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Abstract
Continuous Normalizing Flows (CNFs) are a class
of generative models that transform a prior dis-
tribution to a model distribution by solving an
ordinary differential equation (ODE). We propose
to train CNFs on manifolds by minimizing prob-
ability path divergence (PPD), a novel family of
divergences between the probability density path
generated by the CNF and a target probability
density path. PPD is formulated using a logarith-
mic mass conservation formula which is a linear
first order partial differential equation relating the
log target probabilities and the CNF’s defining
vector field. PPD has several key benefits over
existing methods: it sidesteps the need to solve
an ODE per iteration, readily applies to manifold
data, scales to high dimensions, and is compatible
with a large family of target paths interpolating
pure noise and data in finite time. Theoretically,
PPD is shown to bound classical probability diver-
gences. Empirically, we show that CNFs learned
by minimizing PPD achieve state-of-the-art re-
sults in likelihoods and sample quality on existing
low-dimensional manifold benchmarks, and is the
first example of a generative model to scale to
moderately high dimensional manifolds.

1. Introduction
One of the core domains of machine learning research are
density estimation and generative modeling, which view
data from a probabilistic perspective. The deep-learning
revolution fostered a significant advancement in the field,
leading to the emergence of powerful generative models for
images, language, audio, and other data types represented in
Euclidean spaces. While early literature primarily focused
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on Euclidean data, the need to model data in non-Euclidean
spaces arises in many scientific fields. For instance, occur-
rences of natural phenomena on earth can be modeled as a
distribution on a sphere (Mathieu & Nickel, 2020), protein
structure prediction requires angle predictions (Mardia et al.,
2008) and motion and position of robots can be modeled
with a product of Euclidean spaces and spheres. There-
fore, constructing generative models over manifolds is an
important problem with many potential applications.

A generative model can be described as a function φ that
transforms a simple probability distribution (the prior or
base) to a more complicated one (the model) so to best rep-
resent some empirical set of data observations. Among the
large toolkit of deep generative models, innate candidates for
designing generative models on manifolds are Normalizing
Flows (NFs) (Rezende & Mohamed, 2015) and Continuous
Normalizing Flows (CNFs) (Chen et al., 2018). In these
approaches φ is a diffeomorphism, i.e., a smooth bijection
with a smooth inverse. Therefore, the model density can be
expressed in terms of the prior density and the determinant
of the Jacobian of φ, also known as the change of variable
formula, which can be naturally adapted to the manifold
case. Recently, (Rezende et al., 2020; Bose et al., 2020)
devised NF models for sphere, tori and hyperbolic spaces.
In a parallel line of works, (Mathieu & Nickel, 2020; Lou
et al., 2020; Falorsi & Forré, 2020) developed CNFs over
Riemannian manifolds.

Like Euclidean NF models, manifold NFs suffer from lim-
ited expressive power due to the representation of φ as a
composition of a restricted set of invertible transformations.
On the other hand, CNFs model diffeomorphisms as flows
along parametric tangent vector fields, v, represented as neu-
ral networks, lifting the architectural restriction and allow-
ing maximal expressive power. Nonetheless, training a CNF
by minimizing negative log-likelihoods, or equivalently, the
KL-divergence of the data and model densities, requires
log model densities evaluated at observation points. Com-
puting the log model densities entails solving an ordinary
differential equation (ODE) during training, which results
in a substantial time and memory burden, as well as intro-
duces an extra challenge when the data lies on a manifold.
Rozen et al. (2021) suggested a different parametrization
of CNFs via the divergence of unrestricted vector fields,
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where both training and computing model probabilities do
not require solving an ODE. However, scaling this method
to even moderately high dimensions is challenging since it
is formulated with a density function rather than log density,
which can cause numerical issues as density values decrease
exponentially with dimension.

This work aims to alleviate some of the limitations of previ-
ous approaches by introducing the Probability Path Diver-
gences (PPD), a new type of divergence defined between
an arbitrary target probability path, p, and the probability
path generated by the CNF, q. To define the PPD we first
introduce the Logarithmic Mass Conservation (LMC) for-
mula, a Partial Differential Equation (PDE) that couples
log q and the CNF’s vector field. Then, the PPD is defined
as the extent to which log p and the CNF’s vector field fail
to satisfy the LMC. PPD has the following desirable prop-
erties: (i) It is a proper divergence in the sense that it is
non-negative, and zero iff p � q. (ii) It does not require
evaluating q during training; it is defined solely in terms of
the parametric vector field v, its first order derivatives, and
the target path’s log density, log p. This provides a speed
up of 1� 2 orders of magnitude in evaluating the PPD and
its derivatives, compared to, e.g., log likelihood. (iii) It is
readily applicable to manifolds and higher dimensional data.
(iv) The PPD has a single parameter ` � 1. PPD with ` = 1
upper bounds the total-variation divergence comparing p
and q at arbitrary times; PPD with 1 < ` <1 bounds their
α-divergence; and PPD with ` =1 bounds their reversed
KL-divergence.

We call the minimization problem of the PPD between a
target path p and a CNF density q CNF Matching (CNFM),
and use it to train CNFs. The main design choice in CNFM
is the target path p. The requirements from p are: that it
transforms a simple prior (pure noise) to an approximation
of the unknown data distribution; that samples can be drawn
from each pt, where pt represents the density at time t; and
that we can compute or approximate the derivatives of log pt.
Any p satisfying these requirements can be used to train a
CNF in the CNF Matching framework. Other methods that
try to fit generated probability density path to a target one
are Score and Diffusion based methods (Song & Ermon,
2019; Ho et al., 2020; Song et al., 2020). However, these
methods require target paths that are generated by Stochatsic
Differential Equations (SDEs) or known diffusion processes
which limits their applicability on manifolds. We elaborate
this discussion in Section 4.2, after introducing our method.

We test our framework on several low and moderately
high dimensional manifold data including Euclidean spaces,
spheres/hyperspheres, and product of spheres, demonstrat-
ing state-of-the-art sample quality and likelihoods in stan-
dard low-dimensional manifold datasets. We demonstrate
that CNFM is considerably faster to optimize than state of

the art CNF training algorithm, allowing to scale CNF train-
ing to considerably larger network architectures. Lastly, we
demonstrate that CNFM can train CNFs on moderately high
dimensional manifolds, in contrast to previous methods of
generative modeling on manifold that mostly worked with
low dimensional manifolds.

2. Preliminaries
LetM be a d-dimensional smooth Riemannian manifold
with a metric g and induced volume form dV , the volume
of M is jMj =

R
M dVx. We consider strictly positive,

smooth probability densities over M, µ : M ! R>0,
satisfying

R
M µ(x)dVx = 1. The tangent space at point

x 2 M is denoted TxM; the tangent bundle, which is the
disjoint union of all tangent spaces ofM is denoted TM.
The metric g defines an inner product for pairs of vectors
ξ, η 2 TxM denoted by hξ, ηi; a norm of a tangent vector
is defined by jξj = hξ, ξi1=2. The Riemannian gradient of
a smooth function f :M! R is denotedrf(x) 2 TxM.
A time-dependent vector field v(t, x) is a smooth function
v : [0, 1] � M ! TM such that v(t, x) 2 TxM for
all t 2 [0, 1] and x 2 M. We denote the collection of
bounded time dependent smooth vector fields overM by
X(M); by bounded we mean that for each v 2 X(M)
there exists a constant M > 0 so that jv(t, x)j �M for all
x 2 M, t 2 [0, 1]. The Riemannian divergence (w.r.t. x)
of a smooth vector field v 2 X(M) is denoted div(v). We
denote by expx : TxM!M, and logx :M! TxM the
Riemannian exponential and logarithmic maps. Note these
should not be confused with the standard exp, log that are
written without subscript.

Given a time dependent vector field v 2 X(M), a one
parameter diffeomorphism family φt : M ! M can be
defined via the Ordinary Differential Equation (ODE):(

d
dtφt(x) = v(t, φt(x))

φ0(x) = x
(1)

In the context of generative models, the diffeomorphism φt
is called a Continuous Normalizing Flow (CNF) (Chen et al.,
2018; Mathieu & Nickel, 2020; Lou et al., 2020; Falorsi &
Forré, 2020; Rozen et al., 2021) and is used to push-forward
or pull-back probability densities. An event A � M is
pushed forward by φt to the event φt(A), and pulled back to
φ�1
t (A). Given a probability density η overM its pushed

forward density is denoted φt�η, and its pulled back density
by φt is denoted φ�t η. Let P(M) denote all probability
paths on M, that is functions p : [0, 1] � M ! R>0,
smooth in t and satisfying

R
M p(t, x)dVx = 1.

Definition 1. We say that a CNF φt generates a probability
density path q 2 P(M) if for all t 2 [0, 1]

qt = φt�q0, or equivalently φ�t qt = q0, (2)




