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Abstract
Real-world networks often come with side infor-
mation that can help to improve the performance
of network analysis tasks such as clustering. De-
spite a large number of empirical and theoretical
studies conducted on network clustering meth-
ods during the past decade, the added value of
side information and the methods used to incor-
porate it optimally in clustering algorithms are
relatively less understood. We propose a new it-
erative algorithm to cluster networks with side
information for nodes (in the form of covariates)
and show that our algorithm is optimal under the
Contextual Symmetric Stochastic Block Model.
Our algorithm can be applied to general Contex-
tual Stochastic Block Models and avoids hyper-
parameter tuning in contrast to previously pro-
posed methods. We confirm our theoretical re-
sults on synthetic data experiments where our al-
gorithm significantly outperforms other methods,
and show that it can also be applied to signed
graphs. Finally, we demonstrate the practical in-
terest of our method on real data.

1. Introduction
The Stochastic Block Model (SBM) is a popular gener-

ative model for random graphs – introduced by (Holland
et al., 1983) – which captures the community structures of
networks often observed in the real world. Here, edges are
independent Bernoulli random variables with the probabil-
ity of connection between two nodes depending only on
the communities to which they belong. It is typically used
as a benchmark to measure the performance of clustering
algorithms.

However, real-world networks often come with side infor-
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mation in the form of nodes covariates which can be used
to improve clustering performance. For example, when ana-
lyzing interactions among people on a social network, we
have access to additional features such as gender, age, or
ethnicity that can be relevant for the clustering task. Other
examples, including biological networks and predator-prey
interaction networks are discussed in (Newman & Clauset,
2015).

The Contextual Stochastic Block Model (CSBM) is a simple
extension of the SBM that incorporates such side informa-
tion: each node is associated with a Gaussian vector of
parameters depending only on the community to which the
node belongs; see Section 2 for details.

Several variants of this model and clustering algorithms
have been proposed in the literature to incorporate side in-
formation. These methods include model-based approaches
(Yang et al., 2013; Weng & Feng, 2016; Hric et al., 2016;
Emmons & Mucha, 2019; Stanley et al., 2019; Contisciani
et al., 2020; Fajardo-Fontiveros et al., 2022), spectral meth-
ods (Binkiewicz et al., 2017; Mele et al., 2019; Abbe et al.,
2020), modularity based optimization methods (Zhang et al.,
2015), belief propagation (Deshpande et al., 2018) and
semidefinite programming (SDP) based approaches (Yan
& Sarkar, 2020). Even if some of these algorithms come
with certain theoretical guarantees, the added value of side
information is in general not well understood. The recent
works of (Abbe et al., 2020), (Lu & Sen, 2020) and (Ma &
Nandy, 2021) clarify the situation by establishing informa-
tion theoretic thresholds for exact recovery and detection
in a special case with two communities. However, the al-
gorithm presented in (Abbe et al., 2020) is not likely to be
extended to a general CSBM with more than two (possibly
unequal-sized) communities, while the latter two results
focus on detection rather than consistency.

Our contributions. We make the following contributions
in this paper.

• We propose a new iterative algorithm for clustering net-
works that is fast and is applicable to various settings
including the general CSBM and also signed weighted
graphs as shown in experiments.
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• The proposed algorithm is theoretically analyzed under
the CSBM, and we show that its rate of convergence
is statistically optimal under the Contextual Symmet-
ric SBM (CSSBM). As a byproduct, we derive the
threshold for exact recovery with K communities un-
der the CSSBM, thus extending the recent result of
(Abbe et al., 2020) which was obtained for K = 2.

• We confirm the theoretical properties of our algorithm
through experiments on simulated data showing that
our method outperforms existing algorithms, not only
under the CSBM but also under the Signed SBM the
latter of which models community structure in signed
networks (Cucuringu et al., 2019). Finally, we pro-
vided a real data application of our algorithm.

Related work. As outlined earlier, covariate-assisted clus-
tering methods have been studied from various perspectives
and it is outside the scope of this work to provide an exhaus-
tive survey. Here, we will discuss the literature that is most
relevant to our work.

Our iterative method can be thought of as a Classification-
EM algorithm (Celeux & Govaert, 1992), hereafter referred
to as C-EM, where instead of using the likelihood we use
a least squares criterion. Such ideas were first applied
and analyzed under various models including associative
SBM by (Lu & Zhou, 2016) and then extended to a general
framework by (Gao & Zhang, 2019). Recently, such ideas
were also successfully applied to the Gaussian Tensor Block
Model (Han et al., 2020) and a general Gaussian Mixture
Model (GMM) (Chen & Zhang, 2021). However, the above
results can not be directly applied to the CSBM due to the
heterogeneity of the data.

Iterative refinement methods can also be derived naturally
from the Power Method (Wang et al., 2021b; Ndaoud et al.,
2019) or alternative optimization methods (Chi et al., 2019a).
They have been successfully deployed in other settings as
well, e.g., SBM (Wang et al., 2021a), group synchronization
(Boumal, 2016), joint alignment from pairwise differences
(Chen & Candès, 2016), graph matching (Onaran & Villar,
2017) and low-rank matrix recovery (Chi et al., 2019b).

Despite the huge amount of work on covariate-assisted
clustering, there are only limited consistency results.
(Binkiewicz et al., 2017) and (Yan & Sarkar, 2020) ob-
tained some weak consistency guarantees that depend on
both sources of information, but as noted in (Abbe et al.,
2020), those bounds are not tight. (Abbe et al., 2020) were
the first to propose a method that achieves the threshold for
exact recovery, but their algorithm only works when K = 2
and it seems difficult to extend it to a more general setting.

Notation. We use lowercase letters (ε, a, b, . . .) to denote
scalars and vectors, except for universal constants that will

be denoted by c1, c2, . . . for lower bounds, and C1, C2, . . .
for upper bounds and some random variables. We will
sometimes use the notation an . bn (or an & bn ) for
sequences (an)n≥1 and (bn)n≥1 if there is a constantC > 0
such that an ≤ Cbn (resp. an ≥ Cbn) for all n. If an . bn
and an & bn, then we write an � bn. Matrices will be
denoted by uppercase letters. The i-th row of a matrix A
will be denoted as Ai: and depending on the context can be
interpreted as a column vector. The column j of A will be
denoted by A:j , and the (i, j)th entry by Aij . The transpose
of A is denoted by A> and A>:j corresponds to the jth row
of A> by convention. Ik denotes the k × k identity matrix.
For matrices, we use ||.|| and ||.||F to respectively denote
the spectral norm (or Euclidean norm in case of vectors)
and Frobenius norm. The number of non zero entries of a
matrix A is denoted nnz(A).

2. The statistical framework
The CSBM consists of a graph encoded in an adjacency ma-
trix A ∈ {0, 1}n×n and nodes covariates forming a matrix
X = [X1 X2 · · ·Xn]> ∈ Rn×d where d is the dimension
of the covariate space. The graph and the covariates are
generated as follows.

The graph part of the data is generated from a Stochastic
Block Model (SBM) which is defined by the following
parameters.

- The set of nodes N = [n].

- Communities C1, . . . , CK , of respective sizes n1, . . . , nK ,
forming a partition of N .

- A membership matrix Z ∈ Mn,K whereMn,K denotes
the class of membership matrices. Here, Zik = 1 if node i
belongs to Ck, and is 0 otherwise. Each membership matrix
Z can be associated bijectively with a function z : [n] →
[K] such that z(i) = zi = k where k is the unique column
index satisfying Zik = 1. To each matrix Z ∈ Mn,K we
can associate a matrix W by normalizing the columns of Z
in the `1 norm: W = ZD−1 whereD = diag(n1, . . . , nK).
This implies that W>Z = IK = Z>W .

- A symmetric, connectivity matrix of probabilities between
communities

Π = (πkk′)k,k′∈[K] ∈ [0, 1]K×K .

We additionally assume that the communities are approxi-
mately well balanced, i.e.,

n

αK
≤ nk ≤

αn

K
∀k ∈ [K],

for some constant α > 1. Denoting P = (pij)i,j∈[n] :=
ZΠZT , a graph G is distributed according to SBM(Z,Π) if
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the entries of the corresponding symmetric adjacency matrix
A are generated by

Aij
ind.∼ B(pij), 1 ≤ i ≤ j ≤ n,

where B(p) denotes a Bernoulli distribution with parame-
ter p. Hence the probability that two nodes are connected
depends only on their community memberships. We will
frequently use the notation E for the centered noise matrix
defined as Eij = Aij − pij , and denote the maximum entry
of P by pmax = maxi,j pij . The latter can be interpreted as
the sparsity level of the graph. We will assume throughout
that pmax � log n/n. If the graph is denser, we are in the
exact recovery regime and the problem is easy. If we are in
a sparser regime, we would need to regularize the adjacency
matrix to enforce concentration, but we prefer to avoid this
additional technical difficulty.

For the analysis, we will also consider a special case of the
SBM where the communities are equal sized, i.e., nk =
n/K for all k ∈ [K], and the connectivity matrix is given
by

Π =


p q . . . q
q p . . . q
...

...
. . .

...
q q . . . p

 ∈ [0, 1]K×K .

We will further assume that p = p′ logn
n and q = q′ logn

n
for constants p′, q′ such that p′ > q′ > 0. This model
will be referred to as the Symmetric SBM and denoted by
SSBM(p, q, n,K).

The nodes covariates are generated by a Gaussian Mix-
ture Model (GMM), independent of A conditionally on the
partition Z. More formally, for each i,

Xi = µzi + εi, where εi
ind.∼ N (0, σ2Id)

with µk ∈ Rd for all k ≤ K and σ > 0. We assume that
d = O(n).

Remark 1. For ease of exposition we further assume that
σ is known but our method can be extended to anisotropic
GMM with unknown variance as in (Chen & Zhang, 2021).
We also assumeK to be known – this assumption is common
in the clustering literature. Estimating K is a non-trivial
task which is outside the scope of this work, see (Jin et al.,
2021) for a procedure for SBM. We also leave as further
work the incorporation of other forms of covariates, e.g.,
discrete covariates as in (Ahn et al., 2018).

The misclustering rate associated to an estimated partition
ẑ quantifies the number of nodes assigned to a wrong cluster
and is formally defined by

r(ẑ, z) =
1

n
min
π∈S

∑
i∈[n]

1{ẑ(i)6=π(z(i))},

where S denotes the set of permutations on [K]. We say
that we are in the exact recovery regime if r(Ẑ, Z) = 0 with
probability 1− o(1) as n tends to infinity. If P(r(Ẑ, Z) =
o(1)) = 1 − o(1) as n tends to infinity then we are is the
weak consistency regime. A more complete overview of
the different types of consistency and the sparsity regimes
where they occur can be found in (Abbe, 2018).

3. How to integrate heterogeneous sources of
information?

The use of side information should intuitively help to re-
cover clusters that are not well separated on each individual
source of information. However, it is not well understood
how to integrate two heterogeneous sources of information
in the clustering process. Previous attempts (Binkiewicz
et al., 2017; Yan & Sarkar, 2020) proceed by directly aggre-
gating the adjacency matrix and a Gram matrix (or Kernel
matrix) formed by the covariates, but a lot of information
can be lost in the aggregation process. Moreover, it is not
clear what is the best linear combination of the two ma-
trices. Here, we propose a different approach based on a
two step algorithm (see Algorithm 1) that fully exploits all
information. In the first step, we obtain a rough estimate
of the model parameters from the previous estimate of the
partition; the initialization methods that can be used are
discussed in Section 3.2. Then, in the second step, we itera-
tively refine the partition, as further explained in Section 3.1.
In Section 5.1 we illustrate via experiments that Algorithm
1 outperforms existing methods for cluster recovery in the
setting where the clusters are insufficiently separated on a
single source of information.

3.1. The refinement mechanism

At each step t, Algorithm 1 estimates the model parame-
ters given a current estimate of the partition (W (t)), then
updates the partition by reassigning each node to its closest
community. Here, the proximity of a node i to a community
k is measured by the distance between its estimated (graph)
connectivity profile (Ai:W (t)) and its covariates (Xi) to the
current estimate of the community parameters (Π(t)

k: , µ
(t)
k ).

Instead of using the Maximum A Priori (MAP) estimator as
in C-EM algorithms, we use a least-square criterion. In a
model-based perspective, this can be interpreted as a Gaus-
sian approximation of the connectivity profile of each node.
We will see later in the experiments that this doesn’t lead
to a loss of accuracy (see Section 5), and is also faster (see
Table 1).

Different variants of our algorithm are possible depending
on the way the variance of each community is estimated
and integrated in the criterion used for the partition refine-
ment. The general method will be referred as IR-LS, the
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Algorithm 1 Iterative Refinement with Least Squares

Input: A ∈ Rn×n, X ∈ Rn×d,K ∈ N∗, σ > 0,
Z(0) ∈ {0, 1}n×K a membership matrix and T ≥ 1.

1: for 0 ≤ t ≤ T − 1 do
2: Given Z(t), estimate the model parameters: n(t)

k =

|C(t)
k |, W (t) = Z(t)(D(t))−1 where D(t) =

diag(n
(t)
k )k∈[K], Π(t) = W (t)>AW (t) , and µ(t)

k =

W
(t)>
k: X , for all k ≤ K.

3: Refine the partition by solving for each i ∈ [n]

z
(t+1)
i = arg min

k
||(Ai:W (t)−Π

(t)
k: )

√
Σ

(t)
k ||

2
+
||Xi − µ(t)

k ||
2

σ2

where

Σ
(t)
k =


diag(

n
(t)

k′

Π
(t)

kk′
)k′∈[K] (IR-LS)

mink′ n
(t)

k′

maxk′,k′′ Π
(t)

k′k′′
IK (sIR-LS)

n
K(p(t)−q(t))

log(p
(t)(1−q(t))
q(t)(1−p(t))

)IK (IR-LSS)

with p(t) = K−1
∑
k∈[K] Π

(t)
kk and q(t) = (K2 −

K)−1
∑
k 6=k′∈[K] Π

(t)
kk′ .

4: Form the matrices Z(t+1) from z(t+1).
5: end for

Output: A partition of the nodes Z(T ).

simplified spherical version is denoted by sIR-LS and the
version of the algorithm used for CSSBM is denoted by
IR-LSS.

Computational cost. In each iteration, the complexity of
estimating the parameters is O(nnz(A) + nd) while that
of estimating the partition is O(nK(K + d)). So the total
cost of IR-LS is O(T (nnz(A) + nK(max(K, d))). In
our setting A is sparse, hence nnz(A) � n log n.

Remark 2. Algorithm 1 can also be used for clustering
weighted signed graphs, as shown later in the experiments.
Moreover, it is interesting to note that when there are no
covariates, the algorithm can be applied to graphs gener-
ated from a general SBM. This is in contrast to the iterative
algorithm proposed by (Lu & Zhou, 2016) that can only be
applied to assortative SBMs (see appendix).

3.2. Initialization

Different strategies can be adopted for initialization. If we
assume that the communities are separated on each source of
information and that the signal-to-noise ratio (SNR) is large
enough to recover a sufficient proportion in each cluster, we
can use a spectral method on one source of information (the
graph for example). However, it is in general better to com-

bine both sources of information. While one could use the
methods proposed in (Yan & Sarkar, 2020) or (Binkiewicz
et al., 2017) that also come with some theoretical guaran-
tees, we instead use Algorithm 2 to initialize the partition.
This algorithm will be referred to as EM-Emb. In our ex-
periments, we used the package clusterR (Mouselimis,
2021) for estimating the Gaussian mixture with an EM algo-
rithm. This algorithm is fast, provides a sufficiently accurate
estimate of the partition, and avoids hyperparameter tuning.

Algorithm 2 EM on graph embedding and covariates
(EM-Emb)

Input: The number of communities K, the adjacency
matrix A, covariates X .

1: Compute UK ∈ Rn×K the matrix formed by the eigen-
vectors associated with the top-K eigenvalues (in abso-
lute order) of A.

2: Merge the columns of UK with the columns of X to
obtain a matrix X ′.

3: Cluster the rows of X ′ by using an EM algorithm for
GMM.

Output: A partition of the nodes Z(0).

4. Theoretical analysis
In this section, we analyze the variants sIR-LS and
IR-LSS of Algorithm 1. While it is possible to extend
the analysis to IR-LS, it would be considerably more tech-
nical and tedious due to its non- spherical structure. Hence,
we will assume here that the covariance matrix Σ

(t)
k in Al-

gorithm 1 has the form λ(t)Ik where λ(t) is an appropriate
scalar depending on whether we use sIR-LS or IR-LSS.

In Section 4.1 we will present the general principle for the
analysis. Then we will specialize it for analyzing IR-LSS
(under the CSSBM) in Section 4.2, and prove that the con-
vergence rate obtained is optimal in Section 4.3. Finally we
show that the same framework can be used to bound the
convergence rate of sIR-LS (under the CSBM) in Section
4.4. The details of the proofs are outlined in the appendix.

4.1. Analysis principle

Our analysis is motivated by the general framework recently
developed by (Gao & Zhang, 2019), and also borrows some
decomposition techniques used for analyzing Gaussian ten-
sors from (Han et al., 2020). However, these results are not
directly applicable to our setting due to dependencies aris-
ing from symmetry in the SBM. Moreover, we need tighter
control of the error terms then provided by these works.

We will assume w.l.o.g. that σ = 1 (since σ is assumed
to be known in our framework) and that the permutation
π that minimizes the distance between z(0) and z is the



An iterative clustering algorithm for the Contextual Stochastic Block Model with optimality guarantees

identity (if not, then replace z by π−1(z)). Hence there is
no label switching ambiguity in the community labels of
z(t) because they are determined from z(0).

The first step is to analyze the event “after one refinement
step, the node i will be incorrectly clustered given the cur-
rent estimation of the partition z(t) at time t”. This corre-
sponds to the condition

a 6= arg min
k
||Xi − µ(t)

k ||
2 + λ̂(t)||Ai:W (t) −Π

(t)
k: ||

2

for a node i such that zi = a. One can see that this condition
is equivalent to the existence of b ∈ [K] \ a such that

〈εi, µ̃a − µ̃b〉+ λ〈Ei:W, Π̃a: − Π̃b:〉︸ ︷︷ ︸
Ci(a,b)

≤ −∆2(a, b)

2
+ Err

(t)
ib .

Here,

∆2(a, b) = ||µa − µb||2 + λ||Πa: −Πb:||2,
µ̃k = X>W:a, Π̃k: = W>k:AW,

and λ =
nmin
pmax

or
n

K(p− q)
log

(
p(1− q)
q(1− p)

)
depending whether we are analyzing sIR-LS or IR-LSS.
Moreover, Err(t)

ib is an error term that can be further de-
composed as a sum F

(t)
ib +G

(t)
ib +H

(t)
ib of different kinds of

error terms which will be controlled in different ways. If we
ignore the error term, we obtain the condition corresponding
to having an incorrect result after one iteration starting from
the ground truth partition. The errors occurring in this way
will be quantified by the ideal oracle error

ξ(δ) =

n∑
i=1

∑
b∈[K]\zi

∆2(zi, b)1{Ci(a,b)≤−(1−δ)∆2(zi,b)

2 }
.

Let us denote

∆min = min
a6=b∈[K]

∆(a, b)

to quantify the separation of the parameters associated with
the different communities. If ∆min = 0, it would imply
that at least two communities are indistinguishable and the
model would not be identifiable. For t ≥ 1 and δ ∈ [0, 1),
let

δ(t) = max

(
7

8

τ (t−1)

τ (0)
, δ

)
, τ (t) = τ (0)δ(t)

be sequences where τ (0) = εn∆2
min/K for a small enough

constant ε > 0.

In general the rate of decay of ξ(δ) leads to the convergence
rate of iterative refinement algorithms, hence it is important
to control this quantity.

Condition A (ideal error). Assume that

ξ(δ(t)) ≤ 3

4
τ (t−1), for all t ≥ 1

holds with probability at least 1− η1.

We now have to analyze the error terms and prove that their
contribution is negligible compared to the ideal oracle error
rate. Let

l(z, z′) =
∑
i∈[n]

∆2(zi, z
′
i)1{zi 6=z′i}

be a measure of distance between two partitions z, z′ ∈
[K]n. We will control the error terms by showing that the
following conditions are satisfied.

Condition B (F-error type). Assume that

max
{z(t):l(z,z(t))≤τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi, b)l(z, z(t))
≤ δ2

256

for all t ≥ 0 holds with probability at least 1− η2.

Condition C (GH-error type). Assume that

max
i∈[n]

max
b∈[K]\zi

|H(t)
ib |+ |G

(t)
ib |

∆(zi, b)2
≤ δ(t+1)

4

holds uniformly on the event {z(t) : l(z, z(t)) ≤ τ (t)} for
all t ≥ 0 with probability at least 1− η3 .

We can now show under these conditions that there is a
contraction of the error if the initial estimate of the partition
is close enough to the ground truth partition.

Theorem 1. Assume that l(z(0), z) ≤ τ (0) and δ < 1.
Additionally assume that Conditions A, B, and C hold. Then
with probability at least 1−

∑3
i=1 ηi

l(z(t), z) ≤ ξ(δ(t)) +
1

8
l(z(t−1), z), ∀t ≥ 1. (1)

Remark 3. This is an adaptation of Theorem 3.1 in (Gao
& Zhang, 2019) where we allow at each step to choose a
different δ(t). It allows us to obtain a weaker condition for
initialization than the one used in Theorem 4.1 in (Gao &
Zhang, 2019). Indeed, they require l(z(0), z) = o(

n∆2
min

K )

in order to have δ = o(1), but we only need l(z(0), z) =

O(
n∆2

min

K ).

Proof of Theorem 1. By definition δ(t) < 1 for all t ≥ 1.
Let i ∈ [n] such that zi = a and assume that l(z(t−1), z) ≤
τ (t−1) for some given t ≥ 1. Denoting I

(t)
i (a, b) :=
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1
{Ci(a,b)≤−(1−δ(t))∆2(a,b)

2 }
, observe that

1{z(t)
i =b}

(1)

≤ 1{Ci(a,b)≤−∆2(a,b)
2 +F

(t−1)
ib +G

(t−1)
ib +H

(t−1)
ib }

(2)

≤ I
(t)
i (a, b) + 1{ δ(t)2 ∆2(a,b)≤F (t−1)

ib +G
(t−1)
ib +H

(t−1)
ib }

(3)

≤ I
(t)
i (a, b) + 1{ δ(t)4 ∆2(a,b)≤F (t−1)

ib }

≤ I(t)
i (a, b) + 1{ δ4 ∆2(a,b)≤F (t−1)

ib }

(4)

≤ I
(t)
i (a, b) +

32(F
(t−1)
ib )2

δ2∆4(a, b)
.

The inequality (1) follows from the definition of z(t)
i and

the error decomposition. Inequality (2) comes from a union
bound while (3) uses Condition C. Finally, (4) follows from
Markov inequality. Hence,

l(z(t), z) =
∑
i∈[n]

∑
b∈[K]\{zi}

∆2(zi, b)1{z(t)
i =b}

≤
∑
i∈[n]

∑
b∈[K]\{zi}

∆2(zi, b)1{Ci(a,b)≤−(1−δ(t))∆2(zi,b)

2 }

+
∑
i∈[n]

∑
b∈[K]\{zi}

∆2(zi, b)1{z(t)
i =b}

32(F
(t−1)
ib )2

δ2∆4(zi, b)

≤ ξ(δ(t)) +
∑
i∈[n]

max
b∈[K]\{zi}

32(F
(t−1)
ib )2

δ2∆2(zi, b)

≤ ξ(δ(t)) +
1

8
l(z(t−1), z).

Using Condition A, we hence obtain

l(z(t), z) ≤ ξ(δ(t)) +
1

8
τ (t−1) ≤ 7

8
τ (t−1).

Thus τ (t) is an upper bound for l(z(t), z) and the theorem
is proved by induction.

By iteratively unwrapping (1) we obtain for t large enough
the following bound on l(z(t), z).

Corollary 1. Under the assumptions of Theorem 1, we have
for all t & log(1/δ) that

l(z(t), z) . ξ(δ) + τ (0)(1/8)t−Θ(log(1/δ)).

This bound shows that if t is suitably large, then the estima-
tion error is of the order of the oracle error.

4.2. Convergence guarantees for IR-LSS under the
CSSBM

Let us define the SNR

∆̃2 =
1

8
min
k 6=k′
||µk − µk′ ||2 +

log n

K
(
√
p′ −

√
q′)2.

It is easy to see that ∆̃ � ∆min. The following lemma
shows that ξ(δ) decreases exponentially fast in ∆̃ provided
∆min is suitably large.
Lemma 1. Assume that K1.5/∆min → 0 and δ = δ(n)→
0 at a suitably slow rate. Then with probability at least
1− exp(−∆̃), we have

ξ(δ) ≤ n exp(−(1 + o(1))∆̃2).

The following theorem shows that if z(0) is close enough to
z, then the misclustering rate decreases exponentially fast
with the SNR ∆̃ after O(log n) iterations.
Theorem 2. Assume that K1.5/∆min → 0 and ∆̃2 �
log n/K. Under the CSSBM(p, q, n,K) assumption, if z(0)

is such that

l(z, z(0)) ≤ εn∆2
min

K
for a constant ε small enough, then with probability at least
1− n−Ω(1) we have for all t & log n

r(z(t), z) ≤ exp(−(1 + o(1))∆̃2).

Sketch of proof. We first show that Conditions B and C are
satisfied. Then we show that Condition A is satisfied for the
sequences δ(t) and τ (t), hence Theorem 1 can be applied to
obtain a contraction of the error at each step.

Remark 4. By assumption ∆̃2 & log n/K, and so the
condition ∆̃2 � log n/K is not very restrictive. Indeed,
if the information provided by the GMM part was not of
the same order as the graph part, it would not be useful to
aggregate information. If ∆̃2 � log n then we would be in
the exact recovery setting and the problem becomes easy.
Remark 5. The initial condition implies that
h(z(t), z)/n ≤ ε/K where h denotes Hamming dis-
tance, see appendix for details. This is a detection condition.
It is outside the scope of this work to analyze an algorithm
that achieves this condition under CSBM. The numerical
experiment done in the appendix suggests that the algorithm
can still work with a random initialization, at least in
particular cases.

4.3. Minimax lower-bound for CSSBM

We are going to establish that the convergence rate estab-
lished in Theorem 2 is optimal. Let

Θ = {(µk)k∈[K] ∈ RK , p, q ∈ [0, 1] such that p > q}

be the admissible parameter space.
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Theorem 3. Under the assumption ∆̃/ logK → ∞, we
have

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ≥ exp(−(1 + o(1))∆̃2).

If ∆̃ + logK = O(1), then inf ẑ supθ∈Θ E( r(ẑ,z)n ) ≥ c for
some positive constant c.
Remark 6. This lower-bound shows that if ∆̃2 <
log n then every estimator fails to achieve exact recov-
ery with a probability bounded below from zero because
supθ∈Θ E(r(ẑ, z)) > nε for some ε > 0. On the other hand,
Theorem 2 shows that when ∆̃2 > log n then IR-LSS
achieves exact recovery. Hence the threshold for exact re-
covery is ∆̃2/ log n. When K = 2 and µ1 = −µ2 = µ this
matches the result obtained by (Abbe et al., 2020).

Sketch of proof. We can use the same argument as in The-
orem 3.3 (Lu & Zhou, 2016) to reduce the problem to a
hypothesis testing problem. The solution of the latter is
given by the maximum likelihood test according to the
Neyman-Pearson lemma. Then the probability of error can
be controlled by using concentration inequalities.

4.4. Convergence guarantees for sIR-LS

The proof techniques used in the previous section can be
extended in a straightforward way to obtain consistency
results for sIR-LS under the CSBM. The main difference
is that the specialized concentration inequality used to prove
Lemma 1 can no longer be applied to this setting.
Theorem 4. Assume that K1.5/∆min → 0, ∆2

min �
log n/K and maxa,b∈[K] ∆2(a, b) . ∆2

min. Under
the CSBM with approximately balanced communities, if
l(z, z(0)) ≤ εn∆2

min

K for some small enough constant ε > 0,
then with probability at least 1− n−Ω(1) we have

r(z(t), z) ≤ exp

(
−1

8
∆2
min

)
for all t & log n.

Existing theoretical results. (Abbe et al., 2020) obtain
the same bound as us when K = 2. Their method – which
is an aggregated spectral method – requires computing the
largest eigenvector of XX> (with diagonal set to zero)
which has a complexity O(n2). In contrast, our method has
complexity O(n log n + nd) and is thus faster when d =
o(n). (Binkiewicz et al., 2017) consider a spectral method
applied on a regularized Laplacian. When d � polylog(n)
they show that the misclustering rate is O(1/polylog(n)).
(Yan & Sarkar, 2020) used a similar regularization idea but
with a SDP and obtain an error bound (in Frobenius norm)
for estimating a clustering matrix. Their bound depends on
the two sources of information, but as also noted by (Abbe
et al., 2020), it is unclear how the bound improves with side
information. Moreover the bounds in (Binkiewicz et al.,
2017; Yan & Sarkar, 2020) are not optimal.

5. Numerical experiments
We now empirically evaluate our method on both synthetic
and real data1. Section 5.1 contains simulations for the
CSBM and Section 5.2 contains results for clustering signed
networks under a Signed SBM. In Section 5.3, we test our
method on a dataset consisting of a (weighted) signed graph
along with covariate information for the nodes.

5.1. CSBM with not well separated communities

In this experiment the graph is generated from a SBM
with parameters n = 1000, K = 3, Zi

i.i.d∼
Multinomial(1; 1/3, 1/3, 1/3), and

Π = 0.02 ∗

 1.6 1.2 0.05
1.2 1.6 0.05
0.05 0.05 1.2

 .

The covariates are generated from a GMM with variance
σ2 = 0.2 and class centers µ1 = (0, 0, 1), µ2 = (−1, 1, 0),
µ3 = (0, 0, 1). Note that C1, C3 cannot be separated by the
covariate information, while C1, C2 are not well separated in
the graph information (as seen from Π). Hence, one would
expect in this example that using only a single source of
information should not yield good clustering results. To
demonstrate this, we use the Normalized Mutual Informa-
tion (NMI) criterion to measure the quality of the resulting
clusters. It is an information theoretic measure of similarity
taking values in [0, 1], with 1 denoting a perfect match, and
0 denoting the absence of correlation between partitions.

Performance comparison. We will use K-SC and L-SC
to denote respectively the results obtained by applying spec-
tral clustering on the Gaussian kernel matrixK formed from
the covariates, and spectral clustering (SC) applied on the
Laplacian of the graph. Additionally, SDP-Comb refers to
the method proposed by (Yan & Sarkar, 2020); IR-MAP
is similar to IR-LS but with the least-square criterion re-
placed by the MAP to update the partition; ORL-SC (Oracle
Regularized Laplacian SC) corresponds to SC applied on
A+ λK where λ is chosen to maximize the NMI between
the (oracle known) true partition and the one obtained by us-
ing SC on A+ λK. For the implementation of SDP-Comb,
we used the Matlab code provided by (Yan & Sarkar, 2020)
with the λ given by ORL-SC. We limited our comparison to
the aforementioned methods for concreteness; a comparison
with all existing methods from the literature would need a
separate study and is outside the scope of the paper.

Figure 1 shows that the three iterative methods considered
(IR-MAP, IR-LS, sIR-LS), initialized with EM-Emb,
provide significantly better clustering performance com-
pared to the other methods. The variance of sIR-LS is

1The source code is available on https://github.com/
glmbraun/CSBM

https://github.com/glmbraun/CSBM
https://github.com/glmbraun/CSBM
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Figure 1: Average performance over 40 runs of different algorithms
under CSBM.

a bit larger than IR-LS. On the other hand, other meth-
ods based on aggregating the two sources of information
(SDP-Comb and ORL-SC ) lead to a limited improvement
in clustering performance. Additional experiment results in
the appendix suggest that the iterative methods considered
also work with random initialization.

Computational cost. We took the average of CPU time
(in seconds) over 20 repetitions. There is an important gain
in speed obtained by replacing the MAP objective by a least
square criterion. Moreover, the initialization obtained with
EM-Emb is very fast. The results are gathered in Table 1.

L-SC ORL-SC EM-Emb IR-LS IR-MAP
Time 1.4 7.9 0.5 1.2 37.1
Ratio 2.7 15 1 2.3 70

Table 1: Comparison between computation times (averaged over
20 runs)

5.2. Signed SBM

A graph is generated from the Signed SBM as follows. First
we generate an Erdös-Renyi graph where each edge ap-
pears with probability p and each edge takes the value 1 if
both extremities are in the same community and −1 oth-
erwise. Then we flip the sign of each edge independently
with probability η ∈ [0, 1/2). Our method sIR-LS can
be directly applied to this setting, but we can also use the
fact that the connectivity matrix Π is assortative to design a
more specialised algorithm IR-SSBM (see appendix) that
assigns a node to the community which maximizes its intra-
connectivity estimated probability. For initialization, we
use Sponge-sym (Cucuringu et al., 2019) for clustering
signed graphs. Figure 2 shows that 20 refinement steps
improve the clustering.

5.3. Australia Rainfall Dataset

We consider the time series data of historical rainfalls in
locations throughout Australia, this was also studied in (Cu-
curingu et al., 2019). Edge weights are obtained from the

Figure 2: NMI versus η (noise) under signed SBM, K = 20,
n = 10000, p = 0.01.

Figure 3: Sorted adjacency matrices and maps for Australian
rainfall dataset (K = 5).

pairwise Pearson correlation, leading to a complete signed
graph on n = 306 nodes. We use the longitude and latitude
as covariates X , and Sponge (Cucuringu et al., 2019)
to obtain an initial partition for sIR-LS and IR-SBM
(the version of sIR-LS without covariates). We exclude
IR-LS here due to its relative instability on this dataset
(see appendix). This shows that in some situations it can
be better to use sIR-LS rather than IR-LS. Figure 3 il-
lustrates the clustering obtained with Sponge (using only
the graph), sIR-LS (integrating the covariates), IR-SBM
(refinement without covariates), and K-means applied on
the covariates. The use of covariates in the refinement steps
reinforces the geographical structure (orange points in the
bottom right part of the map disappeared), increases the
size of smallest cluster (the violet cluster on the three first
maps), and strengthens the original clustering as seen in the
sorted adjacency matrix, whereas IR-SBM ignores the ge-
ography and K-means ignores the graph structure. Results
for other choices of K are in the appendix.

6. Future work
We only analyzed sIR-LS and IR-LSS to reduce techni-
calities but we believe that the framework can be extended
to analyze IR-LS. The principle we used to design our algo-
rithm could also be applied to obtain a clustering method for
bipartite graphs or multilayer networks. Another direction
of research is to extend our method to more general graph
models integrating common properties of real-life networks
such as degree heterogeneity, mixed membership, presence
of outliers and missing values.
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Supplementary Material
The proof of Corollary 1 is presented in Section A and the proof of Lemma 1 is presented in Section B. Theorem 2 is proved
in Section C and Theorem 3 is proved in Section D. The technical lemmas used in the proofs are gathered in Section E.
Finally, Section F contains results for additional experiments.

A. Proof of Corollary 1
We will prove a more precise version of Corollary 1 stated below.

Corollary 2. Assume that the assumptions of Theorem 1 hold. Denoting t∗ = d log(1/δ)
log(8/7)e, we have for all t ≥ t∗ that

τ (t) = τ , δ(t) = δ and

l(z(t), z) ≤ 8

7
ξ(δ) +

3

28
τ (0)

(
1

8

)t−t∗

Proof. For convenience, denote τ = τ (0)δ. Let t∗ be the smallest integer such that τ ≥ ( 7
8 )tτ (0); clearly, t∗ = d log(1/δ)

log(8/7)e.
Then for t ≥ t∗, we have τ (t) = τ = τ (0)δ, and hence (from the definition of δ(t)), δ(t) = δ. Therefore Theorem 1 implies
that for t ≥ t∗,

l(z(t), z) ≤ ξ(δ(t)) +
1

8
ξ(δ(t−1)) + . . .+

(
1

8

)t−t∗
ξ(δ(t∗)) +

[(
1

8

)t−t∗+1

ξ(δ(t∗−1)) + . . .+

(
1

8

)t−1

ξ(δ(1))

]

≤ 8

7
ξ(δ) +

[(
1

8

)t−t∗+1

ξ(δ(t∗−1)) + . . .+

(
1

8

)t−1

ξ(δ(1))

]
(since δ(t) = δ for t ≥ t∗)

≤ 8

7
ξ(δ) +

3

4
τ (0)

[(
1

8

)t−1

+ . . .+

(
1

8

)t−t∗+1
]

(since for all t, ξ(δ(t)) ≤ 3
4τ

(0) by Condition A)

≤ 8

7
ξ(δ) +

3

28
τ (0)

(
1

8

)t−t∗
.

B. Proof of Lemma 1
Let δ, δ̄ > 0 . The ideal oracle error term can be upper bounded as follows

ξ(δ) ≤
n∑
i=1

∑
b∈[K]\zi

∆2(zi, b)1{〈εi,µzi−µb〉+λ〈Ei:W,Πzi:−Πb:〉≤
−(1−δ−δ̄)∆2(zi,b)

2 }︸ ︷︷ ︸
M1

+

n∑
i=1

∑
b∈[K]\zi

∆2(zi, b)1{〈εi,µ̃zi−µzi 〉+λ〈Ei:W,Π̃zi:−Πzi:〉≤
−δ̄∆2(zi,b)

4 }︸ ︷︷ ︸
M2

+

n∑
i=1

∑
b∈[K]\zi

∆2(zi, b)1{〈−εi,µ̃b−µb〉−λ〈Ei:W,Π̃b:−Πb:〉≤
−δ̄∆2(zi,b)

4 }︸ ︷︷ ︸
M3

.

We will first obtain upper bounds for each E(Mi), i = 1 . . . 3. In particular we will show that the dominant term is E(M1).
Then, we will use Markov inequality to control ξ(δ) with high probability.

Upper bound of E(M1). Let us denote for any given i ∈ [n] and b ∈ [K] \ zi the event

Ω1 =

{
〈εi, µzi − µb〉+ λ〈Ei:W,Πzi: −Πb:〉 ≤

−(1− δ − δ̄)∆2(zi, b)

2

}
.
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By using an analogous argument as the one presented in Lemma 9 we obtain

P(Ω1) ≤ exp(−(1 + o(1))∆̃2).

Thus by taking δ = δ̄ going to zero as n→∞, we obtain

E(M1) ≤
n∑
i=1

∑
b∈[K]\zi

∆2(zi, b) exp(−(1 + o(1))∆̃2)

≤ nK exp(−(1 + o(1))∆̃2)

≤ n exp(−(1 + o(1))∆̃2).

In the second line we used the fact that ∆2(zi, b) = ∆min . ∆̃2 for all zi 6= b and ∆̃ �
√

log n/K →∞. In the third line
we used the assumption ∆̃2/ log(K)→∞.

Upper bound of E(M2). Let us denote for any given i ∈ [n] and b ∈ [K] \ zi the events

Ω2 =

{
〈εi, µ̃zi − µzi〉+ λ〈Ei:W, Π̃zi: −Πzi:〉 ≤

−δ̄∆2(zi, b)

4

}
,

Ω′2 =

{
〈εi, µ̃zi − µzi〉 ≤

−δ̄∆2(zi, b)

8

}
,

and

Ω′′2 =

{
λ〈Ei:W, Π̃zi: −Πzi:〉 ≤

−δ̄∆2(zi, b)

8

}
.

Clearly P(Ω2) ≤ P(Ω′2) + P(Ω′′2) by a union bound argument.

Let us first upper bound P(Ω′2). Recall that nk = n/K under the CSSBM by assumption, let us also define nmin := mink nk.
We keep this general notation because it is shorter and indicates how the proof can be generalized to the unbalanced setting.
By definition µ̃zi − µzi =

∑
j∈Czi

εj
nzi

, hence

〈εi, µ̃zi − µzi〉 =

||εi||2 + ε>i
∑
j∈Czi
j 6=i

εj

nzi
.

This last quantity is lower bounded by ε>i ηi where ηi =

∑
j∈Czi , j 6=i

εj

nzi
. In particular εi and ηi are independent and their

entries are also independent. Moreover ηi is a centered gaussian random variables with independent entries such that
Var((ηi)k) ≤ 1/nk. So by Bernstein inequality, it holds for all x > 0 that

P
(
||ηi||2 ≥

1

nk
(K + 2

√
Kx+ 2x)

)
≤ exp(−x)

which in turn implies

P
(
ε>i ηi ≤ −

δ̄∆2
min

8

)
≤ P

(
ε>i ηi ≤ −

δ̄∆2
min

8

∣∣∣∣ ||ηi||2 ≤ 1

nk
(K + 2

√
Kx+ 2x)

)
+ P

(
||ηi||2 ≥

1

nk
(K + 2

√
Kx+ 2x)

)
≤ exp

(
−c nk(δ̄∆2

min)2

K + 2
√
Kx+ 2x

)
+ exp(−x).

Setting x =
√
nk δ̄∆

2
min we obtain P(Ω′2) ≤ 2 exp(−Cδ̄√nk∆2

min). Since δ̄ → 0 (as n→∞) at a suitably slow rate, we
have δ̄

√
n/K → +∞. Consequently,

P(Ω′2) = o(exp(−(C + o(1))∆2
min) = o(exp(−(1 + o(1))∆̃2)).
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Let us now bound P(Ω′′2). Since Π̃kk′ −Πkk′ =
∑
i∈Ck, j∈Ck′

Eij
nknk′

= W>:kEW:k′ , we obtain the decomposition

λ〈Ei:W, Π̃zi: −Πzi:〉 = λ〈Ei:W,W>zi:E
(i)W 〉+ λ〈Ei:W,W>zi:E

(−i)W 〉

where E(i) is obtained from E by only keeping the ith row and column, and E−i is the matrix obtained from E by replacing
the ith row and column by zero. In particular, E(−i) is independent from Ei:. The second term can be controlled by using
the same techniques as before. Indeed, the entries of W>zi:E

(−i)W are independent and Var(W>zi:E
(−i)W:k) ≤ C pmax

n2
min

for

all k. Denoting η′ik = W>zi:E
(−i)W:k and η′i = (η′ik)k∈[K], this implies

P
(
λ〈Ei:W, η′i〉 ≤ −

δ̄∆2
min

16

)
≤ P

(
λ〈Ei:W, η′i〉 ≤ −

δ̄∆2
min

16

∣∣∣∣ ∀k, |η′ik|2 ≤ C pmaxn2
k

(K + x)

)
+ P

(
∃k, |η′ik|2 ≥ C

pmax
n2
min

(K + x)

)
≤ K exp

(
−C n3

min(δ̄∆2
min)2

pmaxλ2(K + x)

)
+K exp(−x).

Here, we used a union bound argument for the first inequality. The second inequality uses Lemma 7 – which provides a
concentration bound for binomial random variables – along with the fact λ � n

Kpmax
.

Setting x = C
√
nkpmaxδ̄∆

2
min we obtain

P
(
λ〈Ei:W, η′i〉 ≤ −

δ̄∆2
min

16

)
≤ 2 exp(−c√nkpmaxδ̄∆2

min) = o(exp(−∆̃2))

since δ̄ can be chosen such that
√
nkpmaxδ̄ → +∞ (because by assumption npmax � log n� K4) and ∆min � ∆̃.

It remains to control 〈Ei:W,W>zi:E
(i)W 〉. Using the fact

(W>zi:E
(i)W )k =


∑
j′∈Ck

Eij′

nzink
if k 6= zi

2
∑
j′∈Ck

Eij′

n2
zi

if k = zi

we have

〈Ei:W,W>zi:E
(i)W 〉 =

∑
k 6=zi

∑
j∈Ck
j′∈Ck

Eij
nk

Eij′

nzink
+ 2nzi

∑
j∈Czi

Eij′

n2
zi

2

=
1

nzi

∑
j∈Ck

Eij
nk

2

+ 2nzi

∑
j∈Czi

Eij′

n2
zi

2

≥ 0.

Consequently, P (Ω′′2) can be bounded as

P (Ω′′2) ≤ P
(
λ〈Ei:W, η′i〉 ≤ −

δ̄∆2
min

16

)
= o(exp(−∆̃2)).

Upper bound of E(M3). Let us denote for any given i ∈ [n] and b ∈ [K] \ zi the event

Ω3 =

{
〈−εi, µ̃b − µb〉 − λ〈Ei:W, Π̃b: −Πb:〉 ≤

−δ̄∆2(zi, b)

4

}
.

First observe that

〈εi, µ̃b − µb〉 =
ε>i
∑
j∈Cb εj

nzi
,



An iterative clustering algorithm for the Contextual Stochastic Block Model with optimality guarantees

therefore this term can be handled in the same way as before. Moreover, we have

λ〈Ei:W, Π̃b: −Πb:〉 = λ〈Ei:W,W>b: E(i)W 〉+ λ〈Ei:W,W>b: E(−i)W 〉.

The second term can be handled in the same way as before by using a conditioning argument. Now observe that

〈Ei:W,W>b: E(i)W 〉 =
1

n2
zinb

∑
j∈Cb

Eij

 ∑
j′∈Czi

Eij′


where

∑
j∈Cb Eij and

∑
j′∈Czi

Eij′ are independent subgaussian random variables. Thus this term can also be controlled
by using the same conditioning argument as before.

Conclusion. The previously obtained upper bounds imply

E(ξ(δ)) ≤ 3E(M1) ≤ n exp(−(1 + o(1))∆̃2).

Finally, by Markov inequality, we obtain

P(ξ(δ) ≥ exp(∆̃)Eξ(δ)) ≤ exp(−∆̃).

But since
exp(∆̃)Eξ(δ) ≤ n exp(−(1 + o(1))∆̃2)

we obtain that with probability at least 1− exp(−∆̃)

ξ(δ) ≤ n exp(−(1 + o(1))∆̃2).

C. Proof of Theorem 2
The general proof strategy has been presented in Section 4.1. In Section C.1 we will make the error decomposition explicit.
Then, we will control the different error terms in Sections C.2, C.3 and C.4. Finally, we will conclude by applying Theorem
1 in Section C.5.

C.1. Error decomposition for the one-step analysis of IR-LSS

We will assume without lost of generality that σ = 1 to simplify the exposition. Let i ∈ [n] and a ∈ [K] be such that2

zi = a, and let

λ(t) =
n

K(p(t) − q(t))
log

(
p(t)(1− q(t))

q(t)(1− p(t))

)
denote the scalar corresponding to the diagonal entry of the inverse covariance matrix Σ

(t)
k . Similarly, let us denote

λ =
n

K(p− q)
log

(
p(1− q)
q(1− p)

)
.

Given the current estimator of the partition Z(t), node i will be incorrectly estimated after one refinement step if

a 6= arg min
k
||Xi − µ(t)

k ||
2 + λ̂(t)||Ai:W (t) −Π

(t)
k: ||

2

or equivalently, if there exists b ∈ [K]\a such that

||Xi − µ(t)
b ||

2 + λ̂(t)||Ai:W (t) −Π
(t)
b: ||

2 ≤ ||Xi − µ(t)
a ||2 + λ̂(t)||Ai:W (t) −Π(t)

a: ||2.

The above inequality is equivalent to

〈εi, µ̃a − µ̃b〉+ λ〈Ei:W, Π̃a: − Π̃b:〉 ≤
−∆2(a, b)

2
+ F

(t)
ib +G

(t)
ib +H

(t)
ib

2Depending on the context we will interchangeably use the notation zi and a.
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where
∆2(a, b) = ||µa − µb||2 + λ||Πa: −Πb:||2, µ̃k = X>W:a, and Π̃k: = W>k:AW

for all k ∈ [K]. Furthermore, the terms F (t)
ib , G

(t)
ib and H(t)

ib are given by

F
(t)
ib = 〈εi, (µ̃a − µ(t)

a )− (µ̃b − µ(t)
b )〉+ λ(t)〈Ei:W (t), (Π̃a: −Π(t)

a: )− (Π̃b: −Π
(t)
b: )〉

+ λ(t)〈Ei:(W −W (t)), Π̃a: − Π̃b:〉+ (λ− λ(t))〈Ei:W, Π̃a: − Π̃b:〉,

2G
(t)
ib = (||µa − µ(t)

a ||2 − ||µa − µ̃a||2)− (||µa − µ(t)
b ||

2 − ||µa − µ̃b||2)

+ λ(t)(||Pi:W (t) −Π(t)
a: ||2 − ||Pi:W (t) −W>a:AW

(t)||2)

− λ(t)(||Pi:W (t) −Π
(t)
b: ||

2 − ||Pi:W (t) −W>b: AW (t)||2)

and 2H
(t)
ib = ||µa − µ̃a||2 − ||µa − µ̃b||2 + ||µa − µb||2

+ λ(t)(||Pi:W (t) −W>a:AW
(t)||2 − ||Pi:W (t) −W>b: AW (t)||2 + ||Πa: −Πb:||2)

+ (λ− λ(t))||Πa: −Πb:||2.

The main term in this decomposition is

〈εi, µ̃a − µ̃b〉+ λ〈Ei:W, Π̃a: − Π̃b:〉 ≤
−∆2(a, b)

2

and corresponds to the error when the current estimation of the partition is the ground truth partition. It is controlled by
Lemma 1

The three error terms will be controlled in different ways. The error term F
(t)
ib depends in a crucial way on i and t, it will be

controlled with a l2-type norm (see Condition B). The square of the error terms G(t)
ib and |H(t)

ib | will be controlled uniformly
(see Condition C).

C.2. Bounding the error term F
(t)
ib

In this section we are going to show that Condition B is satisfied.
Lemma 2. Under the assumptions of Theorem 4 (that are also satisfied by Theorem 2) we have w.h.p. that for all z(t) such
that l(z(t), z) ≤ τ (0),

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆2(zi, b)l(z, z(t))
≤ δ2

256
.

Proof. We need to upper-bound of

F = max
{z(t):l(z,z(t))≤τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
(t)
ib )2

∆(zi, b)2l(z, z(t))
.

To this end, we can decompose F (t)
ib = F

1,(t)
ib + F

2,(t)
ib where

F
1,(t)
ib = 〈εi, (µ̃a − µ(t)

a )− (µ̃b − µ(t)
b )〉

is the error arising from the GMM part of the model and

F
2,(t)
ib = λ(t)〈Ei:W (t), (Π̃a: −Π(t)

a: )− (Π̃b: −Π
(t)
b: )〉+ λ(t)〈Ei:(W −W (t)), Π̃a: − Π̃b:〉+ (λ− λ(t))〈Ei:W, Π̃a: − Π̃b:〉

is the error coming from the SBM part of the model. We have

F ≤ 2 max
{z(t):l(z,z(t))≤τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
1,(t)
ib )2

∆(zi, b)2l(z, z(t))︸ ︷︷ ︸
F

(t)
1

+2 max
{z(t):l(z,z(t))≤τ(0)}

n∑
i=1

max
b∈[K]\zi

(F
2,(t)
ib )2

∆(zi, b)2l(z, z(t))︸ ︷︷ ︸
F

(t)
2

and it is sufficient to individually control each term.
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Control of F1. We follow the same steps as in (Gao & Zhang, 2019), the only difference is that we use a different
definition for ∆. To begin with,

F
(t)
1 ≤

n∑
i=1

∑
b∈[K]\zi

〈εi, (µ̃zi − µ
(t)
zi )− (µ̃b − µ(t)

b )〉2

∆(zi, b)2l(z, z(t))

≤
∑
b∈[K]

∑
a∈[K]\b

∑
i∈Ca

〈εi, (µ̃a − µ(t)
a )− (µ̃b − µ(t)

b )〉2

∆(a, b)2l(z, z(t))

≤
∑
b∈[K]

∑
a∈[K]\b

||
∑
i∈Ca

εiε
>
i ||
||(µ̃a − µ(t)

a )− (µ̃b − µ(t)
b )||2

∆(a, b)2l(z, z(t))
.

We first need to control ||
∑
i∈Ca εiε

>
i || which can be done using the following lemma.

Lemma 3. Let εi
i.i.d∼ N (0, Id). With probability at least 1− exp(−0.5n), we have

||
∑
i∈[n]

εiε
>
i || . n+ d.

Proof. See Lemma A.2 in (Lu & Zhou, 2016).

Next, we need to control ||µ̃a − µ(t)
a ||2 for all a ∈ [K], this can be done with the following lemma.

Lemma 4. Under the assumptions of Theorem 2, the following holds with probability at least 1− n−Ω(1). If z(t) satisfies
l(z(t), z) ≤ τ (0) =

εn∆2
min

K then it implies

1. maxk∈[K] ||µ̃k − µk|| .
√

K(d+logn)
n ,

2. maxk∈[K] ||E(X)>(W
(t)
:k −W:k)|| . K

n∆min
l(z(t), z),

3. maxk∈[K] ||(X − E(X))>W
(t)
:k || .

K
√

(d+n)l(z(t),z)

n∆min
+

K
√
K(d+logn)l(z(t),z)

n
√
n∆2

min

4. ||µ̃k − µ(t)
k || ≤ C3

K
√

(d+n)l(z(t),z)

n∆min
.

Proof. Straightforward adaptation the proof of Lemma 4.1 in (Gao & Zhang, 2019).

By combining the different bounds, we can now conclude that with high probability,

max
{z(t):l(z(t),z)≤τ(0)}

F
(t)
1 .

K2(Kd/n+ 1)

∆2
min

(
1 +

K(d/n+ 1)

∆2
min

)
.

This quantity goes to zero when ∆2
min/K

3 → +∞.

Control of F (t)
2 . Here we can not directly apply the framework developed by (Gao & Zhang, 2019). Different changes are

necessary and we need to deal with additional dependencies.

Let b ∈ [K] 6= zj , we then have the bound

(F
2,(t)
ib )2 ≤ 3(λ(t)〈Ei:W (t), (Π̃a: −Π(t)

a: )− (Π̃b: −Π
(t)
b: )〉)2

+ 3(λ(t)〈Ei:(W −W (t)), Π̃a: − Π̃b:〉)2

+ 3(λ− λ(t))2〈Ei:W, Π̃a: − Π̃b:〉2

= F 2
21 + F 2

22 + F 2
33.
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We drop the superscript (t) in the notation for the terms F21, F22 and F23 for convenience, but clearly they depend on t as
well. We will now bound each of the terms F2i for i = 1 . . . 3 separately. Starting with F21, first note that

|〈Ei:W (t), (Π̃a: −Π(t)
a: )− (Π̃b: −Π

(t)
b: )〉|2 ≤ 4||Ei:W (t)||2 max

k
||Π̃k: −Π

(t)
k: ||

2.

With high probability, for all z(t) such that l(z(t), z) ≤ τ (0) we have

max
k∈[K]

||Π̃k: −Π
(t)
k: ||

2 ≤ 2 max
k∈[K]

||(W:k −W (t)
:k )>AW ||2 + 2 max

k∈[K]
||W (t)>

:k A(W −W (t))||2

.

(
K2√pmaxl(z(t), z)

n1.5∆min

)2

(by Lemma 13)

.
K4pmaxl(z

(t), z)2

n3∆2
min

and since λ(t) . λ (by Lemma 15) it follows that
n∑
i=1

max
b∈[K]\zi

F 2
21

∆2(zi, b)l(z, z(t))
. λ2

∑
i

||Ei:W (t)||2K
4pmaxl(z

(t), z)2

n3∆2
min

. λ2||EW (t)||2F
K4pmaxl(z

(t), z)

n3∆4
min

. λ2K||EW (t)||2K
4pmaxl(z

(t), z)

n3∆4
min

. λ2K2pmax
K4pmaxl(z

(t), z)

n3∆4
min

(by a consequence of Lemma 13, fifth item)

.
K4l(z(t), z)

n∆4
min

( since λ . n
Kpmax

)

.
K3

∆2
min

→ 0

where we used the fact Kl(z
(t),z)

n∆2
min

≤ ε for the last line. Indeed, Kl(z
(t),z)

n∆2
min

≤ Kτ(0)

n∆2
min

= ε.

Let us define ∆2
2(a, b) := ‖Πa: −Πb:‖2 for a, b ∈ [K]. Since

F 2
22 . λ2||Ei:(W −W (t))||2||Π̃zi: − Π̃b:||2 . λ2||Ei:(W −W (t))||2||Πzi: −Πb:||2

hence we have w.h.p. for all z(t) such that l(z(t), z) ≤ τ (0)

n∑
i=1

max
b∈[K]\zi

F 2
22

∆(zi, b)2l(z, z(t))
. λ

∑
i

||Ei:(W −W (t))||2 1

l(z(t), z)
max

b∈[K]\zi

λ||Πzi: −Πb:||2

∆(zi, b)2

. ||E(W −W (t))||2F
λ

l(z(t), z)
(because ∆2(zi, b) ≥ λ∆2

2(zi, b))

. K||E(W −W (t))||2 λ

l(z(t), z)

. λKnpmax
K3l(z(t), z)

n3∆4
min

(by Lemma 13)

.
K3

∆2
min

→ 0.

Using the same proof technique as in Lemma 1

(〈Ei:W, Π̃a: − Π̃b:〉)2 . Kpmax∆2
2(a, b)
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holds w.h.p. Since by Lemma 15 we have w.h.p. that for all z(t) such that l(z(t), z) ≤ τ (0)

|λ(t) − λ| . λ
K2l(z(t), z)
√
npmaxn∆min

,

we obtain

n∑
i=1

max
b∈[K]\zi

F 2
23

∆(zi, b)2l(z, z(t))
. λ2

(
K2l(z(t), z)
√
npmaxn∆min

)2∑
i

||Ei:W ||2 max
b∈[K]\zi

||Π̃zi: − Π̃b:||2
1

∆2(zi, b)l(z(t), z)

. λ
K4l(z(t), z)

n3pmax∆2
min

||EW ||2F max
b∈[K]\zi

λ||Πzi: −Πb:||2

∆2(zi, b)

.
n

Kpmax

K4l(z(t), z)

n3pmax∆2
min

Kpmax (by Lemma 8)

.
K4l(z(t), z)

n2pmax∆2
min

.
K3

npmax

.
K3

∆2
min

→ 0.

Consequently, we have established that Condition B holds for all δ = o(1) such that δ2 = ω(K3/∆2
min).

C.3. Error term G
(t)
ib

In this section we are going to show that the G - error term satisfied condition C.

Lemma 5. Under the assumptions of Theorem 4 (that are also satisfied by Theorem 2) we have w.h.p. for all z(t) such that
l(z(t), z) ≤ τ (t)

max
i∈[n]

max
b∈[K]\zi

|G(t)
ib |

∆(zi, b)2
≤ δ(t+1)

8
.

Proof. As for F (t)
ib we can split G(t)

ib = G
1,(t)
ib +G

2,(t)
ib where

G
1,(t)
ib = ||µa − µ(t)

a ||2 − ||µa − µ̃a||2)− (||µa − µ(t)
b ||

2 − ||µa − µ̃b||2)

G
2,(t)
ib = λ(t)(||Pi:W (t) −Π(t)

a: ||2 − ||Pi:W (t) −Wa:AW
(t)||2)− λ(t)(||Pi:W (t) −Π

(t)
b: ||

2 − ||Pi:W (t) −Wb:AW
(t)||2).

By the proof of Lemma 4.1 in (Gao & Zhang, 2019) (last inequality of page 46, equations (115) and (118)), we have w.h.p.
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for all z(t) such that l(z(t), z) ≤ τ (t),

|G1,(t)
ib |

∆2(a, b)
.

Kl(z(t), z)

n∆min
+K

√
Kl(z(t), z)

n∆min

2

∆−2
min

+

Kl(z(t), z)

n∆min
+K

√
Kl(z(t), z)

n∆min

 Kl(z(t), z)

n∆min
∆−2
min +

Kl(z(t), z)

n∆min
+K

√
Kl(z(t), z)

n∆min

∆−1
min

.
Kl(z(t), z)2

n2∆4
min

+K
l(z(t), z)

n∆2
min

. K
l(z(t), z)

n∆2
min

(since K l(z(t),z)
n∆2

min
< 1 and Kl(z(t),z)2

n2∆4
min

< 1
K )

.
Kτ (t)

n∆2
min

. max

(
7

8

Kτ (t−1)

n∆2
min

,
Kτ

n∆2
min

)
(by definition of τ (t))

. max

(
7

8
(
8

7
ε)δ(t), εδ

)
(using τ = τ (0)δ and also the definition of δ(t))

. εδ(t). (since δ ≤ δ(t))

Now by choosing ε to be a suitably small constant (< 1), since δ(t+1) ≤ 7
8δ

(t) we obtain

|G1,(t)
ib |

∆2(a, b)
≤ δ(t+1)

16
.

To bound G2,(t)
ib we will adapt the method developed in (Han et al., 2020). We have by direct calculation

G
2,(t)
ib

λ(t)
= (||Π(t)

a: −W>a:AW
(t)||2 − ||Π(t)

b: −Wb:AW
(t)||2) + 2〈Pi:W (t) −Wa:AW

(t),W>:aAW
(t) −Π(t)

a: 〉

− 2〈Pi:W (t) −Wb:AW
(t),W>:b AW

(t) −Π
(t)
b: 〉

≤
∣∣∣||Π(t)

a: −W>:aAW (t)||2 − ||Π(t)
b: −W

>
:b AW

(t)||2
∣∣∣+ 4 max

a∈[K]

∣∣∣〈W>:aEW (t), (W:b −W (t)
:b )>AW (t)〉

∣∣∣
+ 2

∣∣∣〈(Πa: −Πb:)Z
>W (t), (W:b −W (t)

:b )>AW (t)〉
∣∣∣

= G21 +G22 +G23.

We drop the superscript (t) in the notation for the terms G21, G22 and G23 for convenience, but clearly they depend on t as
well. First observe that w.h.p, it holds for all z(t) such that l(z(t), z) ≤ τ (t) that

G21 ≤ max
a∈[K]

||Π(t)
a: −W>:aAW (t)||2 = max

a∈[K]
||(W (t)

a: −W:a)>AW (t)||2 .
K3pmaxl(z

(t), z)2

n3∆2
min

where we used Lemma 13 for the last inequality. This implies by Lemma 14 that

max
b∈[K]\zi

λ(t)G21

∆2(zi, b)
.
K2l(z(t), z)2

n2∆4
min

≤ K2(τ (0)δ(t))2

n2∆4
min

which implies maxb∈[K]\zi
λ(t)G21

∆2(zi,b)
≤ ( δ

(t+1)

16 )2 using the same argument used earlier (for suitably small constant ε < 1).
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Next, in order to bound G22, note that w.h.p, it holds for all z(t) such that l(z(t), z) ≤ τ (t) that

G22 ≤ 4 max
a∈[K]

||W>:aEW (t)|| max
a∈[K]

||(W:b −W (t)
:b )>AW (t)||

.
K
√
pmax√
n

K1.5√pmaxl(z(t), z)

n1.5∆min
(by Lemma 13)

. K2.5 pmax
n

l(z(t), z)

n∆min

which in turn implies

max
b∈[K]\zi

λ(t)G22

∆(zi, b)2
.

√
K

∆min

Kl(z(t), z)

n∆2
min

(since λ(t) . n/(Kpmax))

= o(δ)

as
√
K/∆min → 0 and K l(z(t),z)

n∆2
min

< 1.

Finally, in order to bound G23, note that w.h.p, it holds for all z(t) such that l(z(t), z) ≤ τ (t),

G23 . ||Πa: −Πb:)Z
>W (t)|| max

b∈[K]
||(W:b −W (t)

:b )>AW (t)||

. ∆2(a, b)
K1.5√pmaxl(z(t), z)

n1.5∆min

which implies

max
b∈[K]\zi

λ(t)G23

∆(zi, b)2
. λ

∆2(zi, b)

∆(zi, b)

K1.5√pmaxl(z(t), z)

n1.5∆2
min

.
√
λ

√
Kpmax√
n

Kl(z(t), z)

n∆2
min

.
Kl(z(t), z)

n∆2
min

. (since λ . n
Kpmax

)

For a suitably constant ε < 1, this then implies

max
b∈[K]\zi

λ(t)G23

∆(zi, b)2
≤ δ(t+1)

16
.

C.4. Error term H
(t)
ib

In this section we are going to show that the H - error term satisfied condition C.

Lemma 6. Under the assumptions of Theorem 4 (that are also satisfied by Theorem 2) we have w.h.p. that for all z(t) such
that l(z(t), z) ≤ τ (t),

max
i∈[n]

max
b∈[K]\zi

|H(t)
ib |

∆(zi, b)2
≤ δ(t+1)

8
.

Proof. As before, we can split H(t)
ib = H

1,(t)
ib +H

2,(t)
ib where

2H
1,(t)
ib = ||µa − µ̃a||2 − ||µa − µ̃b||2 + ||µa − µb||2

2H
2,(t)
ib = λ(t)(||Pi:W (t) −W>a:AW

(t)||2 − ||Pi:W (t) −W>b: AW (t)||2 + ||Πa: −Πb:||2) + (λ− λ(t))||Πa: −Πb:||2.
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By an immediate adaptation of Lemma 4.1 in (Gao & Zhang, 2019) it holds w.h.p. that for all z(t) such that l(z(t), z) ≤ τ (t),

|H1,(t)
ib |

∆(zi, b)2
.
K(d+ log n)

n∆2
min

+

√
K(d+ log n)

n∆2
min

→ 0

as long as K/∆2
min → 0.

It remains to uniformly control H2,(t)
ib , let us split it3 as H2,(t)

ib = λ(t)H1 +H2. First note that by Lemma 15 it holds w.h.p.
that for all z(t) such that l(z(t), z) ≤ τ (t),

H2 := (λ− λ(t))||Πa: −Πb:||2 . λ
Kl(z(t), z)

n∆2
min

∆2
2(a, b)

which implies

|H2|
∆(zi, b)2

.
Kl(z(t), z)

n∆2
min

.

Then, we obtain |H2|
∆(zi,b)2 ≤ δ(t+1)

16 for a small enough constant ε < 1.

Now observe that

H1 : = ||Pi:W (t) −W>a:AW
(t)||2 − ||Pi:W (t) −W>b: AW (t)||2 + ||Πa: −Πb:||2

= ||W>a:EW
(t)||2 + (||Πa: −Πb:||2 − ||Pi:W (t) −W>b: PW (t)||2)

− (||Pi:W (t) −W>b: AW (t)||2 − ||Pi:W (t) −W>b: PW (t)||2)

= (||Πa: −Πb:||2 − ||Pi:W (t) −W>b: PW (t)||2) + (||W>a:EW
(t)||2 − ||W>b: EW (t)||2)

+ 2〈Pi:W (t) −W>b: PW (t),W>:b EW
(t)〉

= H
(t)
11 +H

(t)
12 +H

(t)
13 .

By writing
Pi:W

(t) −W>b: PW (t) = (Πa: −Πb:)Z
>W (t),

we obtain w.h.p. that for all z(t) such that l(z(t), z) ≤ τ (t),

|H(t)
13 | . ||Pi:W (t) −W>b: PW (t)||||W>:b EW (t)|| . ||Πa: −Πb:||

K
√
pmax√
n

. ||Πa: −Πb:||2
K

√
npmax

.

In particular,
λ(t)|H(t)

13 |
∆2(zi, b)

.
λ∆2

2(zi, b)K

∆2(zi, b)
√
npmax

.
K

√
npmax

→ 0.

Next observe that w.h.p., it holds for all z(t) such that l(z(t), z) ≤ τ (t) that∣∣∣||W>a:EW
(t)||2 − ||W>b: EW (t)||2

∣∣∣ ≤ max
k∈[K]

||W>k:EW
(t)||2.K

2pmax
n

where the last inequality uses Lemma 13. This implies

λ(t)|H(t)
12 |

∆2(zi, b)
.

K

∆2
min

→ 0.

Finally, it remains to bound |H(t)
11 |. To begin with,

|H(t)
11 | :=

∣∣∣||Πa: −Πb:||2 − ||Pi:W (t) −W>b: PW (t)||2
∣∣∣ =

∣∣∣||Πa: −Πb:||2 − ||(Πa: −Πb:)Z
>W (t)||2

∣∣∣ .
3We drop the superscript (t) in the notation for H1, H2 for convenience, but clearly they both depend on t as well.
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Using the fact∣∣∣||Πa: −Πb:||2 − ||(Πa: −Πb:)Z
>W (t)||2

∣∣∣ ≤ (∥∥∥Z>W (t) − I
∥∥∥2

+ 2
∥∥∥Z>W (t) − I

∥∥∥) ‖Πa: −Πb:‖2 ,

we obtain by the proof of part 1 of Lemma 13 that w.h.p., it holds for all z(t) such that l(z(t), z) ≤ τ (t)

|H(t)
11 | . ||Πa: −Πb:||2

Kl(z(t), z)

n∆2
min

which implies

λ(t)|H(t)
11 |

∆2(zi, b)
.
Kl(z(t), z)

n∆2
min

.

Then as before, for a suitably small constant ε < 1, this implies

λ(t)|H(t)
11 |

∆2(zi, b)
≤ δ(t+1)

16
.

By summing all these inequalities we see that G(t)
ib and H(t)

ib satisfy Condition C.

C.5. Conclusion

By Lemma 2, 5 and 6 the Conditions B and C are satisfied. In order to apply Theorem 1, we also need to show that Condition
A is satisfied. To this end, let us define the events

Ω(δ(t)) := {Ci(a, b) ≤ −
(

1− δ(t)

2

)
∆2(a, b)}, t ≥ 1,

where we recall that
Ci(a, b) = 〈εi, µ̃a − µ̃b〉+ λ〈Ei:W, Π̃a: − Π̃b:〉.

Note that by definition of δ(t), we have for all t ≥ 1

Ω(δ(t)) ⊆ Ω(δ(1)) =⇒ 1Ω(δ(t)) ≤ 1Ω(δ(1)) =⇒ ξ(δ(t)) ≤ ξ(δ(1)). (2)

Hence it suffices to bound ξ(δ(1)). To achieve this, it is crucial to bound P(Ω(δ(1))) since the bound on ξ(δ(1)) then follows
via an easy adaptation of Lemma 1.

We can bound P(Ω(δ(1))) by an immediate adaptation of Lemma 9 – we just need to replace ∆2/4 by (1− δ(1))∆2/4 in
the last step of the lemma, leading to

P(Ω(δ(1))) ≤ exp(−(1− δ(1) + o(1))∆̃2).

Then as mentioned earlier, an easy adaptation of Lemma 1 along with (2) implies that w.h.p., it holds for all t ≥ 1 that

ξ(δ(t)) ≤ n exp(−(1− δ(1) + o(1))∆̃2).

But we know that
n exp(−(1− δ(1) + o(1))∆̃2) ≤ 3

4
τ =

3

4
τ (0)δ

for n large enough, by a suitable choice of δ = o(1), and the fact that ∆̃2 � log n/K → ∞. Hence the assumptions of
Theorem 1 are satisfied. Moreover, for all t & log(1/δ), Corollary 1 yields the bound

l(z(t), z) . ξ(δ) + τ (0)(1/8)t−Θ(log(1/δ)) . ne−(1+o(1))∆̃2

+ τ (0)(1/8)t−Θ(log(1/δ)).

Since τ (0) . n log n/K and δ can be chosen such that log(1/δ) . log n, we obtain that for t & log n

l(z(t), z) ≤ ne−(1+o(1))∆̃2

.
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D. Proof of Theorem 3
Proof. The proof follows the same steps as in the proof of Theorem 3.3 in (Lu & Zhou, 2016), only the last part needs to be
changed. For the sake of completeness, we reproduce the arguments below. Let us denote

h(z′, z′′) =
∑
i∈[n]

1{z′(i) 6=z′′(i)} (3)

to be the unnormalized Hamming distance between z′, z′′ ∈ [K]n. Without lost of generality we can assume that

min
k,k′
||µk − µk′ || = ||µ1 − µ2||.

For each k ∈ [K], let Tk a subset of Ck with cardinality 3n
4K . Define T = ∪Kk=1Tk and

Z = {ẑ : ẑi = zi for all i ∈ T}.

For all ẑ 6= z̃ ∈ Z we have
h(ẑ, z̃)

n
≤ 1

4

and for all permutations σ ∈ SK , σ 6= Id ( where Id denotes the identity permutation) we have

h(σ(ẑ), z̃)

n
≥ 1

2
.

Thus r(ẑ, z̃) = h(ẑ,z̃)
n . Then following the same arguments as in the proof of Theorem 2 in (Gao et al., 2016) we can obtain

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ≥ 1

6|T c|
∑
i∈T c

1

2K2
inf
ẑi

(P1(ẑi = 2) + P2(ẑi = 1)) (4)

where Pk denotes the probability distribution of the data when zi = k. By the Neyman Pearson Lemma, the infinimum of the
right hand side of (4) is achieved by the likelihood ratio test. From Section 3.1 in (Zhang & Zhou, 2016), the log-likelihood
of the SBM part can be rewritten as

log

(
p(1− q)
q(1− p)

)∑
i<j

Aij1{zi=zj} + f(A)

where f(A) doesn’t depend on z. Consequently,

1

2
inf
ẑi

(P1(ẑi = 2) + P2(ẑi = 1))

= P

−0.5||εi||2 + log

(
p(1− q)
q(1− p)

)∑
j∈C1

Aij ≤ −0.5||µ1 + εi − µ2||2 + log

(
p(1− q)
q(1− p)

)∑
j∈C2

Aij

 (5)

Let us denote Zi = log(p(1−q)q(1−p) )(
∑
j∈C2 Aij −

∑
j∈C1 Aij), this is a random variable independent of εi. So we get

(5) = P(0.5||µ1 − µ2||2 − Zi ≤ −〈εi, µ1 − µ2〉)
≥ P(0.5||µ1 − µ2||2 − Zi ≤ −〈εi, µ1 − µ2〉 | Zi > 0)P(Zi > 0)

≥ P(||µ1 − µ2||2 ≤ −2〈εi, µ1 − µ2〉)P(Z > 0)

≥ exp

(
−∆2

1

8

)
exp

(
−n

(1 + o(1))(
√
p−√q)2

K

)
≥ exp(−(1 + o(1))∆̃2).

Here we used for the penultimate inequality a result from the proof of Theorem 3.3 in (Lu & Zhou, 2016) and also use
Lemma 5.2 in (Zhang & Zhou, 2016).
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E. Technical Lemmas
In this section we provide some useful inequalities which are used frequently in the proofs of our main results.

E.1. General concentration inequalities

Lemma 7 (Chernoff simplified bound). Let X1, . . . , Xn
ind.∼ B(p). Then

P

∣∣∣∣∣∣ 1n
∑
i∈[n]

Xi − p

∣∣∣∣∣∣ ≥ t
 ≤ exp(−2nt2).

Lemma 8. Assume that A ∼ SBM(Z,Π). Let E = A− E(A). Then with probability at least 1− n−Ω(1) the following
holds.

1. ||E|| ≤ √npmax,

2. ||EW ||2F . K2pmax.

Proof. The first inequality is a classical result used for SBM in the relatively sparse regime pmax = ω(log n). It can
obtained as a consequence of Remark 3.13 in (Bandeira & van Handel, 2016). The second inequality follows from

||EW ||2F ≤ K||EW ||2 ≤ K||E||2||W ||2 . K2pmax.

E.2. Concentration rate for the ideal oracle error under CSSBM

Lemma 9. Recall that

Ω1 =

{
〈εi, µzi − µb〉+ λ〈Ei:W,Πzi: −Πb:〉 ≤

−(1− δ − δ̄)∆2(zi, b)

2

}
and suppose that δ, δ̄ = o(1). Then under the assumptions of Theorem 2, we have

P(Ω1) ≤ exp(−(1 + o(1))∆̃2)

where

∆̃2 =
1

8
min
k,k′
||µk − µk′ ||2 +

log n

K
(
√
p′ −

√
q′)2.

Proof. We are going to bound the m.g.f of Z = 〈εi, µzi − µb〉+ λ〈Ei:W,Πzi: −Πb:〉 and use Chernoff method. We have
for all t < 0

logEetZ ≤ logEet〈εi,µzi−µb〉 + logEetλ〈Ei:W,Πzi:−Πb:〉 (by independence)

≤ ||µzi − µb||2
t2

2
+
n

K
log(petλ(p−q)K/n + 1− p)(qe−tλ(p−q)K/n + 1− q)

− tλ(p− q)2.

By choosing t = −1/2 we get

etλ(p−q)K/n =

√
q(1− p)
p(1− q)

and thus

log(petλ(p−q)K/n + 1− p)(qe−tλ(p−q)K/n + 1− q) = log(pq + (1− p)(1− q) + 2
√
pq
√

(1− p)(1− q)).
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This last quantity is equal to −(1 + o(1))(
√
p−√q)2. We can now conclude by remarking that

P(Ω1) ≤ P
(
−1

2
〈εi, µzi − µb〉 −

1

2
λ〈Ei:W,Πzi: −Πb:〉 ≥ (1 + o(1))

∆2
min

4

)
hence

P(Ω1) ≤ Ee−
Z
2 −

∆2
min
4

≤ exp(
||µzi − µb||2

8
− n

K
(1 + o(1))(

√
p−√q)2 +

λ

2
(p− q)2 − (1 + o(1))

∆2
min

4
)

≤ exp(−(1 + o(1))∆̃2),

since ∆2
min = ||µzi − µb||2 + 2λ(p− q)2.

E.3. Concentration rate for the ideal oracle error under the general setting

In the general setting it is more difficult to derive a sharp concentration inequality for the oracle error. Here we use gaussian
approximation, but it leads to a slightly sub-optimal convergence rate.

Lemma 10. Recall the definition of Ω1 from the previous lemma. Under the assumptions of Theorem 4 we have

P(Ω1) ≤ exp

(
−1

8
∆2
min

)
.

Proof. First observe that

tλ〈Ei:W,Πzi: −Πb:〉 = tλ
∑
k∈[K]

(Πzik −Πbk)

∑
j∈Ck Eij

nk

=
∑
k∈[K]

tλ(Πzik −Πbk)

∑
j∈Ck Aij −Πzik

nk
.

The sum over k involves independent random variables so in order to bound the m.g.f. of 〈Ei:W,Πzi: −Πb:〉 it is sufficient
to control the m.g.f. of

∑
j∈Ck Aij −Πzik for each k. Setting t′ = λt

|Πzik−Πbk|
nk

, we have

logE(e
t′

∑
j∈Ck

(Aij−Πzik)
) = log(Πzike

t′ + 1−Πzik)− nkt′Πzik

≤ nkΠzik(et
′
− t′ − 1)

≤ nkΠzik
e(t′)2

2
(by Taylor-Lagrange inequality)

≤ 1.5nkpmax(λt
Πzik −Πbk

nk
)2

≤ 1.5λ|Πzik −Πbk|2t2.

For the second inequality we used the fact that for 0 < x < 1, log(1− x) ≤ −x.

Consequently,

logEetZ ≤ ||µzi − µb||2
t2

2
+ 1.5λ||Πzi: −Πb:||2t2

and

P(Ω1) ≤ e||µzi−µb||
2 t2

2 +1.5λ||Πzi:−Πb:||2t2−
∆2(zi,b)

4 .

For t = 1/2 we then obtain

P(Ω1) ≤ e−
||µzi−µb||

2

8 −λ8 ||Πzi:−Πb:||2 ≤ e− 1
8 ∆2

min .
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E.4. Useful inequalities to control the error terms

Recall the Hamming distance h defined in (3).

Lemma 11. For all z, z′ ∈ [K]n we have

h(z, z′) ≤ l(z, z′)

∆2
min

.

Proof. ∑
i∈[n]

1zi 6=z′i ≤
∑
i∈[n]

∆(zi, z
′
i)

2

∆2
min

1zi 6=z′i =
l(z, z′)

∆2
min

.

Lemma 12. Assume that for some α > 1
n

αK
≤ nk ≤

αn

K
.

If l(z, z(t)) ≤ n∆2
min/(2αK) then for all k ∈ [K]

n

2αK
≤ n(t)

k ≤
2αn

K
.

Proof. Since for all k ∈ [K] we have n/(αK) ≤ nk ≤ αn/K,∑
i∈C(t)

k

1 ≥
∑

i∈Ck∩C(t)
k

1 ≥
∑
i∈Ck

1−
∑
i∈[n]

1
zi 6=z(t)

i

≥ n

αK
− h(z, z(t))

Lemma 11
≥ α

n

K
− l(z, z(t))

∆2
min

≥ αn

2K

by assumption. The other inequality is proved in a similar way.

Lemma 13. Assume that A ∼ SBM(Z,Π) with equal size communities and suppose that the conditions of Theorem 4 are
satisfied4. Then with probability at least 1− n−Ω(1) the following holds for all z(t) such that l(z(t), z) ≤ τ (0).

1. maxk∈[K] ||W
(t)
:k −W:k|| . K1.5

n1.5∆2
min

l(z(t), z),

2. maxk∈[K] ||(W
(t)
:k −W:k)>AW || . K1.5√pmax

n1.5∆min
l(z, z(t)),

3. maxk∈[K] ||W
(t)>
:k A(W −W (t))|| . K2√pmaxl(z(t),z)

n1.5∆min
,

4. maxk∈[K] ||(W
(t)
:k −W:k)>AW (t)|| . K1.5√pmaxl(z(t),z)

n1.5∆min
,

5. ||Z>W (t)|| . 1.

Proof. This is a rather straightforward adaptation of Lemma 4 in (Han et al., 2020), but for completeness we include a proof
adapted to our setting with our notations.

4These assumptions are clearly satisfied by Theorem 2 as well.
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Proof of 1. First observe that Z is rank K and λK(Z) =
√
nmin so that

||W (t)
:k −W:k|| ≤ n−1/2

min ||I − Z
>W (t)||.

For any k ∈ [K], denote δk = 1− (Z>W (t))kk. Since for all k, k′ ∈ [K]

(Z>W (t))kk′ =

∑
i∈Ck 1z(t)

i =k′

n
(t)
k′

,

we have

0 ≤ δk ≤ 1,
∑

k′∈[K]\k

(Z>W (t))k′k = δk.

Therefore,

||Z>W (t) − I|| =

√√√√√∑
k∈[K]

δ2
k +

∑
k′∈[K]\k

(Z>W (t))2
k′k



≤

√√√√√√∑
k∈[K]

δ2
k +

 ∑
k′∈[K]\k

(Z>W (t))k′k

2


≤
√

2
∑
k∈[K]

δ2
k ≤
√

2
∑
k∈[K]

δk

=
√

2
∑
k∈[K]

∑
i∈C(t)

k

1zi 6=k

n
(t)
k

≤
√

2 max
k

(n
(t)
k )−1

∑
i∈[n]

1
zi 6=z(t)

i

Lemma 12
.

K

n
h(z, z(t))

Lemma 11
. K

l(z, z(t))

n∆2
min

. (6)

Proof of 2. Observe that with probability at least 1− n−Ω(1) we have

max
k∈[K]

||(W (t)
:k −W:k)>AW || ≤ max

k∈[K]
||(W (t)

:k −W:k)>PW ||+ max
k∈[K]

||(W (t)
:k −W:k)>EW ||

≤ max
k∈[K]

||(W (t)
:k −W:k)>ZΠ||+ ||EW || max

k∈[K]
||(W (t)

:k −W:k)||

≤ ||Πb: −
∑
j∈C(t)

b

Πzj :

n
(t)
b

||+ C
√
Kpmax max

k∈[K]
||(W (t)

:k −W:k)||

. ||Πb: −
∑
j∈C(t)

b

Πzj :

n
(t)
b

||+
K2√pmax
n1.5∆2

min

l(z(t), z).
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Recall that ∆2
2(a, b) := ‖Πa: −Πb:‖2. Then we have∥∥∥∥∥∥∥Πb: −

∑
j∈C(t)

b

Πzj :

n
(t)
b

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
∑
j∈C(t)

b

b′∈[K]\b

1{zj=b′}

n
(t)
b

(Πb: −Πb′:)

∥∥∥∥∥∥∥∥∥
≤ CK

n

∑
j∈C(t)

b

b′∈[K]\b

max
b,b′

∆2(b, b′)1{zj=b′}

≤ CK
n

max
b,b′

∆2(b, b′)h(t, t(t))

≤ C K∆min√
λn∆2

min

l(z, z(t)) (since maxb,b′ ∆2(b, b′) . ∆min√
λ

for SBM)

≤ C
K1.5√pmax
n1.5∆min

l(z, z(t)).

Consequently, by summing the previous bounds and using the first inequality of the Lemma we get

max
k∈[K]

||(W (t)
:k −W:k)>AW || .

K1.5√pmax
n1.5∆min

l(z, z(t)) +
K2√pmax
n1.5∆2

min

l(z(t), z).

In our setting ∆2
min � log n so the first term is dominant.

Proof of 3. First let’s bound maxk∈[K] ||W
(t)>
:k P (W −W (t))||. By Lemma 12 we have ||W (t)

k || .
√
K/n, so

max
k∈[K]

||W (t)>
:k P (W −W (t))|| ≤ max

k∈[K]
||W (t)>

:k Z||||ΠZ>(W −W (t))||

. ||ΠZ>(W −W (t))||F

.
√
K max

k∈[K]
||(W (t)

:k −W:k)>ZΠ||

.
K2√pmax
n1.5∆min

l(z, z(t)). (by the proof of part 2)

We now give an upper bound for maxk∈[K] ||W
(t)>
:k E(W −W (t))||. By triangle inequality,

||W (t)>
:k E(W −W (t))|| ≤ ||W>:kE(W −W (t))||+ ||(W (t)

:k −Wk:)
>E(W −W (t))||.

First we have

||W>:kE(W −W (t))|| ≤ ||W:k||||E||||(W −W (t))||

.
K2√pmax
n1.5∆2

min

l(z(t), z).

On the other hand, we also have

||(W (t)
:k −Wk:)

>E(W −W (t))|| ≤ ||W:k −W (t)
:k ||||E(W −W (t))||

≤ ||E||
√
K max

k
||W:k −W (t)

:k ||
2

.
K3.5√npmaxl(z(t), z)

n2∆2
min

l(z(t), z)

n∆2
min

.
K3.5√pmaxl(z(t), z)

n1.5∆2
min
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where the last inequality comes from the fact that by assumption l(z, z(t)) ≤ τ ≤ εn∆2
min

K .

Thus it follows that

max
k∈[K]

||W (t)>
:k P (W −W (t))|| .

K2√pmaxl(z(t), z)

n1.5∆min
.

Proof of 4. First note that

||(W (t)
:k −W:k)>PW (t)|| ≤ ||(W (t)

:k −W:k)>ZΠ||||Z>W (t)||

.
K1.5√pmaxl(z(t), z)

n1.5∆min
.

Furthermore, by the same argument as before,

||(W (t)
:k −W:k)>EW (t)|| ≤ ||(W (t)

:k −W:k)>E(W (t) −W )||+ ||(W (t)
:k −W:k)>EW ||

. K||E||max
k
||W:k −W (t)

:k ||
2 +

K2√pmax
n1.5∆2

min

l(z(t), z)

.
K2√pmax
n1.5∆2

min

l(z(t), z).

We obtain the result by triangle inequality.

Proof of 5. Since Z>W = IK we have

||Z>W (t)|| ≤ 1 + ||Z>(W (t) −W )||
. 1 + ||I − Z>W (t)||

. 1 +K
l(z(t), z)

n∆2
min

(by Equation (6))

. 1. (by assumption on τ (0))

Lemma 14. For sIR-LS we have with probability at least 1− n−Ω(1) that for all z(t) such that l(z(t), z) ≤ τ (0)

max
k∈[K]

|n(t)
k − nk| ≤

l(z(t), z)

∆2
min

, |λ(t) − λ| . λ
Kl(z(t), z)

n∆2
min

.

Proof. First observe that

max
k∈[K]

|n(t)
k − nk| = max

k∈[K]
|
∑
i

1{Z(t)
i =k} − 1{Zi=k}| ≤ h(z(t), z) ≤ l(z(t), z)

∆2
min

by Lemma 11.



An iterative clustering algorithm for the Contextual Stochastic Block Model with optimality guarantees

Then note that we have

|p(t)
max − pmax| ≤ max

k,k′
||(W (t)

:k )>AW
(t)
:k′ −W

>
:kPW:k′ || (the max is 1-Lipschitz)

≤ max
k,k′

(||(W (t)
:k )>EW

(t)
:k′ ||+ ||(W

(t)
:k −W:k)>PW

(t)
:k′ ||+ ||W

>
:kP (W

(t)
:k′ −W:k′)||)

. max
k
||W (t)

:k ||
2||E||+

K1.5√pmaxl(z(t), z)

n1.5∆min
(by the proof of Lemma 13)

.
K
√
pmax√
n

+
K1.5√pmaxl(z(t), z)

n1.5∆min

.
K1.5√pmaxl(z(t), z)

n1.5∆min

.

√
K

npmax

Kl(z(t), z)

n∆min
pmax

.
Kl(z(t), z)

n∆2
min

pmax

since ∆min �
√

log n/K �
√
npmax/K. Consequently,∣∣∣∣λ(t)

λ
− 1

∣∣∣∣ ≤
∣∣∣∣∣n(t)
min

nmin

pmax

p
(t)
max

− 1

∣∣∣∣∣
≤

∣∣∣∣∣n(t)
min − nmin
nmin

pmax

p
(t)
max

∣∣∣∣∣+

∣∣∣∣∣pmax − p(t)
max

p
(t)
max

∣∣∣∣∣
.
Kl(z(t), z)

n∆2
min

+
Kl(z(t), z)

n∆2
min

.
Kl(z(t), z)

n∆2
min

.

Lemma 15. For IR-LSS, we have with probability at least 1− n−Ω(1) that for all z(t) such that l(z(t), z) ≤ τ (0)

|λ(t) − λ| . λ
Kl(z(t), z)

n∆2
min

Proof. By a similar argument as the one used in Lemma 14 we have with probability at least 1− n−Ω(1) that

|p(t) − p| . Kl(z(t), z)

n∆2
min

p, |q(t) − q| . Kl(z(t), z)

n∆2
min

q.

This implies

p(t) − q(t)

p− q
= 1 +O

(
(p+ q)Kl(z(t), z)

(p− q)n∆2
min

)
= 1 +O

(
Kl(z(t), z)

n∆2
min

)
because p− q & p. Thus,∣∣∣∣log

(
p(t)

q(t)

)
− log

(
p

q

)∣∣∣∣ =

∣∣∣∣log

(
p(t)

p

q

q(t)

)∣∣∣∣ = 2 log

(
1 +O

(
Kl(z(t), z)

n∆2
min

))
= O

(
Kl(z(t), z)

n∆2
min

)
.

Hence ∣∣∣∣∣∣ log(p
(t)

q(t) )

log(pq )
− 1

∣∣∣∣∣∣ = O

(
K1.5l(z(t), z)

n∆2
min

)
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since log(p/q) is bounded above by assumption. Consequently,

λ(t)

λ
− 1 = O

(
Kl(z(t), z)

n∆2
min

)
.

F. Additional experiments
Section F.1 presents experimental results of our method applied on non-assortative SBM when the covariates are disregarded.
Section F.2 contains additional results for the Australia rainfall data for different choices of K. Section F.3 includes
additional results for signed SBM and Section F.4 contains an experiment when each source of information by itself does not
allow to separate the communities. Finally, in Section F.5, we study empirically the robustness of our algorithm to random
initialization.

F.1. Heterophilic SBM

If we disregard the covariates, our algorithm can be used for inference under a general SBM, in contrast to the method
proposed by (Lu & Zhou, 2016) which was restricted to the assortative setting. In particular, our algorithm also works for
networks with heterophilic communities. The following experiment illustrates the gain in term of accuracy for IR-LS
initialized with A-SC (spectral clustering on the adjacency matrix). It also shows the interest of using more than one
iteration in the refinement step with the MAP (this corresponds to IR-MAP(1)).

We consider n = 1000,K = 3, Zi
i.i.d∼ Multinomial(1; 1/3, 1/3, 1/3) and

Π =

 0.2 0.05 0.1
0.05 0.15 0.05
0.1 0.05 0.03

 .

The NMI is averaged over 40 repetitions; the results are shown in Figure 4. We also considered the VEM algorithm
implemented in the R package blockmodels (Léger, 2016), but the running time was prohibitive (approximately one
hour for a single Monte Carlo run, whereas our algorithm take a few seconds). It nevertheless returned the exact partition as
IR-LS.

Figure 4: Average performance of different algorithms on a heterophilic SBM, over 40 Monte Carlo runs.

F.2. Australian Rainfall

We reproduced the experiment presented in Section 5 but with K ∈ {3, 7, 10} (see Figures 5, 6 and 7). We can observe that
sIR-LS provides a visibly better clustering than that by IR-LS. This can possibly be attributed to the fact that IR-LS
requires estimating more parameters than sIR-LS, however this dataset is quite small in size. Furthermore, the partition
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provided by K-means is visibly different than that generated by sIR-LS, Sponge-sym and IR-SBM (although there
is still some overlap) since K-means uses only covariate information.

Figure 5: Sorted adjacency matrices of the Australian rainfall data set and corresponding maps for K = 3.

Figure 6: Sorted adjacency matrices of the Australian rainfall data set and corresponding maps for K = 7.
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Figure 7: Sorted adjacency matrices of the Australian rainfall data set and corresponding maps for K = 10.

F.3. Signed SBM

We reproduced the experiment presented in Section 5.2 at a different sparsity level p = 0.03. The relative performance
of the methods (shown in Figure 8) are similar to that in Figure 2. Algorithm 3 outlines our iterative refinement method
(namely IR-SSBM) for clustering signed graphs, under the Signed SBM. It seems that there is a threshold for the noise
level η above which no algorithm can succeed. We conjecture that IR-SSBM is optimal and attains this threshold.

Figure 8: NMI for varying noise η, and with p = 0.03, K = 20, n = 10000.
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Algorithm 3 IR-SSBM

Input: The number of communities K, initial partition z(0), T ≥ 1.

1: for 0 ≤ t ≤ T − 1 do
2: Compute W (t) = Z(t)(D(t))−1 where D(t) = diag(n

(t)
k )k∈[K], and C(t) = AW (t).

3: Update the partition for each i ≤ n
z

(t+1)
i = arg max

k
C

(t)
ik

4: end for
Output: A partition of the nodes z(T ).

F.4. Not distinguishable community

We repeated the experiment of Section 5.1 with the rank deficient connectivity matrix

Π = 0.02 ∗

 1.5 1.5 0.05
1.5 1.5 0.05
0.05 0.05 1.5



but with the same covariate parameters as in Section 5.1. Not surprisingly, we obtained similar results (see Figure 9) as in
Figure 1. The main difference is that the performance of ORL-SC worsened.

Figure 9: Performance of different algorithms on CSBM. Results are sorted by mean NMI and obtained over 40 runs.

F.5. Random initialization and performances under the threshold for exact recovery.

In this experiment we fix K = 2 and n = 1000. Let c > 0 and define p = 4c log n/n and q = c log n/n. Also define a
Gaussian mixture in R with centers 1 (for community 1) and 2 (for the second community). The variance parameter σ is
chosen such that the information provided by the Gaussian part of the model is equal to the one provided by the graph. More
precisely, we set σ2 = 1

2c logn . The value c = 0.5 corresponds to the threshold for exact recovery.
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Figure 10: Average performance measured by NMI obtained with random initialization over 20 runs.

Figure 10 shows that when initialized with a random Z(0) i.i.d∼ Multinomial(1; 1/2, 1/2), sIR-LS performs slightly better
than IR-MAP , has less variability, and is robust to random initialization, hence justifying the Gaussian approximation.

F.6. Comparison between random initialization and initialization with EM-Emb

We use a similar experimental setting as the one described in Section 5.1. We only slightly change the connectivity matrix

Π = 0.02 ∗

1.6 1.2 0.5
1.2 1.6 0.5
0.5 0.5 1.2

 .

Figure 11 shows that when randomly initialized ours algorithms IR-LS and sIR-LS can suffer from numerical instability.
That’s why we recommend to use EM-Emb instead. But it could interesting to develop a strategy based on random
initialization by identifying and disregarding the random initialization that lead to atypical results.

Figure 11: Average performance over 20 runs of our algorithms under the experimental setting of Section 5.1. Here (rd) indicates random
initialization.


