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Abstract
Current techniques for explaining outliers cannot
tell what caused the outliers. We present a for-
mal method to identify “root causes” of outliers,
amongst variables. The method requires a causal
graph of the variables along with the functional
causal model. It quantifies the contribution of
each variable to the target outlier score, which ex-
plains to what extent each variable is a “root cause”
of the target outlier. We study the empirical per-
formance of the method through simulations and
present a real-world case study identifying “root
causes” of extreme river flows.

1. Introduction
Outlier detection has been studied extensively over the
years (Aggarwal, 2013; Akoglu, 2021; Chandola et al., 2009;
Blázquez-Garcı́a et al., 2021). Besides the development in
outlier detection, we have also made some progress in re-
cent years towards explaining outliers (Knorr & Ng, 1999;
Liu et al., 2018; Macha & Akoglu, 2018; Idé et al., 2021).
When the purpose of explaining outliers is to take actions
(e.g. fixing a cloud service that slowed down a website),
explanations should have causal relations to the target out-
liers. Existing methods, however, do not provide causal
explanations; they only describe observed correlations to
target outliers. A formal way to define “root causes” of
outliers seems to be missing.

Our problem setup is simple. We consider the scenario
where the value xn of a target variable Xn has been flagged
as an outlier by an existing outlier detection algorithm.

This is an updated version of the original paper with 3 changes.
We fixed the notation of the context set in Eq. (11), added missing
parentheses in the expression of NNJR in §5.2, and renamed the
title of Apx. B “Misconception” followed by a general result on
potential misconceptions around the proposed approach.
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We jointly observed values (x1, . . . , xn) =: x of variables
(X1, . . . , Xn) =: X. Our goal is to identify the “root causes”
of the outlier xn amongst variables X1, . . . , Xn.1

We make three key assumptions to this end.

A1 The causal relationships between variables X1, . . . , Xn

is known in the form of a directed acyclic graph, also
called causal graph (Pearl, 2009).

A2 The causal graph comes with the functional causal
model (FCM) (Pearl, 2009) that describes how each
variable Xj is generated from its parents PAj in the
causal graph. In an FCM, each variable Xj is a func-
tion fj of its parents PAj in the causal graph and an
unobserved noise term Nj , i.e.,

Xj := fj(PAj , Nj), (1)

where the noises N1, . . . , Nn are statistically jointly
independent (Pearl, 2009).

A3 The FCM is invertible (Zhang et al., 2015). That is,
we can recover the noise value nj—of the noise term
Nj—corresponding to the observed variable Xj from
its observed value xj and the values paj of its parents.

This paper presents a formal method to identify “root causes”
of outlier xn among variables X1, . . . , Xn by quantifying
the contribution of each noise Nj to the outlier score of xn.
This notion of contribution captures the contribution of the
“causal mechanism” of event xj (at node Xj) to the outlier
score of xn. We illustrate the outcome of the method on a
hypothetical example in Figure 1. There are two key steps
involved in formalising the method:

• As there exists a multitude of outlier detection algo-
rithms (Aggarwal, 2013), our method should be applica-
ble to most, if not all, of them. To this end, we introduce
information-theoretic (IT) outlier scores, which proba-
bilistically calibrate existing outlier scores (Section 2).
The probabilistic calibration also renders IT outlier scores

1We assume that variables X1, . . . , Xn contain the root causes
of outliers. If other variables explain the outliers, we need to
include them in the analysis, search for root causes among them
and their ancestors.
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Figure 1: (a) Dependencies between cloud services that
empower a hypothetical retail website. A → B indicates A
uses B to serve client requests. (b) For one client (marked
by the dashed line), we observe an extremely high latency
(i.e., time delay between request and response) in the web
service. What caused the outlier? Other services also have
high latencies for that client. High latencies in services
upstream in the dependency graph can result from high la-
tencies in services downstream or issues in the upstream
services themselves. (c) By inverting the dependency graph,
we obtain the causal graph of latencies of services. From
training samples of observed latencies, we estimate the as-
sociated functional causal models (FCMs). (d) Our method
uses the FCMs to identify the web service itself and the
database service as potential causes of the extremely high
latency in the web service as their contributions to the out-
lier are high. Experts can use this information to diagnose
issues in web service and database service for that client.

comparable across variables with different dimension,
range, and scaling.

• We then present our method based on counterfactuals,
which are the third rung on Pearl’s ladder of causa-
tion (Pearl & Mackenzie, 2018) (Section 3). In particular,
we measure the contribution of each noise term Nj to
the IT score of xn in terms of logarithmic decrease of
the likelihood of xn had the causal mechanisms at Xj

been “normal” (Section 3.2). The contributions are sym-
metrized using the concept of Shapley values (Shapley,
1953) from game theory (Theorem 3.1).

We compare and contrast related work in Section 4. In the
experiments (Section 5), we first study the performance of
our method on synthetic data. Then we present a case study
on identifying the root causes of extreme river flows. Finally,
we conclude in Section 6. The implementation is available
from the gcm module (Blöbaum et al., 2022) in DoWhy.
We provide the scripts for the experiments as supplementary
material. All proofs are in the appendix.

2. Information-theoretic outlier scores
We start by introducing “information-theoretic” outlier score
that probabilistically calibrates existing outlier scores, which
is key to developing our general method for identifying root
causes of outliers.

It is commonly agreed upon that outliers are “rare” events
that differ significantly from the “majority” of data ob-
jects (Hawkins, 1980; Aggarwal, 2013; Akoglu, 2021).
From an information-theoretic viewpoint, the rarer an
event, the more information it carries (Cover & Thomas,
2006). The notion of information-theoretic outlier scores
formalises this insight, which we define below.

Definition 1 (Information-theoretic outlier scores). Let X
be a random variable (r.v.) with values in X and distribution
PX . Let τ : X → R be a measurable “feature map” that
maps elements of X to the real line R. The information
theoretic (IT) outlier score Sτ

X : X → R+
0 , corresponding

to the transformation τ , of an event x ∈ X is given by

Sτ
X(x) := − logP{τ(X) ≥ τ(x)}. (2)

Using an arbitrary feature map τ in the definition allows us
to calibrate existing outlier scores, i.e., τ can be an existing
outlier score, e.g., isolation forest (Liu et al., 2008).

As X is a random variable and τ is measurable, τ(X) is also
a random variable. Assign Y := τ(X) and y := τ(x). Then
P{Y ≥ y} is the probability of events of Y that are extreme
than y. As such, P{Y ≥ y} measures the extremeness of
the event τ(x) in feature space τ(X ). From information
theory, we know that − logP (Y = y) measures the in-
formation content of an event y (Cover & Thomas, 2006).
Therefore, − logP{Y ≥ y} measures the information con-
tent of an event y in terms of its extremeness.

Note that IT outlier score considers the distribution over
feature space τ(X ), instead of input space X . Therefore,
what an extreme event is, according to an IT outlier score,
not only depends on the distribution of X , but also the
feature map τ . This way, one can easily define outliers also
for multi-variate X or other domains. It can also assign high
score to low density regions between clusters in multimodal
distributions—by choosing τ(x) := − log p(x).

In the example below, we show how z-score, a commonly
used outlier score, can be calibrated into an IT outlier score.
We provide more examples in the appendix.

Example 1 (z-score). z-score measures the normalised ab-
solute distance from the mean, i.e. z(x) := |x − µX |/σX ,
where µX is the mean and σX is the standard deviation of
X . By setting τ(x) := z(x), we obtain the IT outlier score

Sz
X(x) = − logP {|X − µX | ≥ |x− µX |} ,

where σX is ignored as σX ≥ 0 and it scales both sides.

https://github.com/py-why/dowhy/tree/master/dowhy/gcm
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2.1. Properties of IT outlier scores

Besides probabilistically calibrating existing outlier scores,
IT scores also possess other properties that are desirable for
any outlier score, which we formalise in the lemmas below.
Lemma 2.1 (Tail probability of IT outlier scores). Let X be
a random variable (r.v.) with values in X and distribution
PX . Every information-theoretic outlier score satisfies the
following properties:

P{Sτ
X(X) ≥ c} ≤ e−c ∀c ∈ R+

0 (3)

P{Sτ
X(X) ≥ Sτ

X(x)} = e−Sτ
X(x)

for PX -almost all x ∈ X . (4)

where PX denotes the distribution of X . Conversely, if
Sτ
X : X → R+

0 is measurable and satisfies (3) and (4), then
there exists a measurable function τ : X → R such that

Sτ
X(x) = − logP{τ(X) ≥ τ(x)}, x ∈ X .

If Sτ
X is surjective then equality holds in (3).

Remark. In words, IT outlier scores reflect the heuristic
idea that extreme outliers should happen rarely since the
probability that Sτ

X(X) is large decreases exponentially.

The probabilistic calibration of IT scores has advantages be-
yond the fact that they are comparable across variables with
different dimension, range, and scaling. This is because they
obey simple rules that they inherit from basic probability the-
ory, like the following. For any two events A and B, we have
P (A ∩ B)/P (A) ≤ 1 =⇒ P (A | B)/P (A) ≤ 1/P (B).
Therefore, if event A is a-priori very unlikely, then condi-
tioning on an event B can render A more likely—relative to
the likelihood of A—only by the factor 1/P (B) at most.

Likewise, observing large outlier scores of one variable can
render large outliers of other variables more likely, but those
whose score are much larger than the observed one are still
unlikely. This is formalized by the following simple lemma:

Lemma 2.2 (Relations between outlier scores). For any
δ ∈ R∗

0, for almost all c ∈ Sτ
X(X ), we have

P{Sτ
Y (Y ) ≥ c+ δ |Sτ

X(X) ≥ c} ≤ e−δ.

Suppose that we observe event X = x has the outlier score
100 in some datasets. If we now select all datasets for which
X = x has score 100 or more, it is not unexpected that a
second variable Y also has events with outlier scores up to
100 or slightly above, if Y is strongly coupled to X . But Y
showing scores significantly above 100 should still be rare.2

2Note the following subtlety: Lemma 2.2 holds only for
those c that really occur as outlier score. If Sτ

X(X) is a non-
surjective outlier score which never attains values between 10
and 1000; conditioning on Sτ

X(X) ≥ 100 implicitly conditions
on Sτ

X(X) ≥ 1000, which can render scores around 1000 quite
likely.

Note that this conclusion holds regardless of how X and Y
are causally related.

We can also re-interpret Lemma 2.2 in a causal way as fol-
lows. Assume X is an unconfounded cause of Y and hence
P do(X:=x)(Y ) = P (Y | X = x), where P do(X:=x)(Y )
denotes the distribution of Y after the atomic interven-
tion (Pearl, 2009, Chap. 3) of setting X to x, keeping
everything else in the system fixed. Further let us, for
some c ∈ Sτ

X(X ), define the randomized intervention
do(Sτ

X(X) ≥ c) by randomizing X according to the con-
ditional distribution P (X | Sτ

X(X) ≥ c). That is, we
generate outliers having scores at least c according to their
natural relative likelihood. Then Lemma 2.2 implies

P do(Sτ
X(X)≥c){Sτ

Y (Y ) ≥ c+ δ} ≤ e−δ. (5)

In this sense, outliers of the causes most likely only cause
outliers in the effect whose scores are not significantly above
the ones they were driven by. From here onwards, we will
drop X and τ in Sτ

X whenever it is clear from the context
to which variable and feature map we refer to.

3. Contribution-based root cause analysis
We first present the intuition behind our method (Sec-
tion 3.1). Then we formalize counterfactuals (a key concept)
in our language (Section 3.2). Finally we present our method
for identifying “root causes” of a target outlier (Section 3.3),
and then address key points when applying the method in
practice (Section 3.4).

3.1. Intuition behind our method

Three key points guide our method.

First, to qualify an upstream node as the “root cause” of an
outlier event xn, we ask the counterfactual question, “Would
the event xn not have been an outlier had we assigned rather
“normal” causal mechanisms at the node instead of the exist-
ing mechanism associated with the outlier xn?” By focusing
on causal mechanisms, we can separate the contribution of
the node itself from that inherited from its parents. This
notion of “root cause” is in the spirit of the notion of “actual
cause” of an outcome defined by Halpern & Pearl (2005).
Here our focus is on the outlierness of the event xn, rather
than the actual value xn itself. To get counterfactuals, we
require a functional causal model (FCM) (Pearl, 2009), in
addition to the causal graph.

Second, we consider the degree to which a node is a root
cause. This is in the spirit of “graded causation” of Halpern
& Hitchcock (2013), who argue that the degree to which
something is a cause also a question of whether the instantia-
tions of the other variables are “normal”. There, “normality”
is not necessarily defined in the sense of statistical regularity,
but possibly also in the sense of an ethical norm. Here we
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define normality w.r.t. statistical regularity.

Third, a node Xj’s contribution to the extremeness of xn

boils down to the contribution of its noise term Nj in a
statistical sense because statistical properties of observed
variables are derived from the noise terms in an FCM. To
see this, assume, without loss of generality, that Xn is a
sink node, i.e. it has no descendants in the causal graph. Its
structural equation is Xn := fn(PAn, Nn). By recursively
resolving the parents in terms of their parents (applying Eq. 1
recursively) until we have reached root nodes, we can write
Xn as a function of all noise variables N := (N1, . . . , Nn):

Xn := f(N1, . . . , Nn) = f(N), (6)

where PN = PN1
× · · · × PNn

. Using this representation,
we see that any observed upstream nodes Xj’s contribution
to the distribution of Xn, thereby the extremeness of xn,
comes from the distribution PNj

of its noise Nj .

In summary, counterfactuals are key to our formal method
for identifying “root causes” of outliers.

3.2. Counterfactuals for root cause analysis

Next, we briefly explain counterfactuals in our formal lan-
guage. The notion of counterfactuals we use in our method
concerns “causal mechanisms”, which differs slightly from
the usual treatment of counterfactuals in the graphical causal
model literature (Pearl, 2009, Ch. 7).

To explain our notion of counterfactuals, we consider the
canonical representation of FCMs (Peters et al., 2017, Ch. 3),
also referred to as the response function framework (Balke
& Pearl, 1994). We illustrate the idea for a bivariate DAG
X → Y . But it generalises to more then two variables. The
FCM at Y is a stochastic function, given by

Y := f(X,N), (7)

which reduces to a deterministic function of X for a fixed
value n (by slightly abusing the notation) of the noise N :

Y := f(X,n)

That is, if X and Y take values in X and Y respectively,
then noise N acts as a random switch that selects different
functions from X to Y . Without loss of generality, we can
therefore assume that N takes values in the set of functions
from X to Y , denoted by YX . Then we can rewrite the
structural equation of Y (Eq 7) as

Y := N(X). (8)

The FCM Y := f(X,N) has now turned into a probability
distribution PN on the set of deterministic functions YX .
The representation in Eq. 8 with the distribution PN on YX

is the canonical representation of the FCM Y := f(X,N).

For example, if X and Y are binary, i.e., X = {0, 1} and
Y = {0, 1}, then there are four possible functions from X
to Y , i.e., YX = {0,1,ID,NOT}, where 0 and 1 denote
constant functions that always map to 0 and 1 respectively,
and ID and NOT denote identity and negation respectively.

Suppose X → Y is the causal graph of variables X and
Y , and we jointly observe their values (x, y) with a deter-
ministic function h ∈ YX identified by the value n of the
noise term N . An alternative value ñ of N would identify a
different deterministic function h̃ from YX . The function h̃
is then a counterfactual causal mechanism at node Y as h̃
is not associated with the factual values (x, y) we observed.

From here, we can now formalize our notion of counter-
factuals to more than two variables. Suppose we jointly
observed values x := (x1, . . . , xn) of variables X :=
(X1, . . . , Xn). The deterministic functions h1, . . . , hn at
nodes X associated with the factuals x are identified by the
values n := (n1, . . . , nn) of the corresponding noise terms
N := (N1, . . . , Nn), where hj ∈ XPAj

j with Xj and PAj

being the support of Xj and PAj respectively.

Let U := {1, . . . , n} denote the index set and I ⊂ U be
its subset. We use rd(NI) to denote the operation of ran-
domizing some noises NI according to some joint distribu-
tion P̃NI (not necessarily their true joint distribution PNI ),
whilst the remaining noises are kept fixed, i.e., NĪ := nĪ ,
with Ī = U \ I. The operation rd(NI) corresponds to
assigning “normal” causal mechanisms to nodes XI , whilst
keeping the causal mechanisms of other nodes XĪ fixed
(to the causal mechanisms associated with the factuals xĪ ,
which are identified by noises nĪ). The action rd(NI)
yields a counterfactual distribution P rd(NI)(X) of the vari-
ables X, where counterfactuals are w.r.t. alternative causal
mechanisms. This counterfactual distribution is the key
ingredient of our method.

Although the operation rd(NI) suggests intervention on the
noise terms NĪ := nĪ (which is infeasible if we think of the
exogenous noise of something that is not under our control,
and even worse, not even observable), we can interpret it as
an intervention on observed variables XĪ instead: for each
Xj ∈ XĪ , just simulate an iid copy Ñj of the noise Nj and
set Xj := fj(paj , ñj) if value ñj was obtained.

Although unobserved, in practice, noise values can be re-
covered from the samples drawn from the observed joint
distribution PX subject to appropriate assumptions, e.g.,
additive noise (Peters et al., 2017, Ch. 4).

3.3. Root cause analysis quantifying contributions

Next, using the intuition and the counterfactuals introduced
earlier, we formalise our method for identifying root causes
of an outlier xn amongst variables X1, . . . , Xn. In particu-
lar, we quantify the contribution of each unobserved noise
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term Nj (corresponding to Xj) to the IT outlier score of xn.

To this end, we first rewrite the IT score of xn, i.e., S(xn),
in terms of noises, i.e.,

S(xn) := − logP{τ(Xn) ≥ τ(xn)}
:= − logP{τ(f(N)) ≥ τ(f(n))}
:= − logP{g(N)) ≥ g(n)}, (9)

where the second line is obtained by applying Eq. 6 and g is
a composition g = τ ◦ f .

To compute the contribution of each noise term Nj to the IT
score S(xn), we quantify the change in the log-likelihood
of the tail event when we ask the counterfactual question,
“Would the event xn not have been an outlier had we as-
signed rather normal causal mechanisms at Xj by random-
izing Nj?” In particular, we define the contribution of Nj ,
given that we have already randomized some noises NI , as

C(j | I) :=− logP rd(NI∪{j}){g(N) ≥ g(n)}
+ logP rd(NI){g(N) ≥ g(n)}).

Rewriting the contribution, we get

C(j | I) := log
P rd(NI){g(N) ≥ g(n)})

P rd(NI∪{j}){g(N) ≥ g(n)}
, (10)

which shows that the contribution measures the factor by
which knowing the causal mechanism at Xj—by knowing
the noise value nj—increases the counterfactual tail proba-
bility of the target outlier.

But the contribution depends on the subset I according
to which we randomize noises. Let σ : U 7→ U denote
the permutation of index set U , and Iprec;σ

j denote the set
of indices that preceed index j in the permutation σ, i.e.,
Iprec;σ
j = {i ∈ U | σ(i) < σ(j)}. For any permutation σ

of the index set U , we could consider the contribution of Nj

given Iprec;σ
j as the context. This dependence on the order

of U introduces arbitrariness in the attribution procedure.

To get rid of the arbitrariness, we leverage Shapley val-
ues (Shapley, 1953) from cooperative game theory. The key
idea of Shapley value is to symmetrize over all permutations,
i.e., consider all permutations, compute the contribution for
each permutation, and then take the average.

Using the concept of Shapley values, the contribution of the
noise term Nj to the target outlier score S(xn) is given by
the average contribution over all permutations σ, i.e.

ϕ(j) :=
1

n!

∑
σ

C(j | Iprec;σ
j ) (11)

=
∑

I⊆U\{j}

1

n
(
n−1
|I|

)C(j | I), (12)

where the second summation follows from aggregating con-
tributions for permutations of U with the same value Iprec;σ

j

before j. Note that this contribution can be negative: one
value being extreme can certainly decrease the likelihood
of the outlier event, and a more common value at that node
would have made the outlier even stronger.

The Shapley value is also desirable because it gives a unique
solution to a set of axioms that capture the notion of fairness
when dividing a pay-off among players in the coalition
game (Sundararajan & Najmi, 2020). The theorem below
follows directly from the “efficiency” property of Shapley
values, by virtue of which Shapley values of all players sum
up to the payoff (i.e., IT outlier score subject to rd(NI)
operation) of the grand coalition (i.e., I = U ) with a nuance
that we use the true joint distribution PN when I = U .

Theorem 3.1 (Decomposition of target outlier score). The
outlier score of an event xn from any target variable Xn

decomposes into the Shapley contribution of each of its
ancestors plus itself, i.e., S(xn) =

∑n
j=1 ϕ(j), where n is

the number of ancestors of Xn including itself.

We illustrate the interpretation behind our quantification of
contribution through a simple example below.

Example 2 (Interpretation of contribution from co-occur-
rence of independent events). Suppose that our target vari-
able Xn is a logical AND of independent binary random
variables X1, . . . , Xn−1 (e.g., tosses from biased coins)
with a binary noise Nn, i.e.

Xn := X1 ∧X2 ∧ · · · ∧Xn−1 ∧Nn

:= N1 ∧N2 ∧ · · · ∧Nn−1 ∧Nn,

with pj := PNj
{Nj = 1}. Suppose that we observe

Xn = 1, which is a rare event as this can only happen
for one combination n = (1, . . . , 1) of noise values (out of
2n). Let us quantify the contribution of each Nj to S(xn)
using an identity feature map τ(x) = x. As noises Nj are
independent, we have PXn

{Xn = 1} =
∏n

j=1 pj . For a
binary r.v. Xn, the tail probability coincides with pmf at
one, i.e. PXn

{Xn ≥ 1} = PXn
{Xn = 1}.

The contribution of any noise Nj given that we have ran-
domized noise terms NI is given by (from Eq. 10):

C(j | I) = log
P rd(NI){Xn ≥ 1}

P rd(NI∪{j}){Xn ≥ 1}
(13)

= log

∏
i∈I pi∏

i∈I∪{j} pi
= − log pj . (14)

The contribution of Nj remains − log pj regardless of the
subset I as the noises are independent. Hence the Shapley
value contribution of each noise Nj is also ϕ(j) = − log pj .

Takeaway. The lower the probability pj , the higher the con-
tribution − log pj of noise term Nj . Thus, rare necessary
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conditions have high contribution, and are hence likely to
be the root causes of the target outlier. A rare event can only
be explained by other rare events. For example, a strong
unexpected drop in Dow Jones index cannot be explained
by an event that happens every week.

3.4. Implications of technical assumptions in practice

Next, we discuss the implications of our key assumptions.

On Markovian causal models. The causal model (DAG
and joint distribution) does not have to be Markovian. Note
that the independence of noise terms in the FCM implies that
the causal model is Markovian (Shpitser & Pearl, 2006), i.e.,
the joint distribution factorises into a product of conditional
distributions of each variable given its parents in the causal
graph. Our method also works with semi-Markovian mod-
els, where there are unmeasured confounders (Shpitser &
Pearl, 2006). In the FCM, this means some noise terms are
confounded by unobserved common causes Z. A random-
ized intervention on noises NI hence blocks all back-door
paths between NI and the target Xn via Z. Thus we still
obtain causal counterfactuals in semi-Markovian models.

On causal graph and FCM. Our method does not solve
the hard problem of causal discovery (Spirtes et al., 2000),
i.e., how to obtain the causal graph. Instead, we provide
a method to formally talk about attributing outliers to root
causes when the causal graph is given and the structural
equations are either given or inferred from data. To obtain
the causal graph, it is typical to apply a combination of
domain knowledge, interventional analysis and causal struc-
ture learning. Although getting the DAG is often difficult, it
seems unavoidable for causal attribution problems.

For generic choices of functions and noises, FCMs do not
uniquely follow from observed joint distributions even when
the causal graph is given. But they can be inferred subject
to appropriate assumptions, e.g., additive noise (Peters et al.,
2017, Chap 4). We admit that inferring functions and noise
from data is often an issue, but our example with river flows
shows that domain knowledge can help. Using counterfactu-
als seems unavoidable for causal attribution at the unit level,
and, more generally, Pearl considers “rung 3” causality in
his ladder of causation (Pearl & Mackenzie, 2018) as crucial
for understanding the world.

Both causal graph as well as FCMs can be misspecified.
Although not exhaustive, we empirically investigate this
concern for one type of misspecification through simulations
(Section 5.1).

On Shapley values. To compute Shapley value contribu-
tions numerically, the contributions (Eq (10)) have to be
averaged over all orderings I. Up to tens of variables, we

obtain the exact solution quite fast (within minutes). When
the number of variables is larger than that, exact numerical
solution is intractable. In such cases, we can trade-off the
accuracy of Shapley value contributions for speed by apply-
ing sampling approximations to Eq. (11), see Strumbelj &
Kononenko (2014) for example. The key idea is to sample
orderings, instead of using all orderings.

On the role of noise. An outlier is not necessarily based
on an outlier of the noise and emphasise that our framework
does not assume this. The rationale is slightly more sub-
tle: whenever an unlikely noise value would be required to
explain the observed value xj from paj , we conclude that
either the structural equation did not hold for that particular
statistical unit (due to a corrupted mechanism), or the noise
behaved in an unexpected way.

4. Related Work
The vast body of literature on outliers focuses on detecting
outliers (Breunig et al., 2000; Liu et al., 2008; Aggarwal,
2013; Hawkins, 1980; Chandola et al., 2009; Blázquez-
Garcı́a et al., 2021; Gupta et al., 2018). We refer the reader
to Akoglu (2021) for a comprehensive overview.

The earliest work on explaining outliers dates back several
decades (Knorr & Ng, 1999), which provides an explanation
for “exceptionality” of outliers in terms of feature subspace.
Most existing work in explaining the detected outliers are
recent, and follow a similar pursuit (Micenková et al., 2013;
Macha & Akoglu, 2018; Gupta et al., 2018; Liu et al., 2018).
These methods describe outliers or their group by feature
subspaces that separate them from “normal” observations.

There are at least two reasons why those methods do not
explain root causes of target outliers. First they capture
features that are statistically dependent on the target outliers.
But those features do not necessarily cause the outliers as
there can be a common cause of the features as well as
the outliers. Second, and importantly, even if we consider
causal ancestors of the target as the features, not all features
from feature subspaces that stand out relative to normal
observations cause the outlier.

A recent proposal by Idé et al. (2021) explains anomalous
deviations of prediction from the actual output in terms of
actions that might be taken to bring back the outlying sample
to normalcy. Those actions are with respect to a prediction
model, however, and hence not necessarily causal.

In this work, we identify root causes of an outlier event by
quantifying the contribution of upstream nodes when the
causal graph is known. We assume that the causal graph
does not change when we observe outliers. In some scenar-
ios, this can still happen. For the problem of inferring the
causal graph from outlier statistics, we refer the reader to
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Gnecco et al. (2021); Gissibl et al. (2021).

5. Experiments
First, through simulations—where we can establish the
ground truth—we evaluate the performance of our method
for identifying root causes of outliers (Section 5.1). Then we
assess whether results are sensible on real-world case study
identifying root causes of extreme river flows (Section 5.2).

5.1. Simulations

Next, we generate synthetic data and establish the ground
truth. We then evaluate the performance of the proposed
method against the ground truth. In particular, we aim to
answer the following two questions with simulations:

Q1. Can the proposed method identify top-k root causes
when model assumptions hold?

Q2. Can the proposed method identify top-k root causes
when model assumptions do not hold?

Experiment design. We randomly generate causal graphs
and associated FCMs. From the FCMs, we generate train-
ing samples. To establish the ground truth ranking of root
causes, we obtain target outliers in test samples by per-
turbing mechanisms upstream of the target with different
strengths. We use the training samples to learn the FCMs.
In the test samples, we get the rankings of root causes by
applying various methods, which we then evaluate against
the ground truth ranking. We compare our method against a
baseline method based on existing outlier score:

• NaiveRCA. The ranking of root causes is based on the
existing outlier score. In particular, we use z-score, as the
variables we consider have unimodal marginal distributions.
To compute the z-score for an event xj of Xj , we use the
marginal distribution of Xj . The higher the z-score, the
higher the ranking.

• CausalRCA. The ranking of root causes is based on Shap-
ley values computed from Eq. 11. The higher the contribu-
tion, the higher the ranking. In particular, we set z-score as
the feature map, i.e., τ(x) := z(x).

We measure the quality of rankings by NDCG@k (Järvelin
& Kekäläinen, 2000), which is a widely used metric for
measuring rankings with graded relevance of outcomes like
ours. The NDCG@k is higher if highly “relevant” root
causes have higher ranks. A perfect ranking method will
have an NDCG@k score of 1.0. To establish the ground
truth relevance of all nodes, we assign zero relevance scores
to non-root causes, and invert the ranking of injected root
causes (i.e., the rank 1 root cause gets the highest relevance
score of p if we injected p root causes in the test sample).
When we ask for top-k results from a method, we assign the

relevance scores to its ranking using the ground truth, which
is then used to compute its NDCG@k score.

Data Generation & Ground Truth. To generate causal
graphs, we follow the procedure described in Janzing et al.
(2012). In particular, we generate causal graphs with at least
10 upstream nodes of the target node. To each node Xj , we
assign a random linear structural equation of the form

Xj :=
∑
i

βijPAij +Nj , (15)

where PAij is the i-th component of Xj’s parents PAj ,
βij ∼ Uniform(0, 5) and Nj ∼ Gaussian(0, 1). We draw
training samples from these FCMs. We do not use non-
linear FCMs in simulations because analytical solution of
the Shapley value contribution (Eq. 11) is non-trivial to
compute already for linear FCMs (to get the ground truth).

We then generate the test samples with the target outlier
and its root causes by modifying the FCMs. In the test
samples, we inject outliers in 1 to 5 noise terms randomly
upstream of the target node, including its own, in the causal
graph. Those noise terms are the root causes of the target
outlier. In particular, we obtain an outlier x̃j at a node Xj

by perturbing its noise value to λ ∼ Uniform(3, 5), which
is at least 3 standard deviation away from the mean of the
marginal distributions of noise terms Nj (which is 0):

x̃j :=
∑
i

β
(i)
j pa(i)j + λ. (16)

We obtain the ground truth ranking of root causes by their
contributions to the target outlier. As each node has a linear
FCM, we can reduce the FCM of the target variable Xn as
a linear combination of upstream noise terms, i.e. Xn :=∑n

j=1 αjNj , where n is the number of nodes. For the root
causes, noise values are fixed to λ. Thus, root causes with
larger values of αj contribute more to the value attained by
the target node, and hence its extremeness.3

Methodology. We draw 1K random causal graphs. Each
causal graph has a randomly chosen linear FCM at each of
its nodes as described in Eq. 15. From the linear FCMs of
each graph, we draw 2000 training samples. From the FCMs,
we then draw 10 random test samples, each containing a
target outlier and between 1 to 5 root causes. Each method
therefore yields 10K rankings.

For the case when model assumptions hold (i.e., Question
Q1), we take the ground truth causal graph and then esti-
mate its FCMs from its training samples assuming a linear
additive noise model (Peters et al., 2017, Ch. 7). In partic-
ular, we use the linear regression to estimate the functions,

3This heuristic can yield some paradoxes, although it works in
overwhelming cases, which we explain in the Appendix.
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Figure 6: NDCG@k for various values of k, when there are (a) no missing edges, and (b–d) respectively 10%, 20% and
40% of edges in the causal graph are missing when estimating the FCMs. The higher values of NDCG@k indicate that
CausalRCA is better at identifying root cases of outliers than NaiveRCA, even when model assumptions do not hold.

i.e., fj := E(Xj | PAj) and use the empirical distribution
of the residual for the noise term.

For the cases where model assumptions do not hold (i.e.,
Question Q2), we drop edges randomly from the ground
truth causal graph and then estimate the FCMs from the
imputed graph—assuming a linear additive noise model. By
doing so, in our method CausalRCA, we neither use the
exact causal graph, nor the exact inputs to the FCMs.

In both settings, we use empirical distributions for the root
nodes. For our method, we estimate the tail probabilities
empirically by drawing samples from the estimated FCMs,
applying the feature map, and then counting the tail events.

Results In Figure 6 (a), we show the average NDCG@k
and its standard error over 10K rankings when model as-
sumptions hold. We observe that CausalRCA has higher
NDCG@k scores on average for all values of k than the
baseline NaiveRCA. The upward trend of NDCG@k scores
and decreasing standard errors for both methods can be ex-
plained by the fact that relevant root causes are more likely
to appear in the top-k results as k increases.

In Figure 6 (b–d), we show the results when we respectively
drop 10%, 20% and 40% of the edges randomly from the
ground truth causal graph and learn FCMs from the imputed
graph. As expected, the NDCG@k scores drop as we drop
more edges and strongly violate model assumptions. Even
when model assumptions are strongly violated, Causal-
RCA does not perform worse than the baseline method
NaiveRCA.

We have to be careful here not to generalize this observation,
however. If functional forms of FCMs, for instance, are
completely off, there is no reason to believe that our method
will still perform sensibly. There is simply too many degrees
of freedom to answer Question Q2 empirically. But we can
reasonably say that the performance of our method drops as
our model assumptions are violated.

5.2. Case Study: Root causes of extreme river flows

Next, we apply our method to a real-world scenario to see
if the results we get are sensible.

Our goal here is to identify the root causes of extreme river
flows at the New Jumbles Rock (NJR) station that is lo-
cated right after the confluence of 3 rivers in England. As
candidate causes, we consider river flows measured at 3 sta-
tions upstream of the confluence along each tributary river,
namely Hodder Place (HP), Henthorn (HT) and Whalley
Weir (WW) (see the map of stations in Figure 7 left).

As river flow downstream of the confluence is the result of
river flows upstream, we can reasonably assume the causal
graph in Figure 7 (right), with unobserved common causes
like weather conditions (e.g. precipitation and temperature)
represented by the dotted node. Note that unobserved com-
mon causes only affect how well we learn the FCM; the
proposed framework works as long as we have the FCM
(see Section 3.4). But estimating the FCM from data (e.g.,
estimating causal regression coefficients and noise by OLS)
suffers from a confounding bias here, without further struc-
tural assumptions. Hence we take the following approach
using domain knowledge: assuming that most of the water
flow at each station will also reach downstream stations, we
estimate the noise (i.e., the hidden influx) at each station
simply by the difference between the flow recorded at the
station and sum of flows upstream.

As training samples for estimating the FCM, we use daily
river flows, measured in each station at 9:00 daily, from 1
January 2010 till 31 December 2018 (i.e., 3267 observa-
tions).4 The FCM of the flow at the NJR station is simply

XNJR := XHP +XHT +XWW +NNJR,

where Xj is the river flow measured at station j. We obtain
the noise term NNJR by a simple algebraic operation

NNJR = XNJR − (XHP +XHT +XWW)

4Data Source: https://tinyurl.com/ukriverdata

https://tinyurl.com/ukriverdata


Causal structure-based root cause analysis of outliers

XHP XHTXWW

Z

XNJR

Figure 7: (left) Map of station locations. New Jumbles Rock
(NJR) is the station downstream of other stations, namely
namely Hodder Place (HP), Henthorn (HT) and Whalley
Weir (WW). (right) Causal graph of river flows at stations.
The dotted node Z represents unobserved common causes
like weather conditions (e.g., precipitation, temperature).
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Figure 8: (left) Histogram of daily river flows between 2010
January and 2018 December at the NJR station, and (b)
z-scores of daily river flows at the NJR station in 2019. We
want to identify the root causes of the 4 outliers (black dots).

We model the distribution of noise NNJR, and the marginal
distribution of the other stations, namely HP, HT and WW,
by their empirical distributions.

We want to identify the root causes of outliers in the daily
measurements between 2019 January until 2019 March. To
detect the outliers, we use z-scores, as the histogram of
the measurements at the NJR station before 2019 shows a
unimodal distribution (see Figure 8 left). With a threshold
of z = 3, we identify four outliers (see Figure 8 right).5 We
then use our method to identify their root causes.

In Figure 9 (top), we show the results of our method. In par-
ticular, we convert the absolute Shapley value contributions
to percentages by dividing them by the total Shapley values
(which is also equal to the IT score of the target outlier). We
observe that flows upstream are the main contributors (root
causes) to the flow at the NJR station, which is in agreement
with the intuition and raw data in Figure 9 (bottom). For
example, the peak flow on March 16 at the NJR station is
explained almost completely by peak flows upstream.

5We can set a different threshold to obtain more or less outliers;
our method will explain those anyway. But our focus here is to
explain the detected outliers, not to detect outliers.
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Figure 9: (left) Result of our method identifying root causes
for extreme river flows at the NJR station. Extreme river
flows at the NJR station are explained almost completely by
peaks upstream. (right) Daily river flows on March 2019.

Overall, our method is better at identifying top-k root causes,
when modelling assumptions hold. Even when modelling
assumptions do not hold, results of our method are compa-
rable to the baseline method based on an existing outlier
score. In real-world case study, the results are sensible.

6. Conclusion
We have presented a formal method to identify “root causes”
of outliers when we know the causal graph of variables,
along with associated functional causal models. To gener-
alise the method to existing outlier scores, we introduced
information-theoretic (IT) outlier scores that probabilisti-
cally calibrate existing outlier scores (in Section 2). To
identify root causes of an outlier event xn, we attributed the
outlier score S(xn) to unexpected behaviour of its ancestors
using Shapley values from game theory (in Section 3). We
illustrated our method on both synthetic and real datasets.
As our method rests on causal assumptions, a systematic
theoretical analysis of the robustness of our method against
violation of assumptions requires further research.
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A. Additional examples of IT outlier scores
Example 3 (Rarity). For unimodal distributions, it is also
common to use negative logarithm of probability density
function, which essentially measures the information content
of an event w.r.t. a reference distribution. Suppose that
probability density pX =: p of probability measure PX

exists. Then rarity of point x w.r.t. density p is given by

r(x) := − log p(x).

By setting τ(x) := r(x), we obtain the corresponding IT
outlier score as

Sr
X(x) = − logP{r(X) ≥ r(x)}

= − logP{− log p(X) ≥ − log p(x)}
= − logP{log p(X) ≤ log p(x)}
= − logP{p(X) ≤ p(x)}.

Note that S(x) := − log p(x) would not define an IT outlier
score because the total probability of points with small
probability density need not be small.

Example 4 (Log Quantile). Another outlier score commonly
in use is the right-sided log quantile. The right-sided log
quantile measures the information content of events that are
extreme than a given event, and given by

q≥(x) := − logP{X ≥ x}.

Unlike the previous examples, we need not plug in q≥(x)
to τ(x) to obtain the corresponding IT outlier score. Right-
sided log quantile score is already an IT outlier score. To
see this, we can simply set τ(x) to an identity map, i.e.
τ(x) := x, in the definition of IT outlier score to obtain

Sτ
X(x) := − logP{X ≥ x} = q≥(x).

B. Misconception
Intuitively, it is tempting to expect the contribution of a
noise term to be proportional to the sensitivity of the target
variable w.r.t. its changes. But is that intuition valid? We
will answer this question with simple examples.

Consider a bivariate causal graph X → Y with a linear
FCM with following specifications, i.e.

X := NX (17)
Y := αX +NY , (18)

where NX , NY ∼ N (0, 1). For instance, is it reasonable to
expect the contribution of NX to be higher than that of NY

in case α > 1 and the corresponding noise values are the
same?

Suppose nX = nY = β. In that case, we would observe
x = β and y = (1 + α). Let us write down the distribu-
tions of Y under randomization operations rd(N{X}) and
rd(N{Y }), which we will need later to compute the tail
probabilities needed for Shapley value contributions.

rd(N{X}) =⇒ Y = αNX + β ∼ N (β, α2)

rd(N{Y }) =⇒ Y = αβ +NY ∼ N (αβ, 1)

For simplicity, let us use an identity feature map, i.e.,
τ(y) := y. Then the contribution of NX to IT outlier score
S(y) is given by

ϕ(X) =
1

2
log

P rd(N∅){Y ≥ y}
P rd(N{X}){Y ≥ y}

+

1

2
log

P rd(N{Y }){Y ≥ y}
P rd(N{XY }){Y ≥ y}

=
1

2

(
log q∅ − log q{X} + log q{Y } − log q{X,Y }

)
,

where we assign P rd(NT ){Y ≥ y} =: qT for index set T .
Likewise, the contribution of NY to IT outlier score S(y) is
given by

ϕ(Y ) =
1

2

(
log q∅ − log q{Y } + log q{X} − log q{X,Y }

)
.

As logarithm is a monotonic function, if q{X} ≥ q{Y }, we
have ϕ(X) ≤ ϕ(Y ). Otherwise ϕ(X) > ϕ(Y ). Since Y
is Gaussian under randomization operations rd(N{X}) and
rd(N{Y }), we can write down q{X} and q{Y } in terms of
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error function erf as

q{X} = 1− F (y)

= 1−
(
1

2

(
1 + erf

(
y − β

α
√
2

)))
=

1

2

(
1− erf

(
(1 + α)β − β

α
√
2

))
=

1

2

(
1− erf

(
β√
2

))
,

q{Y } =
1

2

(
1− erf

(
y − αβ√

2

))
=

1

2

(
1− erf

(
(1 + α)β − αβ√

2

))
=

1

2

(
1− erf

(
1√
2

))
.

As error function erf(x) is monotonically decreasing for
x > 0, we have q{X} ≥ q{Y } whenever β ≥ 1. Whenever
0 < β < 1, we have q{X} < q{Y }. Here we even observe
that contributions do not depend on the strength of linear
coefficient α.

This example shows that such intuition based on sensitivity
is wrong. The contribution of a noise term depends on
tail probabilities of the target variable under randomization
operations. That in turn is not only dictated by the values of
the noise terms and the functional relation, but also by its
counterfactual distributions.

We will explain possible ways to solve the puzzle. Assume
instead of defining the outlier event by |Y | ≥ |y| but |Y | ≥
(1− ϵ)|y| instead. In words, we consider some value y′ still
‘the same’ outlier event but slightly smaller than y. If ϵ is not
too small, NX has a significantly higher contribution than
NY because changing nY to a more normal value changes
y by such a small amount that we still get |Y | ≥ (1− ϵ)|y|.
In other words, our judgement that NX contributes more
to the outlier event is implicitly based on a coarse-grained
perspective, for which a slightly smaller outlier is still the
same event.

This may suggest to redefine contribution analysis by re-
placing the event {τ(Xn) ≥ τ(xn)} with {τ(Xn) ≥
(1− ϵ)τ(xn)} in contribution analysis as well as the defini-
tion of the outlier score. We will not follow up on this option
here to avoid introducing another free parameter. Instead,
we emphasize that the counterintuitive behaviour degrades
quickly with more nodes.

Consider the simple model with Y =
∑n

j=1 αjNj with
independent Gaussians Nj . For n ≫ 2 variables the con-
tribution of Nj consists of many different conditional con-
tributions c(j|T ), where most of the different subsets T do
not contain all indices other than j. In other words, some
other Ni are randomized, and changing nj does not change
the probability for the outlier event significantly since this
change disappears in the random signal of the other variable

if they have larger αi.

C. Proofs
In the proofs, we will drop X and τ in Sτ

X whenever it is
clear from the context to which variable and feature map we
refer to.

Lemma 2.1 (Tail probability of IT outlier scores). Let X be
a random variable (r.v.) with values in X and distribution
PX . Every information-theoretic outlier score satisfies the
following properties:

P{Sτ
X(X) ≥ c} ≤ e−c ∀c ∈ R+

0 (3)

P{Sτ
X(X) ≥ Sτ

X(x)} = e−Sτ
X(x)

for PX -almost all x ∈ X . (4)

where PX denotes the distribution of X . Conversely, if
Sτ
X : X → R+

0 is measurable and satisfies (3) and (4), then
there exists a measurable function τ : X → R such that

Sτ
X(x) = − logP{τ(X) ≥ τ(x)}, x ∈ X .

If Sτ
X is surjective then equality holds in (3).

Proof. First we show that SX is measurable. Set τ(x) =: y
and τ(X) =: Y . Denote the cdf of Y by G. Then we have

SX(x) = − log(1−G(y))

= − log(1−G(τ(x)))

As SX is a composition of measurable functions G and τ , it
is measurable. Let G−1 be the generalized inverse of cdf of
Y . Then it holds that

P{SX(X) ≥ c} = P{G−1(1− e−c) ≤ G−1(G(τ(X)))},

where the last equation holds since the generalized inverse
is monotonically non-decreasing. Further, notice that for
the generalized inverse, it holds G−1(G(x)) ≤ x for all x,
and hence:

P{G−1(1− e−c) ≤ G−1(G(τ(X)))}
≤ P{G−1(1− e−c) ≤ τ(X)}
= 1−G(G−1(1− e−c))

≤ 1− (1− e−c) = e−c ,

again, the last inequality holds since G−1(G(x)) ≤ x for all
x. Therefore, we have shown that IT outlier score satisfies
relation (3). Now to show that IT outlier score also satisfies
relation (4), note that G−1(G(Y )) = Y holds almost surely
for arbitrary r.v. Y with its cdf G. Hence, we have

P{SX(X) ≥ S(x)} = P{e−SX(X) ≤ e−SX(x)}
= P{τ(X) ≥ G−1(G(τ(x)))},
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where we applied in the last equality G−1 on both sides
(note that G−1 is non-decreasing) and used the fact that
G−1G(τ(X)) = τ(X) a.s.

By definition, this means that with A := {ω ∈ Ω :
G−1G(τ(X(ω))) = τ(X(ω))} it holds P (A) = 1 (note
that A is measurable since τ and X are measurable) and
since

A = (τ(X))−1({y ∈ R : G−1(G(y)) = y})

it holds

1 = P (A)

= P ((τ(X))−1({y ∈ R : G−1(G(y)) = y}))
= P (X−1(τ−1(({y ∈ R : G−1(G(y)) = y})))
= PX({x ∈ X : G−1(G(τ(x))) = f(x)}

and therefore, G−1G(τ(x)) = τ(x) for PX -almost all x
and thus,

P{τ(X) ≥ G−1(G(τ(x)))}
= P{τ(X) ≥ τ(x)} PX − a.s

Finally, by taking the exponents on the expression of SX(x),
we get

P{τ(X) ≥ τ(x)} = e−SX(x) .

Conversely, assume that S satisfies (3) and (4), then set
τ := S. Using property (4) we have P{S(X) ≥ S(x)} =
e−S(x) and hence S(x) = − logP{τ(X) ≥ τ(x)}.

Lemma 2.2 (Relations between outlier scores). For any
δ ∈ R∗

0, for almost all c ∈ Sτ
X(X ), we have

P{Sτ
Y (Y ) ≥ c+ δ |Sτ

X(X) ≥ c} ≤ e−δ.

Proof. We have: P{S(Y ) ≥ c + δ|S(X) ≥ c} =
P{S(Y ) ≥ c + δ, S(X) ≥ c}/P{S(X) ≥ c} ≤

P{S(Y ) ≥ c + δ}/P{S(X) ≥ c} ≤ e−c−δ

e−c , where we
used that P{S(X) ≥ c} = e−c holds for all c ∈ S(X ).

Theorem 3.1 (Decomposition of target outlier score). The
outlier score of an event xn from any target variable Xn

decomposes into the Shapley contribution of each of its
ancestors plus itself, i.e., S(xn) =

∑n
j=1 ϕ(j), where n is

the number of ancestors of Xn including itself.

The proof to this theorem follows directly from the effi-
ciency property of Shapley values (Shapley, 1953). But we
will still provide some intuitions here.

The IT outlier score of xn in terms of noises is given by

S(xn) := − logP{g(N)) ≥ g(n)}.

When none of the noise terms N∅ are randomized, the tail
probability is surely 1.0, and hence we obtain the outlier
score of zero, i.e.,

− logP rd(N∅){g(N) ≥ g(n)}) = 0. (19)

When all noise terms NU are randomized, with U =
{1, . . . , n}, according to the true joint distribution of noise
terms PN, we obtain the usual outlier score of xn, i.e.,

− logP rd(NU ){g(N) ≥ g(n)}) = S(xn). (20)

We can thus change from Eq. 19 to Eq. 20 step by step from
0 to S(xn) by randomizing more and more of the noise
terms.

It is important to note here that for the randomization op-
eration rd(NI) with I ⊂ U , we need not randomize noise
terms NI according to their true joint distribution PNI ; we
can use any joint distribution P̃NI . When I = U (i.e., when
we randomize all noise terms), it is crucial to use the true
joint distribution PN to obtain the total score S(xn).
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