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Abstract
The brain can learn to solve a wide range of
tasks with high temporal and energetic effi-
ciency. However, most biological models are
composed of simple single-compartment neurons
and cannot achieve the state-of-the-art perfor-
mances of artificial intelligence. We propose a
multi-compartment model of pyramidal neuron,
in which bursts and dendritic input segregation
give the possibility to plausibly support a biolog-
ical target-based learning. In target-based learn-
ing, the internal solution of a problem (a spatio-
temporal pattern of bursts in our case) is suggested
to the network, bypassing the problems of error
backpropagation and credit assignment. Finally,
we show that this neuronal architecture naturally
supports the orchestration of “hierarchical imi-
tation learning”, enabling the decomposition of
challenging long-horizon decision-making tasks
into simpler subtasks.

1. Introduction
The brain can learn a wide range of tasks very efficiently
in terms of energy consumption and required evidences,
motivating the search for biologically inspired learning rules
for improving the efficiency of artificial intelligence. Most
biologically plausible neural networks are composed so far
of point neurons. Despite recent outstanding advances in
this field (Nicola & Clopath, 2017; Bellec et al., 2020),
biologically plausible neural networks cannot achieve the
state-of-the-art performances of artificial intelligence (e.g.,
they struggle to solve the credit assignment problem (Payeur
et al., 2021)).

Recent findings on dendritic computational properties
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(Poirazi & Papoutsi, 2020) and on the complexity of pyrami-
dal neurons dynamics (Larkum, 2013) motivated the study
of multicompartment neuron models in the development
of new biologically plausible learning rules (Urbanczik &
Senn, 2014; Guerguiev et al., 2017; Sacramento et al., 2018;
Payeur et al., 2021).

In addition, it has been proposed that segregation of den-
dritic input (i.e. neurons receive sensory information and
higher-order feedback in segregated compartments) (Guer-
guiev et al., 2017) and generation of high-frequency bursts
of spikes (Payeur et al., 2021) would support backpropa-
gation in biological neurons. However, these approaches
require propagating errors with a fine spatio-temporal struc-
ture to all the neurons. It is not clear whether this is possible
in biological networks. For this reason, in the last few years,
target-based approaches (Lee et al., 2015; DePasquale et al.,
2018; Manchev & Spratling, 2020; Meulemans et al., 2020;
Muratore et al., 2021) started to gain more and more interest.

In a target-based learning framework, the targets, rather than
the errors, are propagated through the network (Lee et al.,
2015; Manchev & Spratling, 2020). In this framework, it is
possible to directly suggest to the network the internal solu-
tion to a task (DePasquale et al., 2018; Muratore et al., 2021;
Capone et al., 2022). However, target-based approaches re-
quire evaluating at the same time the spontaneous activity
and the target activity of the network (DePasquale et al.,
2018; Muratore et al., 2021). This is usually solved by eval-
uating the two activities in two different networks, which is
not natural in terms of biological plausibility.

In the present work, we show that bursts and dendritic input
segregation offer a natural solution to this dilemma. In our
model, pyramidal neurons rely on two different apical den-
dritic compartments to simultaneously evaluate the target
and the spontaneous activity. A coincidence mechanism be-
tween basal and apical inputs generating the burst (Larkum,
2013) eventually defines the (target or spontaneous) spatio-
temporal bursting dynamics of the network.

We exploit dendritic computation in our model, to let arbi-
trary signals act as teaching signals which drive the learning
procedure in a biologically plausible fashion. This allows to
flexibly store and recall arbitrary trajectories.
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Finally, we show that this neuronal architecture naturally
allows for orchestrating hierarchical imitation learning,
enabling the decomposition of challenging long-horizon
decision-making tasks into simpler subtasks (Le et al., 2018;
Pateria et al., 2021).

2. Results
2.1. Target-based learning with bursts

We define a model of pyramidal neuron (Figure 1A, bottom)
composed of three separated compartments, the basal one
(i.e. the soma, receiving the sensorial input), and two apical
ones, the proximal apical compartment (receiving recurrent
connections from the network) and the distal apical com-
partment (receiving the context/teaching signal from other
areas of the cortex, with a higher level of abstraction).

The spike emitted by the soma of the i-th neuron is de-
scribed by variable zti , which is equal to 1 when the spike
is emitted at time t and 0 otherwise. The spikes emitted by
the proximal and distal apical compartments are described
by variables ati and a⋆,ti , respectively. The underlying idea
is that the distal compartment provides a target for the prox-
imal one, motivating the use of the superscript symbol ⋆,
which indicates the variables concerning the target.

Following (Larkum, 2013) a coincidence mechanism be-
tween the basal and the apical compartments has been im-
plemented, yielding high-frequency bursts of spikes. In
more detail, after a somatic spike, zti = 1, a coincidence
window is opened for a time interval ∆T . This is described
by the variable zti, the indicator function for t′ ∈ [t, t+∆T ],
which is 1 during this time window and 0 elsewhere. If a
spike is generated by the distal or proximal apical compart-
ment within such time window, at

′

i = 1 or a⋆,t
′

i = 1, with
t′ ∈ [t, t+∆T ], a high-frequency burst of spikes is then pro-
duced (Figure 1B). The proximal and distal burst variables
can be respectively defined as

Bt+1
i = zti a

t+1
i

B⋆,t+1
i = zti a

⋆,t+1
i

This architecture supports a burst-dependent learning rule
(Figure 1A, top), enabling target-based learning. More
specifically, the pattern of bursts defined by the proximal
compartment (receiving the recurrent connections from the
network) should mimic the one defined by the distal com-
partment (which receives the teaching signal). This is made
possible by using the following plasticity rule for recurrent
weights Jb→p

ij (which can be derived analytically through a
likelihood maximization, see methods for details):

∆Jb→p
ij = η

[
a⋆,t+1
i − at+1

i

]
zti e

t
j (1)

where etj = ∂ut
i/∂J

b→p
ij is referred to in the literature as

the spike response function (Urbanczik & Senn, 2014).

Intuitively, such plasticity rule aims at aligning in time apical
proximal spikes with apical distal ones when the somatic
window zti is open. We remark that such a learning rule can
be computed online, and only requires observables which
are locally accessible to the synapses in space and time.

As a first learning instance, we propose the store and recall
of a 3D trajectory y⋆,tk (k = 1, . . . , 3; t = 1, . . . , T ; T =
1000) in a network of N = 500 neurons (400 bursting
neurons with the pyramidal architecture described above,
plus 100 non-bursting point neurons). We chose y⋆,tk as a
temporal pattern composed of 3 independent continuous
signals, each of which specified as the superposition of
the four frequencies f ∈ {1, 2, 3, 5} Hz with uniformly
extracted random amplitudes A ∈ [0.5, 2.0], and phases
ϕ ∈ [0, 2π]:

y⋆,tk =

4∑
n=1

Ak,n cos (2πfk,nt+ ϕk,n) , k = 1, 2, 3

This target trajectory is randomly projected through a Gaus-
sian matrix with variance σ2

targ to the (distal) apical den-
drites of the network as a teaching signal. This input shapes
the spatio-temporal pattern of spikes a⋆,ti from the distal
apical compartment (Figure 1C, bottom, orange points), as
well as the related target spatio-temporal pattern of bursts
B⋆,t

i (Figure 1C, bottom, blue points) as described above.

A clock signal serving as a sensorial input is randomly pro-
jected (through a Gaussian matrix with variance σ2

in) to the
somatic dendrites. In more detail, the clock is here modeled
as a sort of time step function with I steps, such that at each
time t only component i = ⌊I · t/T ⌋ is equal to one, while
others are zero (see Table 1 for model parameters).

Learning is numerically implemented by several presenta-
tions of the same target trajectory y⋆ to the distal apical
compartments, each time adjusting recurrent weights Jb→p

ij

according to Eq. (1).

The internal bursting is translated into the output y by means
of a read-out matrix Jout, randomly initialized and to be
trained following the rule derived by minimizing the mean
squared error (mse) between the target output and the net-
work output:

∆Jout
ki = ηout

[
y⋆,tk −

∑
h

Jout
kh B̂t

h

]
B̂t

i (2)

where B̂t
i is a time-smoothed version of burst variable Bt

i

(see methods for details).

At the end of the learning the plasticity of recurrent con-
nections allows for a reliable reproduction of the target 3D
trajectory (see Figure 1C, top, mse = 0.01), with an inter-
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Figure 1. Model structure. A. The model of a pyramidal neuron, consisting of two separated compartments, the basal and the apical
ones. The latter is further divided into two regions, proximal (receiving recurrent connections from the network) and distal (receiving
teaching/context signals from other areas of the cortex). (top) Plasticity rule for the recurrent weights of the network. B. In addition to
isolated spike signals emitted by the soma, a coincidence mechanism between basal and apical compartments allows for the generation of
high-frequency bursts of spikes. C. Store and recall of a 3D trajectory. The target output is automatically encoded into a spatio-temporal
pattern of bursts (bottom panel), learned online thanks to the plasticity of recurrent connections, allowing for reliable reproduction of the
target trajectory (top panel).

nal bursting activity reproducing the target one (Figure 1C,
bottom).

The same task is addressed in (Muratore et al., 2021) and
(Bellec et al., 2020), obtaining mse values of 0.001 and
0.01, respectively. Though the latter result is very similar
with the present one (approximately 0.01, averaged over 5
realizations), a direct comparison is unfair, since the target
is here encoded only through the bursts, that are way less
than spikes, so providing a much sparser encoding. On the
other hand, our model results in a remarkable improvement
in terms of biological plausibility.

2.2. Apical signals as a flexible context selection

The distal apical compartment is designed not only to re-
ceive teaching signals, but also contextual information from
other areas of the cortex, acting as a hint for the task to
address. With this idea in mind, in this section we show that
it is possible to exploit different context signals (projected
through a Gaussian random matrix with variance σ2

cont) to
flexibly select and recall one of the trajectories previously
stored in the network.

In the simplest configuration, two different contexts, A and
B, can be modeled through 2D time-constant binary signals
projected on the distal apical compartment, χ(1) = (1, 0)
for A and χ(2) = (0, 1) for B (Figure 2A).

During the training, each context is associated with a well
defined target to learn (again a 3D trajectory, as defined
in the previous section). In Figure 2B, left side, they are
reported in red and black, respectively (only one of the

three trajectories for each target is reported, for simplicity);
same color-coding is used for associated context signals. To
stabilize the learning, we exploited the trick of halving the
learning rates η and ηout every 100 training iterations. The
orthogonality of the contexts and related targets is further
stressed by imposing a sparsification (of 75% in the present
case) in the random matrices we use to project the context
and the target on the apical compartments of the network.

During the recall phase, the teacher signal is no longer
present, while the context signal suggests to the network
which of the learned trajectory to reproduce. We show that
when the context is projected to the network, the desired
output is correctly recalled (Figure 2B, left side). More-
over, if the context signal is turned off in the middle of the
trajectory, the network is still able to self-sustain its inner
dynamics, thanks to recurrent connections (Figure 2B, left
side), and correctly replicate the selected trajectory.

Hence, the context works here as a “suggestion”, so that
once started the reproduction of the correct output trajectory,
the context itself becomes useless.

To demonstrate the importance to project the context signal
in the apical compartments, we compare these results with
the case in which the context is projected in the basal ones
(both during the training and the retrieval phases). In this
case, the desired trajectory is correctly retrieved only when
the context is on (Figure 2B, right side).

However, we observe that the basal context is interpreted
as a necessary input, so that after the turnoff the network
is no longer able to sustain bursts creation, in turn causing
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Figure 2. Apical signals for dynamics selection. A. Model of pyramidal neuron where a binary context signal (A or B) is projected
on the apical distal compartment. The target to be reproduced by the network changes according to which context is active. B. (left
side) The network is able to reproduce the correct output trajectory even if the context is provided only in the first time steps. (right
side) An alternative model in which the context is projected on the basal compartment is no longer able to reproduce the correct output
trajectory. C. (top) The trajectory produced by the network, in presence of noisy apical context A (σ = 0.2, black solid line), is similar
to the trajectory targeted by the context A (black dashed line) and different from the trajectory targeted by the context B (red dashed
line). Inset, the noisy context signal. (middle) The trajectory produced by the network, in presence of noisy basal context A (σ = 0.2,
black solid line), is not similar to the trajectory targeted by the context A (black dashed line). Inset, the noisy context signal. (bottom)
Average performances of the apical/basal (blue/orange) context as a function of the noise standard deviation σ. Solid lines: mse between
the output and the target output. Dashed lines: mse between the output and the trajectory targeted by the other context. Averages and
error bars are intended over 10 independent network/target realizations. D. Summary of performances of the two model versions (context
projected on apical vs basal compartment) during “turnoff” test in the middle of the trajectory. Mean squared error in the second part of
the trajectory (no context) is compared with respect to error in the first part (context still active); mean and variance are intended over 10
independent network/target realizations (round markers). mse between the output and the trajectory targeted by the other context is also
reported, as a reference (square markers).

a dramatic drop in the test performances (Figure 2B, right
side). Average mean squared errors, measured against both
the correct target trajectory and the wrong one (i.e. the
one corresponding to the other context signal), both before
turnoff and after it, are provided in Figure 2D for the two
neural architectures.

Furthermore, apical context architecture is also robust
against corruption in the context signal, which may be the
case when at higher cortical levels there is only a mild pref-
erence in favor of which strategy to adopt (in comparison
with the training phase, where each target is clearly and
univocally associated with a sharp context signal). Here a
Gaussian white noise of variance σ2 is added during test
to context signals exploited in the training (Figure 2C, top
panel, σ = 0.2). The produced trajectory is similar to the
trajectory targeted by the context A (black dashed line) and
different from the trajectory targeted by the context B (red
dashed line). In Figure 2C, bottom panel (blue lines) it
is reported the average mse (average over 10 independent
realizations of the experiment) between the output and the
target trajectory (solid blue line) as a function of σ. As a
reference, we also report the mse between the output and

the trajectory targeted by the other context signal (dashed
blue line).

It is evident a resilience of the network with apical context,
while the network with basal context suddenly loses the
ability to reproduce the desired output already at low levels
of noise (Figure 2C, middle panel and orange lines in bottom
panel).

At higher levels of noise, basal-context network becomes in
practice useless, while apical-context network is still able
to reproduce the target trajectory with a remarkably small
error (Figure 2C, bottom panel).

2.3. Hierarchical Imitation Learning

The proof that context can be used to flexibly choose which
dynamics reproduce (and when), opens the pathway to more
complicated neural architectures, naturally supporting hi-
erarchical imitation learning (HIL). To our knowledge, no
prior works are proposing biologically plausible implemen-
tations of hierarchical reinforcement or imitation learning.

We decomposed the network in two sub-networks, named
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Figure 3. Hierarchical Imitation Learning. A. A two-level network, where high-level neurons produce a signal that serves as a context
for the neurons in the low-level network. The two subnetworks received two different but synchronized teaching signals in the training
phase. B. Button-and-food task, an agent placed at an initial position (black cross) in a 2D maze has to first reach a button (red circle)
so to unlock the food (black circle) and then reach for it. The high-level network chooses the order of the two subtasks (reach button
and reach food) and when to switch from one to the other. It projects the instruction as a contextual signal (top panel) to the apical
compartments of the low-level network. The low-level network produces the output (velocities of the agent, center panel) necessary to
solve the subtask as a read-out of its internal bursting activity (bottom panel, blue dots; orange dots represent the spiking activity). C. A
sample spatial trajectory. Cross, red and black circles as in panel B. D. Reward as a function of training epochs (average and standard
error over 10 realizations, in lines and shadings respectively). Blue and orange colors refer to the two different choices for the context
projection on the low-network: apical or basal compartments, respectively (see also inset for a sketch of the model). Black dashed line at
1.0 indicates the maximum possible reward. E. Average success rate for pushing the button as a function of the training epochs. 1.0 is
again the maximum possible value. Same color coding as in D. F. Average distance from the food at the end of the episode. The red
dashed line represents the button size. Same color coding as in D.

high-network and low-network (Figure 3A). The high-
network (the “manager”) computes the optimal strategy
to adopt in order to solve a task, and sends this information
as a context signal to the low-network (the “worker”), which
actually executes it.

We applied this strategy to the so-called button & food task.
Here, an agent starts at the center of a square domain, which
also features a button and an initially locked target (the
“food”). The goal of the agent is to first press the button so

to unlock the food, then reach for it. Both button and food
positions are uniformly extracted in the domain [0, 1]×[0, 1].

The global task is naturally decomposed into two simpler
sub-tasks (or goals): reach button and reach food. The
high-network computes which goal to pursue and when, and
the low-network implements the sub-policy to achieve the
goal. Both the high- and the low-network share the same
input (I = 80 input units), the vertical and horizontal dif-
ferences of both button and food positions with respect to
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the agent location (∆t = {∆xt
b,∆ytb,∆xt

f ,∆ytf} respec-
tively). Each of the ∆i values is encoded by 20 input units
with different Gaussian activation functions.

To perform learning, we consider a natural hierarchical
extension of behavioral cloning. The expert provides a set
of hierarchical demonstrations, each consisting of low-level
trajectories (to be cloned by the low-network):{(

statetL, action
t
L, goal

t
L

)}T

t=1
,

as well as a high-level trajectory (to be cloned by the high-
network):

{
(
statetH, action

t
H

)
}Tt=1 .

Both statetL and statetH are the input ∆t described above.
The actiontH is the target output of the high-network and the
goaltL of the low-network. It is projected to the low-network
as a contextual signal in the distal apical compartment (Fig-
ure 3B, top) and is defined as a 2D binary signal:

y⋆,t
H = χ(1)Θ

(
t < t ∩

■

)
+ χ(2)Θ

(
t > t ∩

■

)
,

where χ(1) = (1, 0) and χ(2) = (0, 1), and t ∩
■

is the
time when the button is reached. Intuitively, it selects the
reach button sub-policy for the first part of the task and
then switches to reach target.

Given the input statetL and the context goaltL, the low-
network is tasked to reproduce as output actiontL the ve-
locity vector y⋆,t

L = vt = (vtx, v
t
y), where velocity com-

ponents are computed so to reach the selected target in a
straight line (Figure 3B, center and Figure 3C). Both high-
and low-network outputs are computed as linear read-outs of
their internal bursting activities, as described in Section 2.1
(Figure 3B, bottom, for the low-network).

The cloning procedure is implemented as a supervised learn-
ing, so to let the two networks reproduce the target outputs,
given the input (and the context). The learning procedure is
the same as the one described in Section 2.1.

Finally, the two-layer network is tested in closed-loop in
the environment described above. The performances are
measured via the following quantity:

ρ =
Ξ ∩

■
r0

mint>t ∩
■

d
(
xt
agent,xfood

) ,
where r0 is the button and food size, Ξ ∩

■
is the button-state

indicator variable (zero when the button is locked and one
otherwise), and finally d

(
xt
agent,xfood

)
is the Euclidean

distance between the agent and food positions at time t.
The condition for a successful button-press (a switch from
locked to unlocked state) and target-reach is taken to be
d
(
xt
agent,xbtn/food

)
≤ r0. Note how this choice effec-

tively prevents the apparent divergence in the expression

for ρ as the episode is stopped when the target is reached,
finally inducing a theoretical maximum achievable score of
ρmax = 1.

After the presentation of many randomly positioned button-
food pairs, we observe that such two-level network learns to
correctly and efficiently solve the button & food task, with
an average final score ρ = 0.88 ± 0.04 and over 70% of
success rate (i.e., both button-press and target-reach condi-
tions were met). A sample spatial trajectory produced by
the network is depicted in Figure 3C. In Figure 3D, blue
line, we report the average reward (over 10 independent re-
alizations) as a function of the training epochs. Similarly, in
Figures 3E-F, blue curves, it is reported respectively the suc-
cess rate in pushing the button, and the minimum distance
from the button.

We run an additional experiment, where the high-network
output is projected to the basal compartment of the low-
network (rather than to the apical one, see Figure 3D, inset).
The results are reported in Figures 3D-F, orange lines. This
choice leads to poor performances of the hierarchical policy
(ρ = 0.24± 0.07), demonstrating the need for a contextual
signal necessarily being of a different nature with respect to
somatic input signals.

3. Methods
3.1. The model

Our model of pyramidal neuron considers three different
compartments: a basal one (b) and two apical ones, named
proximal (p) and distal (d), respectively (see Figure 1 for
reference).

Consider a particular neuron i, with i = 1, . . . , N ; its real-
valued membrane potential vector vt

i =
(
vti , u

t
i, u

⋆,t
i

)
(the

membrane potentials of basal, proximal apical, and distal
apical compartments, respectively) follows a leaky-integrate-
and-fire dynamics, which we can generically write as:

vt+1
i =

[(
1− dt

τm

)
vt
i +

dt

τm
It+1
i

] (
1− sti

)
+ v⟳sti ,

(3)
where the vector quantities Iti = (It(b),i, I

t
(p),i, I

t
(d),i),

sti = (zti , a
t
i, a

⋆,t
i ) and v⟳ = (v⟳(b), v

⟳
(p), v

⟳
(d)) represent

the input current, the neuron spike and the reset potential, re-
spectively, for each compartment (see following sections for
their explicit definitions). In particular, the neural spike sti is
a stochastic variable determined by its sigmoid probability:

p
(
st+1
i |vt

i

)
=

exp
[
st+1
i

(
vt
i−vthr
δv

)]
1 + exp

(
vt
i−vthr
δv

) , (4)

with vthr being the firing threshold for the membrane poten-
tial and δv a model parameter controlling the probabilistic
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nature of the firing process. In the δv → 0 limit, the spike-
generation rule (4) becomes deterministic:

p(st+1|vt) = Θ[st+1(vt − vthr)] .

We remark that we assume the deterministic limit to numer-
ically implement the dynamics (δv → 0).

3.1.1. TEMPORAL FILTERING AND WINDOWS

We introduce the exponential filtering function filter (ξt, τ),
defined recursively as:

filter
(
ξt+1, τ

)
= exp

(
−dt

τ

)
filter

(
ξt, τ

)
+

+

(
1− exp

(
−dt

τ

))
ξt+1 . (5)

Basal spike signals are time-filtered through suitable time
constants, depending on the direction they propagate. Using
the previous definition, we introduce the following filtered
quantities:

ẑt+1
i = filter

(
zt+1
i , τs

)
(6)

ẑt+1
ro,i = filter

(
zt+1
i , τro

)
(7)

ẑt+1
soma,i = filter

(
zt+1
i , τtarg

)
(8)

Such filtering is also applied to the adaptation term ωt
i ,

which is time-smoothed as:

ωt+1
i = filter

(
zt+1
i , τω

)
. (9)

Coincidence between above-threshold somatic spikes
ẑtsoma,i and apical proximal ati or apical distal a⋆,ti spikes
opens a time window:

zti = Θ[ẑtsoma,i − ϑsoma] . (10)

The onset of a burst in the proximal or distal compartments,
can be expressed respectively as:

Bt+1
i = ztia

t+1
i (11)

B⋆,t+1
i = ztia

⋆,t+1
i (12)

Aiming for a time-window variable that is active during
burst activity, we can iterate the same construction devel-
oped for spikes and consider the filtered burst-onset B̂

t

i:

B̂t+1
i = filter

(
Bt+1

i , τtarg
)

(13)

B̂⋆,t+1
i = filter

(
B⋆,t+1

i , τtarg

)
(14)

One can again use these filtered quantities to introduce prox-
imal and distal burst windows as:

B
t+1

i = Θ[B̂t+1
i − ϑburst] (15)

B
⋆,t+1

i = Θ[B̂⋆,t+1
i − ϑburst] (16)

When at least one among proximal and distal bursts is above
threshold, we finally have a neural burst activity window:

Bt+1
∨,i = Bt+1

i ∨B⋆,t+1
i , (17)

which is the quantity that will feature in the dynamics of the
compartments.

3.1.2. BASAL COMPARTMENT

The membrane potential of the basal compartment evolves
following the equations:

vt+1
i =

[(
1− dt

τm

)
vti +

dt

τm
It+1
(b),i

]
(1− zti) + v⟳(b)z

t
i

It(b),i =

N∑
j=1

Jb→b
ij ẑtj +

ninp∑
k=1

J inp
ik I inp,tk + βBt

∨,i − bω̂t
i + v0

with J inp
ik and I inp,tk respectively being the input projection

matrix and the input current, while v0 is a compartment-
specific constant input. We introduced the basal reset poten-
tial:

v⟳
(b) =

vreset,b

1 + αBt
∨,i

,

where vreset,b is a compartment-specific scalar, α is a con-
stant model parameter and Bt

∨,i is the active burst-window
variable (see Section TEMPORAL FILTERING AND WIN-
DOWS for an explicit characterization). Notice how during
the burst-window Bt

∨,i, the soma receives an extra input and
the reset potential increases; we set α = 2 and β = 20 to
define the entity of such effects.

3.1.3. APICAL PROXIMAL COMPARTMENT

The apical proximal compartment of each neuron is con-
nected to basal compartments of all the neurons through
recurrent connections Jb→p

ij (the ones to be trained to repro-
duce the desired target). The equation for this compartment
dynamics are:

ut+1
i =

[(
1− dt

τm

)
ut
i +

dt

τm
It+1
(p),i

]
(1− ati) + v⟳(p)a

t
i

It(p),i =

N∑
j=1

Jb→p
ij ẑtj(t)︸ ︷︷ ︸

recurrent basal−proximal
connections

+ u0

The reset potential for the proximal apical compartment
v⟳(p) = vreset,p is a compartment-specific scalar, indepen-
dent of burst activity, while u0 is the compartment-specific
constant input.

3.1.4. APICAL DISTAL COMPARTMENT

The signal to be learned (target) is considered as an input
for the apical distal compartment: coefficient fapic is set
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Table 1. Parameter of numerical simulations. Many parameters
have the same value for all the simulations reported in the main
text figures. When not the case, the different values used are
clearly indicated. For Figure 3 two values for the low-network (L)
and the high-network (H), respectively, have been reported, when
different from each other. For η and ηout for Figure 2, we report
the initial parameter values, as during learning they are discounted
as discussed in Section 2.2.

PARAMETER FIG 1 FIG 2 FIG 3 [L – H]

N 500 1000 500 – 500
σtarg 20 30 0 – 100
σin 12 12 20
η 10 10 0 – 0.25
ηout 0.01 0.01 0.03
I 5 50 N.D.
σcont 0 20 50 – 0

Ne 80%N
Ni 20%N
τm 20 (ms)
τs 2 (ms)
τout 10 (ms)
τtarg 20 (ms)
τω 200 (ms)
b 100
vreset,b -20 (mV)
vreset,d,p -160 (mV)
v0 -1 (mV)
u0 -6 (mV)
u⋆
0 -6 (mV)

vthr 0 (mV)
ϑsoma 2.5× 10−2

ϑburst 1.25× 10−2

to 1 during the learning stage, and then set to 0 to get rid of
this term during spontaneous activity. Also, the input from
the context (again randomly projected on the N neurons)
is given as input for the apical distal compartment. The
equations for the apical distal compartment read:

u⋆,t+1
i =

[(
1− dt

τm

)
u⋆,t
i +

dt

τm
It+1
(d),i

]
(1− a⋆,ti )+

+ v⟳(d)a
⋆,t
i

It(d),i = fapic

noutput∑
k=1

J targ
ik y⋆,tk︸ ︷︷ ︸

target/teach input

+

ncont∑
k=1

Jcont
ik Ct

k︸ ︷︷ ︸
context

+ u⋆
0

where y⋆,tk is the target signal and Ct
k the context signal,

while u⋆
0 is the compartment-specific constant input. We

report the model parameters, for the three figures, in Table 1.

3.2. Derivation of the learning rule

We derive the update rule for the recurrent weights of the
network by maximizing the probability to reproduce the
target spatio-tamporal pattern of bursts, extending previous
approaches used for learning the target pattern of spikes
(Pfister et al., 2006; Jimenez Rezende & Gerstner, 2014;
Gardner & Grüning, 2016; Muratore et al., 2021). The
first step is to write the probability to produce a burst in
the neuron i at time t, given the somatic window zti. We
propose the following compact formulation:

p(B⋆,t+1
i |zti) =

exp
[
B⋆,t+1

i Φt
i(z

t
i)
]

1 + exp [Φt
i(z

t
i)]

, (18)

where we have introduced Φt
i(z

t
i) = at+1

i zti/δv−(1−zti)γ.
By definition, a burst can only happen by means of a basal-
apical spike coincidence, represented by the at+1

i zti term.
When the basal window is open (zti = 1) the burst proba-
bility reduces to the usual sigmoidal function. When the
window is closed and zti = 0, we have Φt

i (z
t
i) = −γ, we

can thus tune the γ parameter to model the burst proba-
bility. In practice, we work in the γ → ∞ limit where
limγ→∞ p(B⋆,t+1

i |zti = 0) = 0, which agrees to the intu-
itive understanding that a closed basal window prevents any
burst activity. We introduce the likelihood L of observing a
given target burst activity B⋆ given the basal-to-proximal
connections Jb→p

ij as:

L
(
B⋆|Jb→p

)
=

∑
it

[
B⋆,t+1

i Φt
i(z

t
i) +

− log
(
1 + exp

[
Φt

i(z
t
i)
])]

. (19)

We can then maximize this likelihood by adjusting the synap-
tic connections so to achieve the target burst activity B⋆. By
differentiating with respect to the recurrent apical weights,
we get:

∂L(B⋆|Jb→p)

∂Jb→p
ij

=
[
B⋆,t+1

i − p(Bt+1
i = 1)

]
ztie

t
j , (20)

where we have introduced the following two quantities:

p(Bt+1
i = 1) =

exp [Φt
i(z

t
i)]

1 + exp [Φt
i(z

t
i)]

and etj =
∂ut

i

∂Jb→p
ij

.

Given the basal window zti state, the target burst sequence is
uniquely defined by the input projected to the apical distal
compartment and can be written as B⋆,t+1

i = ztia
⋆,t+1
i .

If we take the model deterministic limit (δv → 0, where
p(Bt+1

i = 1) = at+1
i zti) and note that ztiz

t
i = zti, we can

rewrite the previous expression in a cleaner form:

∂L(B⋆|Jb→p)

∂Jb→p
ij

=
[
a⋆,t+1
i − at+1

i

]
ztie

t
j . (21)
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This means that the spikes in the proximal apical compart-
ment at+1

i should mimic the ones in the distal one a⋆,t+1
i ,

when the somatic window zti is open. For simplicity, we
discussed this version of the learning rule. However, in
this work we exploited the non-deterministic version of the
plasticity rule (finite δv = 0.1) that can be rewritten as:

∂L(B⋆|Jb→p)

∂Jb→p
ij

=
[
a⋆,t+1
i − p

(
at+1
i = 1|uti

)]
ztie

t
j ,

(22)

where p
(
at+1
i = 1|uti

)
=

exp

(
ut
i−vthr

δv

)
1+exp

(
ut
i
−vthr
δv

) . We stress here

how in the derivation we considered the basal-windows state
zti as given. Consequently, the target burst sequence B⋆ is
uniquely defined by the input projected to the apical distal
compartment and the likelihood is well-defined. Though
we are aware of the feedback influence of the burst activ-
ity on the basal-window configuration (bursts induce basal
spikes, see the equation for basal current It(b),i in the BASAL
COMPARTMENT section), we chose to neglect such contri-
bution as it would have severely increased the difficulty of
the derivation. The convergence to the chosen target thus
cannot be granted.

However, the pattern of apical spikes {a⋆} does not change
during learning, being determined by the original teaching
signal y⋆ and the variance σtarg of its random projection to
the network. As target bursts only occur after coincidence
of an apical spike a⋆ and a basal spike z, pattern {B⋆} is
a subset of distal apical spikes {a⋆}. In principle, it is still
possible that the target pattern oscillates between slightly
different subsets of {a⋆}. Anyway, we provide a numerical
demonstration that the target pattern of bursts converges to
a well-defined pattern (see Appendix for details).

4. Discussion
Recently, more and more studies confirmed that dendrites
are capable of producing spikes (Gasparini et al., 2004) and
performing complex and non-linear computation (Poirazi
& Papoutsi, 2020). Also, it has been observed that the
initiation of broad calcium action potentials (“Ca2+ spikes”)
near the apical tuft of pyramidal layer-5 neurons, produces
a long (up to 50 ms in vitro) plateau-type depolarization
(Larkum, 2013). The coincidence between this phenomenon
and a somatic spike induces high-frequency somatic bursts
during such depolarization. In the present work, we model
such mechanism through the variable B⋆ (see Eq. (12)), that
is 1 for a 30 ms time window, after the coincidence between
the apical (a⋆) and the somatic spike (z).

We show that, thanks to such properties, pyramidal neurons
can naturally support target-based learning, easily applicable
to, e.g., store and recall tasks. Moreover, it becomes possible

to use contextual signals to flexibly select the desired output
from a repertoire of learned dynamics. These properties
naturally combine to orchestrate a network with a hierarchi-
cal architecture, which in turn lends itself to hierarchical
imitation learning (Le et al., 2018). HIL enables the de-
composition of challenging long-horizon decision-making
tasks into simpler sub-tasks, improving both learning speed
and transfer learning, as skills learned by sub-modules can
be re-used for different tasks. In our work, a high-level
network (the manager) selects the correct policy for the task,
suggesting it as a contextual signal to the low-level network
(the worker), in charge of actually executing it. We also
show how considering contextual information as an input
for the apical compartment (instead of the basal one) is
crucial for the correct decomposition and accomplishment
of the task, in agreement with the biological interpretation
of apical dendritic inputs as contextual signals from other
cortical areas.

Though our hierarchical imitation learning approach re-
quires devising handcrafted solutions for the different lay-
ers, our message is that the architecture we propose can
efficiently support the implementation of hierarchical poli-
cies. In future works, we plan to replace behavioral cloning
with more general learning schemes, such as feudal net-
works (Vezhnevets et al., 2017) where the “high network”
(manager) moves in a latent space and the “low network”
(worker) translates it into meaningful behavioral primitives.

To our knowledge, no other existing works propose a bio-
logically plausible architecture to implement HIL. Further-
more, our model prepares the ground for further biological
explorations. Tuning model parameters (e.g., the adaptation
strength b) allows simulating the transition between differ-
ent brain states (e.g., sleep and awake) (Wei et al., 2018;
Goldman et al., 2020; Tort-Colet et al., 2021). Possible
future investigation topics include the replay of patterns of
bursts during sleep (Kaefer et al., 2020), and the effect of
sleep on tasks performances (Wei et al., 2018; Capone et al.,
2019; Golosio et al., 2021; Capone & Paolucci, 2022).

Source code availability
The source code is available for download under CC-BY
license in the https://github.com/cristianocapone/LTTB pub-
lic repository.
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Daumé III, H. Hierarchical imitation and reinforcement
learning. In International conference on machine learn-
ing, pp. 2917–2926. PMLR, 2018.

Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. Differ-
ence target propagation. In Joint european conference on
machine learning and knowledge discovery in databases,
pp. 498–515. Springer, 2015.

Manchev, N. and Spratling, M. W. Target propagation in
recurrent neural networks. J. Mach. Learn. Res., 21:7–1,
2020.

Meulemans, A., Carzaniga, F. S., Suykens, J. A., Sacra-
mento, J., and Grewe, B. F. A theoretical framework
for target propagation. arXiv preprint arXiv:2006.14331,
2020.

Muratore, P., Capone, C., and Paolucci, P. S. Target
spike patterns enable efficient and biologically plausi-
ble learning for complex temporal tasks. PloS one, 16(2):
e0247014, 2021.

Nicola, W. and Clopath, C. Supervised learning in spiking
neural networks with force training. Nature communica-
tions, 8(1):2208, 2017.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. Hierar-
chical reinforcement learning: A comprehensive survey.
ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and
Naud, R. Burst-dependent synaptic plasticity can coordi-
nate learning in hierarchical circuits. Nature neuroscience,
pp. 1–10, 2021.

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. Op-
timal spike-timing-dependent plasticity for precise action
potential firing in supervised learning. Neural computa-
tion, 18(6):1318–1348, 2006.

Poirazi, P. and Papoutsi, A. Illuminating dendritic func-
tion with computational models. Nature Reviews Neuro-
science, 21(6):303–321, 2020.

Sacramento, J. a., Ponte Costa, R., Bengio, Y., and Senn,
W. Dendritic cortical microcircuits approximate the
backpropagation algorithm. In Bengio, S., Wallach, H.,



Burst-Dependent Plasticity and Dendritic Amplification Support Target-Based Learning and Hierarchical Imitation Learning

Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 8721–8732. Curran Associates, Inc.,
2018.

Tort-Colet, N., Capone, C., Sanchez-Vives, M. V., and Mat-
tia, M. Attractor competition enriches cortical dynamics
during awakening from anesthesia. Cell Reports, 35(12):
109270, 2021.

Urbanczik, R. and Senn, W. Learning by the dendritic
prediction of somatic spiking. Neuron, 81(3):521–528,
2014.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549.
PMLR, 2017.

Wei, Y., Krishnan, G. P., Komarov, M., and Bazhenov, M.
Differential roles of sleep spindles and sleep slow oscil-
lations in memory consolidation. PLoS computational
biology, 14(7):e1006322, 2018.



Burst-Dependent Plasticity and Dendritic Amplification Support Target-Based Learning and Hierarchical Imitation Learning

Appendix: Burst-Dependent Plasticity and Dendritic Amplification Support
Target-Based Learning and Hierarchical Imitation Learning

Numerical evidence of convergence
As mentioned in the main text, we can not provide a mathematical proof of the convergence toward the chosen target of burst
activity by means of the learning rule proposed here. However, strong evidences in this direction can be found numerically.

We run several independent realizations of the same task of Figure 1, i.e., the store and recall of a 3D trajectory. We look at
the distance between the target and the spontaneous spatio-temporal pattern of bursts during the training, and also at the
self-distance in the pattern of spontaneous bursts across consecutive training iterations.

The parameters used for these simulations (when different from those used for Figure 1) are: η = 2.5, ηout = 2.5× 10−3,
σtarg variable from 10 (black) to 1000 (yellow). Data averaged over 10 independent network/target realizations. The
distance between two patterns of bursts A = {At

i} and B = {Bt
i} is defined as:

D(A,B) ≡

√√√√ 1

N T

N∑
i=1

T∑
t=1

(At
i −Bt

i )
2
.

For small values of σtarg, comparable to the ones used for main text figures, target bursts rapidly settle after some hundreds
of training iterations (Figure S1, left); within the same training scale, also spontaneous burst activity matches the target one,
with a negligible error (Figure S1, middle).

We prove that in a broad range of σtarg values (roughly up to σtarg = 100), the target pattern of bursts converges to a
well-defined one (Figure S1, right, blue dots), while for higher values of σtarg the convergence slows down. This is related
to the increase of the number of bursts for high values of σtarg (Figure S1, right, red dots).
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Figure S1. Convergence of the target pattern of bursts vs σtarg. (left) D(B⋆
n, B

⋆
n−1)/(number of bursts) as a function of the

number n of learning iterations, for different σtarg values (lower to higher values, from dark to light). (middle) Distance between the
target and spontaneous pattern of bursts D(B⋆

n, Bn) after n learning iterations. (right) Blue: average final D(B⋆
n, B

⋆
n−1) value as a

function of σtarg. Red: average number of bursts as a function of σtarg.

We made further simulations, for different network sizes (N = 125, 250, 500, 1000, 2000) at a given value σtarg = 10.
We always observe convergence, which is even faster for larger networks.
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Figure S2. Convergence of the target pattern of bursts vs N . (left) D(B⋆
n, B

⋆
n−1) as a function of the number n of learning iterations,

for different network sizes N (lower to higher values, from dark to light). (middle) Distance between the target and spontaneous pattern
of bursts D(B⋆

n, Bn) after n learning iterations. (right) Blue: average final D(B⋆
n, B

⋆
n−1) value as a function of N . Red: average

number of bursts as a function of N .


