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Abstract

Reliable evaluation benchmarks designed for
replicability and comprehensiveness have driven
progress in machine learning. Due to the lack of
a multilingual benchmark, however, vision-and-
language research has mostly focused on English
language tasks. To fill this gap, we introduce
the Image-Grounded Language Understanding
Evaluation benchmark. IGLUE brings together—
by both aggregating pre-existing datasets and
creating new ones—visual question answering,
cross-modal retrieval, grounded reasoning, and
grounded entailment tasks across 20 diverse lan-
guages. Our benchmark enables the evaluation
of multilingual multimodal models for transfer
learning, not only in a zero-shot setting, but also
in newly defined few-shot learning setups. Based
on the evaluation of the available state-of-the-art
models, we find that translate-test transfer is supe-
rior to zero-shot transfer and that few-shot learn-
ing is hard to harness for many tasks. Moreover,
downstream performance is partially explained by
the amount of available unlabelled textual data for
pretraining, and only weakly by the typological
distance of target–source languages. We hope to
encourage future research efforts in this area by
releasing the benchmark to the community.

1. Introduction
Until recently, advances in multimodal vision-and-language
(V&L) modelling have predominantly focused on English or
a few high-resource Indo-European languages (Elliott et al.,
2016), disregarding the enormous diversity of the world’s
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languages and cultures (Bender, 2011; Ponti et al., 2019;
Liu et al., 2021), which exacerbated the Anglo-centric bias
(Jauhar et al., 2018; Ponti et al., 2020) of V&L models.

Nonetheless, this trend is reversing by virtue of a series of
independent efforts in the the V&L research community:
on top of expanding multilingual image–sentence retrieval
to lower-resource languages (Srinivasan et al., 2021) and
additional modalities (Armitage et al., 2020), we have re-
cently witnessed pioneering work on multimodal machine
translation (Yao & Wan, 2020; Huang et al., 2020), mul-
tilingual visual question answering (Pfeiffer et al., 2022),
multilingual text-to-video search (Huang et al., 2021; Lei
et al., 2021), multilingual visual reasoning (Liu et al., 2021),
and cross-modal retrieval (Jain et al., 2021). Yet, multilin-
gual multimodal models (Ni et al., 2021; Jain et al., 2021)
are typically tested only on the task of cross-modal retrieval.

In order to incentivise and guide future research in multi-
lingual V&L research, we introduce the Image-Grounded
Language Understanding Evaluation (IGLUE) benchmark.
We create IGLUE by collating current research threads in
this area and extending them with two datasets for cross-
lingual visual entailment (XVNLI) and image–text retrieval
(xFlickr&CO), for an even more comprehensive coverage of
tasks. IGLUE is the first evaluation suite for multilingual
multitask V&L modelling, comprising five datasets across
four structurally different tasks that require different levels
of syntactic-semantic V&L understanding in cross-lingual
setups: cross-modal retrieval, visual question answering,
natural language inference, and visual reasoning (Figure 1).
Aiming at a representative selection of languages, IGLUE
covers 20 typologically diverse languages, spanning 11 lan-
guage families, 9 scripts, and 3 WALS-defined (Dryer &
Haspelmath, 2013) geographical macro-areas.

Similar to previous text-based, cross-lingual transfer bench-
marks, such as XGLUE (Liang et al., 2020) and XTREME
(Hu et al., 2020), our V&L benchmark is designed to eval-
uate zero-shot transfer scenarios, where annotated train-
ing data is provided in English, but none in the target
language. In addition, contrary to the above-mentioned
datasets, IGLUE also provides standardised data splits to
guide cross-lingual few-shot learning experiments, which
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Figure 1. Overview of the tasks in IGLUE, which include grounded natural language inference, visual question answering, grounded
reasoning, and cross-modal retrieval. Each task is associated with an example of input and output (English translations at the bottom).

can help reduce the gap between zero-shot and supervised
performance (Lauscher et al., 2020; Zhao et al., 2021). In
this setup, a small number of task-annotated examples for
fine-tuning are available for a given target language. We also
release machine-translated versions of the test sets to enable
the evaluation of ‘translate test’ cross-lingual transfer.

By virtue of the newly created IGLUE benchmark, we also
run the first systematic comparative evaluation of cutting-
edge multilingually pretrained V&L architectures (Ni et al.,
2021; Zhou et al., 2021; Liu et al., 2021), as well as a series
of representative monolingual V&L models combined with
machine translation (Lu et al., 2019; Chen et al., 2020, inter
alia) across a range of diverse V&L tasks and languages.

This evaluation offers new insights on the models’ core
strengths and current limitations. Foreshadowing, we show-
case large gaps between performance in English and transfer
performance, where (to a limited extent) the gaps are more
prominent in lower-resource languages and languages more
distant from English. In addition, leveraging target-language
in-task few shots is remarkably arduous: whereas in previ-
ous text-only experiments (Lauscher et al., 2020), ceteris
paribus there are huge gains of few-shot scenarios over their
zero-shot counterparts, we demonstrate that current V&L
models often require thousands of examples before show-
ing signs of improvement. Finally, performance also seems
correlated with task difficulty: for instance, NLI shows the
smallest gaps between English and other languages and QA
benefits the most from few-shot adaptation. On the other
hand, visually grounded reasoning and cross-modal retrieval
appear to be harder in both respects.

Contributions. 1) In order to guide and inspire more work
in the area of multilingual V&L research, we present a first
evaluation benchmark for cross-lingual transfer learning
for V&L tasks, spanning 20 languages, 5 datasets, and 4
different tasks. 2) In the process of benchmark creation,
we complement existing datasets with new training and
evaluation data in several languages to increase diversity
and enable few-shot learning, and introduce a first multi-
lingual dataset for visually grounded cross-lingual NLI. 3)
We conduct systematic evaluations of representative V&L
architectures in zero-shot and few-shot cross-lingual trans-
fer scenarios, offering standard data splits and empirical

baselines for future research. 4) Our results and additional
analyses take stock of the current gaps and challenges in
cross-lingual V&L research. 5) To further facilitate replica-
ble research in this area, we re-implement the existing mul-
tilingual V&L pretrained encoders in a unified framework
(VOLTA; Bugliarello et al. 2021), which also provides access
to five English V&L BERTs and 12 V&L tasks. We provide
data and code for the evaluation of multilingual V&L mod-
els at https://iglue-benchmark.github.io/.

2. Related Work and Motivation
Multilingual Multimodal Learning. Multilingual V&L
research focuses on collecting resources, developing mod-
els, and evaluating systems that need to jointly reason over
multilingual text and multimodal inputs, this way combin-
ing two areas of crucial importance: multilingual (Snyder &
Barzilay, 2010; Ponti et al., 2019) and multimodal learning
(Bernardi et al., 2016; Baltrusaitis et al., 2019). A natural
overlap of the two areas is language grounding in percep-
tion (typically vision; Deng et al., 2009; Kiela et al., 2018),
where the perceptual input can be considered as an inherent
cross-lingual signal (Kiela et al., 2015; Gella et al., 2017;
Caglayan et al., 2021). Many other research goals lie at the
intersection of these two areas, such as transfer learning and
modularity (Ponti et al., 2021b; Ansell et al., 2022).

However, until recently the pace of progress in multilingual
multimodal learning has not gained as much momentum as
V&L in monolingual settings, mostly due to the scarcity of
resources for training and evaluation. Texts in most mul-
timodal datasets are usually only available in English, or
in high-resource languages (e.g., Chinese and a few major
Indo-European languages; Elliott et al., 2016; 2017; Bar-
rault et al., 2018; Wang et al., 2019b). Consequently, models
trained on such datasets do not take into account linguis-
tic diversity (Ponti et al., 2020) or cross-cultural nuances
(Armitage et al., 2020; Liu et al., 2021; Yin et al., 2021).1

The need to expand V&L research towards more languages

1Some notable exceptions, which did reach beyond English,
were still limited to the image–text retrieval task and mostly Indo-
European languages (Rotman et al., 2018; Wehrmann et al., 2019;
Huang et al., 2019; Kim et al., 2020; Su et al., 2021).

https://iglue-benchmark.github.io/
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has been recognised by 1) the recent creation of multilingual
training and evaluation data across diverse V&L tasks and
languages (Armitage et al., 2020; Srinivasan et al., 2021; Su
et al., 2021; Pfeiffer et al., 2022; Liu et al., 2021; Wang et al.,
2021, inter alia), as well as 2) the emergence of the first
large multilingual-multimodal pretrained models (Ni et al.,
2021; Zhou et al., 2021; Liu et al., 2021) and monolingual
V&L models adapted to multiple languages (Chen et al.,
2020; Pfeiffer et al., 2022). In this work, we merge and
expand on these two research threads, aiming to highlight
current achievements and challenges in this area and to
facilitate comparative evaluations, thus bringing together
the above-mentioned collective research efforts.

Multi-Task Evaluation Benchmarks in NLP. IGLUE has
been inspired by recent text-only multi-task benchmarks
for natural language understanding: these benchmarks have
been proven invaluable as key drivers of recent steep perfor-
mance progress of NLP. The creation of such benchmarks
in monolingual settings, sparked by the pioneering and now
omnipresent English-only GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019a), has been extended to
other languages such as Indonesian (Wilie et al., 2020), Ko-
rean (Park et al., 2021), Russian (Shavrina et al., 2020), and
Romanian (Dumitrescu et al., 2021).

IGLUE is even more related to multi-task benchmarks de-
veloped for cross-lingual transfer settings: XTREME (Hu
et al., 2020), XGLUE (Liang et al., 2020), and XTREME-R
(Ruder et al., 2021). They have brought in the spotlight the
necessity to evaluate not only on a diverse set of tasks, but
also on a diverse set of languages, in order to incentivise
research on models that forgo monolingual limitations and
generalise well in multilingual settings.

With IGLUE, we make the first leap into multimodal cross-
lingual evaluation. Driven by analyses of text-only bench-
marks and lessons learned from them (Ethayarajh & Juraf-
sky, 2020), IGLUE aims to extend sheer accuracy-driven
evaluation towards other crucial aspects such as fine-tuning
efficiency, sample efficiency and adaptation to low-data sce-
narios, and enhance multilingual inclusivity and diversity.

3. IGLUE Benchmark
Design Principles. Aiming for a comprehensive resource,
we take inspiration from the best practices and design prin-
ciples of existing multilingual benchmarks (Hu et al., 2020;
Liang et al., 2020; Ruder et al., 2021), and adapt them to ac-
count for the unique challenges of V&L tasks. In particular,
we abode by the following principles:

(1) Task Diversity. We selected a wide spectrum of multi-
modal tasks that reflect multiple facets of V&L learning.

(2) Language Diversity. The datasets included in IGLUE

Table 1. IGLUE statistics. †Aggregated across languages. Lan-
guage counts include English. MaxS: Max-Shot. F: Flickr; VG:
Visual Genome; N: NLVR2; M: MaRVL; C:COCO; W: Wikipedia

Task NLI QA Reason Retrieval

Train/Dev data SNLI GQA NLVR2 Flickr30K WIT500K
EN

Test data XVNLI xGQA MaRVL xFlickr&CO WIT
Languages 5 8 6 8 11
Img source F VG N + M F + C W
Train images 30K 72K 87K 29K 469K
Train samples 541K 943K 86K 145K 500K
Dev images 1K 10K 7K 1K 4.6K
Dev samples 18K 132K 8K 5K 4.6K
Test images 357 300 †4.9K 2K †6.2K
Test samples 1.1K 9.6K †5.7K 2K †9.6K
MaxS images 48 48 80 100 -
MaxS samples 168 1.5K 80 100 -

should cover many languages that are diverse in terms of
family, geographic area, typological features, and script.

(3) Accessibility. The data should be released under a licence
that permits use and redistribution for research purposes.

Compared to previous text-only benchmarks, V&L tasks
are more time- and compute-intensive by nature. To widen
usability, we created IGLUE by carefully choosing datasets
and training setups that would enable quick development
even by practitioners constrained by limited resources.

3.1. Tasks and Datasets

Challenges in V&L learning are multi-faceted and entangled
with distinct abilities: e.g., drawing inferences, reasoning
over and comparing images, answering questions, and re-
trieving images or their captions. In IGLUE we thus rep-
resent all these abilities together with their corresponding
tasks, see Table 1 and Figure 1 for an overview. We opt for
the following V&L tasks based on (i) (partial) availability
of multilingual data, and (ii) computational requirements.

XVNLI. We propose the new task of Cross-lingual Visual
Natural Language Inference (XVNLI). It requires the model
to predict if a text-hypothesis ‘entails’, ‘contradicts’, or is
‘neutral’ to an image-premise. We combine the text-only
dataset SNLI (Bowman et al., 2015), with its multimodal
(Xie et al., 2019) and cross-lingual (Agić & Schluter, 2018)
counterparts.2 We provide new train, development, and test
splits such that the test split consists of images covered by
the underlying cross-lingual text-only dataset. We discard
all text examples of images in the test set for which no cross-
lingual version exists. The remaining images for which only
English hypothesis-examples exist are randomly split into
the train and development set. To mitigate data leakage
between the splits, we sample based on the images; all text

2Vu et al. (2018) formulate grounded textual entailment as
the task where the image supplements the textual premise and
hypothesis. We follow the established setup of Xie et al. (2019).
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examples corresponding to one image are added to one split.

xGQA. To solve the Cross-lingual Grounded Question An-
swering task (xGQA; Pfeiffer et al. 2022), a model must
answer several types of structured questions about an im-
age. The evaluation data in 7 target languages are manually
translated from the validation set of GQA (Hudson & Man-
ning, 2019), whereas the training data are sourced from the
English training set of GQA. All images were originally
sampled from Visual Genome (Krishna et al., 2017). In
particular, we use the English balanced training set to train
our models, and evaluate on the few-shot evaluation sets de-
fined by Pfeiffer et al. (2022) to allow for direct comparison
between zero-shot and few-shot experiments.

MaRVL. The Multicultural Reasoning over Vision and
Language dataset (Liu et al., 2021) requires to determine
whether a textual description is true or false about a pair
of images. This involves comparing their visual representa-
tions and reasoning about the facts in the description. The
creation of MaRVL is entirely driven by native speakers. As
a consequence, the descriptions are written from scratch and
images are selected to be culturally relevant. The NLVR2
data (Suhr et al., 2019) in English are used for training.

xFlickr&CO. We create a new, multilingual evaluation
set for retrieval by combining 1,000 images from the
Flickr30K (Young et al., 2014) and 1,000 from the
COCO (Lin et al., 2014) test split defined by Karpathy & Fei-
Fei (2015) (henceforth, Karpathy split). Each image is then
associated with a single caption.3 The English evaluation set
is obtained by sampling one caption per image from the ex-
isting datasets. With the exception of Japanese (Yoshikawa
et al., 2017; Nakayama et al., 2020), no other language
covers the evaluation splits of both Flickr and COCO.4 We
hence crowdsource image descriptions in 6 other languages

3We expand the Flickr30K evaluation set since state-of-the-
art model performance is currently close to the ceiling of human
performance (Jia et al., 2021). We show that this leads to a more
challenging evaluation set which requires out-of-distribution gen-
eralisation, while maintaining an efficient training regime.

4Multilingual captions for Flickr30K also exist in Dutch (van
Miltenburg et al., 2018) and Mandarin (Lan et al., 2017), but the
Mandarin captions do not match the expected test split. COCO
has also been (partially) translated to Hindi (Mishra et al., 2021),
Italian (Scaiella et al., 2019), Mandarin (Li et al., 2019b), Span-
ish (Garcı́a, 2020) and Vietnamese (Lam et al., 2020), with similar
problems. The Mandarin captions have even been used to train
and evaluate M3P and UC2 in a multilingual setup. We find that
882/1,000 test images are used as training examples in other lan-
guages, and that 148 of its training images are in the expected
test split. In a similar vein, we find that 946/1,000 test samples
in XTD (Aggarwal et al., 2021)—which contains COCO transla-
tions in seven languages (Italian, Korean, Mandarin, Portuguese,
Russian, Spanish and Turkish)—are from the COCO training split,
while only 7 of them are also in the Karpathy COCO test split.
These overlaps lead to considerable leakage of visual and cross-
lingual information during fine-tuning and evaluation.

by asking annotators to describe each image, rather than
translating its English caption, to prevent biasing their de-
scription (van Miltenburg et al., 2017; Frank et al., 2018).
We ask annotators to follow the Flickr30K guidelines (see
Appendix A.4 for details). For the Flickr30K subsplit in
German, we sample captions from the Multi30K task 2 data
(Elliott et al., 2016).

WIT. The Wikipedia-based Image Text dataset (Srinivasan
et al., 2021) collected examples from Wikipedia in 108
languages. Similar to xFlickr&CO, the tasks consist in re-
trieving the correct image given a textual description (image
retrieval) and vice versa (text retrieval). WIT represents a
very diverse set of concepts and real world entities. Text
fields in WIT often tend to be descriptive, verbose and use
specific terminology, different from single-line captions of
common words and objects in Flickr30K and COCO. This
allows us to evaluate the high-level image–sentence under-
standing of multilingual V&L models across a wider range
of languages and real-world entities than in xFlickr&CO.
For training, we randomly sample a subset of 500K captions
from the English training set of WIT. For evaluation, we use
the WIT test data released as part of its corresponding Kag-
gle competition.5 In particular, as most of the test languages
are Indo-European, we choose the 4 national languages with
the lowest Wikipedia coverage (measured in number of ar-
ticles as of Jan 2022), and 6 more languages to both cover
different properties (language families, scripts) and overlap
with other tasks in IGLUE.6 We ensure that each language
has at least 500 image–caption pairs, and limit English and
Japanese data to 1,000 samples (see also Appendix A.5).

3.2. Languages

IGLUE covers 20 languages (Table 2). They are extremely
diverse, as they comprise 11 distinct language families, and
span across 3 of the 5 geographic macro-areas defined by
Dryer & Haspelmath (2013). Moreover, they are written in a
variety of scripts: Arabic, Bengali–Assamese, Chinese char-
acters, Cyrillic, Greek, Hangul, Kanji, Latin, and Tamil. The
distribution of languages per task is also shown in Table 2.

We ensured that IGLUE includes languages with different
levels of unlabelled data available (Joshi et al., 2020; Blasi
et al., 2022). Thus, it allows for evaluating models with
different data paucity regimes during pretraining. While not
all languages are covered in each task—due to the (partly)
independent selection of languages in the original datasets—

5www.kaggle.com/c/wikipedia-image-caption.
6While Jain et al. (2021) define a set of 8 low-resource lan-

guages for evaluation on WIT, they were sampled from the training
set. Moreover, we find that several of their test images contain pic-
tures with identifiable people, which would complicate its public
release due to regulations such as the GDPR in Europe. By only
relying on the true test split, we allow researchers to easily adopt
the full WIT training dataset in their experimental pipelines.

www.kaggle.com/c/wikipedia-image-caption
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Table 2. Benchmark languages and tasks. English is only used
used for training. Tasks legend: ✓✓ train and test sets available;
✓ test-only data available; * Japanese captions in xFlickr&CO
are translations from English. Languages legend: A: Asiatic; C:
Congo; E: European; T: Tibetan; Austron: Austronesian. Lan-
guage codes are based on the ISO 639-3 international standard.

Language NLI QA Reasoning Retrieval
Name Code Family Script XVNLI xGQA MaRVL xFlickr&CO WIT

English ENG Indo-E Latin ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
Arabic ARB Afro-A Arabic ✓✓ ✓
Bengali BEN Indo-E Bengali ✓✓
Bulgarian BUL Indo-E Cyrillic ✓
Danish DAN Indo-E Latin ✓
Estonian EST Uralic Latin ✓
German DEU Indo-E Latin ✓✓ ✓✓
Greek ELL Indo-E Greek ✓
French FRA Indo-E Latin ✓✓
Indonesian IND Austron Latin ✓✓ ✓✓ ✓✓ ✓
Japanese JPN Japonic Kanji *✓✓ ✓
Korean KOR Koreanic Hangul ✓✓ ✓
Mandarin CMN Sino-T Hanzi ✓✓ ✓✓ ✓✓
Portuguese POR Indo-E Latin ✓✓
Russian RUS Indo-E Cyrillic ✓✓ ✓✓ ✓✓
Spanish SPA Indo-E Latin ✓✓ ✓✓
Swahili SWA Niger-C Latin ✓
Tamil TAM Dravidian Tamil ✓
Turkish TUR Turkic Latin ✓✓ ✓✓ ✓
Vietnamese VIE Austro-A Latin ✓

it is worth noting that 10 out of 20 languages have data for
two or more tasks. Thus, IGLUE might also facilitate future
research in cross-task knowledge transfer.

3.3. From Zero-Shot to Few-Shot Setups

The established practice in multilingual text-based bench-
marks (Hu et al., 2020; Liang et al., 2020; Ruder et al.,
2021) is to frame cross-lingual transfer as a zero-shot learn-
ing problem. However, multilingual pretrained models can
be additionally fine-tuned in a few-shot learning setup; that
is, on a handful of data points in a target language annotated
for a specific task. While computationally inexpensive, this
strategy has been proven as very beneficial for performance
in text-only tasks, especially on low-resource and distant
languages (Lauscher et al., 2020; Ponti et al., 2021a).

We hence extend IGLUE to support few-shot learning setups
by collecting samples for each V&L task. In doing so, we
use the notion of ‘annotation context’ to define what a ‘shot’
means in each dataset: For instance, this corresponds to an
image and its caption in cross-modal retrieval, and to an
image and all its questions in visual question answering. For
more details and statistics, we refer to Appendix A.

Notably, the set of examples used for few-shot cross-lingual
transfer may vary across experiments. The lack of a standard
set for few-shot learning harms the replicability and compa-
rability of such experiments, given that model performance
exhibits a strong sensitivity to the selection of few-shot ex-
amples (Zhao et al., 2021). Therefore, following Schick
& Schütze (2021) and Pfeiffer et al. (2022), in addition to

the train / validation / test splits, we also release standard
few-shot splits for every task and language (Appendix A).

4. Evaluation Framework
The new IGLUE benchmark allows for running a series
of unprecedented comparative experiments and analyses.
Here, we provide an overview of our experimental setup.
We evaluate all the existing multilingual V&L pretrained
models released so far. In particular, in order to further facil-
itate research and development in multilingual V&L mod-
elling, we re-implement them in a single framework based
on VOLTA (Bugliarello et al., 2021)7 in PyTorch (Paszke
et al., 2019), which also provides access to five English pre-
trained models and twelve downstream tasks.8 For further
details about the framework, we refer to Appendix B.

Pretrained Models. The state-of-the-art multilingual V&L
models that we evaluate follow a BERT-like architec-
ture (Devlin et al., 2019). Their input is the concatenation of
image region features extracted with a Faster R-CNN (Ren
et al., 2015) object detector and textual tokens (Sennrich
et al., 2016; Wu et al., 2016). The inputs are then processed
by a single stack of Transformer layers (Vaswani et al., 2017)
to obtain multimodal, contextualised representations. Each
model is trained to minimise multiple objectives—with min-
imal variations across models—to learn how to understand
text (masked language modelling), vision (masked region
modelling) and their co-occurrence (image–text matching).
We provide only condensed summaries here, and refer the
reader to the original work for further details.

• mUNITER and xUNITER. Liu et al. (2021) extend
the UNITER architecture (Chen et al., 2020) multi-
lingually by following the base approach of Ni et al.
(2021): a batch of multimodal English data from Con-
ceptual Captions (CC; Sharma et al. 2018) is alternated
with a batch of text-only multilingual Wikipedia data
(sampled from the 104 languages used for mBERT).
The two models mainly differ in their initialisation:
mUNITER from mBERT (Devlin et al., 2019) and
xUNITER from XLM-R (Conneau et al., 2020).

• M3P. Ni et al. (2021) further introduce multimodal
code-switched training tasks where words in English
captions are randomly replaced with a translation with
a certain probability. This setup allows the model to
explicitly align images with non-English languages. In
particular, the authors obtain word translations from
bilingual dictionaries in 50 languages. In each multi-
modal batch, data from CC is fed to the model either
fully in English or with code-switched words according

7https://github.com/e-bug/volta.
8Code to reproduce our results is available online at https:

//github.com/e-bug/iglue.

https://github.com/e-bug/volta
https://github.com/e-bug/iglue
https://github.com/e-bug/iglue
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Table 3. Performance of multimodal models trained and evaluated
on English test splits of the IGLUE tasks.

Model NLI QA Reasoning Retrieval
XVNLI xGQA MaRVL xFlickr&CO WIT

(NLVR2 Test-P) IR TR IR TR

mUNITER 76.38 54.68 71.91 44.50 40.90 19.90 22.34
xUNITER 75.77 54.83 71.55 38.45 32.05 16.70 18.54
UC2 76.38 55.19 70.56 37.40 34.55 17.90 19.71
M3P 76.89 53.75 68.22 31.35 24.60 15.50 15.33

LXMERT 76.72 53.04 68.95 36.85 29.60 18.00 18.50
UNITER 77.15 55.59 71.11 43.05 40.70 18.10 19.00
ViLBERT 77.15 55.82 71.02 38.70 35.70 17.90 20.20
VisualBERT 77.15 53.67 71.18 43.95 39.85 18.30 20.50
VL-BERT 77.49 55.74 71.72 39.90 34.15 20.10 21.17

to a given sampling ratio. The text-only multilingual
batch is sampled from Wikipedia in 100 languages.
The model is initialised from XLM-R.

• UC2. Zhou et al. (2021) rely on (text-only) machine
translation technologies to obtain CC data in five lan-
guages (Czech, French, German, Japanese, and Man-
darin). The model is then solely pretrained on multi-
lingual multimodal batches, where, for each image, a
caption is sampled uniformly from the available lan-
guages. Two pretraining objectives are added to those
above, to (i) tighten region-token matching and (ii)
align translations in a similar vein as Conneau & Lam-
ple (2019) and Caglayan et al. (2021). The approach
also maps the object detector space onto the language
model space before multimodal pretraining. As xU-
NITER and M3P, UC2 is initialised from XLM-R.

In addition to evaluating all the released multilingual
V&L encoders, we also benchmark representative English
V&L encoders pretrained in a controlled setup (Bugliarello
et al., 2021) in combination with ‘translate test’ transfer:9

LXMERT (Tan & Bansal, 2019), UNITER (Chen et al.,
2020), ViLBERT (Lu et al., 2019), VisualBERT (Li et al.,
2019a) and VL-BERT (Su et al., 2020).

Experimental Setup. We fine-tune all models using the
AdamW optimiser (Loshchilov & Hutter, 2019) relying
on the same hyper-parameters as in the controlled setup
of Bugliarello et al. (2021). For few-shot experiments, we
instead search three learning rates {1e-5, 5e-5, 1e-4} and
train for 20 epochs for each dataset-language-shots triplet.
Before training, we extract, for each dataset, 36 image re-
gions using a ResNet-101 backbone (He et al., 2016) for
mUNITER, xUNITER and UC2; and up to 100 image re-
gions using a ResNeXt-101 backbone (Xie et al., 2017) for
M3P—both trained on Visual Genome (Krishna et al., 2017;
Anderson et al., 2018). We train all models on a single
NVIDIA V100 (16GB) GPU card. To increase accessibility
to the benchmark by practitioners with limited computing
resources: 1) we set the number of epochs so that training a

9We obtain translations to English via Google Translate.

Table 4. Average zero-shot and ‘translate test’ performance of mul-
timodal models trained in English and evaluated on target lan-
guages in IGLUE. The best model for each method is in bold.

Model NLI QA Reasoning Retrieval
XVNLI xGQA MaRVL xFlickr&CO WIT

IR TR IR TR

Zero-Shot

mUNITER 53.69 9.97 53.72 8.06 8.86 9.16 10.48
xUNITER 58.48 21.72 54.59 14.04 13.51 8.72 9.81
UC2 62.05 29.35 57.28 20.31 17.89 7.83 9.09
M3P 58.25 28.17 56.00 12.91 11.90 8.12 9.98

Translate test

mUNITER 73.09 49.05 63.82 40.95 36.78 16.25 16.64
xUNITER 72.83 49.15 64.04 36.26 30.29 13.01 14.20
UC2 73.67 50.19 63.09 36.03 30.37 12.70 14.11
M3P 73.37 48.83 62.52 27.74 21.29 11.53 13.63

LXMERT 72.57 48.08 62.51 34.02 26.66 14.28 14.86
UNITER 73.65 50.62 61.92 41.04 37.49 15.43 16.01
ViLBERT 73.45 50.33 62.39 36.97 33.21 15.40 16.93
VisualBERT 74.12 48.72 62.35 41.64 36.44 15.36 15.75
VL-BERT 73.86 49.78 64.16 38.18 31.84 15.11 16.09

baseline can be completed in less than 12 hours per dataset
(see Appendix B for details);10 2) in addition to reporting
performance at every number of shots for few-shot learning,
we also define a max-shot evaluation setup to reduce the
numbers of runs to one per dataset–language pair.11 For
both fine-tuning and few-shot experiments, we evaluate the
parameter sets that yield the best validation performance.
For few-shot learning, models are initialised from the En-
glish fine-tuned parameter set and further trained on the data
in the target language for the given task.

5. Main Results and Discussion
5.1. Zero-shot Learning

The main zero-shot results, averaged across languages, are
reported in Table 4. In order to measure the gap between
cross-lingual transfer and supervised learning, we also pro-
vide the results for the same models trained and evaluated
on English test data in Table 3. The performance metric is
accuracy for all tasks except cross-modal retrieval, which
uses Recall@1.12 Finally, for completeness, the full results
subdivided by language are detailed across Appendix C.2.
Next, we compare these scores across different dimensions.

Transfer Method. The results in Table 4 clearly demon-

10The only exception is M3P, which is twice as big as the others.
11Notably, the main bottleneck for current models is the retrieval

task as this requires pairing each image with every caption (Geigle
et al., 2022). In xFlickr&CO, it takes us ≈3 hours per language.

12Note that these metric are identical whenever image–caption
pairs are unique. This is the case for all of xFlickr&CO data points
and for more than 90% of the samples in WIT (Appendix A.5).
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Figure 2. Zero-shot performance on individual target languages as a function of some of their properties: Wikipedia size (left) and
typological similary to English (right). Pearson’s correlation coefficients are also reported in the legends.

strate the superiority of ‘translate test’ transfer over zero-
shot model transfer via multilingual encoders. The differ-
ence between the best models for each method reaches 12.1
points for XVNLI, 21.6 for xGQA, 6.9 for MaRVL, 21.3 for
xFlickr&CO IR, 19.6 for xFlickr&CO TR, 7.1 for WIT IR,
and 6.5 for WIT TR. Thus, gains are especially remarkable
in cross-modal retrieval tasks and grounded question an-
swering, where the performance is nearly doubled by virtue
of ‘translate test’ transfer.

Multilingual Models. Even within each transfer method,
we observe considerable variance among individual mul-
tilingual multimodal models. For instance, for zero-shot
model transfer via multilingual encoders, UC2 is consis-
tently better across the board (except for WIT) and sur-
passes the other models by a large margin, especially in
German, French, Japanese and Mandarin—languages in
which the authors had translated CC and pretrained UC2 on
(Appendix C.2). Remarkably, this tendency is less accen-
tuated in MaRVL, where pretraining Mandarin multimodal
data is still insufficient to tackle the out-of-distribution na-
ture of MaRVL’s culture-specific concepts (Table 15 in Ap-
pendix C.2). Nonetheless, these results prove how the sim-
ple ‘translate pretrain’ approach of UC2 can be an effec-
tive baseline for multilingual transfer in multimodal pre-
trained models. As for ‘translate test’ transfer, no clear
winner emerges across the monolingual models, whereas
mUNITER generally performs better among multilingual
models limited to cross-modal retrieval tasks. We also note
that massively multilingual models (top rows) are often on
a par with their monolingual counterparts (bottom rows).

Transfer Gap. Comparing the results on the English test
set (Table 3) with those averaged across the other languages
(Table 4) reveals an extremely large gap in performance due
to cross-lingual transfer. Considering the best multilingual
encoders for each task, the gap is 14.8 points for XVNLI,
26.5 for xGQA, 14.6 for MaRVL, 24.2/23.0 for xFlickr&CO
IR/TR, and 10.7/11.9 for WIT IR/TR.

Task Complexity. There emerge stark contrasts among the
model performances in each individual task. Nonetheless,

we remind the reader that the number of classes to predict—
and hence random baselines—vary across tasks: XVNLI 3,
xGQA 1,842, and MaRVL 2. Moreover, some tasks include
a collection of languages that are more homogeneous (e.g.
XVNLI contains mostly Indo-European languages) whereas
others are more diverse, such as WIT. Performance is ex-
pected to suffer the most in the latter group. Moreover,
focusing on cross-modal retrieval tasks, scores are higher
in xFlickr&Co than in WIT. This is arguably due to the
fact that, while all models were pretrained on an image–
text matching task, WIT captions are distributionally distant
from standard captions as they mostly describe entities.

Explanatory Variables. Finally, we assess the impact of a
series of explanatory factors on the performance in each in-
dividual target language. More specifically, we estimate its
correlation 1) with the amount of each language’s unlabelled
textual data available for pretraining in terms of Wikipedia
articles (as of January 2022) in Figure 2(a); and 2) with the
typological similarity between the source (English) and the
target language in cross-lingual transfer in Figure 2(b). The
latter is calculated as the cosine similarity between vectors
of morpho-syntactic features extracted from WALS (Dryer
& Haspelmath, 2013) by Littell et al. (2017).13 According
to the received wisdom from text-only cross-lingual transfer
(Ponti et al., 2020; Ruder et al., 2021), both these factor
usually play a pivotal role in determining the downstream
performance of each target language. While we find this
to partially hold true for Wikipedia size (with the possible
exception of WIT), we find that correlations of typologi-
cal similarity are weaker (and even negative for MaRVL),
implying that models may struggle comparatively on many
target languages despite different similarities to English.

5.2. Few-shot Learning

As we experimented with a range of data sizes for k-shot
fine-tuning in the target language, we 1) plot these values
against the corresponding performance in Figure 3 and 2)
also report the exact scores for the maximum k in Table 5,

13https://github.com/antonisa/lang2vec.

https://github.com/antonisa/lang2vec
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Figure 3. Few-shot performance on IGLUE tasks (cross-lingual average) against different data sizes for target language fine-tuning.
Values in MaRVL are only averaged across the 3 languages with available few-shot data. Horizontal lines report English performance.
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Table 5. Max-shot performance (with the largest k) averaged
across languages with few-shot training data.

Model NLI QA Reasoning Retrieval

XVNLI xGQA MaRVL xFlickr&CO
IR TR

mUNITER 53.95 37.21 53.41 8.54 9.32
xUNITER 60.55 40.68 57.46 14.30 13.54
UC2 63.68 42.95 58.32 19.79 17.59
M3P 59.36 41.04 49.79 13.21 12.26

which acts as an alternative benchmark for low-compute
practitioners to evaluate few-shot learning. These results
aid in determining the sample efficiency of the models, i.e.,
how much they benefit from observing each new data point
in the target language. In addition, Table 18 (Appendix C.3)
reports the Area Under the Curve (AUC) for accuracy across
different k values, which instead measures how consistently
well a model performs independently from data size.

Gains from Few-shot Learning. Contrary to text-only
multilingual tasks, where even few examples in the target
language are sufficient to significantly improve the model
performance (Lauscher et al., 2020), we find that this is
largely not the case in multimodal settings. Figure 3 re-
veals that learning curves are flat for XVNLI, MaRVL, and
xFlickr&CO. Moreover, inspecting the gap between zero-
shot and max-shot performance in Table 19 (Appendix C.3),
gains from few-shot learning are consistent but modest.

A notable exception is xGQA, where as few as 27 examples
increase performance dramatically and accuracy continues
to grow with the sample size. This difference is possi-
bly due to the highly-structured nature of xGQA, where
texts are generated from templates and are extremely short,
and its larger label space. To investigate the latter, we fol-
low Pfeiffer et al. (2022) and evaluate the accuracy for each
structurally different question type. Figure 4 shows that in-
creasing the number of examples has the least impact on Ver-
ify-type questions, which consist of (binary) answers/labels
({Yes, No}). These results are in line with our few-shot ex-
periments on the other tasks, where few-shot tuning displays
negligible impact on cross-lingual transfer when the label
space is small. The largest impact in xGQA is observed
on Choose-type and Query-type questions, where the di-
versity of the label space is large. This again shows that
the multilingual misalignment of the prediction space nega-
tively impacts zero-shot results, which can be mitigated by
fine-tuning even on a few examples in the target language.

On the other hand, current models may require many more
examples than the maximum of k-shot we established for
the other tasks. We test this hypothesis in a few-shot learn-
ing experiment with more examples in JPN and DEU on
xFlickr&CO. The results in Figure 5 demonstrate that ex-
amples in the order of the thousands may be needed to
achieve significant gains. This leaves open an important
challenge to make future models more sample efficient, in
more resource-poor settings like those considered here.
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Figure 5. Retrieval accuracy on DEU and JPN xFlickr&CO splits
with target language fine-tuning (horizontal lines) and more shots.

Multilingual Encoders. Again, based on Table 5 the model
that yields the highest scores is UC2 in all tasks. However,
we also note that some models are particularly brittle,and
few-shot adaptation can lead them to revert to chance-level
performance, as is the case of M3P when fine-tuning on
MaRVL’s target languages IND, CMN, and TUR.

6. Conclusion and Outlook
We introduced the Image-Grounded Language Understand-
ing Evaluation (IGLUE) benchmark, aiming to facili-
tate modelling and evaluation in multilingual vision-and-
language research. IGLUE brings together 5 datasets across
4 structurally different tasks in 20 diverse languages, and
provides standardised data splits and evaluation protocols to
train and evaluate in zero-shot and few-shot transfer setups.

We set strong baselines and carry out analyses that shed new
light into multilingual V&L models, now enabled by the cre-
ation of the IGLUE benchmark. In particular, we find that
1) ‘translate test’ transfer vastly outperforms zero-shot trans-
fer via multilingual encoders; 2) few-shot learning requires
thousand of examples before yielding gains; 3) unlabelled
textual data size and typological distance from English are
weaker predictors of models performance than usually ob-
served in text-only tasks; 4) results vary significantly across
tasks, with multicultural visual reasoning and cross-modal
retrieval having the largest transfer gaps. Given the diversity
and manifoldness of each task, we explicitly set IGLUE as
a multi-faceted benchmark, without a single average score.

Along with putting forward an evaluation suite for current
and future multilingual V&L models, IGLUE also opens
up new opportunities for future research that goes beyond
the scope of this paper: such as analysing single-source ver-
sus multi-source transfer for V&L tasks, conducting multi-
task learning, or investigating staged multi-task transfer. A
longer-term outlook concerns including other tasks and lan-
guages into the benchmark, as well as reaching beyond the
image-only visual modality, towards multimodal tasks that
rely on processing videos (Li et al., 2021) and speech (Yang
et al., 2021) in different languages.
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A. Datasets
In this section, we provide more details about the datasets
and splits that we introduce in IGLUE, focusing on repro-
ducibility of our experiments and any follow-up work that
leverages the IGLUE benchmark. We also report how few-
shot samples were collected for each dataset. In particular,
we use the notion of ‘annotation context’ to define what a
‘shot’ means in each dataset (see details below). Table 6
lists the size of few-shot splits across all datasets.

A.1. XVNLI

Figure 6 illustrates statistical properties of XVNLI. In Fig-
ure 6(a), we see that the distribution of labels is uniform
across splits. Figure 6(b) instead shows that the distribution
of sentence lengths—in number of characters—in the test
split is similar across languages, and often shorter for ARB.
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(b) Similar test sentence length distribution across languages.

Figure 6. Statistical properties of XVNLI.

Few-shot Data. We extract few-shot samples from the origi-
nal SNLI test split, which was translated by Agić & Schluter
(2018). This was done prior to defining our test split, and by
sampling all the examples corresponding to a given image,
so as to avoid data leakage between training and evaluation

Table 6. Few-shot statistics. * for MaRVL, we collected few-shot
data in three of the five languages due to challenges in annotations.

Dataset Metric

XVNLI
# shots 1 5 10 20 25 48
# images 1 5 10 20 25 48
# samples 3 18 39 75 90 168

xGQA
# shots 1 5 10 20 25 48
# images 1 5 10 20 25 48
# samples 27 155 317 594 704 1,490

MaRVL*
# shots 1 2 4 10 10×2
# images 8 16 32 80 80
# samples 4 8 16 40 80

xFlickr&CO
# shots 1 5 10 25 50 100
# images 1 5 10 25 50 100
# samples 1 5 10 25 50 100

data. In XVNLI, multiple samples (hypotheses and answers)
are associated to a given image (premise). We hence con-
sider an image as a single shot, as it serves as the context for
an annotator to create multiple samples. Following Pfeif-
fer et al. (2022), we randomly sample up to 48 images as
contexts, resulting in up to 168 hypotheses and answers.

A.2. xGQA

Few-shot Data. We reuse the few-shot splits defined
by Pfeiffer et al. (2022), which also include development
data in the target languages. The authors sampled 48 images,
giving up to 1,490 questions translated for each language.

A.3. MaRVL

Few-shot Data. We follow the annotation protocol of Liu
et al. (2021) to collect few-shot samples. For each language,
we first ask native speakers to select 10 concepts among the
ones identified by the authors in order to collect in-domain
training data. The annotators are then required to retrieve
at least 8 images per concept. When doing so, we further
provide the MaRVL test images and require them to select
different ones to avoid any visual leakage betweem few-shot
and test samples. We finally sample 8 images per concept,
randomly pair them and ask annotators to write a caption
that is true for two pairs and false for the other two pairs.
These 8 images then constitute an ‘annotation context’ and
as such we consider the resulting data as one shot (i.e. one
shot, eight images and one sentence giving four data points).
As image collection is the most time-consuming step in the
pipeline, we expand our few-shot data by re-shuffling and
re-annotating each image pair (‘10× 2’ setup), resulting in
80 data points per language. Notably, due to the challenges
in collecting few-shot data in low-resource languages (i.e.
Swahili and Tamil), we only provide few-shot samples for
three languages (i.e. Indonesian, Mandarin and Turkish).
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A.4. xFlickr&CO

We follow the Flickr30K guidelines to collect our multi-
lingual annotations, as shown in Figure 7(a), which we
supplement with examples from Flickr30K (Figure 7(b)).
In particular, we limit captions length based on previous
work: 40 characters for CMN, 140 for TUR and 100 for the
rest. Figure 7(c) shows the additional guidelines provided
to validators. The resulting corpora were finally verified by
native speakers known by the authors. Notably, the same
guidelines were used to annotate both Flickr30K and COCO
images. Figure 7 shows the distribution of caption lengths.
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(a) Flickr30K-like instructions to annotate xFlickr&CO data.
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(b) Additional Flickr30K examples used to further guide annotators.
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(c) Instructions given to native speakers to validate the captions.

Figure 7. Annotation guidelines for xFlickr&CO.
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Figure 8. Test sentence length distribution in xFlickr&CO.

Few-shot Data. We use the same guidelines illustrated
in Figure 7 to annotate few-shot image descriptions from
100 images samples from the Flickr30K training set. Ger-
man captions are extracted from Multi30K (Elliott et al.,
2016), Mandarin ones from Flickr30K-cn (Mishra et al.,
2021), and Turkish ones from TasvirEt (Unal et al., 2016) –
all independently collected from the English captions.

A.5. WIT

We extract 500,000 image captions from the
caption reference description field of the
English portion of the WIT dataset. This field corresponds
to the captions shown on the Wikipedia pages directly
below the images, and it tends to be the most topical and
relevant description (Srinivasan et al., 2021). In particular,
we sample among the images that were released by the
Wikimedia Foundation for the corresponding Kaggle
challenge,14 which do not include any identifiable personal
information. This challenge also provides test data that
was extracted from WIT prior to its public release.15 We
use these data to define our multilingual test splits in order
to let future practitioners evaluate models that were also
trained on the WIT data. Per-language statistics are listed
in Table 7. We note that a given image is mapped to a single
caption more than 90% of the times in every language
except for English (where this happens around 70% of the
times and which is not used as an evaluation language in
IGLUE). Figure 9 shows the overlap between test images
across languages, and Figure 10 illustrates the distribution
of caption lengths across languages in our WIT test splits.

Few-shot Data. Due to the demanding computational re-
sources to evaluate image–text retrieval systems, we only
provide few-shot splits for this task in xFlickr&CO.

14https://www.kaggle.com/c/
wikipedia-image-caption/data.

15While we find no overlap between train and test image URLs,
we find that a few base64 image encodings match between train
and test splits: 1 image for ARB, ENG and JPN; 2 images for BUL,
KOR and TUR; 3 images for IND and VIE; 0 for the other languages.

https://www.kaggle.com/c/wikipedia-image-caption/data
https://www.kaggle.com/c/wikipedia-image-caption/data
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Figure 9. Number of images overlapping between any two lan-
guages in the WIT test splits.
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Figure 10. Test sentence length distribution in WIT.

Table 7. WIT test data statistics. % unique measures the percentage
of images that only have a single caption associated with them.

Language
Metric ENG ARB BUL DAN ELL EST IND JPN KOR TUR VIE

# images 685 792 806 814 541 780 854 842 889 681 869
# samples 1000 890 860 891 570 874 901 1000 931 721 946
% unique 70.9 91.2 94.9 93.0 97.2 93.6 96.0 90.8 95.8 95.6 93.7

A.6. Ethics Statement

For MaRVL and xFlickr&CO, we collected data from na-
tive speakers spread across the world in languages that are
under-represented in current vision and language datasets.
Our efforts were motivated by the belief that vision and lan-
guage tasks need to better reflect the linguistic (and cultural)
variety present in the world. We hired workers from the
crowdsourcing platform prolific.co. The annotators’
identities were anonymous to us, and each of them was paid
£10-20/hour (even if their data were not ultimately used).

Table 8. Pretrained multilingual V&L encoders.

Model Initialisation Visual Tokens Pretrain Data # Params

mUNITER mBERT
36 RoIs from CC (2.7 M)

184.83 MFaster R-CNN + Wikipedia (104 Langs)
with ResNet-101

xUNITER XLM-RBASE

36 RoIs from CC (2.7 M)
283.76 MFaster R-CNN + Wikipedia (104 Langs)

with ResNet-101

UC2 XLM-RBASE

36 RoIs from CC (3.3 M)
281.64 MFaster R-CNN + NMT CC-{CES,DEU,FRA}

with ResNet-101 + NMT CC-{CMN,JPN}

M3P XLM-RBASE

10-100 RoIs from CC (3.3 M)
376.90 MFaster R-CNN + Wikipedia (100 Langs)

with ResNeXt-101 + Panlex (50 Langs)

B. Experimental Details
Pretrained Models. Table 8 summarises the key properties
of the available pretrained multilingual V&L encoders. They
are all single-stream architectures (Bugliarello et al., 2021),
which mostly differ in the corpora they used for pretraining.

Experimental Settings. We train—both for zero-shot fine-
tuning and for few-shot experiments—each encoder end-
to-end by learning a task-specific ‘head’ network for each
dataset on a single NVIDIA V100 (16GB) GPU card. For
each task, we use the same hyperparameters as in the con-
trolled study of Bugliarello et al. (2021) except for maxi-
mum sequence length, which we increase to accommodate
the multilingual inputs (see details per task below). We use
the AdamW (Loshchilov & Hutter, 2019) optimiser with
parameters β1=0.9, β2=0.999 and ϵ=1e-6. The base learning
rate depends on each task (see below) but it is always first
linearly warmed up for 10% of the task-specific number of
steps, and then linearly decayed until up to 20 epochs of
training have been reached. We also apply a weight decay
of 10e− 4 and gradient clipping of 1.0. Before training, we
extract, for each dataset, 36 image regions using a ResNet-
101 backbone (He et al., 2016) for mUNITER, xUNITER
and UC2; and 10–100 image regions using a ResNeXt-101
backbone (Xie et al., 2017) for M3P—both trained on Visual
Genome (Krishna et al., 2017; Anderson et al., 2018).

Fine-Tuning Setup. To increase accessibility to the bench-
mark by practitioners with limited computing resources, we
fix the number of epochs for which we train our baselines so
that they can be trained in less than 12 hours per dataset.16

In particular, we set up each task based on prior work (Lu
et al., 2020; Bugliarello et al., 2021) as follows.

• Visual Entailment. We treat XVNLI as a three-way
classification problem, and apply a linear layer from
the pooled representation of each Transformer encoder.
We fine-tune each model using a binary cross-entropy
loss with a batch size of 128 for 10 epochs. We use a
learning rate of 2e-5 and max token length of 80.

• Visual QA. As in Hudson & Manning (2019), we treat

16Except for M3P, which is twice as big as the other models.

prolific.co
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GQA as a multi-label classification task by assigning a
score to each answer according to its relevancy to the
ground truth answer. We apply a two-layer MLP with a
GeLU activation (Hendrycks & Gimpel, 2016) function
in between on top of the pooled representation. We
fine-tune on the balanced split of GQA using a binary
cross-entropy loss against 1,842 labels with a batch
size of 256 for 5 epochs. We use a learning rate of 4e-5
and max token length of 40.

• Visual Reasoning. We cast this task as a binary classi-
fication problem: Given the two pooled representations
from encoding the textual description with each of the
two images independently, we concatenate and feed
them into an MLP (same as for GQA) to predict a
True or False label. We fine-tune using a binary cross-
entropy loss with a batch size of 64 for 20 epochs. We
use a learning rate of 1e-5 and max token length of 80.

• Image–Text Retrieval. We train a four-way linear clas-
sifier against the pooled representations from the true
image-caption pair and three hard negatives determined
offline. We optimise our models using a cross-entropy
loss, except for UC2 for which we found the authors’
triplet loss to work better (see Appendix C). We train
with a batch size of 64 for 10 epochs for xFlickr&CO;
and for 2 epochs on the larger WIT. We use a learning
rate of 2e-5 and max token length of 80.

Few-shot Setup. We follow the same setup as in the
above described fine-tuning procedure, with the exception of
searching across three values for the base learning rate {1e-
5, 5e-5, 1e-4} and always training for 20 epochs. The batch
size is adjusted according to the number of data points avail-
able for a given split (Table 9), and models are initialised
from the English fine-tuned parameter set. For each run,
we select the checkpoint that achieves the largest validation
performance for evaluation on the test sets.

While the validation sets are in English for every dataset ex-
cept for xGQA, we found no significant difference in using
machine translations of each validation set for checkpoint
selection. Therefore, we decided to report results using the
original validation sets as this more closely matches the few-
shot scenario. Nevertheless, we release the corresponding
translations for each dataset for future extensions.

C. Reproducibility and Additional Results
We provide more details regarding our experimental setup
in order to ensure reproducibility (§C.1). Further, we report
additional per-language (§C.2) and few-shot (§C.3) results,
which supplement the ones provided in the main paper.

C.1. A Unified Implementation Framework

In order to provide a more lightweight setup for all the
experiments in IGLUE, which concerns the experiments

Table 9. Few-shot batch sizes.

Dataset Metric

XVNLI # shots 1 5 10 20 25 48
batch size 2 16 32 64 64 64

xGQA # shots 1 5 10 20 25 48
batch size 8 16 32 64 64 64

MaRVL # shots 1 2 4 10 10×2
batch size 2 4 8 16 32

xFlickr&CO # shots 1 5 10 25 50 100
batch size 1 2 4 8 16 32

Table 10. Results of reimplemented models on Multi30K. Mean
Recall for zero-shot evaluation (i.e. English-only fine-tuning).

Method ENG DEU FRA CES

M3P (Ni et al., 2021) 87.4 58.5 46.0 36.8
UC2 (Zhou et al., 2021) 87.2 74.9 74.0 67.9

M3P 83.1 55.5 51.9 45.4
UC2 82.7 69.9 71.1 65.7
mUNITER 83.2 43.7 47.3 21.0
xUNITER 81.8 50.2 48.4 37.5

Table 11. Results of reimplemented models on xGQA. Accuracy
for zero-shot evaluation (i.e. English-only fine-tuning).

Method ENG BEN DEU IND KOR POR RUS CMN avg

M3P 58.4 15.8 23.9 22.6 16.9 24.4 20.4 18.6 20.4
OSCAR+Emb 62.2 14.9 17.3 18.3 17.1 19.2 10.5 16.4 16.3
OSCAR+Ada 60.3 15.4 18.9 18.8 15.3 27.0 17.5 15.0 18.3
mBERTAda 56.2 15.1 29.8 19.2 19.1 30.4 24.4 24.9 23.2

M3P 57.9 19.2 35.6 29.6 28.5 35.7 32.9 31.1 33.8
UC2 59.4 20.8 45.1 28.1 24.3 27.6 31.9 33.9 33.9
mUNITER 58.2 3.9 26.3 13.0 5.5 17.4 9.3 8.4 17.7
xUNITER 57.7 9.7 35.7 36.3 14.6 24.7 20.8 19.2 27.3

we conducted for this work as well as any future experi-
ments by other researchers, we reimplemented M3P and
UC2 in a unified framework based on VOLTA (Bugliarello
et al., 2021), which already implements mUNITER and
xUNITER, along with five English pretrained encoders. In
order to verify the correctness of the implementation, we
evaluated each model on Multi30K (Elliott et al., 2016) in a
zero-shot scenario. The results shown in Table 10 prove the
correctness of our reimplementation: Performance of both
models is within a couple of points from the one reported by
the original authors. In particular, we obtain similar results
as Geigle et al. (2022) for M3P. Moreover, we found that
using a cross-entropy loss for UC2 led to a drop in perfor-
mance of approximately 2.5 mean Recall points in each
language. Similarly, using a triplet loss for M3P led to a
drop in performance of nearly 3 points.

In Table 11, we report the performance of our models on
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Table 12. Zero-shot per-language results on WIT (IR and TR).

WIT Language
Type Model ARB BUL DAN ELL EST IND JPN KOR TUR VIE

IR

mUNITER 7.74 8.26 10.66 8.95 7.67 10.88 9.00 5.91 9.57 13.00
xUNITER 7.63 8.49 10.32 11.23 6.41 10.21 7.30 6.34 9.57 9.72
UC2 6.62 8.84 9.43 8.77 4.69 9.88 9.80 4.30 7.49 8.46
M3P 8.87 8.84 9.43 9.65 5.38 8.66 7.00 6.12 6.52 10.78

TR

mUNITER 9.21 10.17 12.16 10.54 8.33 12.88 8.79 6.75 10.87 15.07
xUNITER 9.08 10.30 9.34 12.38 7.82 10.66 10.10 6.97 9.69 11.74
UC2 8.32 7.69 10.44 11.64 6.03 11.47 10.81 5.74 8.81 9.90
M3P 8.32 9.80 11.79 12.02 8.21 10.89 8.43 7.09 10.57 12.66

Table 13. Full per-language results on XVNLI.

XVNLI # shots
Lang Model 0 1 5 10 20 25 48

ARB

mUNITER 46.73 46.99 46.39 49.40 47.16 48.97 46.91
xUNITER 51.98 52.32 52.32 54.81 54.55 53.95 54.04
UC2 56.19 56.36 57.65 57.82 59.11 58.51 56.87
M3P 55.24 54.98 55.07 56.19 55.24 56.79 56.01

SPA

mUNITER 56.96 56.79 57.47 57.30 57.73 57.65 57.73
xUNITER 58.94 59.02 58.94 60.74 59.88 59.11 60.22
UC2 57.47 57.65 61.34 59.79 62.63 59.79 62.80
M3P 58.85 58.33 58.94 60.05 59.19 59.28 60.40

FRA

mUNITER 59.36 59.45 59.19 59.54 59.36 59.62 59.36
xUNITER 63.32 63.49 64.26 63.83 64.26 64.09 64.52
UC2 69.67 69.67 69.67 69.76 69.84 69.76 69.76
M3P 56.36 56.62 57.99 58.33 57.82 57.65 58.59

RUS

mUNITER 51.72 51.72 51.46 50.52 52.32 51.46 51.80
xUNITER 59.71 59.54 59.54 59.54 61.94 61.34 63.40
UC2 64.86 64.43 64.52 64.95 65.38 65.38 65.29
M3P 62.54 62.46 62.72 63.23 62.46 62.97 62.46

the zero-shot splits of xGQA, for a direct comparison with
the standard GQA test split and the performance achieved
by Pfeiffer et al. (2022). We find that our setup leads to
significantly better performance: our best model, UC2 gains
over 10 points compared to the best model from Pfeiffer
et al. (2022). In addition, our M3P model is 13.4% more
accurate than the one trained by the authors. We believe
the main reason for this considerable performance gain is
our deeper prediction head: While the authors place a linear
classification head, our models use a non-linear two-layer
feed-forward head on top of the Transformer representations.

C.2. Performance per Target Language

Tables 12 to 17 present language-specific results for each
dataset and number of shots. Retrieval performance in WIT
is relatively constant across languages, likely due to the dif-
ferent distribution of captions and images in the Wikipedia
domain. Different from other datasets (see below), this is
true even for UC2 in the JPN split, even though the model
was pretrained on large-scale multimodal data in Japanese.

In XVNLI and xGQA, performance peaks for French and
German, respectively. While typologically more similar and

Table 14. Full per-language results on xGQA.
xGQA # shots
Lang Model 0 1 5 10 20 25 48

BEN

mUNITER 3.06 19.36 23.94 27.53 30.04 31.04 34.89
xUNITER 10.80 23.92 29.43 31.67 34.84 36.18 37.55
UC2 19.99 22.52 30.96 32.84 35.69 35.12 38.90
M3P 18.64 23.42 31.07 33.37 35.74 35.94 37.76

DEU

mUNITER 23.95 29.43 33.88 35.40 37.82 37.43 40.29
xUNITER 34.83 38.44 39.71 40.97 41.93 42.19 43.60
UC2 42.85 43.76 44.68 45.72 46.70 47.24 48.18
M3P 33.42 34.37 39.66 40.73 41.78 41.93 43.19

IND

mUNITER 9.36 27.31 31.39 33.28 36.49 35.85 38.06
xUNITER 33.73 35.28 37.38 37.96 39.48 39.40 40.90
UC2 28.67 34.76 38.95 40.11 41.26 41.51 43.11
M3P 32.48 33.11 38.14 39.84 40.51 41.53 41.38

KOR

mUNITER 4.21 19.40 26.47 29.03 31.95 32.76 35.23
xUNITER 12.12 23.45 31.49 34.70 36.66 37.26 39.32
UC2 21.36 29.33 33.02 34.50 36.09 38.40 39.63
M3P 25.11 29.74 34.53 35.77 37.11 37.81 38.58

POR

mUNITER 13.67 22.88 31.09 34.38 37.05 37.32 39.41
xUNITER 22.13 30.10 36.44 38.72 39.73 41.06 42.56
UC2 30.42 32.10 39.42 39.57 41.73 41.27 43.23
M3P 31.40 33.37 37.62 39.47 41.09 41.96 43.01

RUS

mUNITER 8.49 22.51 29.42 31.98 32.90 34.34 34.78
xUNITER 18.84 27.32 34.05 36.39 38.19 38.37 39.40
UC2 31.00 33.04 37.40 38.13 40.63 41.09 42.79
M3P 27.50 33.50 37.23 37.86 39.18 39.76 42.15

CMN

mUNITER 7.03 18.33 30.90 32.25 36.18 35.52 37.81
xUNITER 19.55 31.36 37.35 37.34 39.19 39.48 41.42
UC2 31.16 37.54 41.21 41.49 43.46 43.58 44.82
M3P 28.65 30.67 36.77 37.77 39.25 39.99 41.19

Table 15. Full per-language results on MaRVL.

MaRVL # shots
Lang Model 0 1 2 4 10 10×2

IND

mUNITER 54.79 51.42 52.13 54.34 56.83 51.42
xUNITER 55.14 56.12 57.18 58.87 58.87 58.60
UC2 56.74 56.12 56.29 57.53 57.62 58.51
M3P 56.47 49.02 48.05 50.18 50.09 50.09

SWA

mUNITER 51.17 - - - - -
xUNITER 55.51 - - - - -
UC2 52.62 - - - - -
M3P 55.69 - - - - -

TAM

mUNITER 52.66 - - - - -
xUNITER 53.06 - - - - -
UC2 60.47 - - - - -
M3P 56.04 - - - - -

TUR

mUNITER 54.66 52.54 55.93 55.59 54.66 54.75
xUNITER 56.19 55.93 57.46 57.54 57.80 58.05
UC2 56.70 55.76 54.49 52.63 55.93 56.27
M3P 56.78 51.19 49.32 49.58 49.41 49.58

CMN

mUNITER 55.34 56.52 54.84 54.55 55.34 54.05
xUNITER 53.06 54.45 53.66 54.94 53.46 55.73
UC2 59.88 58.99 57.02 58.99 57.21 60.18
M3P 55.04 50.69 50.40 50.20 49.80 49.70
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Table 16. Full per-language results on xFlickr&CO IR.

xFlickr&CO IR # shots
Lang Model 0 1 5 10 25 50 100

DEU

mUNITER 12.05 10.50 11.90 11.95 11.95 11.95 12.05
xUNITER 14.55 14.40 14.35 14.45 14.45 14.45 14.55
UC2 28.60 27.40 28.15 28.15 28.15 28.15 28.60
M3P 13.35 12.25 12.85 11.95 13.15 13.35 13.25

SPA

mUNITER 13.15 13.70 14.25 14.25 14.25 14.25 13.15
xUNITER 16.10 16.10 16.05 16.05 16.05 16.05 16.10
UC2 15.95 15.40 15.70 15.50 8.55 15.40 15.95
M3P 13.40 13.40 13.80 13.95 13.50 13.40 13.40

IND

mUNITER 5.95 6.05 4.55 5.75 5.65 5.80 5.95
xUNITER 16.50 16.90 16.55 16.20 16.60 16.60 16.50
UC2 14.60 14.50 14.55 12.30 14.70 14.65 14.60
M3P 13.20 13.20 14.20 14.15 13.50 13.20 13.20

JPN

mUNITER 6.30 6.20 6.20 6.20 6.20 6.20 6.30
xUNITER 10.25 11.50 11.80 11.95 10.65 10.80 10.70
UC2 24.25 23.15 23.00 24.80 24.40 24.35 19.80
M3P 10.30 11.50 10.85 12.75 11.70 12.05 11.75

RUS

mUNITER 5.85 3.90 5.75 6.55 6.25 8.50 9.25
xUNITER 15.90 15.75 15.20 16.00 16.05 16.20 17.25
UC2 20.00 20.05 19.90 19.65 21.30 17.65 20.85
M3P 15.95 15.95 17.10 16.15 16.75 16.40 16.65

TUR

mUNITER 1.75 1.90 1.40 1.30 1.30 1.35 1.75
xUNITER 9.05 9.35 9.05 9.05 9.05 9.05 9.05
UC2 7.15 7.20 7.05 5.55 6.85 4.90 7.15
M3P 7.75 7.75 7.45 7.45 7.35 7.75 7.75

CMN

mUNITER 11.35 11.50 11.45 11.40 11.45 11.45 11.35
xUNITER 15.95 17.50 7.90 17.60 16.00 13.65 15.95
UC2 31.60 31.30 31.05 29.75 31.40 25.50 31.60
M3P 16.45 14.85 16.15 9.30 16.40 12.65 16.45

geographically closer to English, we find that the amount
of multilingual data, shown in Figure 11, is also indicative
of the final performance. For instance, both mUNITER and
xUNITER—which were pretrained on the same data but
with different multilingual sampling ratios during text-only
and multimodal pretraining—perform on par or better in
Russian than in Spanish and Portuguese, respectively. More-
over, UC2 consistently achieves the highest performance in
French, German and Mandarin, which are 3/5 Conceptual
Captions translations on which the model was pretrained.

On MaRVL, this is also the case for the Mandarin split,
although UC2 now reaches lower gains relative to other
models in the other datasets. This shows how the out-of-
distribution nature of the images in MaRVL limits the ef-
ficacy of ‘translate train’ approaches for zero-shot transfer
here. Interestingly, Mandarin is also the language in which
the other models perform the worst, indicating that large-
scale multimodal data in the target language can still benefit
downstream performance. Overall, due to the domain shifts
present in MaRVL, the performance across all languages
and models is comparably low.

Although being in-distribution, performance in xFlickr&CO
is consistently low in every language, and especially in

Table 17. Full per-language results on xFlickr&CO TR.

xFlickr&CO TR # shots
Lang Model 0 1 5 10 25 50 100

DEU

mUNITER 11.85 10.65 11.70 11.70 11.70 11.65 11.85
xUNITER 13.25 12.95 13.20 13.15 13.15 13.15 13.25
UC2 23.90 22.25 23.45 23.45 23.45 23.45 23.90
M3P 11.85 10.65 12.35 10.60 12.60 11.85 12.55

SPA

mUNITER 13.05 14.70 14.05 14.05 14.05 14.05 13.05
xUNITER 15.10 15.60 15.30 15.30 15.30 15.30 15.10
UC2 15.30 15.85 16.15 16.15 9.25 15.45 15.30
M3P 12.15 12.15 11.60 11.60 11.55 12.15 12.15

IND

mUNITER 7.55 8.30 4.85 6.30 6.35 6.20 7.55
xUNITER 16.75 17.05 16.85 16.65 16.75 16.80 16.75
UC2 13.60 14.90 14.20 13.70 14.05 13.95 13.60
M3P 12.10 12.10 13.00 13.15 12.20 12.10 12.10

JPN

mUNITER 7.70 8.10 7.55 7.55 7.55 7.55 7.70
xUNITER 9.85 11.80 11.30 11.45 10.10 10.35 10.15
UC2 22.40 21.20 20.25 22.20 22.45 22.25 18.40
M3P 9.65 12.30 10.60 11.50 11.35 11.25 10.50

RUS

mUNITER 6.80 7.60 7.50 7.15 7.25 8.55 10.00
xUNITER 14.80 14.65 15.10 14.50 15.25 14.60 14.70
UC2 16.75 17.00 16.75 17.75 17.50 16.30 18.65
M3P 14.45 14.45 14.65 14.90 14.40 15.85 15.40

TUR

mUNITER 3.25 3.80 2.45 2.10 1.95 2.00 3.25
xUNITER 10.05 10.30 9.95 9.95 9.95 9.95 10.05
UC2 6.95 7.15 7.00 6.60 7.10 6.70 6.95
M3P 8.35 8.35 8.10 8.10 8.05 8.35 8.35

CMN

mUNITER 11.85 12.40 11.65 11.70 11.65 11.65 11.85
xUNITER 14.80 15.95 8.55 15.95 14.95 13.40 14.80
UC2 26.30 25.80 25.75 24.40 25.20 21.50 26.30
M3P 14.75 13.65 14.40 10.65 15.00 12.90 14.75
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Figure 11. Number of Wikipedia articles per IGLUE language.

Turkish. Once more, UC2 largely outperforms the other
systems in DEU, JPN and CMN but is on par in the other
languages.

All in all, the resulting differences between the best- and
worst-performing languages are considerable, amounting
13.5 points for XVNLI, 22.9 points for xGQA, and 22.5
points for xFlickr&Co, even though the visual input is
language-independent in these evaluation sets.

C.3. Additional Results for Few-shot Learning

Area under the Curve. To compare the overall perfor-
mance of different models, we compute a normalised Area
Under Curve (AUC) score for the few-shot setup (plotted in
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Table 18. Few-shot AUC (in %) averaged across languages.

Model NLI QA Reasoning Retrieval

XVNLI xGQA MaRVL xFlickr&CO
IR TR

mUNITER 54.10 33.67 54.68 8.36 8.89
xUNITER 59.78 38.10 56.82 14.05 13.51
UC2 63.43 40.43 57.11 19.24 17.31
M3P 59.07 38.89 49.96 12.90 12.07

Table 19. Difference in accuracy between the most-shots and zero-
shot setups averaged across languages. For MaRVL, accuracy is
averaged across the 3/5 languages with few-shot training data.

Model NLI QA Reasoning Retrieval

XVNLI xGQA MaRVL xFlickr&CO
IR TR

mUNITER ↑ 0.26 ↑ 27.24 ↓ 0.31 ↑ 0.48 ↑ 0.46
xUNITER ↑ 2.07 ↑ 18.96 ↑ 2.87 ↑ 0.26 ↑ 0.03
UC2 ↑ 1.63 ↑ 13.60 ↑ 1.04 ↓ 0.52 ↓ 0.30
M3P ↑ 1.11 ↑ 12.87 ↓ 6.21 ↓ 0.30 ↑ 0.36

Figure 3). For a given model f and dataset D with ND pos-
sible shots, each with sk examples, we approximate AUC
according to the trapezoidal rule:

AUC (f , D) =
1

sND

ND∑
k=1

f(sk−1) + f(sk)

2
∆sk. (1)

The results are listed in Table 18. In summary, UC2 is by
far the strongest model across all tasks; xUNITER comes
second and it outperforms M3P (which ranks the third) on
reasoning and retrieval; mUNITER performs the worst in
general, except for being better than M3P on reasoning.

Gap between Zero-shot and Few-shot Learning. In con-
trast to previous results on text-only tasks, we find few-shot
learning for multilingual multimodal tasks to be especially
challenging, possibly due to the complex nature of the re-
spective tasks combined with the sparsity of the few-shot
learning data. As plotted in Figure 3, we observe no clear
improvement as the number of shots increase in all tasks,
the only exception being xGQA. This suggests that cost-
efficiently hand-labelling ∼ 100 shots in order to improve
the models performance on the target language, unlike in
text-only setups, is insufficient to make meaningful progress
on V&L tasks such as XVNLI, MaRVL and xFlickr&Co.
This also stresses the importance of developing methods for
improved zero-shot transfer in future work, as V&L models
still require sufficient amounts of expensive task-annotated
data to benefit from in ‘non-zero-shot’ setups (Table 19).

In contrast to XVNLI, MaRVL and xFlickr&Co, we find
that few-shot experiments on xGQA yield large performance

Table 20. Caption density in xFlickr&CO.

xFlickr&CO DEU IR JPN IR DEU TR JPN TR
# shots # img # cap/img xUNI UC2 xUNI UC2 xUNI UC2 xUNI UC2

500 500 1 17.15 27.20 11.95 29.35 14.80 21.40 13.05 25.45
100 5 13.70 30.60 14.00 23.60 9.80 25.10 12.50 21.70

1000 1000 1 15.50 30.55 12.70 28.90 14.20 24.65 12.65 26.00
200 5 15.85 26.30 14.35 28.40 14.25 20.35 12.15 26.30

gains in the target language. We attribute this to the struc-
tured nature of the data and the large label space of the
task (1,842 classes) resulting in a misaligned multilingual
embedding space in zero-shot setups, as suggested by the
original authors. We analyse these results further in §D.

Increasing the Number of Shots. In the few-shot experi-
ments, we noticed no observable improvement or clear trend
of performance increase on 3 out of the 4 tasks. In order to
identify if, and at what point, increasing the number of shots
would start being beneficial, we extend our few-shot experi-
ments on the retrieval task using the xFlickr&CO dataset. In
Figure 5, we plotted DEU and JPN performance with up to
1,500 shots17 (instead of the 100 shots used in our standard
few-shot setup for this dataset) for the two best performing
models in this task. Indeed, we observe an overall trend
of increasing performance with more training examples, al-
though with noticeable instability issues (e.g. UC2 accuracy
in JPN drops when more than 500 shots are used). These
results demonstrate that more training examples may indeed
further improve the overall performance in the target lan-
guage, but the large number of examples required questions
whether this setup can even be dubbed ‘few-shot’.

More Images versus More Captions. An important ques-
tion, which concerns data collection efficiency for the target
languages in image–text retrieval scenarios, is whether it is
more useful, for a given budget, to collect (1) more captions
per image or (2) more images with a single caption. To
investigate this question, we trained xUNITER and UC2 on
JPN and DEU data with different number of shots and differ-
ent ratios of captions per image (Table 20). As indicated by
the results, there is no clear trend suggesting that one setting
is better than the other. We leave a larger-scale investigation
related to this question for future work.

D. Further Analyses
We now provide a series of further and finer-grained analy-
ses, which include performance of the ‘translate train’ trans-
fer approach and domain-specific results in xFlickr&CO, as
well as an analysis of performance over structurally different
question types of xGQA in few-shot setups.

17DEU and JPN captions are from Multi30K (Elliott et al., 2016)
and Nakayama et al. (2020), respectively.
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Figure 12. Image retrieval performance averaged across languages
per xFlickr&CO subset.
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Figure 13. UC2 image retrieval performance across languages per
xFlickr&CO subset.

Table 21. English image retrieval performance by evaluation subset
in xFlickr&CO after fine-tuning.

xFlickr&CO subset mUNITER xUNITER UC2 M3P

Flickr 51.3 46.6 44.0 37.1
COCO 37.7 30.3 30.8 25.6

Translate Train Performance. We further compare the few-
shot results with ‘translate train’ performance: We directly
fine-tune the pretrained UC2 and xUNITER checkpoints on
the full, human-translated Flickr30K training set. As shown
in Figure 5, UC2 achieves remarkable zero-shot and few-
shot performance: 100 or fewer data points are enough for
it to match ‘translate train’ performance, which it surpasses
with 1,000 or more data points. Similar results can also be
observed in Japanese, although it needs 500 data points to
match ‘translate train’ accuracy. xUNITER—which was not
pretrained on German nor Japanese multimodal data—also
reaps benefits from 500 or more data points, although still
being far from its ‘translate train’ counterpart (despite being
initialised from English fine-tuned weights). Finally, we
note that ‘translate train’ performance is still far from the
corresponding English performance. This result is rather sur-
prising for UC2, which was solely pretrained on Conceptual
Captions in five languages, each of equal size.

Retrieval Performance by Evaluation Subset. Our
xFlickr&CO dataset is a composition of Flickr and COCO
data (each of 1,000 image–sentence pairs). As models are
fine-tuned on Flickr, the COCO evaluation subset might

require out-of-distribution generalisation due to its different
visual domain. Indeed, this is what we observe in English
(Table 21). However, Figure 13 shows that this is not the
case for the multilingual encoders, which perform simi-
larly in both subsets. A closer look at UC2 further shows
that this behaviour is language-independent. Given the rela-
tively poor performance of current models, we cannot assess
whether the domain shift we observe in English does not
happen in xFlickr&CO due to its unified captioning guide-
lines, or whether domain generalisation will be a challenge
in xFlickr&CO for future, tightly-multilingual models.


