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Abstract
Second-order optimizers are thought to hold the
potential to speed up neural network training, but
due to the enormous size of the curvature ma-
trix, they typically require approximations to be
computationally tractable. The most successful
family of approximations are Kronecker-Factored,
block-diagonal curvature estimates (KFAC). Here,
we combine tools from prior work to evaluate ex-
act second-order updates with careful ablations
to establish a surprising result: Due to its ap-
proximations, KFAC is not closely related to
second-order updates, and in particular, it sig-
nificantly outperforms true second-order updates.
This challenges widely held believes and immedi-
ately raises the question why KFAC performs so
well. Towards answering this question we present
evidence strongly suggesting that KFAC approx-
imates a first-order algorithm, which performs
gradient descent on neurons rather than weights.
Finally, we show that this optimizer often im-
proves over KFAC in terms of computational cost
and data-efficiency.

1. Introduction
Second-order information of neural networks is of funda-
mental theoretical interest and has important applications
in a number of contexts like optimization, Bayesian ma-
chine learning, meta-learning, sparsification and continual
learning (LeCun et al., 1990; Hochreiter and Schmidhuber,
1997; MacKay, 1992; Bengio, 2000; Martens et al., 2010;
Grant et al., 2018; Sutskever et al., 2013; Dauphin et al.,
2014; Blundell et al., 2015; Kirkpatrick et al., 2017; Graves,
2011). However, due to the enormous parameter count of
modern neural networks working with the full curvature
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matrix is infeasible and this has inspired many approxima-
tions. Understanding how accurate known approximations
are and developing better ones is an important topic at the
intersection of theory and practice.

A family of approximations that has been particularly suc-
cessful are Kronecker-factored, block diagonal approxima-
tions of the curvature. Originally proposed in the context of
optimization (Martens and Grosse, 2015), where they have
lead to many further developments (Grosse and Martens,
2016; Ba et al., 2016; Desjardins et al., 2015; Botev et al.,
2017; George et al., 2018; Martens et al., 2018; Osawa et al.,
2019; Bernacchia et al., 2019; Goldfarb et al., 2020), they
have also proven influential in various other contexts like
Bayesian inference, meta learning and continual learning
(Ritter et al., 2018a;b; Dangel et al., 2020; Zhang et al.,
2018a; Wu et al., 2017; Grant et al., 2018).

Here, we describe a surprising discovery: Despite its moti-
vation, the KFAC optimizer does not rely on second-order
information; in particular it significantly outperforms exact
second-order optimizers. We establish these claims through
a series of careful ablations and control experiments and
build on prior work, which shows that exact second-order up-
dates can be computed efficiently and exactly, if the dataset
is small or when the curvature matrix is subsampled (Ren
and Goldfarb, 2019; Agarwal et al., 2019).

Our finding that KFAC does not rely on second-order in-
formation immediately raises the question why it is never-
theless so effective. To answer this question, we present
evidence that KFAC approximates a different, first-order op-
timizer, which performs gradient descent in neuron- rather
than weight space. We also show that this optimizer itself
often improves upon KFAC, both in terms of computational
cost as well as progress per parameter update.

Structure of the Paper. In Section 2 we provide back-
ground and define terminology. The remainder of the paper
is split into two parts. In Section 3 we carefully establish
that KFAC is not closely related to second-order informa-
tion. In Section 4 we introduce gradient descent on neurons
(“FOOF”) and present evidence that KFAC’s performance
relies on similarity to FOOF and that FOOF offers further
performance improvements.
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2. Background and Efficient Subsampled
Natural Gradients

The most straight-forward definition of a “curvature ma-
trix” is the Hessian H of the loss with respect to the pa-
rameters. However, in most contexts (e.g. optimization or
Laplace posteriors), it is necessary or desirable to work with
a positive definite approximations of the Hessian, i.e. an
approximation of the form H ≈ GGT ; examples for such
approximations include the (Generalised) Gauss Newton
matrix and the Fisher Information. For simplicity, we will
now focus on the Fisher, but our methods straightforwardly
apply to any case where the columns of G are Jacobians.
The Fisher F is defined as

F = EX∼XEy∼p(·|X,w)

[
g(X, y)g(X, y)T

]
(1)

where X ∼ X is a sample from the input distribution, y ∼
p(· | X,w) is a sample from the model’s output distribution
(rather than the label given by the dataset, see Kunstner et al.
(2019) for a discussion of this difference). g(X, y) is the
”gradient”, i.e. the (columnised) derivative of the negative
log-liklihood of (X, y) with respect to the model parameters
w ∈ Rn.

The natural gradient method preconditions normal first-
order updates v by the inverse Fisher. Concretely, we update
parameters in the direction of (λI + F)−1v. Here, λ is a
damping term and can be seen as establishing a trust region.
Natural Gradients were proposed by Amari and colleagues,
see e.g. (Amari, 1998) and were motivated from an infor-
mation geometric perspective. The Fisher is equal to the
Hessian of the negative log-likelihood under the model’s out-
put distribution and thereby closely related to the standard
Hessian (Martens, 2014; Pascanu and Bengio, 2013), so that
Natural Gradients are typically viewed as a second-order
method (Martens and Grosse, 2015).

2.1. Subsampled, Exact Natural Gradients

If the dataset is moderately small, or if the Fisher is subsam-
pled, i.e. evaluated on a mini-batch, then natural gradients
can be computed exactly and efficiently as shown by Ren
and Goldfarb (2019) with ideas described independently
by Agarwal et al. (2019). The key insight is to apply the
Woodburry matrix inversion lemma and to realise that many
intermediate quantities do not need to be stored or computed
explicitly. We propose some modest theoretical as well as
practical improvements to these techniques, which are de-
ferred to Appendix I along with implementation details.

We also show that with an additional trick (Doucet, 2010;
Hoffman and Ribak, 1991), one can sample efficiently and
exactly from the Laplace posterior, see Appendix C.

A more detailed summary of related work can be found in
Appendix H.

2.2. Notation and Terminology

We typically focus on one layer of a neural network. For
simplicity of notation, we consider fully-connected layers,
but results can easily be extended to architectures with pa-
rameter sharing, like CNNs or RNNs.

We denote the layer’s weight matrix by W ∈ Rn×m and
its input-activations (after the previous’ layer nonlinearity)
by A ∈ Rm×D, where D is the number of datapoints. The
layer’s output activations (before the nonlinearity) are equal
to B = WA ∈ Rn×D and we denote the partial derivates of
the loss L with respect to these outputs (usually computed
by backpropagation) by E = ∂L

∂B . If the label is sampled
from the model’s output distribution, as is the case for the
Fisher (1), we will use EF rather than E.

We use the term “datapoint” for a pair of input and label
(X, y). In the context of the Fisher information, the label
will always be sampled from the model’s output distribution,
see also eq (1). Note that with this definition, the total
number of datapoints is the product of the number of inputs
and the number of labels.

Following Martens and Grosse (2015), the Fisher will usu-
ally be approximated by sampling one label for each input.
For some controls, we will distinguish whether one label
is sampled or whether the full Fisher is computed, and we
will refer to the former as MC Fisher and the latter as Full
Fisher.

As is common in the ML context, we will use the term
“second-order method” for algorithms that use (approxi-
mate) second derivatives. The term “first-order method”
will refer to algorithms which only use first derivatives or
quantities that are independent of the loss, i.e. “zero-th”
order terms.

3. Exact Natural Gradients and KFAC
In this section, we will show that KFAC is not strongly
related to second-order information. We start with a brief
review of KFAC, see Appendix E for more details, and then
proceed with experiments.

3.1. Review of KFAC

KFAC makes two approximations to the Fisher. Firstly,
it only considers diagonal blocks of the Fisher, where
each block corresponds to one layer of the network. Sec-
ondly, each block is approximated as a Kronecker product
(AAT )⊗ (EFET

F ). This approximation of the Fisher leads
to the following update.

(∆W)T =
(
AAT + λAI

)−1 (
AET

) (
EFET

F + λEI
)−1

(2)

where λA, λE are damping terms satisfying λA · λE = λ

for a hyperparameter λ and λA

λE
= n·Tr(AAT )

m·Tr(EFET
F )

.
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Figure 1. Paradoxically, KFAC – an approximate second-order method – outperforms exact second-order udpates in standard
as well as important control settings. (A) Comparison between Subsampled Natural Gradients and KFAC. KFAC performs significantly
better. Theoretically, its only advantage over the subsampled method is using more data to estimate the curvature. All methods use a
batchsize of 100 and are trained for 10 epochs, with hyperparameters tuned individually for each method (here and in all other experiments).
(B) Comparison between Subsampled Natural Gradients and Subsampled KFAC. Both algorithms use exactly the same amount of data
to estimate the curvature. From a theoretical viewpoint, KFAC should be a strictly worse approximation of second-order updates than
the exact subsampled method; nevertheless, it performs significantly better. (C) Additional control in which the subsampled Fisher is
approximated on larger mini-batches. (D) Full control setting, in which the training set is restricted to 1000 images and gradients and
curvature are computed on the entire batch (in addition, for a clean comparison KFAC does not use an exponential average to estimate the
curvature). The dashed green line corresponds to exact natural gradients without any approximations. Consistent with prior literature, full
second-order updates do outperform standard first-order updates (dashed green vs. black line). More importantly, and very surprisingly,
KFAC significantly outperforms exact second-order updates. This is very strong evidence that KFAC is not closely related to Natural
Gradients.
(A-D) We repeat several key experiments with other datasets and architectures and results are consistent with the ones seen here, see main
text and appendix. (A-D) Solid lines show mean across three seeds; shaded regions (here and in remaining main paper figures) show
mean±std, but for most experiments are visually hard to distinguish from the mean.

Heurisitc Damping. We emphasise that the damping per-
formed here is heuristic: Every Kronecker factor is damped
individually. This deviates from the theoretically “correct”
form of damping, which consists of adding a multiple of
the identity to the approximate curvature. To make this con-
crete, the two strategies use the following damped curvature
matrices

standard:
(
AAT ⊗EFET

F

)
+ λI (3)

heuristic:
(
AAT + λAI

)
⊗
(
EFET

F + λEI
)

(4)

Heuristic damping adds undesired cross-terms λEAAT ⊗ I
and λAI ⊗ EFET

F to the curvature, and we point out that
these cross terms are typically much larger than the desired
damping λI. While the difference in damping may never-
theless seem innocuous, Martens and Grosse (2015); Ba
et al. (2016); George et al. (2018) all explicitly state that
heuristic damping performs better than standard damping.
From a theoretical perspective, this is a rather mysterious
observation.

In practice, the Kronecker factors AAT and EFET
F are

updated as exponential moving averages, so that they incor-
porate data from several recent mini-batches.

Subsampled Natural Gradients vs KFAC: There are two
high level differences between KFAC and subsampled natu-
ral gradients. (1) KFAC can use more data to estimate the
Fisher, due to its exponential moving averages. (2) For a
given mini-batch, natural gradients are exact, while KFAC
makes additional approximations.

A priori, it seems that (1) is a disadvantage for subsampled
natural gradients, while (2) is an advantage. However, we
will see that this is not the case.

3.2. Experiments

The first set of experiments is carried out on a fully con-
nected network on Fashion MNIST (Xiao et al., 2017) and
followed by results on a Wide ResNet (He et al., 2016) on
CIFAR10 (Krizhevsky, 2009). We run several additional
experiments, which are presented fully in the appendix, and
will be refered to in the main text. These include repeating
the first set of experiments on MNIST; results on CIFAR100;
a VGG network (Simonyan and Zisserman, 2014) trained
on SVHN (Netzer et al., 2011) and more traditional autoen-
coder experiments (Hinton and Salakhutdinov, 2006).

We emphasise that, while our results are surprising, they are
certainly not caused by insufficient hyperparameter tuning
or incorrect computations of second-order updates. In partic-
ular, we perform independent grid searches for each method
and ablation and make sure that the grids are sufficiently
wide and fine. Details are given in Appendix D and A and
we describe part of our software validation in B. Code to
validate and run the software is provided. Moreover, as will
be pointed out throughout the text, our results are consistent
with many experiments from prior work.

To obtain easily interpretable results without unnecessary
confounders, we choose a constant step size for all methods,
and a constant damping term. This matches the setup of
prior work (Desjardins et al., 2015; Zhang et al., 2018b;
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Figure 2. Advantage of KFAC over exact, subsampled Natural Gradients is not due to block-diagonal structure. (A) A one layer
network (i.e. we perform logistic regression) is trained on 1000 images and full batch gradients are used. In particular, KFAC and the
subsampled method use the same amount of data to estimate the curvature. In a one layer network the block-diagonal Fisher coincides with
the full Fisher, but KFAC still clearly outperforms natural gradients. (B) Comparison between KFAC and layerwise (i.e. block-diagonal)
subsampled Natural Gradients on full dataset with a three layer network. (C) Same as (B), but training set is restricted to a subset of
1000 images and full-batch gradient descent is performed. (A-C)Experiments on Fashion MNIST, results on MNIST are analogous, see
appendix.

George et al., 2018; Goldfarb et al., 2020). We re-emphasise
that these hyperparameters are optimized carefully and in-
depently for each method and experiment individually.

Following the default choice in the KFAC literature
(Martens and Grosse, 2015), we usually use a Monte Carlo
estimate of the Fisher, based on sampling one label per input.
We will also carry out controls with the Full Fisher.

Performance: We first investigate the performance of
KFAC and subsampled natural gradients, see Figure 1A.
Surprisingly, natural gradients significantly underperform
KFAC, which reaches an approximately 10-20x lower loss
on both Fashion MNIST and MNIST. This is a concern-
ing finding, requiring further investigation: After all, the
exact natural gradient method should in theory perform at
least as good as any approximation of it. Theoretically, the
only potential advantage of KFAC over subsampled natural
gradients is that it uses more information to estimate the
curvature.

Controlling for Amount of Data used for the Curvature:
The above directly leads to the hypothesis that KFAC’s
advantage over subsampled natural gradients is due to using
more data for its approximation of the Fisher. To test this
hypothesis, we perform three experiments. (1) We explicitly
restrict KFAC to use the same amount of data to estimate
the curvature as the subsampled method. (2) We allow the
subsampled method to use larger mini-batches to estimate
the Fisher. (3) We restrict the training set to 1000 (randomly
chosen) images and perform full batch gradient descent,
again with both KFAC and subsampled natural gradients
using the same amount of data to estimate the Fisher. Here,
we also include the Full Fisher information as computed on
the 1000 training samples, rather than simply sampling one
label per datapoint (MC Fisher). In particular, we evaluate
exact natural gradients (without any approximations: The
gradient is exact, the Fisher is exact and the inversion is
exact). The results are shown in Figure 1 and all lead to

the same conclusion: The fact that KFAC uses more data
than subsampled natural gradients does not explain its better
performance. In particular, subsampled KFAC outperforms
exact natural gradients, also when the latter can be computed
without any approximations.

This first finding is very surprising. Nevertheless, we point
out that it is consistent with experimental results from prior
work as well as commonly held beliefs. Firstly, it is widely
believed that subsampling natural gradients leads to poor
performance. This belief is partially evidenced by claims
from Martens et al. (2010) and often mentioned in informal
discussions and reviews. It matches our findings and in
particular Figure 1D, which shows that benefits of Natural
Gradients over SGD only become notable when computing
the Fisher fully.1 Secondly, we have shown that KFAC
performs well even when it is subsampled in the same way
as we subsampled natural gradients. While this does seem
to contradict the belief that natural gradient methods should
not be subsampled, it is confirmed by experiments from
Botev et al. (2017); Bernacchia et al. (2019): See Figure
2 ”per iteration curvature” in Botev et al. (2017) and note
that in Bernacchia et al. (2019) the curvature is evaluated on
individual minibatches.

Additional Experiments: We repeat the key experiments
from Figure 1A,B in several additional settings: On a MLP
on MNIST, on a ResNet with and without batch norm on
CIFAR10 and for traditional autoencoder experiments. The
findings are in line with the ones above, and solidify con-
cerns whether KFAC is related to second-order information.

Controlling for Block-Diagonal Structure: This begs fur-
ther investigation into why KFAC outperforms natural gra-
dients. KFAC approximates the Fisher as block-diagonal.
To test whether this explains KFAC’s advantage, we con-
duct two experiments. First, we train a one layer network

1It also evidences the correctness of our implementation of
natural gradients.
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Figure 3. Heuristic Damping increases KFAC’s performance as well as its similarity to first-order method FOOF. (A) Heuristic
damping is strictly needed for performance of KFAC; with standard damping, KFAC performs similar to SGD. (B) Heuristic damping
significantly increases similarity of KFAC to FOOF. For the inner product space, we use the “curvature” matrix of FOOF. (C+D) Per-
formance of KFAC and FOOF across different damping strengths using heuristic damping for KFAC. For a clean and fair comparison,
this version of FOOF uses λA from KFAC, see Appendix D.9. Notably, FOOF already works well for lower damping terms than KFAC,
suggesting that KFAC requires larger damping mainly to guarantee similarity to FOOF and limit the effect of its second Kronecker factor.
(A-D) and our theoretical analysis suggest that KFAC owes its performance to similarity to the first-order method FOOF. Experiments are
on Fashion-MNIST, results on MNIST are analogous, see appendix. We also re-run experiment (A) in several other settings and confirm
that heuristic damping is crucial for performance, see Appendix. This is in line with reports from (Martens and Grosse, 2015; Ba et al.,
2016; George et al., 2018).

on a subset of 1000 images with full-batch gradient de-
scent (i.e. we perform logistic regression). In this case,
the block-diagonal Fisher coincides with the Fisher. So,
if the block-diagonal approximation were responsible for
KFAC’s performance, then for the logistic regression case,
natural gradients should perform as well as KFAC or bet-
ter. However, this is not the case as shown in Figure 2A.
As an additional experiment, we consider a three layer net-
work and approximate the Fisher by its block-diagonal (but
without approximating blocks as Kronecker products). The
resulting computations and inversions can be carried out
efficiently akin to the subsampled natural gradient method.
We run the block-diagonal natural gradient algorithm in two
settings: In a minibatch setting, identical to the one shown in
Figure 1 and in a full-batch setting, by restricting to a subset
of 1000 training images. The results in Figure 2B,C confirm
our previous findings: (1) KFAC significantly outperforms
even exact block-diagonal natural gradients (with full Fisher
and full gradients). (2) It is not the block-diagonal structure
that explains KFAC’s performance.

Heuristic Damping. KFAC also deviates from exact
second-order updates through its heuristic damping. To
test whether this difference explains KFAC’s performance,
we implemented a version of KFAC with standard damp-
ing.2 Figure 3A shows that KFAC owes essentially all of
its performance to the damping heuristic. This finding is
confirmed by experiments on CIFAR10 with a ResNet and
on autoencoder experiments. We re-emphasise that KFAC
outperforms exact natural gradients, and therefore the damp-
ing heuristic cannot be seen as giving a better approximation
of second-order updates. Rather, heuristic damping causes
performance benefits through some other effect.

2This can be done with ideas from (George et al., 2018).

Summary. We have seen that KFAC, despite its motivation
as an approximate natural gradient method, behaves very
differently from true natural gradients. In particular, and
surprisingly, KFAC drastically outperforms natural gradi-
ents. Through a set of careful controls, we established that
KFAC’s advantage relies on a seemingly innocuous damping
heuristic, which is unrelated to second-order information.
We now turn to why this is the case.

4. First-order Descent on Neurons
We will first describe the optimizer ”Fast First-Order Opti-
mizer” or ”FOOF”3 and then explain KFAC’s link to it.

FOOF’s update rule is similar to some prior work (Des-
jardins et al., 2015; Frerix et al., 2017; Amid et al., 2021)
and is also related to the idea of optimizing modules of
a nested function independently (LeCun, 1988; Carreira-
Perpinan and Wang, 2014; Taylor et al., 2016; Gotmare
et al., 2018) . The view on optimization which underlies
FOOF is principled and new, and, among other differences,
our insights and experiments linking KFAC to FOOF are
new. For a more detailed discussion see Appendix H.2

Recall our notation for one layer of a neural network from
Section 2.2, namely A,W for input activation and weight
matrix as well as B = WA and E = ∂L

∂B .

Typically, for first-order optimizers, we compute the
weights’ gradients for each datapoint and average the results.
Changing perspective, we can try to find an update of the
weight matrix that explicitly changes the layer’s outputs B
into their gradient direction E = ∂L

∂B . In other words, we
want to find a weight update ∆W to the parameters W, so

3F2O2 is a chemical also referred to as “FOOF”.
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run on a GPU. Increasing T above 100 does not notably improve runtime. FOOF is approximately 1.5x faster than KFAC. (B) Training
loss on Fashion MNIST. FOOF is more data efficient and stable than KFAC. (C) Comparison of KFAC and a version of KFAC which
drops the second Kronecker factor (equivalently, this corresponds to FOOF with damping term λA from KFAC). We follow the trajectory
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the same norm as the KFAC update at each layer. FOOF performs better, further suggesting that similarity to FOOF is responsible for
KFAC’s performance. (B+C) See also appendix Fig J.19 for an instance, where FOOF makes more progress per update, but the overall
KFAC trajectory performs better.

that the layer’s output changes in the gradient direction, i.e.
(W+∆W)A = B+η ∂L∂B or equivalently (∆W)A = ηE
for a learning rate η. Formally, we optimize

min
∆W∈Rn×m

‖(∆W)A− ηE‖2 +
λ

2
‖∆W‖2 (5)

where the second summand λ
2 ‖∆W‖2 is a proximity con-

straint limiting the update size. (5) is a linear regression
problem (for each row of ∆W) solved by

(∆W)
T

= η
(
λI + AAT

)−1
AET (6)

Pseudocode for the resulting optimizer FOOF is presented
in Appendix K. Figures 4,5 show the empirical results of
FOOF, which outperforms not only SGD and Adam, but
often also KFAC. An intuition for why ”gradient descent
on neurons” performs considerably better than ”gradient
descent on weights” is that it trades off conflicting gradi-
ents from different data points more effectively than the
simple averaging scheme of SGD. See Appendix F for an
illustratitive toy example for this intuition.

The FOOF udpate can be seen as preconditioning by(
(λI + AAT )⊗ I

)−1
and we emphasise that this matrix

contains no dependence on the loss, or first/second deriva-
tives of it, so that it cannot be seen as a ”second-order”
optimizer according to common ML terminology.

4.1. Stochastic Version of FOOF and Amortisation

The above formulation is implicitly based on full-batch gra-
dients. To apply it in a stochastic setting, we need to take
some care to limit the bias of our updates. In particular,
for the updates to be completely unbiased one would need
to compute AAT for the entire dataset and invert the cor-
responding matrix at each iteration. This is of course too

costly and instead we keep an exponentially moving aver-
age of mini-batch estimates of AAT , which are computed
during the standard forward pass. To amortise the cost of
inverting this matrix, we only perform the inversion every T
iterations. This leads to slightly stale values of the inverse,
but in practice the algorithm is remarkably robust and allows
choosing large values of T as also shown in Figure 4.

FOOF can be straightforwardly combined with momentum
and (decoupled) weight decay.

4.2. KFAC as First-Order Descent on Neurons

Recall that the KFAC update is given by

(∆W)T =
(
AAT + λAI

)−1 (
AET

) (
EFET

F + λEI
)−1

.

Similarity of KFAC to FOOF and Damping: The up-
date of KFAC differs from the FOOF update (eq (6)) only
through the second factor

(
EFET

F + λEI
)−1

. We empha-
sise that this similarity is induced mainly through the heuris-
tic damping strategy. In particular, with standard damping,
or without damping, the second Kronecker factor of KFAC
could lead to updates that are essentially uncorrelated with
FOOF. However, as we use heuristic damping and increase
the damping strength λE , the second factor will be closer to
(a multiple of) the identity and KFAC’s update will become
more and more aligned with FOOF.
Based on this derivation, we now test empirically whether
heuristic damping indeed makes KFAC similar to FOOF
and how it affects performance.
Figure 3B confirms our theoretical argument that heuristic
damping drastically increases similarity of KFAC to FOOF
and stronger heuristic damping leads to even stronger simi-
larity. This similarity is directly linked to performance of
KFAC as shown in Figure 3C. These findings, in particu-
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Figure 5. FOOF outperforms KFAC in a Wide ResNet18 on CIFAR 10. (A) Wall-clock time comparison between SGD and amortised
versions of FOOF, KFAC. In convolutional architectures, FOOF and KFAC can be effectively amortised wihtout sacrificing performance.
(B, C, D) Training loss in different settings. (A-D) Results on CIFAR100 and SVHN are analogous.

lar the necessity to use heuristic damping, already strongly
suggest that similarity to FOOF is required for KFAC to
perform well. Moreover, as shown in Figure 3D, FOOF
requires lower damping than KFAC to perform well. This
further suggests that damping in KFAC is strictly required
to limit the effect of EFET

F on the update, thus increasing
similarity to FOOF. All in all, these results directly support
the claim that KFAC, rather than being a natural gradient
method, owes its performance to approximating FOOF.

Performance: If the above view of KFAC is correct, and it
owes its performance to similarity to FOOF, then one would
expect FOOF to perform better than or similarly to KFAC.
We carry out two different tests of this hypothesis. First,
we train a network using KFAC and at each iteration, we
record the progress KFAC makes on the given mini-batch,
measured as the relative decrease in loss. We compare this
to the progress that KFAC would have made without its
second Kronecker factor. We use learning rate and damping
that are optimal for KFAC and, when dropping the second
factor, we rescale the update to have the same norm as
the original KFAC update for each layer. The results are
shown in Figure 4C and show that without the second factor,
KFAC makes equal or more progress, which supports our
hypothesis. This observation is consistent across all differ-
ent experimental setups we investigated, see appendix.
As a second test, we check whether FOOF outperforms
KFAC, when both algorithms follow their own trajectory.
This is indeed the case as shown in Figure 4B. The only
case where the advantage described in Figure 4C does not
translate to an overall better performance is the autoencoder
setting, as analysed in the appendix, e.g. Figure J.19, Sec J.2.
Results on a Wide ResNet18 demonstrate that our findings
carry over to more complex settings and that FOOF often
outperforms KFAC, see Figure 5.

Computational Cost: We also note that, on top of mak-
ing more progress per parameter update, FOOF requires
strictly less computation than KFAC: It does not require
an additional backward pass to estimate the Fisher; it only
requires keeping track of, inverting as well as multiplying
the gradients by one matrix rather than two (only AAT and
not EFET

F ). These savings lead to a 1.5x speed-up in wall-

clock time per-update for the amortised versions of KFAC
and FOOF as shown in Figure 4A.

Cost in Convolutional Architectures: The only overhead
of KFAC and FOOF which cannot be amortised is perform-
ing the matrix multiplications in eqs (6),(2). These are
standard matrix-matrix multiplications and are considerably
cheaper than convolutions, so that we found that KFAC
and FOOF can be amortised to have almost the same wall-
clock time per update as SGD for this experiment (∼10%
increase for FOOF, ∼15% increase for KFAC) without sac-
rificing performance, see Appendix D. We note that these
results are significantly better than wall-clock times from
Ba et al. (2016); Desjardins et al. (2015), which require
approximately twice as much time per update as SGD.4

Summary: We had already seen that KFAC does not rely on
second-order information. In addition, these results suggest
that KFAC owes its strong performance to its similarity to
FOOF, a principled, well-performing first-order optimizer.

5. Limitations
In our experiments, we report training losses and tune hyper-
parameters with respect to them. While this is the correct
way to test our hypotheses and common for developing and
testing optimizers (Sutskever et al., 2013), it will be im-
portant to test how well the optimizers investigated here
generalise. A meaningful investigation of generalisation
requires a different experimental setup (as demonstrated in
Zhang et al. (2018b)) and is left to future work. With this in
mind, we note that in our setting the advantage of FOOF and
KFAC in training loss typically translates to an advantage
in validation accuracy (and that FOOF and KFAC behave
similarly).

We have restricted our investigation to the context of opti-
mization and more specifically KFAC. While we strongly
believe that our findings carry over to other Kronecker-
factored optimizers (Desjardins et al., 2015; Goldfarb et al.,
2020; Botev et al., 2017; George et al., 2018; Martens et al.,

4Information reconstructed from Figure 3 in Ba et al. (2016)
and Figure 4 in Desjardins et al. (2015).
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2018; Osawa et al., 2019), we have not explicitly tested this.

While, in all our experiments, the newly proposed view that
KFAC is closely related to FOOF captures considerably
more characteristics of KFAC than the standard view of
KFAC as a natural gradient method, we highlight again
that there are some limitations to this explanation and, in
particular, one setting where KFAC performs slightly better
than FOOF, see Section J.2.

6. Discussion
The purpose of this discussion is twofold. On the one hand,
we will show that, while being surprising and contradicting
common, strongly held beliefs, much of our results are con-
sistent with data from prior work. On the other hand, we will
summarise in how far our fundamentally new explanation
for KFAC’s effectiveness improves upon prior knowledge
and resolves several puzzling observations.

Natural Gradients vs KFAC: Our first key result is that
KFAC outperforms exact natural gradients, despite being
motivated as an approximate natural gradient method. We
perform several controls and a particularly important set of
experiments is comparing exact, subsampled natural gradi-
ents to subsampled KFAC in a range of settings. In these
experiments, we find: (1) Subsampled natural gradients
often do not perform much better than SGD with momen-
tum. (2) Subsampled KFAC works very well. Finding (1)
is consistent with rather common beliefs that subsampling
the curvature is harmful. These beliefs are often uttered in
informal discussions and are partially evidenced by claims
from Martens et al. (2010). Moreover, in some controls
(e.g. Fig 1D), we show that full (non-subsampled) natural
gradients do outperform SGD with momentum, consistent
for example with Martens et al. (2010). Thus, finding (1) is
in line with prior knowledge and results. Moreoever, finding
(2) matches experiments from Botev et al. (2017); Bernac-
chia et al. (2019) as described in Section 3 and thus also is
in line with prior work.

Also independently of our results, it is worth noting that the
performance of subsampled KFAC reported in Botev et al.
(2017); Bernacchia et al. (2019) is hard to reconcile with the
simultaneous convictions that (1) KFAC is a natural gradi-
ent method and (2) subsampling the Fisher has detrimental
effects.

Our newly suggested explanation of KFACs performance
resolves this contradiction. Even if one were to disagree
with our explanation for KFAC’s effectiveness, the above
is an important insight, strengthened by our careful control
experiments, and deserves further attention.

It is also worth noting that another natural way to check
if our finding that KFAC outperforms Natural Gradients

agrees with prior work would be to look for a direct com-
parison of KFAC with Hessian-Free optimization (HF). Per-
haps surprisingly, to the best of our knowledge, there is
no meaningful comparison between these two algorithms
in the literature.5 It will be interesting to see a thoroughly
controlled, well tuned comparison between HF and KFAC.

Damping: A second cornerstone of our study is the effect
of damping on KFAC. We found that employing a heuris-
tic, rather than standard damping strategy is essential for
performance. The result that heuristic damping improves
KFAC’s performance has been noted several times (quali-
tatively, rather than quantitatively), see the original KFAC
paper (Martens and Grosse, 2015), its large-scale follow up
(Ba et al., 2016), and even E-KFAC (George et al., 2018).

While choice of damping strategy may seem like a neg-
ligible detail at first, it is important to bear in mind that
without heuristic damping KFAC performs like standard
first-order optimizers like SGD or Adam. Thus, if we want
to understand KFAC’s effectiveness, we have to account for
its damping strategy. This is achieved by our new explana-
tion and even if one were to disagree with it, this finding
deserves further attention and an explanation.

Ignoring the second Kronecker factor EFET
F of the ap-

proximate Fisher: A third important finding is that KFAC
performs well, and often better, without its second Kro-
necker factor. The fact that algorithms that are similar to
KFAC without the second factor perform exceptionally well
is consistent with prior work (Desjardins et al., 2015; Frerix
et al., 2017; Amid et al., 2021). Moreover, Desjardins et al.
(2015) explicitly state that their algorithm performs more
stably without the second Kronecker factor, which further
confirms our findings. We emphasise that, without the sec-
ond Kronecker factor, the preconditioning matrix of KFAC
is independent of the loss (or derivatives of it), and thus
cannot be seen as a classical second-order method. From a
second-order viewpoint, dropping dependence on the loss
should have detrimental effects, inconsistent with results
from the studies above as well as ours.

Architectures with Parameter Sharing: Finally, we point
to another intriguing finding from Grosse and Martens
(2016). For architectures with parameter sharing, like CNNs
or RNNs, approximating the Fisher by a Kronecker product
requires additional, sometimes complex assumptions, which
are not always satisfied. Grosse and Martens (2016) explic-
itly investigate one such assumption for CNNs, pointing
out that it is violated in architectures with average- rather
than max-pooling. Nevertheless, KFAC performs very well
in such architectures (Ba et al., 2016; George et al., 2018;
Zhang et al., 2018b; Osawa et al., 2019). This suggests that

5We are aware of only one comparison, which unfortunately
has serious limitations, see Appendix H.1.1.
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KFAC works well independently of how closely it is related
to the Fisher, which is a puzzling observation when view-
ing KFAC as a natural gradient method. Again, our new
explanation resolves this issue, since KFAC still performs
gradient descent on neurons.6

In summary, we have shown that viewing KFAC as a second-
order, natural gradient method is irreconcilable with a host
of experimental results, from our as well as other studies.
We then proposed a new, considerably improved explana-
tion for KFAC’s effectiveness. We also showed that the
algorithm FOOF, which results from our explanation, can
give further performance improvements compared to the
state-of-the art optimizer KFAC.
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APPENDIX

A Tuning Natural Gradients

B Software Validation

C Further Applications of Implicit, Fast Fisher Inversion

D Experimental Details (incl. HP tuning and values)

E Derivation of KFAC

F Toy Example Illustrating the Difference between SGD and FOOF

G Kronecker-Factored Curvature Approximations for Laplace Posteriors

H Related Work

I Details for Efficiently Computing F−1-vector products for a Subsampled Fisher

J Additional Experiments

A. Tuning Natural Gradients
While, for the sake of fairness, all results in the paper are based on the hyperparameter optimization scheme described
further below, we emphasise that we also invested effort into hand-tuning subsampled natural gradient methods, but that this
did not give notably better results than the ones reported in the paper. For our Fashion MNIST and MNIST experiments, we
also implemented and tested an adaptive damping scheme as described in (Martens and Grosse, 2015), tried combining it
with automatic step size selection and also a form of momentum, all as described in (Martens and Grosse, 2015). None of
these techniques gave large improvements.

B. Software Validation
To validate that our algorithm of computing products between the damped, inverse Fisher and vectors (as described
in Appendix I) is correct, we considered small networks in which we could explicitly compute and invert the Fisher
Information and confirmed that our implicit calculations agree with the explicit calculations for both fully connected as well
as convolutional architectures.

Moreover, the fact that natural gradients outperform SGD in Figure 1D (and some other settings) is very strong evidence
that our implementation of natural gradients is correct.

C. Further Applications of Implicit, Fast Fisher Inversion
C.1. Bayesian Laplace Posterior Approximation

Laplace approximations are a common approximation to posterior weight distributions and various techniques have been
proposed to approximate them, for a recent overview and evaluation we refer to Daxberger et al. (2021). In this context,
the Hessian is the posterior precision matrix and it is often approximated by the Fisher or empirical Fisher, since these are
positive semi-definite by construction.

It is often stated that sampling from a full covariance, Laplace posterior is computationally intractable. However, combining
our insights with an additional trick allows us to sample from an exact posterior, given a subsampled Fisher, as shown below.
We adapted the trick from Doucet (2010), who credits Hoffman and Ribak (1991). We also remark that Immer et al. (2021)
sample from the predictive distribution of a linearised model, arguing theoretically and empirically that the linearised model
is the more principled choice when approximating the Hessian by the Fisher.



Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization

C.1.1. SAMPLING FROM THE FULL COVARIANCE LAPLACE POSTERIOR

We write Λprior for the prior precision and Λ = Λprior +DF for the posterior precision, where F is the Fisher. All expressions
below can be evaluated efficiently for example if the prior precision is diagonal and constant across layers, as is usually the
case. As for the natural gradients, we factorise F = GGT , where G is a N ×D matrix (N is the number of parameters, D
the number of datapoints). Using Woodbury’s identity, we can write the posterior variance as

Λ−1 =
(
Λprior +DGGT

)−1
= Λ−1

prior −DΛ−1
priorG

(
I +DGTΛ−1

priorG
)−1

GTΛ−1
prior (7)

We now show how to obtain a sample from this posterior. To this end, define matrices V,U as follows:

V =
(
D1/2Λ

−1/2
prior

)
G (8)

U = I + VTV = I +DGTΛ−1
priorG (9)

(10)

Let y ∼ N (0, IN ) and z ∼ N (0, ID), and define x

x = y −VU−1
(
VTy + z

)
(11)

We will confirm by calculation that Λ
−1/2
prior x is a sample from the full covariance posterior.

x clearly has zero mean. The covariance E
[
xxT

]
can be computed as

E
[
xxT

]
= I + VU−1

(
VTV + I

)
U−TVT − 2VVT (12)

Since U is symmetric and since we chose VTV + I = U , the above simplifies to

E
[
xxT

]
= I−VU−1VT (13)

By our choice of U,V, this expression equals

E
[
xxT

]
= I−DΛ

−1/2
prior G

(
I +DGTΛ−1

priorG
)−1

GTΛ
−1/2
prior (14)

In other words, Λ
−1/2
prior x is a sample form the full covariance posterior.

C.1.2. EFFICIENT EVALUATION OF THE ABOVE PROCEDURE

The computational bottlenecks are computing GTΛ−1
priorG

T , calculating vector products with G and GT .

Note that for a subsampled Fisher with moderate D, we can invert U explicitly.

We have already encountered all these bottlenecks in the context of natural gradients and they can be solved efficiently in the
same way, see Section I. The only modification is multiplication by Λ−1

prior and for any diagonal prior, this can be solved
easily.

C.2. Continual Learning

Closely related to Bayesian posteriors is a number of continual learning algorithms (Kirkpatrick et al., 2017; Nguyen et al.,
2017; Benzing, 2020). For example, EWC (Kirkpatrick et al., 2017) relies on the Fisher to approximate posteriors. Formally,
it only requires evaluating products of the form vTFv. Since the Fisher is large, EWC uses a diagonal approximation. From
the exposition below, it is not to difficult to see that vTFv is easy to evaluate for a subsampled Fisher and the memory cost
is roughly equal to that used for a standard for- and backward pass through the model: It scales as the product of the number
of datapoints and the number of neurons (rather than weights).
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C.3. Meta Learning / Bilevel optimization

Some bilevel optimization algorithms rely on the Implicit Function Theorem to estimate outer-loop gradients after the inner
loop has converged. They require evaluating a product of the form (λI + H)−1v, where H is the Hessian and v a vector,
see e.g. (Bengio, 2000). If we approximate the Hessian by a subsampled Fisher, the method used here is directly applicable
to compute this product.

D. Experimental Details
All experiments were implemented in PyTorch (Paszke et al., 2019).7 All models use Kaiming-He initialisation (He et al.,
2015; Glorot and Bengio, 2010). Moreover, we average all results across three different random seeds.

D.1. Exponentially Moving Averages and Subsampled KFAC

As mentioned in the main text, we use exponentially moving averages to estimate the matrices AAT and EFET
F . For a

quantity xt the exponentially moving average x̂t is defined as:

x̂t+1 = m · x̂t + (1−m)xt+1

We also normalise our exponentially moving averages (or equivalently initialise x̂1 = x1). Following (Martens and Grosse,
2015), we set m = 0.95. Preliminary experiments with m = 0.999 showed very similar performance.

For subsampled KFAC, we simply set m = 0, implying that KFAC, like Subsampled Natural Gradients, only uses one
mini-batch to estimate the curvature.

D.2. Hyperparameter Tuning

Learning rates for all methods were tuned by a grid search, considering values of the form 1 · 10i, 3 · 10i for suitable (usually
negative) integers i.

The damping terms for Natural Gradients, KFAC, FOOF were determined by a grid searcher over
10−6, 10−4, 10−2, 100, 102, 104, 106 on Fashion MNIST and MNIST. We also confirmed that refining the grid to val-
ues of the form 10i does not meaningfully change results. For all other experiments we used a grid with values of the form
10i, but also there a coarser grid with values 102i would have given very similar results.

We extended grids if the performance at a boundary of the grid was optimal (or near optimal).

As already described in Appendix A, we did spend additional efforts to tune the natural gradient method, including hand-
tuning, as well as using additional ingredients like a fancy, second-order form of momentum, automatic learning rates,
adaptive damping, see Appendix A.

For SGD, momentum was grid-searched from 0.0, 0.9. For Adam, we kept most hyperparameters fixed and tuned only
learning rate.

Each ablation / experiment got its own hyperparameter search. The only exception is FOOF (T = 100), which uses exactly
the same hyperparameters as FOOF (T = 1). In particular, for plots like Figure 3C, the learning rate for each damping term
was tuned individually.

We always chose the hyperparameters which gives best training loss at the end of training. Usually, these hyperparameters
also outperform others in the early training stage. We also note that several hyperparametrisations of KFAC became unstable
towards the end/middle of training, while this did not occur for FOOF.

For the experiments in the main paper, HP values found by this procedure are given in Section D.4.

D.3. Hyperparameter Robustness

On top of the learning rate, FOOF requires additional hyperparameters, most of which seem very robust as described below.
Additional hyperparameters always include damping and further may include the momentum for exponentially moving
averages, and also may include amortisation hyperparameters S,T described in Algorithm 1.

7So long and thanks for all the hooks.
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• Step size: Tuning the stepsize of FOOF was as easy/difficult as tuning the step size of SGD in our experience.
In particular, BatchNorm allows using a wider range of learning rates without large changes in performance. We
recommend to parametrise the stepsize as α/λ (where λ is the damping term) and (grid-)search over α.

• Damping λ: We searched from a grid of the form 102i for integers i and this was sufficient for our experimental setup.
Refining this grid only gave very small improvements (at least for the experimental setup in our paper). Using values
that differed by a factor of 100 from the optimal value, usually still gave good results and clearly outperformed SGD.

• Exponential Moving Averagem for AAT : Following (Martens and Grosse, 2015), we set this value to 0.95. Preliminary
experiments with 0.999 gave similar performance. Results seem very robust with respect to this choice. It is conceivable
that very small batch sizes require slightly larger values of m to estimate AAT

• Amortisation parameters S, T : In our experiments it was sufficient to perform inversions once per epoch. Setting S to
50 is a mathematically save choice (given m = 0.95), and setting S = 10 empirically did not decrease performance
either.

D.4. Hyperparameter values

Note that the damping term required for KFAC/FOOF/Natural Gradients depends on implementation details, in particular
it depends on the scaling of the curvature matrix (e.g. one may or may not normalise by the batch dimension – there
are reasonable arguments for both choices; and in addition, the scaling of the Fisher often varies depending on defini-
tion/context/implementation).
Thus independent implementations may well require different HP values.

Note that the implementation we used to generate the data for the paper (but not the public code base), scales Fisher
differently for MC- and Full Fisher computations, so that damping terms there are not directly comparable.

We also note that for the above reason (and the precise damping strategy employed by KFAC), the damping terms of KFAC
and FOOF are not directly comparable. We found that the damping that is applied to the matrix AAT for good HP values of
KFAC and FOOF is usually very similar, in line with our overall findings.

HP values for experiments from main paper in Table D.4.

D.5. Remaining details

Experiments were carried out on fully connected networks, with 3 hidden layers of size 1000. The only exception is the
network in Figure 2A, which has no hidden layer. For simplicity of implementation, we omitted biases. Unless noted
otherwise, we trained networks for 10 epochs which batch size 100 on MNIST or Fashion MNIST. MNIST was preprocessed
to have zero mean and unit variance, and – due to an oversight – Fashion MNIST was preprocessed in the same way, using
the mean+std-dev of MNIST. Our comparisons remain meaningful, as this affects all methods equally and perhaps it even
makes our results more comparable to prior work. Several experiments were carried out on subsets of the training set
consisting of 1000 images, in order to make full batch gradient evaluation cheaper and were trained for 100 epochs.

For the wall-clock time experiments, we used PyTorch DataLoaders and optimized the “pin memory” and “num workers”
arguments for each method/setting.

D.6. CIFAR 10

For CIFAR10 we use a Wide ResNet18 and standard data-augmentation consisting of random horizontal flips as well as
padding with 4 pixels followed by random cropping. The RGB channels are normalised to have zero mean and unit variance.

When experimenting with the ResNet with batchnorm, we found that KFAC was unstable with standard momentum. To fix
this, we switched on the momentum term only after the first epoch was completed. This seemed helped all methods a bit, so
we used it for all of them. We used the same setting for the ResNet without batchnorm.

When applicable, the SGD baseline uses standard batch norm (Ioffe and Szegedy, 2015). For FOOF and KFAC we include
batch norm parameters, but do not train them.
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SGD+M (lr) Adam (lr) Natural MC (lr; damp) Natural Full KFAC FOOF
Fig 1A 0.01 1e-4 1e-5,1e-4 - 0.3, 1.0 -
Fig 1B - - same as 1A - 0.3, 1.0 -

Fig 1C - -
D=1000: 3e-4, 0.01;
D=4000: 1e-3, 0.01 - - -

Fig 1D 0.03 0.1, 1.0 100, 100 0.1, 1e-4 -

Fig 2A
0.03

No Mom.: 0.03 - 0.01, 0.01 100, 100 100, 1 -

Fig 2B - - Block-Diag: 10, 100 - same as 1A -
Fig 2C - - Block-Diag: 0.1, 1 Block-Diag: 30, 100 0.1, 1e-4 -

Fig 3 A - - - -
std. damp:

0.1, 1.0 -

Fig 3C+D - - - -
1e-6, 1e-6
1e-4, 1e-4
1e-2, 1e-2

1e-6, 1e-6
1e-4, 1e-4
1e-2, 1e-2

see Sec D.9

Fig 4 B
(see Fig 1A) - - - - - 30, 100

Fig 5B 0.003 - - - - 0.03, 1.0 10, 100
Fig 5C 0.03 - - - 1.0, 1.0 30, 100
Fig 5D 0.03 - - - 1.0, 1.0 30, 100

Table 1. HP values for experiments in main paper. Please refer to full text D.4 for some notes of caution for interpreting these values.
When an entry says ”same as ...” this means that the HP was not re-tuned for this figure (we only did this in cases where it makes sense).
If two entries are the same, but there is no ”same as ...”, this means the HP values were tuned independently, and happened to be the same.
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Networks are trained for 50 epochs with batchsize 100. All methods use momentum of 0.9 unless noted otherwise.

For Polyak Averaging, we follow (Grosse and Martens, 2016) and also use the decay value recommended there without
further tuning.

Amortisation: We found that KFAC and FOOF can be amortised fairly strongly without sacrificing performance. We invert
the Kronecker factors every T = 500 timesteps (i.e. once per epoch) and only update the exponentially moving averages for
the Kronecker factors for the S = 10 steps immediately before inversion. We also performed thorough hyperparameter
searches with T = 250, S = 50 (larger values of S make little sense, due to their limited influence on the exponentially
moving averages) which gave essentially identical results. Preliminary experiments with T = 100 also did not perform
better than the schedule described above and used for our experiments.

D.7. Autoencoder Experiments

We tried to replicate the setup of (Martens and Grosse, 2015) implemented in the tensorflow kfac repository8. Concretly, we
use a fully connected network with layers of sizes (d, 1000, 500, 250, 30, 250, 500, 1000, d), where d is the number of
input pixels of a single image (which depends on the dataset). All hidden layers, expect for the middle one (of size 30) are
followed by a tanh-nonlinearity. We preprocessed each dataset to have zero mean and unit variance. We used a batch size of
1000, since (Martens and Grosse, 2015) state that small batch sizes lead to too much noise. For MNIST and CURVES we
trained for 200 epochs, for FACES for 100 epochs. To amortise the runtime, we invert matrices every 10 steps.

D.8. SVHN

We used the same preprocessing for SVHN as for CIFAR10. To amortise runtime we used T=100, S=50 (see pseudocode 1).
We confirmed that with T=S=10 results are essentially the same, suggesting that the amortisation did not harm performance.
We used a VGG11 network (without batch norm).

D.9. Version of FOOF with λA from KFAC

In Figures 3,4, we use a version of FOOF which always uses exactly the same damping term λA for each layer as KFAC to
obtain a comparison that’s as clean as possible. Concretely, this means carrying out most computations as in KFAC and
computing EFET

F and λA, λE as in KFAC and then computing the parameter update only using the first kronecker factor
AAT , while omitting the second factor. Note that λA varies during training, and typically increases so that this version of
FOOF is slightly different from standard FOOF.

Moreover, omitting the second factor notably changes the update size. To correct for this effect, we made the following
modifiaction.

In Figure 4C, we rescaled the resulting update (as also described in the figure caption) so that at each layer, the norm of the
update had the same norm as the KFAC update.

In the experiment of Figure 3, which we did first, we used a slightly different strategy (but we do not think that this makes
a difference). An increase in λA leads to a decrease in effective step-size of the above version of FOOF. In KFAC this is
compensated by a decrease in damping of the second factor so that the effective stepsize is roughly constant. To compensate
analogously in FOOF, we simply multiply the update by the scalar λ−1

E = λA/λ to maintain a constant stepsize. For
standard FOOF (in all other figures) we use constant λA and make no such modifications.

E. Derivation of KFAC
Here, we re-derive KFAC (Martens and Grosse, 2015).

We focus on one layer and use previous notation. In particular, we consider one datapoint (Xi, yi) (remember that yi is a
sample from the model distribution) and denote the input of the layer as ai, the output as bi = Wai and ei = ∂L

∂bi
. For this

single datapoint, the block-diagonal part of the Fisher given by this datapoint is exactly equal to

Fi = (aia
T
i )⊗ (eie

T
i )

8https://github.com/tensorflow/kfac/blob/master/kfac/examples/autoencoder_mnist.py

https://github.com/tensorflow/kfac/blob/master/kfac/examples/autoencoder_mnist.py
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Recall that the Fisher is defined as an expectation over datapoints F = E[Fi]. If we use a Monte-Carlo approximation of
this expectation, the Fisher is approximated as

F =
∑
i∈I

(
aia

T
i ⊗ eie

T
i

)
Now, KFAC makes the following further approximation:

F =
∑
i∈I

(
aia

T
i ⊗ eie

T
i

)
≈

(∑
i∈I

aia
T
i

)
⊗

(∑
i∈I

eie
T
i

)

In general, this approximation is imprecise: It is equivalent to approximating a rank |I| matrix by a rank 1 matrix9. If we
take for example the MNIST dataset, which has 60,000 inputs with 10 labels each, the full diagonal block of the Fisher has
rank 600,000, while the approximation has rank 1. In convolutional networks this is even more pronounced: The full rank of
the Fisher is multiplied by the number of locations at which the filer is applied, while the approximation remains at rank 1.

So in general, this approximation does not hold. In the literature it is usually justified by an independence assumption.
Concretely, we view aia

T
i , eie

T
i as random variables, where the randomness jointly depends on which datapoint we draw.

We then assume that these random variables are independent. However, note that in non-degenerate neural networks we
will usually be able to uniquely identify which datapoint was used, if we are given eie

T
i (It is extremly unlikely that a

back-propagated derivative is the same for two different datapoints – so there is a one-to-one mapping from datapoints to
ei). Thus we can uniquely determine aia

T
i . This implies that the conditional entropy H(aia

T
i | eieTi ) = 0, in particular

aia
T
i , eie

T
i are not independent.

We point out that none of our experiments directly checks how accurate this approximation of the Fisher Information is. Our
experiments mainly show that heuristic damping breaks the link to the Fisher, but do not give data on the quality of the
approximation before heuristic damping. Evaluating the quality of this approximation is an interesting question left to future
work.

Relating this to findings of (Bernacchia et al., 2019), note that if we consider linear networks and regression problems with
homoscedastic noise, then the backpropaged derivatives ei are completely independent of the datapoint – and in particular
independent of ai. This is because the derivatives at the last layer are a function of the covariance matrix of the noise (and
independent of the in-/output of the network), and all derivatives are backpropagated through the same linear network. This
is a part of the insights from (Bernacchia et al., 2019) for the analysis of linear networks. The above reasoning also explains
precisely where this breaks down for non-linear networks (or hetero-scedastic noise). In particular, in non-linear networks,
the errors will be backpropagated through different non-linear functions (given by the activations from the forward pass) and
the argument from the linear case breaks down.

F. Toy Example Illustrating the Difference between SGD and FOOF
In the main paper, we pointed out that FOOF trades-off conflicting gradients differently (seemingly better) than SGD. Here,
we provide a toy example illustrating this point. Roughly, the example will show that in SGD, gradients from one datapoint
can ”overwrite” gradients from other datapoints, so that SGD does not decrease the loss on the latter, while in FOOF the
update will make progress on both datapoints simultaneously.

The example will consist of a linear regression network with two inputs and one output and will feature two datapoints. The
datapoints have inputs (3,1) and (1,0) and labels (1), (-1) and the weight vector (consisting of two weights) is initialised to
(0,0). Taking the squared distance as loss function, It is easily verified that the gradients for the datapoitns are (3,1) and
(-1,0). The SGD update direction is (2, 1) and will increase the loss on the second datapoint independent of step size. In
contrast, the (un-damped) FOOF update is given by (-1, 4) which decreases the loss on both datapoints for suitably small
stepsize. In particular a single update-step of FOOF with stepsize 1 converges to a global optimum.

In this context, it may be worth noting that applying FOOF to single datapoints and averaging resulting updates (rather than
computing the FOOF update jointly on the entire batch), corresponds to a version of SGD, in which each datapoint has a

9To see this, simply reshape the matrix F by first flattening aia
T
i , eie

T
i and then replacing the Kronecker product by the standard

outer product of vectors. The resulting matrix has the same entries as F and each Fi has rank 1. But in general, the sum over Fi has rank
|I|.
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slightly different learning rate. We tested this version and found that it does not perform notably better than SGD. This
also supports the intuition that FOOFs advantage over SGD comes from combining conflicting gradient directions more
effectively.

G. Kronecker-Factored Curvature Approximations for Laplace Posteriors
A Kronecker factored approximation of the curvature has also been used in the context of Laplace posteriors (Ritter et al.,
2018b) and this has been applied to continual learning (Ritter et al., 2018a). In both context, empirical results are very
encouraging.

Our finding that, in the context of optimization, the effectiveness of KFAC does not rely on its similarity to the Fisher raises
the question whether these other applications (Ritter et al., 2018b;a) of Kronecker-factorisations of the curvature rely on
proximity to the curvature matrix.

We point out that the applications from (Ritter et al., 2018b;a) do not seem to rely on heuristic damping. Also in light of our
findings, it remains plausible that without heuristic damping, KFAC is very similar to the Fisher. In other words, the below
is a hypothesis, not a certainty. To evaluate it, it would be interesting to compare the performances of KFAC to Full Laplace
as well as to the algorithm suggested below.

For simplicity of notation, we assume that the network has only one layer, but the analysis straightforwardly generalises
to more layers. Suppose W0 is a local minimum of the negative log-likelihood of the parameters. Further denote the
approximation to the posterior covariance by Σ. For an approximate posterior to be effective, we require that parameters
which are assigned high likelihood by the posterior actually do have high likelihood according to the data distribution. In
other words, when a weight pertubation V satisfies that vec (V)

T
Σvec (V) is small (high likelihood according according

to the approximate posterior), then the parameter W0 + V should have low loss (i.e. high likelihood according to the data).

For the Kronecker-factorisation, the first factor again is given by AAT . Let us assume again that the second factor is
dominated by a damping term (a very similar argument works if the second factor is predominantly diagonal), so that the
posterior covariance is approximately Σ ≈ AAT ⊗ I. Then, some easily verified calculations give

vec (V)
T

Σvec (V) ≈ vec (V)
T

(AAT ⊗ I)vec (V) =
∑
i

vTi (AAT )vi (15)

where vi is the i-th row of V, i.e. the set of weights connected to the i-th output neuron.10 This expression being small
means that each row of the pertubation V is near orthogonal to the input activations A (or more formally, it aligns with
singular vectors of A which correspond to small singular values). This means that the layer’s output, and consequently the
networks output, get perturbed very little. This in turn means, that W0 + V has high-likelihood.

A simple test of this hypothesis would be to keep only the first kronecker-factor AAT , replace the second one by the identity
and check if the method performs equally well or better. Further, it would be interesting to compare the performance of
kronecker-factored posterior to a full-laplace posterior (controlling for the amount of data given to both) and check if –
analogous to our results for optimization – the kronecker-factored posterior outperforms the exact laplace posterior.

In fact, a very similar algorithm has already been developed independently (Ober and Aitchison, 2021). It shows strong
performance, indirectly supporting our hypothesis.

H. Related Work
We review generally related work as well as more specifically algorithms with similar updates rules to FOOF.

H.1. Generally Related Work

Natural gradients were proposed by Amari and colleagues, see e.g. (Amari, 1998) and its original motivation stems from
information geometry (Amari and Nagaoka, 2000). It is closely linked to classical second-order optimization through the

10If the second kronecker-factor is not the identity, then there are additional cross terms of the form bijv
T
i (AAT )vj , where bij is the

i, j-th entry of the second kronecker-factor.
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link of the Fisher to the Hessian and the Generalised Gauss Newton matrix (Martens, 2014; Pascanu and Bengio, 2013).
Moreover, natural gradients can be seen as a special case of Kalman filtering (Ollivier, 2018). Interestingly, different filtering
equations can be used to justify Adam’s (Kingma and Ba, 2014) update rule (Aitchison, 2018), see also (Khan et al., 2018).

There is a long history of approximating natural gradients and second order methods. For example, HF (Martens et al., 2010)
exploits that Hessian-vector products are efficiently computable and uses the conjugate-gradient method to approximate
products of the inverse Hessian and vectors. In this case, similarly to our application, the Hessian is usually subsampled,
i.e. evaluated on a mini-batch. Other approximations of natural gradients include (Roux et al., 2007; Ollivier, 2015; 2017;
Grosse and Salakhudinov, 2015; Desjardins et al., 2015; Martens et al., 2010; Marceau-Caron and Ollivier, 2016).

The intrinsic low rank structure of the (empirical) Fisher has been exploited in a number of setups by a number of papers
including (Agarwal et al., 2019; Goldfarb et al., 2020; Immer et al., 2021; Dangel et al., 2021).

Kronecker-factored approximations (Martens and Grosse, 2015; Grosse and Salakhudinov, 2015) have become the basis of
several optimization algorithms (Botev et al., 2017; Goldfarb et al., 2020; George et al., 2018; Bernacchia et al., 2019). Our
contribution may shed light on why this is the case.

Moreover, Kronecker-factored approximation of the curvature can be used in the context of Laplace Posteriors (Ritter et al.,
2018b), which can also be applied to continual learning (Ritter et al., 2018a). A more detailed discussion of how this relates
to our findings can be found in Section G.

KFAC faces the problem of approximating a sum of kronecker-products by a single kronecker-product. This problem also
occurs when approximating real time recurrent learning of recurrent networks (Williams and Zipser, 1995; Tallec and
Ollivier, 2017; Mujika et al., 2018; Benzing et al., 2019) and in this context (Benzing et al., 2019) show how to obtain
optimal biased and unbiased approximations. Our results suggest that it is not promising to apply these techniques to
approximate natural gradients more accurately.

As briefly mentioned, FOOF is related to the idea of optimizing modules of a nested function independently, e.g. (LeCun,
1988; Carreira-Perpinan and Wang, 2014; Taylor et al., 2016; Gotmare et al., 2018).

It may also be worth noting that FOOF is evocative of target propagation (Bengio, 2014; Meulemans et al., 2020), but we
are not aware of a formal link between these methods.

H.1.1. COMPARISON BETWEEN HF AND KFAC

The subsampled natural gradient method upon which many of our results rely was first described in (Ren and Goldfarb,
2019). On top of their useful, important theoretical results, they also provide an empirical evaluation of their method, and –
to the best of our knowledge – the only published comparison of KFAC and HF.

Unfortunately, there is very strong evidence that all methods considered there are heavily undertuned or that there is another
issue. To see this, note that in (Ren and Goldfarb, 2019) a network trained on MNIST with one hidden layer of 500 neurons
achieves a training loss of around 0.3 and a test accuracy of less than 95% for all considered optimizers. This is much worse
than standard results and clearly not representative of normal neural network training. We quickly verified that in exactly the
same setting, with KFAC we are able to obtain a loss which is more than 100x smaller and a test accuracy of 98%.11

H.1.2. THEORETICAL WORK

There also is a large body of work on theoretical convergence properties of Natural Gradients. We give a brief, incomplete
overview here and refer to (Zhang et al., 2019) for a more thorough discussion.

(Bernacchia et al., 2019) analyse the convergence of natural gradients in linear networks. Interestingly, they show that for
linear networks applied to regression problems (with homoscedastic noise), inverting a block-diagonal, Kronecker-Factored
approximation of the curvature results in exact natural gradients, see also Appendix E for a brief justification of a part of
their findings. We point out that the empirical results in non-linear networks from (Bernacchia et al., 2019) essentially
amount to a re-discovery of KFAC, as such they do not contradict our results. In particular, they are also based on heuristic
damping.

11 We used the same network, same activation function and same number of epochs. Weight initialisation scheme, batch size and
preprocessing were not described in the original experiments, so we used batch size 100 and the same initialisation and preprocessing as
in our other MNIST experiments (which has no data augmentation).
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For non-linear, strongly overparametrised two-layer networks in which only the first layer is trained, (Zhang et al., 2019)
recently gave a convergence analysis of both natural gradients and KFAC. Note that (Zhang et al., 2019) do not establish
similarity between KFAC and Natural Gradients but rather give two separate convergence proofs.

Both these theoretical results (Bernacchia et al., 2019; Zhang et al., 2018a) do not account for any form of damping, so they
have to be seen as independent of the empirically well-performing version of KFAC and our investigation.

A set of interesting theoretical results by (Karakida et al., 2021) shows that the Fisher Information in deep neural networks
has a pathological spectrum – in particular, they show that the Fisher is flat in most directions. This view may well give a
theoretical intuition for why Subsampled Natural Gradients do often not notably outperform SGD.

H.1.3. RELATED WORK FROM BAYESIAN ML

Similar to our new view on optimization is (Ober and Aitchison, 2021), which is a Bayesian Posterior approximation and
can (roughly) be viewed as considering distributions over neuron activations rather than in weight space directly, similarly to
how FOOF performs optimization steps on neuron activations rather than on weights directly.

H.2. Algorithms with similar update rules

While it is not immediately visible due to a re-parametrisation employed in (Desjardins et al., 2015), Natural Neural
Networks (Desjardins et al., 2015) (NNN) propose a mathematically very similar update rule to FOOF (and KFAC). Unlike
FOOF, NNN centers layer inputs by subtracting the mean activation (or an estimate thereof), but like FOOF they ignore the
second kronecker factor of KFAC.

Like KFAC, NNN is derived as a block-diagonal, kronecker-factored approximation of the Fisher. As we already pointed
out, this is very puzzling, since NNN approximates the Fisher by a zero-th order matrix, ignoring all first- and second-order
information. In this sense, and bearing in mind our previous experiments, NNN should not be seen as a natural gradient
method and our results offer an explanation why it is nevertheless so effective.

From an implementational viewpoint, FOOF is preferable to NNN mainly because it requires inverting matrices rather than
computing SVDs. In practice computing inverses is both considerably faster (a factor of 10 or so as found in some quick
experiments) and more stable then computing the SVD, as NNN does (SVD algorithms don’t always converge).

With yet another context and motivation, (Frerix et al., 2017) also proposes a similar update rule focussing on full-batch
descent. The motivation can be roughly rephrased as imposing proximity constraints on neuron activations. Very recently,
their motivation and algorithm seems to have been re-described in (Amid et al., 2021) without noting this link. In particular,
the derivation of (Frerix et al., 2017) gives an alternative perspective on the update equation of FOOF.

Among other differences, (Frerix et al., 2017; Amid et al., 2021) (1) seem not to discuss unbiased stochastic versions of their
algorithms, (2) seem less computationally efficient: results in (Frerix et al., 2017) fall short of adam in terms of wall-clock
time and (Amid et al., 2021) does not provide direct wall-clock time comparisons with standard first-order optimizers, (3)
only discuss fully-connected architectures (4) do not perform investigations into the connection of KFAC to natural gradients
or first-order methods.

Note also that the framework from (Ollivier, 2018) can be applied to interpret FOOF as applying Kalman filtering to each
layer individually. Thus, in some vague sense, FOOF is bayes-optimal and some may find this to be an enticing explanation
for FOOF’s strong empirical performance.

I. Details for Efficiently Computing F−1-vector products for a Subsampled Fisher
I.1. Notation

For simplicity, we restrict the exposition here to fully connected neural networks without biases and to classification
problems. Our method is also applicable to regression problems, can easily be extended to include biases and to handle for
example convolutional layers.

We denote the network’s weight matrices by W =
(
W0, . . . ,W(`−1)

)
, where W (i) has dimensions ni × ni+1. The
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pointwise non-linearity will be denoted σ(·). For a single input x = a(0) the network iteratively computes

s(k) = W(k−1)a(k−1) for k = 1, . . . , ` (16)

a(k) = σ(s(k)) for k = 1, . . . , `− 1 (17)

f(x) = f(x; W) = softmax(a(`)) (18)

We use the cross-entropy loss L(f(x), y) throughout. We will write ek = ∂L(f(x,y))
∂sk

for the errors, which are usually
computed by backpropagation.

If we process a batch of data, we will use upper case letters for activations and “errors”, i.e. A(k),S(k),E(k) which have
dimensions nk ×B, where B is the batch size. The i-th column of these matrices will be denoted by corresponding lower
case letters, e.g. a

(k)
i .

We will write A�B for the pointwise (or Hadamard) product of A,B and A⊗B for the Kronecker product. The euclidean
inner product (or dot product) will be denoted by A ·B for both vectors and matrices.

The number of parameters will be called n =
∑`−1
k=0 nknk+1, the batch size B, the output dimension of the network n`.

We will generally assume derivatives to be one dimensional column vectors and will often write g = g(x, y) = ∂L(f(x),y)
∂W

and g(k) = ∂L(f(x),y)
∂W . Generally, for a vector u of dimension n, the superscript u(k) will denote the entries of u

corresponding to layer k, and mat
(
u(k)

)
will be a matrix with the same entries as u(k) and of the same dimensions as

W(k).

I.2. Overview

The technique described here is similar to (Agarwal et al., 2019; Ren and Goldfarb, 2019). However, the implementation
of (Ren and Goldfarb, 2019) requires several for- and backward passes for each mini-batch, which is used to compute the
Fisher, while (Agarwal et al., 2019) uses the same ideas, but applies them in a different context, which does not require
computing the Fisher. Another key difference, both in terms of computation time and update-direction quality (or bias of
updates) is discussed in Section I.5.

We now outline how to efficiently compute exact natural gradients under the assumption that the Fisher is estimated from a
mini-batch of moderate size (where ‘moderate’ can be on the order of thousands without large difficulties). Let’s assume we
have B samples (x1, y1), . . . , (xB , yB) from the model distribution and use this for a MC estimate of the Fisher, i.e.

F =
1

B

B∑
i=1

gig
T
i = GGT (19)

where we define G to be the matrix whose i-th column is given by 1√
B

gi. An application of the matrix inversion lemma
now gives

(λI + F)−1u = (λI + GGT )−1 = λ−1Iu− λ−2G(I +
1

λ
GTG)−1GTu (20)

We will not compute G explicitly. Rather, we will see that all needed quantities can be computed efficiently from the
quantities obtained during a single standard for- and backward pass on the batch {(xi, yi)}Bi=1, namely the preactivations
A(k) and error E(k+1).12

Overall, the computation can be split into three steps. (1) We need to compute v = GTu. (2) We need to compute GTG,
after which evaluating w = (I + 1

λGTG)−1v is easy by explicitly computing the inverse. (3) We need to evaluate Gw.

Very briefly, the techniques to compute (1)-(3) all rely on the fact that, for a single datapoint, the gradient with respect to a
weight matrix is a rank 1 matrix and that, consequently, gradient-vector and gradient-gradient dot products can be computed
and vectorised efficiently.

12We note that many of the required quantities can be seen as Jacobian-vector products and could be computed with autograd and
additional for- and backward passes. Here, we simply store preactivations and errors from a single for- and backward pass to avoid
additional passes through the model.
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I.3. Details

We now go through the steps (1)-(3) described above.

For (1), note that the i-th entry of v = GTu is the dot-product between gi and u, which in turn is the sum over layer-wise
dot-products g

(k)
i ·u(k). Note that mat

(
g

(k)
i

)
= a

(k)
i e

(k)T
i is a rank one matrix, so that g

(k)
i ·u(k) = a

(k)T
i mat

(
u(k)

)
e(k).

A sufficiently efficient way to vectorise these computations is the following:

v = GTu =

`−1∑
k=0

diag
(
A(k),Tmat

(
u(k)

)
E(k+1)

)
(21)

For (2), similar considerations give

GTG =

`−1∑
k=0

(A(k)TA(k))� (E(k+1)TE(k+1)) (22)

Finally, for (3), note that Gw is a linear combination of the gradients (columns) of G. Writing 1 for a column vector with
nk ones, this can be computed layer-wise as

mat
(

(Gw)(k)
)

= A(k)T
(
E� (w1T )

)
(23)

We re-emphasise that we only require to know A(k) and E(k+1), which can be computed in a single for- and backward pass
and then stored and re-used for computations.

I.4. Computational Complexity

In terms of memory, we need to store Ak,Ek, which requires at most as much space as a single backward pass. Storing
GTG requires space B ×B, which is typically negligible. as are results of intermediate computation.

In terms of time, computations (21) takes time O(B
∑
k n

2
k)), (22) takes time O(B

∑
k n

2
k), (23) requires O(Bn). The

matrix inverision requires O(B3), but note that technically we only need to evaluate the product of the inverse with a single
vector, which theoretically can be done slightly faster (so can some of the matrix multiplications).

I.5. Less biased Subsampled Natural Gradients

Our aim is to estimate (λI + F)−1g and we use mini-batches estimates F̄ and ḡ. Ideally, we would want an unbiased
estimate, i.e. an estimate with mean (λI + E[F̄])−1 · E[ḡ].

One problem that seems hard to circumvent is that, while our estimate F̄ of F is unbiased, the expectation of (λI + F̄)−1

will not be equal to (λI + F)−1. We shall not resolve this problem here and simply hope that its impact is not detrimental.

Another problem is that using the same mini-batch to estimate Fisher F and gradient g will introduce additional bias:
Even if X = (λI + F̄)−1 were an unbiased estimate of (λI + F)−1 and Y = ḡ is an unbiased estimate of g, it does not
automatically hold that XY is an unbiased estimate of E[X]E[Y ]. This does however hold, if X,Y are independent, which
can be achieved by estimating them based on independent mini-batches. The fact that a bias of this kind can meaningfully
affect results, also in the context of modern neural networks and standard benchmarks, has already been observed in
(Benzing, 2020).

Thus, we propose using independent mini-batches to estimate F̄ and ḡ. On top of removing bias from our estimate, this has
the additional benefit that we do not have to update F̄ (or rather the quantities related to it) at every time step. This gives
further computational savings.

We perform an ablation experiment for this choice in Figures I.6 and I.7.



Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization

0 1000 2000 3000 4000 5000 6000
# Param Updates

10 1

100

Tr
ai

n 
Lo

ss

A
Independent Batches

damp 1e-6
damp 1e-4
damp 1e-2

damp 1e0
damp 1e2

damp 1e4
damp 1e6

0 1000 2000 3000 4000 5000 6000
# Param Updates

10 1

100

Tr
ai

n 
Lo

ss

B
Same Batch

damp 1e-6
damp 1e-4
damp 1e-2

damp 1e0
damp 1e2

damp 1e4
damp 1e6

Figure I.6. Investigating the effect of evaluating Fisher and gradient on different respectively identical minibatches.
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Figure I.7. Same as Figure I.6, but on MNIST.
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J. Additional Experiments
Here we present additional experiments, lines correspond to the average across three seeds.

In Section J.2, there are experiments analogous to Figures 1-4 from the main paper, but on MNIST rather than Fashion-
MNIST. Results are in line with the ones on Fashion-MNIST, but effects are usually smaller, presumably due to MNIST-
classification being a very simple task for MLPs.

In Section J.3, there are comparisons of subsampled natural gradients to subsampled KFAC for a ResNet on CIFAR10 and
for autoencoder experiments. The fact that KFAC performs considerably better than natural gradients strongly suggests that
also in these settings KFAC cannot be seen as a natural gradient method.

In Section J.4, we show that heuristic damping is crucial for performance of KFAC for a ResNet on CIFAR10 and for
autoencoder experiments. This further supports the claim that KFAC should not be seen as a natural gradient method and
suggests that similarity to FOOF is important for KFAC.

In Section J.5, we show performance comparisons between KFAC and FOOF for different benchmarks and architectures.
Figure J.16 contains performance of a Wide ResNet18 on CIFAR 100 (rather than CIFAR 10 in the main paper). Figures J.17,
J.18 contain training data for a VGG11 network on SVHN and additionally show how different algortihms are affected by
different batch sizes.

J.1. Limitations of our Explanation in Auto-Encoder Settings

Figures J.19-J.21 contain autoencoder experiments on MNIST, Curves and Faces. Here, we make a somewhat puzzling
observation: When we follow the KFAC training trajectory, FOOF makes more progress per parameter udpate than KFAC.
Nevertheless, when we use FOOF for training (and follow the FOOF trajectory), we obtain slightly worse results than for
KFAC. This may suggest that in the autoencoder experiments KFAC chooses a different trajectory that is easier to optimize
than FOOF.
This suggests that our explanation of KFACs performance, while capturing many key-characteristics of KFAC, has some
limitations.
We re-emphasise that similarity to FOOF remains a significantly better explanation for KFAC’s performance than similarity
to natural gradients, also in the autoencoder setting (recall Figure J.13).
As an additional experiment we run KFAC with the empirical Fisher, rather than an MC approximation. Despite its name,
the empirical Fisher is usually argued to be a poor approximation of the Fisher (Martens, 2014; Kunstner et al., 2019).
Nevertheless we find that KFAC works equally well with the empirical Fisher, see Figure J.22, supporting the view that
KFAC’s effectiveness is not directly linked to the Fisher and hinting at the fact that a full, principled explanation of KFAC’s
slight advantage over FOOF in the autoencoder setting may be difficult to come by.
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J.2. Experiments anaologous to main paper but on MNIST rather than Fashion MNIST

0 2500 5000
# Param Updates

10 3

10 1
Tr

ai
n 

Lo
ss

A MNIST

SGD+Mom.
Adam
Natural-Sub
KFAC

0 2500 5000
# Param Updates

10 3

10 1

B KFAC Subsampled
KFAC Sub-S.
Natural Sub-S.

0 2500 5000
# Param Updates

10 3

10 1

C Large Sub-S. Fisher
Nat D=1000
Nat D=4000

0 50 100
# Param Updates

10 5

10 1
D Full Control

MC Fisher
Full Fisher

Figure J.8. Paradoxically, KFAC – an approximate second-order method – outperforms exact second-order udpates in standard
as well as important control settings. Same as Figure 1 but on MNIST rather than Fashion MNIST.
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Figure J.9. Advantage of KFAC over exact, subsampled Natural Gradients is not due to block-diagonal structure. Same as Figure 2
but on MNIST rather than Fashion MNIST.
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Figure J.10. Heuristic Damping increases KFAC’s performance as well as its similarity to first-order method FOOF. Same as
Figure 3 but on MNIST rather than Fashion MNIST.
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Figure J.11. FOOF outperforms KFAC in terms of both per-update progress and computation cost. Same as Figure 4 but on MNIST
rather than Fashion MNIST.
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J.3. Subsampled Natural Gradients vs Subsampled KFAC
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Figure J.12. KFAC outperforms Subsampled Natural Gradients, also when KFAC is subsampled and uses exactly the same amount of data
as Natural gradients to estimate the curvature. This is analogous to Figure 1B, but on ConvNets and with a more complicated dataset.
It confirms our claim that KFAC does not rely on second-order information. Note that with large damping, natural gradients becomes
approximately equal to SGD – thus the difference seen between SGD+M and natural gradients is due to momentum.
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Figure J.13. KFAC outperforms Subsampled Natural Gradients, also when KFAC is subsampled and uses exactly the same amount of data
as Natural gradients to estimate the curvature. Autoencoder Experiments. We confirmed that Natural Gradients do not perform worse
than SGD without momentum. In other words the advantage of SGD+M vs Natural Gradients on MNIST and Curves is due to using
momentum.



Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization

J.4. Effect of Heuristic Damping on KFAC
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Figure J.14. Effect of Heuristic damping on KFAC on CIFAR10 with a ResNet. Analogously to Figure 3A, we find that heuristic damping
is essential for KFAC’s performance.
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Figure J.15. Effect of Heuristic damping on KFAC in autoencoder experiments. Analogously to Figure 3A, we find that heuristic damping
is essential for KFAC’s performance.
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J.5. Performance Comparisons
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Figure J.16. Performance comparison on CIFAR 100 with a Wide ResNet18.
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Figure J.17. Performance comparison on SVHN with a VGG11 network and different batch sizes. See also Figure J.18 for same data
portrayed differently.
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Figure J.18. Performance on SVHN with a VGG11 network across different batch sizes for different algorithms. See also Figure J.17 for
same data portrayed differently. Note that color coding differs from remaining plots in the paper.
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Figure J.19. Performance for FACES autoencoder experiment. KFAC slightly outperforms FOOF, but when FOOF is on KFAC trajectory
it typically makes more progress per udpate. This may suggest that the advantage of KFAC is due to choosing a different optimization
trajectory. (B) shows same data as (C) with a different axes zoom.
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Figure J.20. Performance for MNIST autoencoder experiment. KFAC slightly outperforms FOOF, but when FOOF is on KFAC trajectory
it typically makes more progress per udpate. This may suggest that the advantage of KFAC is due to choosing a different optimization
trajectory. (B) shows same data as (C) with a different axes zoom.
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Figure J.21. Performance for Curves autoencoder experiment. KFAC slightly outperforms FOOF, but when FOOF is on KFAC trajectory
it typically makes more progress per udpate. This may suggest that the advantage of KFAC is due to choosing a different optimization
trajectory. (B) shows same data as (C) with a different axes zoom.
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Figure J.22. Performance of standard KFAC (using an MC sample to estimate the Fisher) and a version of KFAC using the empirical
Fisher. Solid an dashed cyan lines show different hyperparametrisations of the same algorithm. The advantage fo the empirical Fisher on
MNIST seems to be due to allowing different hyperparametrisations to be stable.
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Algorithm 1 Gradient Descent on Neurons (FOOF)
1: Hyperparameters: learning rate η, damping strength λ, exponential decay factor m, inversion period T , number of

updates for input covariance S ≤ T
2: Initialise: t = 0; For each layer `: Weights W` (e.g. Kaiming-He init), exponential average Σ` of A`A

T
` and its

damped inverse P` = (Σ` + λI)−1 (see Appendix K for details)

3: while train do
4: Perform Standard Forward and Backward Pass For Current Mini-Batch With Loss L
5: for each layer ` do
6: W` ←W` − ηP`∇W`

L {Update Parameters as in Eq. 6}
7: if (t mod T ) == 0 then
8: P` ← (Σ` + λI)−1 {Update Damped Inverse of Moving Average of A`A

T
` every T steps}

9: end if
10: if ((t+ S) mod T ) ∈ {0, . . . , S − 1} then
11: Σ← m ·Σ` + (1−m) ·A`A

T
` {Update Moving Average of A`A

T
` beginning S steps

before inversion in line 1. A` is defined as in Section 2.2.}
12: end if
13: end for
14: t← t+ 1
15: end while

K. Pseudocode, Implementation, Hyperparameters
Pseudocode for FOOF is given in Algorithm 1. Notation is anaologous to Section 2.2 and the amortisation described in
Section D.

Initialisation: One detail omitted in the pseudocode is initialisation of Σ and P. There is different ways to do this. We
decided to perform Line 1 of Algorithm 1 for a number of minibatches (50) before training and then executing line Line 1
once. In addition, we make sure the exponentially moving average is normalised.

Amortisation Choices: Amortising the overhead of FOOF is achieved by choosing S, T suitably (large T and small S give
the best runtimes). For fully connected layers updating Σ is cheap and we choose S = T (i.e. Σ is updated at every step),
we reported results for T = 1 and T = 100. For the ResNet, computing AAT is more expensive and we chose T = 500
(one inversion per epoch) and S = 10, see also Appendix D as well as below. Additional experiments (not shown) suggest
that Σ can be estimated robustly on few datapoints and that it changes slowly during training.

Hyperparameter Choices: Note that a discussion of hyperparameter robustness is also provided in Section D. We chose
m = 0.95 following (Martens and Grosse, 2015), brief experiments with m = 0.999 seemed to give very similar results.
For damping λ and learning rate η, we performed grid searches. It may be interesting that a bayesian interpretation of FOOF
(details omitted) suggests choosing λ as the precision used for standard weight initialisation schemes (e.g. Kaiming Normal
initialisation) and seems to work well. If we choose this λ, we only need to tune the learning rate of FOOF, so that the
required tuning is analogous to that of SGD. Alternatively, we typically fount λ = 100 to work well, but the exact magnitude
may depend on implementation details (in particular, how factors are scaled and how they depend on the batch size).

Implementation and Convolutional Layers: A PyTorch implementation of FOOF using for- and backward hooks is
simple. The implementation, in particular computing AAT , is most straightforward for fully connected layers, but can be
extended to layers with parameter sharing. For example in CNNs, we can interpret the convolution as a standard matrix
multiplication by “extracting/unfolding” individual patches (see e.g. (Grosse and Martens, 2016)) and then proceed as
before. This is what our implementation does. A more efficient technique avoiding explicitly extracting patches (at the cost
of making small approximations) is presented in (Ober and Aitchison, 2021).
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