMF) kernel
(Mardia, 2014) is:

pκ(x|y) = cd(κ) exp(κxT y), (19)

where cd(κ) is the normalization constant detailed in Ap-
pendix D. vMF can be seen as a restricted Gaussian
exp(−κ ‖x− y‖22) to the unit sphere x, y ∈ Sd with the
relevant normalization constant. For κ = 0, p0(x|y) is uni-
form over the sphere for all y ∈ Sd. Hence we take κ0 = 0,
which leaves κ(t) = (1 +κ1)t− 1, and κ1 > 0 is the (only)
hyper-parameter in this case. The target path takes the form

pt(x) =
1

m

m∑
i=1

pκ(x|yi) (20)

Paths on products of manifolds. We conclude the sec-
tion with generalizing the target path construction to prod-
uct of manifolds. LetM =M1 × . . .×MN . Each point
x ∈M is represented as a tuple x = (x1, . . . , xN ), where
xj ∈ Mj . For example, in robotics, a robot’s state can
be represented by the sequence of locations and/or rota-
tions of its joints, i.e., eachMj is either a sphere (S3 for
3D rotations represented as quaternions; S1 for 2D rota-
tions) or an Euclidean space (representing positions). Let
pτj be a kernel defined inMj , and γj is a deformation of
Mj . For example, forMj being the Euclidean plane or a
sphere we can use the above definitions for kernels pτj . Let

{yi}mi=1 ⊂ M be i.i.d. samples from pdata over M. We
define the kernel forM by

pτ (x|yi) =

N∏
j=1

pτj (xj |γjt (y
j
i )) (21)

We note that pτ (x|y) is a probability density in x ∈M, and
if pτj (xj |yj) is concentrated (as a function of xj ∈ Mj)
around yj for all j, then pτ (x|y) is concentrated (as a func-
tion of x ∈M) around y. Lastly, and use equation 15 again
to define out target path p ∈ P(M). Further implementa-
tion details for the vector field vθ are in Appendix E.

4. Previous works
4.1. Relations to existing CNF models

The LMC formula (equation 5) is a linear first order PDE
in log pt. Solving it using the method of characteristics
(Evans, 1997) provides a simple proof of the Instantaneous
Change of Variables Theorem from (Chen et al., 2018) and
generalizes it to the manifold setting. Indeed, using the
chain rule and the LMC we have

∂t [log qt(φt)] = ∂t log qt(φt) + 〈∇x log qt(φt), v(t, φt)〉
= −div v(t, φt) (22)

where ∂t [log qt(φt)] denotes the total derivative w.r.t. t.
Training a neural ODE by maximizing the likelihood of
the data points xi ∈M entails computing log qt(xi) and its
derivatives w.r.t. the parameters of the vector field vt. Us-
ing the characteristic method (Chen et al., 2018; Lou et al.,
2020; Mathieu & Nickel, 2020; Falorsi & Forré, 2020) this
amounts to solving an ODE for (log qt(φt), φt) (equations
1 and 22) and differentiating the solution (which involves
another ODE solve). In contrast, minimizing the PPD does
not require solving an ODE during training.

Moser Flow (MF) (Rozen et al., 2021) suggests to train
a CNF by formulating the model density as q1 = p0 −
div(u), where u is time independent vector field overM.
Its relation to our method can be seen by making the choice
qt = (1− t)p0 + tq1, where p0 and q1 are prior and model
probability densities, respectively. Indeed, plugging this
path in the mass conservation equation (equation 6) gives

q1 − p0 + div (qtv) = 0

which directly leads to MF by plugging u = ptv as a time
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independent solution to this equation. Although MF also
avoids solving an ODE during training and generalizes to
manifolds, it incorporates an additional loss term for keep-
ing the model density q1 positive; this loss term has high
variance and does not scale to high dimensions. Further-
more, MF models probabilities rather than log-probabilities,
which also hinders modeling high dimensional densities.
Lastly, MF models a particular probability path (convex
combinations of prior and model), while our framework can
match more general paths.

4.2. Relations to diffusion and score based generative
models

Another body of related work concerns diffusion-based gen-
erative models (Sohl-Dickstein et al., 2015; Ho et al., 2020)
and SDE/score-based generative models (Song & Ermon,
2019; Song et al., 2020). Both approaches also use a certain
probability density path, called the forward process, to train
their generative model. The forward process is a (continu-
ous or discrete) time dependent noising scheme converting
the data distribution to a simple, easy to sample from, prior
distribution. In diffusion models the forward process is
defined by a markov chain, whereas for score models it is
defined by an SDE. The forward process is used for training
the reverse process parameterized with a neural network.
The reverse process is used to generate samples from the
prior distributions.

Training diffusion/score models entails: (i) sampling the
forward process at arbitrary times t; this requires either a
closed-form solution of the respective diffusion/SDE for-
ward process (especially challenging over manifolds, more
on this below), or simulating the process from time t = 0
(costly). (ii) Spatial derivatives of the log transition kernel.
Where the transition kernel is the probability of sampling a
point x at time t from the forward process given an initial
point y ∼ pdata. (iii) Known form of the reverse diffu-
sion/SDE process.

Our CNFM approach, based on the LMC formulation, does
not require the probability density path pt to be a known
solution of a particular diffusion or SDE process and the
reverse process is trivially obtained by solving the ODE
in reversed time with the learned vθ. This makes the path
choice in our approach more flexible compared to diffusion,
score and SDE models, which are restricted to probability
density paths defined by known diffusion processes (e.g.,
Gaussian) or SDEs with closed form transition kernels.

This flexibility becomes especially important when the do-
main we want to learn on is not Euclidean. For example,
consider the arguably simplest SDEs, describing Brown-
ian motion overM. The corresponding probability kernel
pt(x|y) is the fundamental solution to the heat equation
∂tp = ∆p, where ∆ is the Laplace-Beltrami operator on

Figure 3. 2D toy densities. Each triplet shows (left to right): data
samples, generate samples x ∼ q1, and learned model density q1.

the manifoldM. Solutions to the heat equation are known
in very few cases (Pennec, 2006), and even for the sphere
the solution is only known as an infinite series of Legendre
polynomials (Tulovsky & Papiez, 2001). Therefore using
the SDE framework on manifolds will often require some
numerical solutions to the relevant SDE/ODE. In contrast,
our LMC-based formulation provides the flexibility to spec-
ify arbitrary target probability paths between the prior and
data densities. On the sphere for example, we use closed
form paths defined by vMF distributions. For sampling,
solving an ODE is generally easier than solving an SDE as
ODE solvers have higher asymptotic convergence rates. For
example, Euler’s method has order 1 for ODE and only 0.5
for SDE (Kloeden et al., 2012). Furthermore, ODEs have
simple higher order solvers like Runga-Kutta methods (Dor-
mand & Prince, 1980) with widely used open-source imple-
mentations.

5. Experiments
We have tested the CNFM framework with the PPD for train-
ing CNFs on low and moderately high dimensional manifold
data. In all experiments we generate the target path p accord-
ing to Section 3.3 with input data samples {yi}mi=1 ⊂ M.
In all experiments we iterate over the dataset where the
set {yi}mi=1 ⊂M, which is used for the approximation of
equation 15, is simply the batch, that is m = batch size.
Note that for better approximation of equation 15, we could
take m > batch size and evaluate the loss only at a subset
of size batch size. Since the loss is still evaluated at only
batch size of samples, i.e., the forward and backward costs
are the same, and memory usage will not increase signifi-
cantly. In general, we have found CNFM to facilitate faster
training of CNFs with larger models, often producing state
of the art sampling and density estimation.

5.1. Toy densities on R2 and S2

In the first experiment we worked with samples drawn from
standard toy distributions on the 2D Euclidean plane and
sphere. For the Euclidean data we used the target path p
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Dataset Earthquake Flood Fire Volcano

Mixture vMF 0.59±0.01 1.09±0.01 −0.23±0.02 −0.31±0.07

Stereographic 0.43±0.04 0.99±0.04 −0.40±0.06 −0.64±0.20

Riemannian 0.19±0.04 0.90±0.03 −0.66±0.05 −0.97±0.15

Moser Flow −0.09±0.02 0.62±0.04 −1.03±0.03 −2.02±0.42

CNFM −0.38±0.01 0.25±0.02 −1.40±0.02 −2.38±0.16

Table 1. Negative log likelihood scores on the Earth and Climate
Dataset (Mathieu & Nickel, 2020).

Fire Flood Volcano Quakes

Figure 4. Earth and Climate dataset: generated samples from the
trained CNFM in blue, test samples in red. See table 1 for quanti-
tative results.

defined in equation 17 with p0 ∼ N (x|0, I), the standard
normal distribution, and σ1 = 0.01. For the spherical data
we used the target path p as defined in equation 20 with
κ1 = 5000. We used MLP of 3 layers of 256 neurons for
the R2 data, and 6 layers of 512 neurons for S2. We used
PPD with ` = 1. Figure 3 depicts the data samples yi
along side samples generated from the learned model, and
the model densities. Note the high similarity between the
learned and GT densities; for sphere visualizations we use
Mollweide projection.

5.2. Earth and climate dataset

In this experiment we considered the Earth and Climate
dataset curated in (Mathieu & Nickel, 2020). This dataset
contains locations of earthquakes, floods, fires, and volcano
eruptions on earth, represented as point locations on the 2D
sphere, S2 ⊂ R3. The target path p is defined as in equa-
tion 20 with κ1 = 55K (best out of κ1 ∈ {5K, 55K, 500K}).
We used the same architecture used in (Rozen et al., 2021), a
MLP with 6 layers of 512 neurons, PPD order ` = 2. Table
1 depicts the negative log likelihoods (NLLs) scores, where
CNFM improves state of the art by a large margin, where the
runner-up is Moser Flow (Rozen et al., 2021). Riemannian
CNF and other baselines are taken from (Mathieu & Nickel,
2020). Figure 4 visualizes generated samples (blue) and test
data samples (red).

5.3. Higher dimensional spheres

In this experiment we test the scaling of CNFM to higher
dimensional manifold data. We construct a family of chal-
lenging probability distributions, denoted rk, on S15 and

Figure 5. Left triplet shows the densities rk for k = 2, 3, 4 on
random cuts S2 ⊂ S15; right triplet visualizes the case k = 3 (on
a different random cut) from Table 2 with CNFM model density in
the middle, and S-FFJORD density on the right.

compare CNFM to several baselines. We start by defining rk
over S15 ⊂ R16: Henceforth, denote d = 15, and consider
an orthogonal set v1, . . . , vk, where 1 ≤ k ≤ d + 1. Let
s(x) =

∏k
i=1 sign(xT vi). Define the probability density:

rk(x) =
2

|Sd|

{
1 if s(x) = 1

0 if s(x) = −1
(23)

To see rk is indeed a probability density, note that the
transformation x = (x1, . . . , xd+1) 7→ (−x1, . . . , xd+1)
is a volume preserving transformation of Sd and maps
the set Ω+ = Sd ∩

{
x ∈ Rd+1|s(x) = 1

}
to Ω− =

Sd ∩
{
x ∈ Rd+1|s(x) = −1

}
, and vise versa. This means

that
∫

Ω+
dVx =

∫
Ω−

dVx and since Sd = Ω+ ∪ Ω− we
have that

∫
Ω+

dVx =
∣∣Sd∣∣ /2. Generating samples from rk

can be done by randomizing a uniform sample x over Sd,
if s(x) = 1, keep x, otherwise take (−x1, x2, . . . , xd+1).
Figure 5-left depicts several examples of this density by
visualizing random S2 cuts in S15; as k increases the
complexity of density increases. We created datasets for
k = 2, 3, 4 with 45K train samples and 5K test samples.

2 3 4

vMF-MM 1.23 1.31 1.33

S-FFJORD 0.77 0.97 1.04

CNFM 0.73 0.83 0.95

Table 2. NLLs on S15.

For baselines we use: vMF
mixture models (vMF-MM)
with 1K and 10K centers ran-
domized from the training data,
and scaling κ was chosen to be
the optimal for the test set. This
was done to compare to the
best possible vMF-MM model.
Furthremore, we compared to a version of manifold CNF
(Lou et al., 2020; Mathieu & Nickel, 2020; Falorsi & Forré,
2020): We consider the stereographic projection of the
sphere Ψ : Rd → Sd, and used FFJORD (Grathwohl et al.,
2018) code adapted to the spherical case, denoted as S-
FFJORD. In this baseline, computing log probabilities over
the sphere is done by correcting for the stereographic projec-
tion, log p(Ψ(u)) = log p(u)− 1

2 log det(DΨ(u)TDΨ(u)),
where u ∈ Rd, log p(u) is the Euclidean log probability
learned by FFJORD, DΨ(u) ∈ R(d+1)×d is the matrix of
partials of Ψ. Table 2 reports the NLL scores of CNFM and
the baselines across this dataset. Figure 5-right depicts an
example of random S2 cut of S15 for the k = 3 case.
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Figure 7. Uncurated samples computed with the trained CNFM on
product manifolds representing the robot’s state space: Cheetah
(top), Walker (middle), and Humanoid (bottom).
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Figure 6. Timings.

The above results are
reported using an MLP
with 3 layers of 64
neurons for CNFM and
an equivalent architec-
ture of S-FFJORD, with
both methods running for
about 4K seconds. In Fig-
ure 6 we compared typi-
cal epoch running times for this and larger architecture types
for CNFM and FFJORD training. Note that the time differ-
ence (in log scale) further increases for larger architectures.

5.4. Product of manifolds - Robotics

In the last experiment we worked with robotics data gener-
ated with the physics and reinforcement learning engine Mu-
JoCo (Tassa et al., 2020). For each of the three robot types,
Walker (2D), Cheetah (2D), and Humanoid (3D), we ran-
domized 17.5K samples from 50 simulated trajectories con-
sisting of 500 observation each. The state space for the 2D
robots is modeled as the product manifoldM = R3×(S1)6,
where R3 represents position, and S1 represents 2D rota-
tions of a single joint. The state space for the 3D robot is
M = R3 × (S1)8 × (S3)6, where S3 represents 3D rota-
tions of a joint (via quaternions). We used the target path
p on the product manifold as described in Section 3.3. For
each robot type, Figure 7 depicts uncurated samples from
the trained CNFM, and Figure 8 shows a path of noise to
data, i.e., φt(x), t ∈ [0, 1], where x ∼ p0. The generated
samples are qualitatively similarly to data samples. More
examples are in Appendix G.

6. Limitations and Future Work
Scaling CNFM to even higher dimensions (i.e., d > 100),
e.g., for image data, requires some more work. We identify

Figure 8. Noise to data paths computed with the trained CNFM on
product manifolds representing robot’s state space: Cheetah (top),
Walker (middle), and Humanoid (bottom).

two main challenges: (i) using logsumexp and stochas-
tic approximation for div(v) introduces a non-trivial ap-
proximation error (and bias) to the gradient estimation
of the PPD; and (ii) the PPD loss has very different
scales for different values of t, which entails conditioning.
Using CNFM as-is on the MNIST
dataset (d = 784) with a standard
batch size of 128 results in samples
shown in inset. Although generation
quality does not match SOTA CNF
models, the training process remains
stable despite the high dimensional
biased gradient estimation of the loss.
We leave scaling CNFM to images to future work.

7. Conclusions
We have introduced CNFM, a framework for matching a
target density path and the density path generated by a CNF.
The CNFM is based on minimizing a novel Probability Path
Divergence (PPD) that does not require sampling of model
densities and therefore is easier to train and to apply to
manifolds. The PPD is shown to upper bound standard di-
vergences, and can work with a rather flexible family of
target paths on manifolds. Empirically, CNFM was shown
to facilitate CNF training, scaling for the first time to mani-
folds of moderate dimension, improving training time, and
producing state of the art samplings and log likelihoods.

8. Acknowledgments
HB was supported by a grant from Israel CHE Program
for Data Science Research Centers and Carolito Stiftung
(WAIC). SC was supported by the Engineering and Physical
Sciences Research Council (grant number EP/S021566/1).



Matching Normalizing Flows and Probability Paths on Manifolds

References
Ali, S. M. and Silvey, S. D. A general class of coefficients

of divergence of one distribution from another. Journal of
the Royal Statistical Society: Series B (Methodological),
28(1):131–142, 1966.

Bogachev, V. I. Measure theory, volume 1. Springer Science
& Business Media, 2007.

Bose, A. J., Smofsky, A., Liao, R., Panangaden, P., and
Hamilton, W. L. Latent Variable Modelling with Hyper-
bolic Normalizing Flows. arXiv:2002.06336 [cs, stat],
February 2020. URL http://arxiv.org/abs/
2002.06336.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. arXiv preprint
arXiv:1806.07366, 2018.

Csiszár, I. Information-type measures of difference of prob-
ability distributions and indirect observation. studia sci-
entiarum Mathematicarum Hungarica, 2:229–318, 1967.

Dormand, J. R. and Prince, P. J. A family of embedded
runge-kutta formulae. Journal of computational and ap-
plied mathematics, 6(1):19–26, 1980.

Evans, L. C. Partial differential equations and monge-
kantorovich mass transfer. Current developments in math-
ematics, 1997(1):65–126, 1997.
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A. Proof of Theorem 1
Since v ∈ X(M) it is locally Lipschitz. Since v is bounded it satisfies in particular∫ 1

0

∫
M
|v(t, x)| pt(x) dVxdt < +∞.

Therefore, according to the Mass Conservation Formula Theorem (see e.g., (Villani, 2009)) equation 4 holds iff

∂tpt + div(ptv) = 0, (24)

where div denotes the divergence operator over the manifoldM. We assumed pt > 0 and therefore dividing both sides with
pt leads to

∂tpt
pt

+
〈∇xpt, v〉+ ptdiv(v)

pt
= 0.

where we used that div(fv) = 〈∇xf, v〉+ fdiv(v) for f ∈ P(M) and v ∈ X(M). Finally noting that ∂t log pt = ∂tpt
pt

,
and ∇x log pt = ∇xpt

pt
we get that equation 5 is equivalent to equation 24.

B. Proof of Lemma 1
Given a time dependent vector field v ∈ X(M), a diffeomorphism two parameter family Φt,t0 :M→M can be defined
via the following Ordinary Differential Equation (ODE):{

d
dtΦt,t0(x) = v(t,Φt,t0(x))

Φt0,t0(x) = x
(25)

The CNF diffeomorphism is defined by φt = Φt,0. Now, consider a smooth function u(t, x), u : [0, 1]×M→ R, then

∂t|t=t0 [u(t,Φt,t0(x))] = ∂tu(t0, x) + 〈∇xu(t0, x), v(t0, x)〉 . (26)

From Theorem 1 we have that
∂t log qt + 〈∇x log qt, v〉+ div(v) = 0

for all t ∈ [0, 1] and x ∈M. Subtracting that in our loss we get

d`(p ‖ q) = Et,x∼pt

∣∣∣∣∂t log
pt
qt

+

〈
∇x log

pt
qt
, v

〉∣∣∣∣` (27)

Now using equation 26 with u(t, x) = log pt(x)
qt(x) , we get

∂t|t=t0 log
pt(Φt,t0(x))

qt(Φt,t0(x))
=

∂t log
pt0(x)

qt0(x)
+

〈
∇x log

pt0(x)

qt0(x)
, v(t0, x)

〉
Plugging this in equation 27 with t = s and t0 = t we get:

d`(p ‖ q) = Et,x∼pt

∣∣∣∣∂s|s=t log
ps(Φs,t(x))

qs(Φs,t(x))

∣∣∣∣`
= Et,x∼qt

pt(x)

qt(x)

∣∣∣∣∂s|s=t log
ps(Φs,t(x))

qs(Φs,t(x))

∣∣∣∣`
= Et,x∼p0

pt(φt(x))

qt(φt(x))

∣∣∣∣∂s|s=t log
ps(Φs,t(φt(x)))

qs(Φs,t(φt(x)))

∣∣∣∣`
= Et,x∼p0

pt(φt(x))

qt(φt(x))

∣∣∣∣∂s|s=t log
ps(φs(x))

qs(φs(x))

∣∣∣∣`
= Ex∼p0

∫ 1

0

pt(φt(x))

qt(φt(x))

∣∣∣∣∂t log
pt(φt(x))

qt(φt(x))

∣∣∣∣` dt
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where in the third equality we used the fact that φt(x) ∼ qt if x ∼ p0; in the fourth equality we used the fact that
Φs,t(φt(x)) = Φs,t(Φt,0(x)) = Φs,0(x) = φs(x).

C. Additional details for the proof of Theorem 2
We add here details of the proof of Theorem 2 missing from the main paper.

First, we prove that for any t > 0, `(1− t 1
` )↗ − log(t), that is monotonically increasing and converging to − log(t) as

`→∞. Fix t > 0, and define the function

f(s) =
(1− ts)

s

where s ∈ (0, 1). Now, using L’Hôpital’s rule:

lim
s�0

f(s) = lim
s�0

− log(t)ts

1
= − log(t)

Therefore in particular lim`→∞ `(1− t 1
` ) = − log(t). Monotonicity follows from the fact that for all s ∈ (0, 1) and t > 0

f ′(s) =
− log(t)sts + ts − 1

s2
=
ts

s

(
1− t−s

s
− log(t)

)
≤ 0

The inequality can be justified by first noting that ts/s > 0. Second, let 0 < t = exp(r) we get that

1− t−s

s
− log(t) ≤ 0

which is true iff

1− exp(−rs)
s

− r ≤ 0

which is true iff

1− rs ≤ exp(−rs)

which is true iff for all u ∈ R

1− u ≤ exp(−u)

which is true since 1− u is tangent to exp(−u) at u = 0, and exp(u) is convex. Since f ′(s) is monotonically decreasing in
s, `(1− t 1

` ) is increasing as `→∞.

We are now ready to justify equation 13. First let

f`(x) = `

(
1−

[
pT (x)

qT (x)

] 1
`

)

We showed that f`(x)↗ f(x) = − log pT (x)
qT (x) . Furthermore, f` are all integrable since

∫
M
`

∣∣∣∣∣1−
[
pT (x)

qT (x)

] 1
`

∣∣∣∣∣ qT (x)dVx

≤ `
∫
M
qT (x)dVx + `

∫
M
pT (x)

1
` q

1− 1
`

T dVx

≤ `+ `

[∫
M
pT (x)dVx

] 1
`
[∫
M
qT (x)dVx

]1− 1
`

= 2`
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Where in the first inequality we used the triangle inequality, and in the second inequality we used Holder inequality with
1
` + `−1

` = 1.

We assume that

Df (pT ‖ qT ) =

∫
M
f(x)qT (x)dVx <∞.

Since f`(x) ≤ f(x) and both f`, f are integrable we have that∫
M
f`(x)qT (x)dVx ≤

∫
M
f(x)qT (x)dVx <∞

for all `. Therefore, the Monotone Convergence Theorem (see Theorem 2.8.2 in (Bogachev, 2007)) implies that

lim
`→∞

∫
M
f`(x)qT (x)dVx =

∫
M
f(x)qT (x)dVx

Namely,

lim
`→∞

Ex∼qT `

(
1−

[
pT (x)

qT (x)

] 1
`

)
= −Ex∼qT log

pT (x)

qT (x)

D. Numerically stable derivative of the normalizing constant of the vMF
The log of the normalizing constant of the vMF has the form

logCp(κ) =
(p

2
− 1
)

log κ− p

2
log(2π)−

[
κ+ log ive(

p

2
− 1, κ)

]
where ive(ν, κ) = iv(ν, κ) exp(−κ). Now, the log ive(p2 − 1, κ) is stable but its derivative is not. Therefore we will
define a new function and its derivative: logive(ν, κ). Its forward will be defined by;

logive(ν, κ) = log (ive(ν, κ)) ,

and for its derivative we first note:

∂κ log ive(ν, κ) =
∂κive(ν, κ)

ive(ν, κ)
=
ive(ν − 1, κ)− ive(ν, κ)

[
ν+κ
κ

]
ive(ν, κ)

=
ive(ν − 1, κ)

ive(ν, κ)
−
[
ν + κ

κ

]
=
ive(ν − 1, κ)

ive(ν, κ)
− ν

κ
− 1

For high dimensions the ive ratio is numerically unstable and several approximations have been suggested. In particular
(Ruiz-Antolı́n & Segura, 2016) suggest the following lower and upper bounds:

ν − 1
2 +

√
(ν + 1

2 )2 + κ2

κ
>
ive(ν − 1, κ)

ive(ν, κ)
>
ν − 1 +

√
(ν + 1)2 + κ2

κ

Similar to (Oh et al., 2019) we take the average of the higher and lower bound (see (Oh et al., 2019) for empirically
demonstrating the quality of this approximation):

∂κ log ive(ν, κ) =
ive(ν − 1, κ)

ive(ν, κ)
− ν

κ
− 1 ≈

−1.5 +
√

(ν + 1)2 + κ2 +
√

(ν + 1
1 )2 + κ2

2κ
− 1

and this is defined as the derivative of logive.
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E. Vector field representation
We describe how we represent the parametric part of our system, namely the vector field vθ ∈ P(M), for the different
manifold types we consider: Euclidean space, spheres and product manifolds. In the Euclidean case we use an MLP
vθ : Rd+1 → Rd, where d is the dimension ofM. We use standard Euclidean inner product, gradient∇, and divergence
div = ∇· for computing the PPD (equation 7), where the path p defined in equation 17. In the sphere case Sd ⊂ Rd+1,
similarly to (Rozen et al., 2021) we define v to be constant in the normal direction to the sphere and produce tangent vectors
via the tangent projection operator

vθ(t, x) =

(
I − xxT

‖x‖2

)
wθ

(
t,

x

‖x‖

)
, (28)

where wθ : Rd+2 → Rd+1 is an MLP. The inner product on the sphere is the induced Euclidean one, i.e., for v, u ∈ TxSd
we have 〈u, v〉 = uT v. For vθ defined in equation 28, the Riemannian gradient and divergence coincide with the Euclidean
gradient ∇ and divergence ∇·. p is defined as in equation 20. For notational simplicity we explain the product manifold
implementation for two manifoldsM = Rd1 × Sd2 , where the extension to product of N manifolds is similar. The tangent
vector field is a function of the form vθ : Rd1+1 × Rd2+2 → Rd1 × Rd2+1. For (t1, x1, t2, x2) ∈ Rd1+1 × Rd2+2 we let

vθ(t1, x1, t2, x2) =

 v1

(
t1, x1, t2,

x2

‖x2‖

)
(
I − x2x

T
2

‖x2‖2

)
v2

(
t1, x1, t2,

x2

‖x2‖

)


where v1, v2 are MLPs. The inner product (v1, v2), (u1, u2) ∈ TxM is defined by 〈v1, u1〉 + 〈v2, u2〉; the gradient as
∇ = (∇1,∇2)T , where ∇1 is the Euclidean gradient w.r.t. x1, and ∇2 is the Euclidean gradient w.r.t. x2; the divergence
div(v) = ∇1 · v1 +∇2 · v2. Lastly, p is defined as in equation 15 with kernel equation 21.

F. Experimental Details
F.1. Toy densities on R2 and S2

For the R2 datasets we used a 3 layer MLP with hidden dimension 256. We trained with Adam optimizer with learning rate
1e− 4, batch size 1000, σ1 = 0.01 and ` = 1. The searched parameters across learning rates are {1e− 3, 5e− 4, 1e− 4}
and σ1 ∈ {0.005, 0.01, 0.05}. For the S2 datasets we used a 6 layer MLP with hidden dimension 512. We trained with
Adam optimizer with learning rate 1e− 4, batch size 1000, κ = 5000 and ` = 1.

F.2. Earth and climate datasets

For the earth and climate datasets we used a 6 layer MLP with hidden dimension 512. We trained with Adam optimizer with
learning rate 1e− 4, batch size 1000, κ = 55K and ` = 2. The searched parameters across κ are {5K, 55K, 500k}.

F.3. Higher dimensional spheres

We ran experiments on S15 for different k = 2, 3, 4 values. The architecture used was a 3 layer MLP with hidden dimension
64, Adam optimizer with learning rate 1e − 3, batch size 7000, κ = 5K and ` = 2. We searched over learning rates
{1e− 3, 1e− 4, 1e− 5}.

The S-FFJORD baseline is as described in the paper. We used the architecture used for the 2D toy experiments in the
FFJORD paper, as published in the official FFJORD code repository. We run both CNFM and S-FFJORD with approximate
divergence computation using the Hutchinson estimator.

F.4. Product of manifolds - Robotics

For the robotics datasets we used a 6 layer MLP with hidden dimension 512. We trained with Adam optimizer with learning
rate 1e− 4, batch size 1000, κ = 55K and ` = 1. The searched parameters across κ are {5K, 55K}.

G. Extra Experimental Results
We provide more uncurated samples and interpolations of Cheetah, Walker and Humanoid poses in Figure 9 and Figure 10.
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Figure 9. Uncurated samples computed with the trained CNF on product manifolds representing robot’s state space: Cheetah (top), Walker
(middle), and Humanoid (bottom).

Figure 10. Noise to data paths computed with the trained CNF on product manifolds representing robot’s state space:Cheetah (top), Walker
(middle), and Humanoid (bottom).


