
Estimating and Penalizing Induced Preference Shifts in Recommender Systems

Micah Carroll 1 Anca Dragan 1 Stuart Russell 1 Dylan Hadfield-Menell 2

Abstract
The content that a recommender system (RS)
shows to users influences them. Therefore, when
choosing a recommender to deploy, one is implic-
itly also choosing to induce specific internal states
in users. Even more, systems trained via long-
horizon optimization will have direct incentives
to manipulate users, e.g. shift their preferences
so they are easier to satisfy. We focus on induced
preference shifts in users. We argue that – before
deployment – system designers should: estimate
the shifts a recommender would induce; evaluate
whether such shifts would be undesirable; and per-
haps even actively optimize to avoid problematic
shifts. These steps involve two challenging ingre-
dients: estimation requires anticipating how hypo-
thetical policies would influence user preferences
if deployed – we do this by using historical user
interaction data to train a predictive user model
which implicitly contains their preference dynam-
ics; evaluation and optimization additionally re-
quire metrics to assess whether such influences
are manipulative or otherwise unwanted – we use
the notion of “safe shifts”, that define a trust re-
gion within which behavior is safe: for instance,
the natural way in which users would shift with-
out interference from the system could be deemed
“safe”. In simulated experiments, we show that
our learned preference dynamics model is effec-
tive in estimating user preferences and how they
would respond to new recommenders. Addition-
ally, we show that recommenders that optimize for
staying in the trust region can avoid manipulative
behaviors while still generating engagement.

1. Introduction
Recommender systems (RSs) generally show users feeds of
items with the goal of maximizing their engagement, and
users choose what to click on based on their preferences.
Importantly, the recommender’s actions are not independent
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of changes in users’ internal states: simple changes in the
content displayed to users can affect their behavior (Wil-
helm et al., 2018; Hohnhold et al., 2015), mood (Kramer
et al., 2014), beliefs (Allcott et al., 2020), and preferences
(Adomavicius et al., 2013; Epstein & Robertson, 2015).

Given the dependence between users’ internal state and the
recommender system, when a system designer chooses a
specific recommender algorithm (policy), they are implic-
itly also choosing how to influence user’s behaviors, mood,
preferences, etc. While traditionally RS policies have been
myopic (tended at satisfying users’ current desires), optimiz-
ing long-term user engagement has been a growing trend
– typically via reinforcement learning (Afsar et al., 2021);
these non-myopic policies are commonly referred to as long-
term value, or LTV, systems. However, these policies will
have incentives to manipulate users as a side-effect (Al-
banie et al., 2017; Krueger et al., 2020; Evans & Kasirzadeh,
2021): for example, certain preferences are easier to sat-
isfy than others, leading to more potential for engagement
– this could be because of availability of more content for
some preferences compared to others, or because strong
preferences for a particular type of content lead to higher
engagement than more neutral ones. This can make LTV sys-
tems a particularly poor choice for avoiding undesired shifts
in user’s behaviors, moods, preferences, etc. While it has
been proposed to prevent the RS from reasoning about ma-
nipulation pathways (e.g., by keeping it myopic) (Krueger
et al., 2020; Farquhar et al., 2022), even such systems can
influence users in systematically undesirable ways (Jiang
et al., 2019; Mansoury et al., 2020; Chaney et al., 2018).

In this work, we focus on user’s preference shifts, which
is a particularly challenging problem that has been gaining
more attention (Franklin et al., 2022). Any recommender
policy will have some influence on user preferences. While
this might seem cause for concern, the degree to which
undesirable and manipulative preference influence occurs in
practice has yet to be measured. Moreover, no framework
has yet been proposed to explicitly account for a policy’s
influence on users when choosing which policy to deploy.
We attempt to propose such a framework here – requiring
us to tackle two critical problems.

Firstly, we need to anticipate what preference shifts a RS
policy will cause before it is deployed. This alone would
enable system designers to generate visualizations such as
those in Fig. 1 (explained in more depth in our experiments):
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Figure 1: Preferences induced by different RS policies across the same cohort of users. In our simulated environment,
preferences (y axis) are in 1D, and change over time (x axis) as users interact with the policy. On the right, the RL system
drives preferences to one spot. A myopic policy (center) has a similar effect but less concentrated. These shifts are different
from what we introduce as the “natural” evolution of user preferences.

these could surface whether certain RS policies tend to in-
duce shifts that are significantly different from others, and
allow to assess whether such shifts seem manipulative or
otherwise unwanted. We study how to do this using histori-
cal user interaction data, and show how to train a predictive
model that implicitly captures preference dynamics. Once
trained, our model estimates a user’s (latent) preferences
induced by their interactions with a previous RS policy, and
then uses that to estimate how that user’s preferences would
evolve under a new policy.

The second critical problem is having quantitative metrics
for evaluating whether an evolution of preferences is ac-
tually unwanted: a computable metric not only simplifies
evaluation, but could also enable recommenders to be opti-
mized against unwanted shifts. The issue arises from the fact
that standard engagement metrics are preference-change-
agnostic: they do not directly assign value to preference
shifts (or shifts in any other aspect of the user’s state, for
that matter). Even if a system were to completely overwrite
a user’s preferences, as long as the user is engaged, the
system would be “performing well”. We thus introduce
some preliminary metrics which assign value to preference
changes – based on how the users’ preferences would have
changed in the absence of the recommender – in an attempt
to isolate the recommender’s influence over the user’s shifts.

For such metrics, instead of defining desirable or undesirable
shifts directly, we provide a framework for conservatively
defining “safe shifts”: we non-exhaustively list certain shifts
that we trust not to be particularly problematic, and measure
the extent to which other shifts deviate from them. If the
shifts induced by a policy differ significantly from the safe
ones, they should be flagged as warranting more investiga-
tion. A candidate for safe shifts that we introduce is how
user preferences would shift if they were interacting with a
random recommender – which we call “natural preference
shifts”. One can think of this as an approximation to not
having a recommender system at all. Fig. 1 (left) shows
this natural preference evolution for our running example,
and how user preferences stay somewhat diffuse but drift
towards the opposite mode that the RL and myopic policies
push them to. Note that while our metrics can effectively
penalize undersired shifts, it comes at a cost: natural shifts,

and in fact any lists of safe shifts that we define, are unlikely
to be exhaustive, which means the approach will conserva-
tively penalize policies that might in reality be safe.

To demonstrate both the estimation of preference shifts and
their evaluation, we set up a testing environment in which we
emulate ground truth user behavior by drawing from a model
of preference shift from prior work (Bernheim et al., 2021).
We first show that our learned preference shift estimation
model – trained using historical user interaction data – can
correctly anticipate user preference shifts almost as well as
knowing the true preference dynamics. Additionally, we
show qualitatively that in this environment, RL and even
myopic recommenders lead to potentially undesired shifts.
Further, we find that our evaluation metric can correctly flag
which policies will produce undesired shifts, and evaluates
the RL policy from Fig. 1 as 35% worse than the myopic
one, which is in turn 40% worse than our policy which is
penalized for manipulating user’s preferences. Our results
also suggest that evaluating our metric using the trained
estimation model correlates to using ground truth preference
dynamics, and that optimizing for safe shifts does lead to
higher scoring (more safe) policies.

Although this work just scratches the surface of finding the
right metrics for unwanted preference shifts and evaluating
them in real systems, our results already have implications
for the development of recommender systems: in order to
ethically use recommenders at scale, we must take active
steps to measure and penalize how such systems shift users’
internal states. In turn, we offer a roadmap for how one
might be able to do so by learning from user interaction
data, and put forward a framework for specifying “safe
shifts” for detecting and controlling such incentives.

2. Related Work
RS effects on users’ internal states. A variety of previ-
ous work considers how RSs algorithms might affect users:
influencing user’s preferences for e-commerce purposes
(Häubl & Murray, 2003; Cosley et al., 2003; Gretzel & Fe-
senmaier, 2006), altering people’s moods for psychology
research (Kramer et al., 2014), “nudging” users’ opinions
or behaviors (Jesse & Jannach, 2021; Matz et al., 2017;
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Weinmann et al., 2015), exacerbate (Hasan et al., 2018)
cases of addiction to social media (Andreassen, 2015), or
increase polarization (Stray, 2021). There have been three
main types of approaches to quantitatively estimating effects
of RSs’ policies on users: 1) analyzing static datasets of
interactions directly (Nguyen et al., 2014; Ribeiro et al.,
2019; Juneja & Mitra, 2021; Li et al., 2014), 2) simulating
interactions between users and RSs based on hand-crafted
models of user dynamics (Chaney et al., 2018; Bountouridis
et al., 2019; Jiang et al., 2019; Mansoury et al., 2020; Yao
et al., 2021; Ie et al., 2019a), or 3) using access to real users
and estimating effects through direct interventions (Holtz
et al., 2020; Matz et al., 2017). We see our approach as an
improvement on 2), in that we propose to implicitly learn
user dynamics instead of hand-specifying them. While we
still assume a known choice model (how users choose con-
tent based on their preferences), such assumption is much
less restrictive than assuming fully known dynamics. Our
approach is most similar to Hazrati & Ricci (2022), but
focused on preferences rather than behavior.

Neural networks for recommendation and human mod-
eling. While data-driven models of human behavior have
been used widely in real-world RS as click predictors
(Zhang et al., 2019; Covington et al., 2016; Cheng et al.,
2016; Okura et al., 2017; Mudigere et al., 2021; Zhang
et al., 2014; Wu et al., 2017) and for simulating human be-
havior in the context RL RSs’ training (Chen et al., 2019;
Zhao et al., 2019; Bai et al., 2020; Shi et al., 2018), to our
knowledge they have not been previously used for explicitly
simulating and quantifying the effect on users of hypotheti-
cal recommenders. We emphasize how human models can
also be used as simulation mechanisms by anticipating RSs’
policies impact on users’ behaviors and, as enabled by our
method, even preferences.

RL for RS. Using RL to train RSs has recently seen a dra-
matic increase of interest (Afsar et al., 2021), with some
notable work led by YouTube, Facebook, and others (Ie
et al., 2019b; Chen et al., 2020; Gauci et al., 2019; Cai
et al., 2022) – which have led to significant real-world per-
formance increases.

Side effects and safe shifts. Our work starts from a similar
question to that of the side effects literature (Krakovna et al.,
2019; Kumar et al., 2020), applied to preference change:
given that the reward function will not fully account for
the cost (or value) of preference shifts, how do we prevent
undesired preference-shift side effects? Our notion of safe
shifts corresponds to the choice of baseline in this literature.
While some ideas have been proposed to remove manipula-
tion incentives (Farquhar et al., 2022), this requires having

3. Preliminaries
Setup. We model users as having time-indexed preferences
ut ∈ Rd, which assign a scalar value to every possible item

of content x ∈ Rd: the value to the user derived from the
engagement with item xt under ut is modeled as being given
by r̂t(ut) = uTt xt. The user’s preferences ut together with
other variables constitute the user’s internal state zt, which
comprises a sufficient statistic for their long-term behavior,
but which our method will not explicitly model. At every
time step the user sees a slate st (a list of items) produced
by a recommender policy π, and chooses an item xt. The
policy π maps history of slates and choices so far, s0:t, x0:t,
to each new slate st+1: that is st+1 ∼ π(s0:t, x0:t). Upon
making a choice, the user’s internal state updates to zt+1.

User choice model. We are interested in inferring and pre-
dicting preferences, which we do not observe directly. As
such, we make an assumption – justified in Appendix B –
about how user behavior (the user’s choice xt) relates to
their current preferences ut: that is, we assume the form of
P(xt = x|st, ut) is known.

Preference evolution as an NHMM. The dynamics of the
user’s time-indexed internal state zt – which we don’t as-
sume to be known – depend on the previous state zt−1 and
on the last choice of slate by the recommender st (which
in turn depends on history because the policy π uses his-
tory). This makes our setup a Non-homogeneous HMM
(NHMM) (Hughes et al., 1999; Rabiner, 1986), with hidden
state zt and time-dependent dynamics P(zt+1|zt, st) (the
choice of slate st by π will affect the future internal state).
See Appendix D for more information. We will be using the
NHMM inferences as an oracle benchmark for our methods’
performance.

4. Estimating Users’ Preferences
Our proposal boils down to the following: before deploying
a new recommender policy π′, we first need to be able to
understand how that policy would change preferences and
behavior of users. More formally, for a set of N users, we
assume access to historical data of their interaction with a
RS policy π: Dj = {sπ0:T , xπ0:T } for every user j. For any
user, we are interested in estimating how their preferences
would evolve if further interactions occurred with a new
policy π′, which we denote uπ

′

H (where H > T ).

4.1. Estimation under known user dynamics

We first describe here how one could solve this problem
optimally if one had oracle access to the true user internal
state dynamics, and later relax this assumption.

Assuming the user internal state dynamics P(zt+1|zt, st) to
be known, our goal is – as mentioned above – to estimate
what their preferences would be at a future timestep H if
policy π′ were to be deployed going forward, that is, uπ

′

H .
Given the assumption of known internal state dynamics,
every component of the NHMM is known, meaning that
we can perform exact inference over uπ

′

H . We can do so via
a simple extension of HMM prediction: using the history
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Figure 2: Future preference estimation model. Given
slates and choices up until the current timestep s0:t, x0:t, we
train a network to predict beliefs over the next preferences
ut+1 which – together with the next slate st+1 – induce a
distribution over content choices through the choice model.
We can supervise the training with the actual choices users
made for slates – the network will learn to output preference
beliefs which induce similar choices to those in the data.

of interactions (sπ0:T , x
π
0:T ) to estimate P(zπ′H |sπ0:T , xπ0:T ) as

shown in Appendix E.1. As the preferences uπ
′

H are just one
component of the internal state zπ

′

H , one can trivially recover
a posterior over the preferences specifically.

4.2. Estimation under unknown user dynamics

In practice, one will not have access to an explicit repre-
sentation of the user’s internal state zt, let alone its dynam-
ics. We thus attempt to approximate the NHMM estima-
tion task we are interested in by implicitly learning user
preference dynamics from their past interaction data. As
seen in Fig. 2, we can train a neural network on {Dj}1:N
such that, given a user’s past interaction data (sπ0:t, x

π
0:t,

where t ≤ T ), the model outputs a belief over the next-
timestep preferences P(ut+1|sπ0:t, xπ0:t). Using the known
choice model assumption from Sec. 3, we map the be-
lief over preferences, together with the new slate st+1, to
a distribution over content items: P(xt+1|s0:t+1, x0:t) =∑
ut+1

P(xt+1|ut+1, st+1)P(ut+1|s0:t, x0:t).

We now have a model which approximates the inference
P(ut+1|sπ0:t, xπ0:t) for any t ≤ T – that is, it provides us
beliefs over the preferences ut+1 resulting from the user’s
interactions so far with π. However, for the problem we
stated at the beginning of Sec. 4, we are interested in esti-
mating the preferences that would be induced if a different
policy π′ were to be deployed going forward after π: for-
mally, we are interested in P(uπ′H |sπ0:T , xπ0:T ) where H > T .

To obtain a belief over uπ
′

H for a user j, we can sample
simulated user preference trajectories from the model to
obtain a Monte Carlo estimate of the desired distribution –
as shown in Fig. 3. We use the data Dj = {sπ0:T , xπ0:T } as
input to the model to obtain a belief over the next-timestep
preferences uT+1. We then use such belief and a slate
sπ
′

T+1 sampled from policy π′ to simulate the user’s choice
xπ
′

T+1. Treating this extra (simulated) step of interaction
history for the user (the slate sπ

′

T+1 and choice xπ
′

T+1) as
part of the observed history so far, we repeat this process
to obtain preference estimates under π′ for future timesteps.
By simulating multiple future trajectories, we can obtain

beliefs over the expected preferences a user would have at
any future timestep. See Algorithm 1 for the exact procedure.
In Appendix E.1 we show that this procedure does in fact
approximate the desired estimate.

One challenge with this method is that it requires the learned
preference predictor model to generalize to histories col-
lected under π′, even though no training data was collected
with π′. We believe that there is still reason to be hope-
ful given that real-world datasets of user interaction are
usually collected under many different deployed policies.
This suggests that as long as the histories induced by π′ are
not too dissimilar from those in the historical data used for
training, the network should be able to generalize to predict
preference evolutions induced by π′ too.

5. Quantifying unwanted shifts and
optimizing to avoid them

Given the estimates of preference shifts under different poli-
cies that Sec. 4 enables us to compute, it would be useful to
have quantitative metrics for whether they are undesirable:
this would enable to automatically evaluate policies and
even actively optimize to avoid such shifts. To obviate the
difficulty of explicitly defining unwanted shifts, we limit
ourselves to defining some shifts that we somewhat trust
– “safe shifts” – and flag preference shifts that largely dif-
fer from these safe shifts as potentially unwanted. This is
similar to defining a region of the space which we trust in
a risk-averse manner. The underlying philosophy is that
“we don’t know what good shifts are, but as long as you
stay close to [family of safe shifts], things shouldn’t go too
bad”. To do this, we need both a notion of shifts we trust
(“safe shifts”), and a notion of distance between different
evolutions of preferences.

Notation. We denote the π-induced engagement under
“safe-shift preferences” usafe

t as r̂t(usafe
t , π) = (xπt )

Tusafe
t .

This means that π was used to select the slate from which
the user picked the item xπt , but xπt ’s engagement is con-
sidered relative to different preferences usafe

t than those the
user would have developed under π.

Distance between shifts. Consider a known preference-
trajectory uπ0:T induced by π. We choose a metric between
shifts such that engagement for the items xπ0:T chosen un-
der policy π is also high under the preferences one would
have had under safe shifts usafe

0:T . We operationalize this no-
tion of distance between π-induced shifts and safe shifts
usafe
0:T as D(uπ0:T , u

safe
0:T ) =

∑
t E
[
r̂t(u

π
t , π)− r̂t(usafe

t , π)
]
=∑

t Exπt
[
(xπt )

Tuπt −(xπt )Tusafe
t

]
. However, this operational-

ization could easily be substituted with others. In the case
that safe shifts are random variables (a family of safe shifts),
we consider the expected distance EU safe

0:T

[
D(uπ0:T , U

safe
0:T )

]
.

Safe shifts: initial preferences. As a first (very crude)
proposal for safe shifts, we can consider using the initial
preferences u0 as our safe shifts usafe

0:T : any deviation from
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Figure 3: Simulating future user preferences and choices. By iteratively using the future preferences estimation model
(Fig. 2) by inputting the observables (shaded, e.g. xπ0:6, s

π
0:6), one can simulate how an existing user’s preferences would

evolve in the future if they interacted with same policy π or a different policy π′ (by selecting future slates with π′).

the initial preferences u0 will be flagged as potentially prob-
lematic with D(uπ0:T , u0).

Safe shifts: natural preference shifts (NPS). One limita-
tion of the above metric is that not all preference shifts are
unwanted: people routinely change their preferences and
behavior “naturally”. But what does “naturally” even mean?
We propose an idealized notion of natural shifts, by asking
how preferences would evolve if the user were “omniscient”
and have full agency over their preference evolution process,
i.e. if would have access to all content directly and had
the ability to process it, unhindered by a small and biased
slate offered by the RS. Unfortunately this is impractical,
as we can never get data from such hypothetical users that
can attend to all content when choosing what to consume.
As an approximation, we consider random slates, which
at least eliminates the agency of the RS policy (which in
turn can change the user’s belief about the distribution of
available content). We therefore operationalize “natural
preferences” uπrnd as the preferences which the user would
have interacting with a random recommender πrnd, and we
use EU rnd

0:T

[
D(uπ0:T , U

πrnd
0:T )

]
as the metric.

Using safe shift metrics. For how one can estimate such
metrics, see Appendix F. Once computed, they can be used
both for evaluating preference shifts or for recommender
optimization (as alternate proxies for “value” relative to
simple engagement). However, clearly such metrics also
fall short of fully capturing “value”: we don’t want a system
that actively tries to keep the user preferences static (as
would result from blindly optimizing D(uπ0:T , u0)).

Penalized objective. By considering a weighted sum of
these metrics (as we will do in the penalized RL objective
below), we try to lead the system to perform well under a
variety of relatively-reasonable definitions of value, some
of which are not preference-shift-agnostic. One can think
of this as hedging our bets as to what the value (or cost) of
induced preference shifts should be, and making explicit
that it should not be zero, as current systems assume.

Penalized RS training. By using the method from Sec. 4,
one obtains a human model which can be used to simulate
human choices (in addition to preferences). Similarly to
previous work, we can use this human model as a simulator
for RL training of recommender systems (Chen et al., 2019;
Zhao et al., 2019; Bai et al., 2020). During training, we

can compute the metrics defined above penalize the current
policy for causing any shifts that we have not explicitly
identified as “safe” – in what can be considered a “risk-
averse” design choice. We incorporate these metrics in the
training of a new policy π by adding the two distance metrics
from above to the basic objective E

[
r̂t(u

π
t )
]

of maximizing
long-term engagement, leading to the updated objective
E
[
r̂t(u

π
t )+ ν′1 r̂t(u0, π)+ ν′2 r̂t(u

πrnd
t , π)

]
where ν′1, ν

′
2 are

hyperparameters. This objective can be optimized either
myopically or via long-horizon (RL) optimization. See
Appendix G for more details.

6. Experimental Setup
Why simulation? To test our method, we need to evaluate
both recommenders which interact with users (rendering
static datasets of user interaction unsuitable), as well as test
our evaluation metrics themselves – which are defined based
on internal preferences (for which we never get ground truth
in real interactions). We thus create a testing environment
in which we can emulate user behavior and have access to
their ground truth preferences. Like previous work (Chaney
et al., 2018; Bountouridis et al., 2019; Jiang et al., 2019;
Mansoury et al., 2020; Yao et al., 2021), we simulate both a
recommendation environment and human behavior. How-
ever, unlike such approaches, we use simulated human be-
havior for evaluation purposes only: our human model is
learned exclusively from data that would be observed in a
real-world RS (slates and choices), i.e. data of users (in
our case the simulated users) interacting with previous RS
policies – meaning our approach could be applied to real
user data of this form. A fundamental advantage of testing
our method in a simulated environment is that we can ac-
tually evaluate how well our model is able to recover the
preferences of our “ground truth” users, giving us insights
about how our methods could perform with real users.

Ground truth human dynamics. See Fig. 4 for a sum-
mary of the ground truth human dynamics we use for test-
ing our method (and Fig. 12 for more info on our envi-
ronment setup). Following prior work (Ie et al., 2019b;
Chen et al., 2019) we assume that users choose items in
proportion to (the exponentiated) engagement under their
current preferences, i.e. that P(xt = x|st, ut) is given by
the conditional logit model. In our setup, this reduces to
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Figure 4: Ground truth human dynamics. At each timestep, the user will receive a slate st. Given the user’s preferences
ut, the slate st induces a distribution over item choices P(xt|st, ut) from which the user samples an item xt and receives an
engagement value r̂t (unobserved by the RS). Additionally, st induces a belief over the future slates in the user bHt (s). In
turn bHt (s) – together with ut – induce a distribution over next timestep user preferences, from which ut+1 is sampled.

P(xt = x|st, ut) ∝ P(st = x)eβcx
Tut , with an additional

term P(st = x) which takes into account how prevalent
each item is in the slate – and we assume such choice model
to be also known by our method. We adapt (Bernheim et al.,
2021) to be our ground truth human preference dynamics.
On a high-level, at each timestep users choose their next-
timestep preferences to be more “convenient” ones – trading
off between choosing preferences that they expect will lead
them to higher engagement and maintaining engagement
under current preferences. See Appendix H.1 for a proof of
the logit model reduction, and more information about the
ground truth human.

Simulated environment setup. For ease of interpretation
of the results, in our experiments we only consider a co-
hort of users whose initial preferences are concentrated
around preference u = 130◦. To showcase preference-
manipulation incentives to make users more predictable,
we make the choice-stochasticity temperature βc a func-
tion of part of preference space one is in, with local optima
βc(80

◦) = 1 and βc(270◦) = 4. This causes these areas in
preference space to be attractor points, as RSs are able to
lead to higher engagement when users act less stochastically
(see Appendix H.1 for more details).

Dataset. For all our experiments, we use a dataset of 10k
trajectories (each of length 10), collected under a mixture
of policies described in Appendix H.3. 7.5k trajectories are
used for training our models and 2.5k for computing the
validation losses and accuracies reported in Sec. 7.1.

Training human models and penalized RS policies. For
training our human models, we use a bidirectional trans-
former model similar to that of Sun et al. (2019), and
only assume access to a dataset of historical interactions
s0:T , x0:T . We train myopic and RL RS policies π′ using
PPO (Schulman et al., 2017; Liang et al., 2018) and restrict
the action space to 6 possible slate distributions for ease
of training. For penalized training we give the three met-
rics r̂t(uπt ), r̂t(u0, π

′), r̂t(uπrnd
t , π′) equal weight. For more

details on human model and RL training, see respectively
Appendix H.2 and Appendix G.

Figure 5: Validation losses and accuracies on held-out tra-
jectories for the preference prediction task, averaged across
timesteps. Both under the correct choice model and with
some mis-specification, preference prediction performs sim-
ilarly to oracle NHMM estimation (which additionally has
access to the preference dynamics).

Figure 6: Natural Preference Shifts (induced by πrnd) among
a cohort of 1000 users (left) vs. a Monte Carlo estimate
using 1000 simulated user interaction trajectories obtained
with our model and Algorithm 1 (right).

7. Results
In Sec. 7.1 we validate that our method from Sec. 4 can
estimate user’s preferences and predict their evolution under
alternate policies; then, in Sec. 7.2, we turn to validating the
metrics and penalized RL training approach from Sec. 5.

7.1. Estimating user preferences

Oracle baseline. We use the NHMM estimates computed
with full access to the human preference dynamics as a
baseline for our preference and behavior estimates. Given
that we can compute them through exact inference, such
estimates are the best one could possibly hope for.

Estimating preferences. We first verify that, given snip-
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Figure 7: With penalized RL training, the preferences in-
duced by the learned policies are closer to the NPS and
initial preferences, as desired. Myopic systems will only
greedily be pursuing the penalized objective, leading to
somewhat arbitrary behavior.

pets of past interactions from the validation trajectories, the
preference prediction model (Sec. 4) is able to predict the
next timestep preferences (and observations, as induced by
the predicted preferences). For each interaction sequence in
the validation set we estimate the tth timestep preferences
and observations based on the previous interactions (for all
1 ≤ t ≤ 10). We also perform this same inference on the
same data with a random predictor, and with our oracle
baseline: exact NHMM inference. We report the average
values for the prediction losses and the accuracies in Fig. 5.

Robustness to mis-specified choice models. Our method
requires the specification of a user choice model, which will
be challenging in practice. In Fig. 5 we also show how the
quality of our estimates withstands a mis-specified choice
model (described in Appendix H.2). We found that valida-
tion loss for choice predictions (which would be observed
in real-world experiments, unlike the preference predic-
tion loss and accuracy) was a good indicator of the amount
of model mis-specification: reducing choice model mis-
specification reduces choice prediction validation loss. This
could be used to guide the design of better choice models.

Imagining Natural Preference Shifts (NPS). In the exper-
iment above, we were validating our model on data from
the same distribution (and RS policy) as during training. To
test the performance further, we try to now see whether our
model is able to estimate how alternate policies would af-
fect the evolution of user preferences on a population level,
if they were to be deployed (for which we had no data at
training time). We use Algorithm 1 to simulate preference
trajectories of users interacting with πrnd (setting T = 0,
i.e. without considering any past interaction context). We
then average the predicted preference distributions across
the simulated users, giving us estimated preference evolu-
tions similar to the actual ones induced by πrnd (i.e. the
Natural Preference Shifts) – shown in Fig. 6. This shows
that in our experimental setup, our method is able to capture
the preference dynamics of a user in ways that generalize
to alternate policies; that is, the model is able to estimate
preference evolutions under different RS policies from the
ones from which the training interaction data was obtained.

7.2. Evaluating undesirable shifts and penalizing them

Qualitative effects of different policies. Firstly, we show
the qualitative effect of using different classes of RS policies
in our simulated setup in Fig. 1. We see how interacting with
the unpenalized RL policy drives users strongly away from
their initial preferences and concentrates them in a specific
region of preference space (in bright yellow) – in a behavior
that seems potentially concerning (what if the preference
type were a political axis?). The myopic policy (center),
shows the same type of effect but much less pronounced.

Safe shift metrics and sum of rewards. As delineated in
Sec. 5, we use the initial preferences u0 and Natural Prefer-
ence Shifts uπ

rnd

0:T of a user as our “safe shift” proxies, which
give us alternate evaluations of trajectories r̂t(u0, π′) and
r̂t(u

πrnd
t , π′) relative to simple current-preference engage-

ment r̂t(uπ
′

t ). We consider the sum of these metrics as a
better proxy for “true value” than any one of these metrics
alone. π′ here denotes the trained policy.

Hypotheses about metrics. We now turn to our hypotheses
regarding metrics. We hypothesize that our metrics are able
to: (H1) identify whether policies will induce potentially
unwanted preference shifts, and (H2) incentivize better be-
havior when added as a penalty during training.

Learned human model confound. To validate H1 with
real users, one would have to rely on an approximate compu-
tation of the metrics (estimated evaluation) with a learned
user models of preference dynamics (as computing the met-
rics requires estimating preferences). Additionally, to vali-
date H2, one would likely train with simulated interactions
from the learned user model (training in simulation) – as
explained in Sec. 5. The quality of the learned user model
would thus affect the evaluation of the quality of the choice
of metrics themselves – which would constitute a confound.

H1 under oracle dynamics access. In order to deconfound
our experiments from the errors in our estimated human dy-
namics, we first test our hypotheses assuming oracle access
to users and their dynamics for the purposes of training and
evaluation. We first hypothesize that (H1.1) by computing
the metrics exactly using the preference estimates obtained
through NHMM inference (oracle evaluation), our metrics
are able to flag potentially unwanted preference shifts. We
find this to be the case by comparing the oracle evalua-
tion metric values (left of Table 1, “unpenalized”) and the
actual preference shifts induced by the various RSs we con-
sider (Fig. 1): while unpenalized RL performs better (7.49
vs 5.71) than myopic for engagement r̂t(uπ

′

t ), it performs
worse with respect to our safe shift metrics. This matches
Fig. 1, where RL has more undesired effects.

H2 under oracle dynamics access. We additionally hy-
pothesize that (H2.1) such metrics (still computed exactly,
in oracle evaluation) can be used for training penalized
LTV systems which avoid the most extreme unwanted pref-
erence shifts. For this training, allow ourselves on-policy
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human interaction data with the ground truth users, as if the
RL happened directly in the real world – we call this oracle
training. For the penalized RL RS, the cumulative metric
value (“Sum” in Table 1) increases substantially, although
it is at the slight expense of instantaneous engagement (Ta-
ble 1). Qualitatively, we see that the induced preference
shifts caused by the RL system seem closer to “safe shifts”
(Fig. 7), supporting H1.1 in that high metric values qualita-
tively match shifts that seem more desirable.

Overall, we see that with oracle access, the metrics capture
what we see as qualitatively undesired shifts, and that using
them for penalized RL produces policies with slightly lower
engagement, but drastically better at avoiding such shifts.

H1 and H2 with learned user dynamics. In practice we
would not have access to the underlying user dynamics, or
potentially even the ability to interact on-policy with users
as we train RL policies, due to the high cost and risk of
negative side effects for collecting data with unsafe policies.
Therefore, we wish to show that even with estimated metrics
and simulated interactions (based on the learned models),
(H1.2) estimated evaluation and (H2.2) training in simu-
lation (described above) are still able to respectively flag
unwanted shifts and penalize manipulative RL behaviors.
Table 2 shows that – although the estimated metrics can dif-
fer from the ground truth ones somewhat substantially (see
Oracle Eval. at the top vs Estimated Eval. at the bottom) –
importantly the relative ordering of the policies ranked by
our estimated values stay the same: the penalized RL policy
trained in simulation actually has (under oracle evaluation)
higher cumulative reward than the unpendalized one, and the
estimated evaluation keeps the same ranking (even though
is more optimistic about the unpenalized reward).This pro-
vides some initial evidence that, even without observing
preferences in practice, one could successfully optimize –
and assess – recommenders that penalize preference-shifts.

8. Discussion
Summary. In conclusion, our contributions are: 1) propos-
ing a method to estimate the preference shifts which would

Table 1: Results under oracle training and evaluation.
Both here an in Table 2 we report the cumulative reward
under various metrics, averaged across 1000 trajectories
(standard errors are all < 0.1). By looking at the safe shift
metrics r̂(u0) and r̂(urnd

t ), we see that penalized systems
stay significantly closer to safe shifts than unpenalized ones.

Oracle Training

Unpenalized Penalized
Myopic RL Myopic RL

O
ra

cl
e

E
va

l

r̂t(u
π′

t ) 5.71 7.49 6.20 5.28
r̂t(u0, π

′) 1.99 -0.08 3.61 6.21
r̂t(u

πrnd
t , π′) 2.01 -1.09 3.10 4.57

Sum 9.69 6.33 12.90 16.05

be induced by recommender system policies before deploy-
ment; 2) a framework for defining safe shifts, which can be
used to evaluate whether preference shifts might be problem-
atic; 3) showing how one can use such metrics to optimize
recommenders which penalize unwanted shifts. As dynam-
ics of preference are learned (rather than handcrafted), our
method has hope to be applied to real user data. While there
is no ground truth for human preferences, verifying the
model’s ability to anticipate behavior can give confidence
in using it to evaluate and penalize undesired preference
shifts. We acknowledge that this is only a first step, tested
in an idealized setting with relatively strong assumptions.
However, we hope this can be a starting point for further
research which focuses on relaxing such assumptions and
making these ideas applicable to the complexity of real RSs.

Limitations. To validate our estimation method and met-
rics, we required ground truth access to user preferences –
leading us to conduct our experiments in simulation. While
the ground truth model of dynamics we use is inspired by
the econometrics literature, we cannot guarantee that our
results would translate when the method is applied to real
users with real preference dynamics. We expect real users
to have more complex dynamics, with preference changes
mediated by beliefs other than just about the distribution of
content, such as beliefs about the world; while our method
makes no assumptions about the structure of this internal
space, it might require a lot more (and more diverse) data to
capture these effects. Further, we also chose the experimen-
tal setup such that an RL system would act on its incentives
to manipulate preferences – not all real settings will neces-
sarily have that property. Moreover, crucially our method
requires designing a user choice model: one could obviate
this by predicting behavior and defining metrics on behavior,
but this would mean losing the latent preference structure.
Additionally, even what we call “preferences” – a latent for
instantaneous behavior – is limiting as it doesn’t lend itself
to capturing long-term preferences, and assumes that there
is such a thing as fixed preferences (Ariely & Norton, 2008).

Table 2: Effect of estimating evaluations and simulating
training for LTV. We see that the estimated evaluations of
trained systems strongly correlate with the oracle evalua-
tions (and importantly, maintain their relative orderings). A
similar effect occurs when training in simulation rather than
by training with on-policy data collected from real users.

Oracle Training Training in Sim.

Unpen. Penal. Unpen. Penal.

O
ra

c.
E

va
l

r̂t(u
π′

t ) 7.49 5.28 6.40 5.48
r̂t(u0, π

′) -0.08 6.21 -1.24 5.61
r̂t(u

πrnd
t , π′) -1.09 4.57 -1.83 4.43

Sum 6.33 16.05 3.36 15.52

E
st

.E
va

l r̂t(u
π′

t ) 5.58 5.42 6.49 5.78
r̂t(u0, π

′) 1.28 5.57 -0.80 4.94
r̂t(u

πrnd
t , π′) 2.05 3.88 1.48 4.41

Sum 8.91 14.87 7.17 15.15
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A. Notation
• xt ∈ Rd: time-indexed user choice of content from a slate. xπt indicates a choice that was made from a slate that was

produced by policy π.

• st ∈ Rd: time-indexed slate chosen by the recommender system. See Fig. 12 for how slates are represented. sπt
indicates a slate that was sampled from policy π.

• π : (s0:k, x0:k)→ sk+1: a recommender system policy. πrnd denotes a policy which selects slates randomly – so that
the distribution of content matches the distribution of the slate.

• ut ∈ Rd: time-indexed user preferences. uπ
′

t is the preferences a user has at timestep t after interacting with policy
π′. From the context, it should be clear whether such preferences are estimated future or counterfactual preferences,
described in Appendix C.

• zt: time-indexed user’s internal state. Policy superscripts are used in the same way as for preferences.

• r̂t(ut) = uTt xt is the reward function which captures user engagement. The expression r̂t(usafe
t , π) = (xπt )

Tusafe
t is

used when the preferences used to evaluate the content are different from the policy: This means that π was used
to select the slate from which the user picked the item xπt , but xπt ’s engagement is considered relative to potentially
different preferences than those the user would have developed under π.

• bπ0:t(ut+1): the belief over a user’s preferences at timestep t + 1, as induced by slates sampled under π sπ0:t, x
π
0:t.

Formally, this is equivalent to P(ut+1|sπ0:t, xπ0:t).

• bπ0:t(xt+1): the belief over a user’s choice at timestep t+ 1, as induced by slates sampled under π. Formally equivalent
to: P(xt+1|s0:t+1, x0:t).

• P̂f : (s0:k, x0:k)→ (b0:k(uk+1), b0:k(xk+1)): the future preference estimator model described in Sec. 4.

• P̂i : (s0:k−1, x0:k−1)→ b0:k(u0) initial preference estimator described in Appendix C.

• P̂c : (s0:k−1, x0:k−1, b0:k(u0)) → (b0:k(uk+1), b0:k(xk+1)) counterfactual preference estimator described in Ap-
pendix C.

B. Known choice model assumption
Here we try to justify why assuming a known choice model is almost a necessity given the problem that we set out to
solve: without this (or some other assumption), estimating user preferences and learning their dynamics seems too difficult.
Looking at our problem as a NHMM gives us insight as to such difficulty. See Appendix D for the casting of our problem to
the NHMM formalism.

Our goal is to infer preferences (part of the hidden state), given only observations, but no user choice model (which is part of
the observation model of the underlying NHMM). Algorithms such as Baum-Welch (Bilmes, 1998) have been proposed for
jointly learning both the transition model of the hidden state, and the observation model of a HMM. This type of algorithm
could be extended to the NHMM setting, providing a promising direction. However, the Baum-Welch algorithm assumes
the transition dynamics of the hidden state to be linear, and the dimension of the hidden state to be known. We expect real
user’s dynamics to be non-linear (and so are the ones that we consider in our experiments). Moreover, we don’t want to
constrain our method to require knowledge of the dimension of the hidden state (the user’s internal state) – which will be
unknown in practice.

In light of this, assumption the nature of the choice model to be known seems instrumental to render preference inference
possible in our setting. As shown in Sec. 7.1, it might sometimes be possible to detect whether the choice model is
mis-specified if it leads to higher validation loss on choice prediction (which is observed) than alternate choice model
hypotheses. This could guide a process of iteratively refining one’s choice model. An important thing to note is that –
although limiting – such assumption is already an improvement relative to all previous work related to preference shifts that
we are aware of (Krueger et al., 2020; Jiang et al., 2019; Mansoury et al., 2020; Chaney et al., 2018; Evans & Kasirzadeh,
2021), which assumes the whole user preference dynamics to be known.
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Figure 8: Simulating counterfactuals. To simulate what the user’s preferences would have been under a different policy
π′, we first can use the initial preference model to estimate initial preferences based on later observables. We can then use
the estimated initial preferences to simulate counterfactual preference trajectories for the user under π′ using a conditioned
future preference estimation model – where estimates are conditioned on the recovered initial preference belief.

C. Counterfactual Preferences Estimation
In Sec. 4 we develop a methodology to train a human model that can be used for both: 1) predicting how existing users’
preferences would evolve if new policies were to be deployed to them; 2) simulating entire user preference trajectories under
desired RS policies; this is useful, but suffers from a problem – users have already been biased by the previous policies, and
their preferences might have already e.g. shifted to extremes; forward prediction will thus miss certain undesired effects.
Another useful task would be to “turn back time” – and ask for a specific user, “how would have their preferences shifted if
we exposed them to π′ from the very beginning of their interactions with the platform?”. To differentiate these problems in
this section, we call the methodology developed in Sec. 4 future preference estimation; instead we call the problem described
just above the counterfactual preference estimation problems.

While the methodology described in Sec. 4 is sufficient to estimate the expected preferences and behaviors a user will have
in the future, it cannot be readily used to estimate counterfactual preferences and behaviors: given a set of past interactions
Dj collected under policy π, we cannot predict what the preferences would have been for this user if an alternate policy π′

had been used from the first timestep of interaction instead of π – we denote these counterfactual preferences as uπ
′

0:T (note
that in this section, we are overburdening the notation for the superscript to mean counterfactual preferences under a policy –
this can be distiguished from the usual notation in Appendix A of future preferences under a policy by whether the time
subscripts are larger or smaller than T ). On a high-level, to perform the counterfactual estimation task we want to extract as
much information as possible about the user’s initial internal state from the historical interactions Dj we have available for
them: even though such interactions were collected with a different policy π, they will still contain information about the
user’s initial state (including their initial preferences before interacting with the RS). Then, based on this belief about the
user’s initial internal state, we want to obtain a user-specific estimate of the effect that another policy π′ would have had on
their preferences.

As done in Sec. 4, we first describe how one could solve this problem if one had oracle access to the true user internal state
dynamics, and then relax this assumption showing how one can learn to perform the inference approximately given only
observable interaction data.

Estimation under known internal state dynamics.

Under oracle access to the internal state dynamics, we can first obtain the belief over the initial state of a given user
P(z0|sπ0:T , xπ0:T ) via NHMM smoothing. This is a simple extension of HMM smoothing (Russell & Norvig, 2002) which
can be derived using the same steps used in Appendix E.1. We can then roll out the human model forward dynamics with
the fixed policy π′ instead of π: P(zπ′t |sπ0:T , xπ0:T ) =

∑
z0
P(zπ′t |z0)P(z0|sπ0:T , xπ0:T ).

Estimation under unknown internal state dynamics.

Without oracle access to the internal state dynamics, again we try to learn to perform this NHMM counterfactual task
approximately. One challenge in obtaining supervision for the task is that in our dataset of interactions we never get
to see true counterfactuals. We get around this by decomposing the task into two parts, for which we use two separate
models: (1) an initial preference estimation network, which is used to estimate the initial internal state for the user (based
on the interaction data xπ0:T , s

π
0:T under π which we have available), i.e. train a predictor which approximates the NHMM

smoothing distribution P(u0|xπ0:T , sπ0:T ) which we will denote here as bπ0:T (u0) (the belief over initial preferences); and then
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(2) an counterfactual preference estimation network which is used to estimate uπ
′

0:T conditional on the belief of the initial
preferences.

The models for the two tasks are trained with the same method used for predicting future preference estimation (Fig. 2)
but with different inputs and supervision signal (Fig. 8). For task (1), the network is trained to predict the initial (instead
of future) preferences of the user based on later context xπ1:T , s

π
1:T . While the network predicts P(u0|xπ1:T , sπ1:T ), we can

recover the correct smoothing estimate as P(u0|xπ0:T , sπ0:T ) ∝ P(xπ0 |sπ0 , u0)P(u0|xπ1:T , sπ1:T ) (see Appendix E.2).

The network for task (2) is obtained by changing the prediction network to also condition on the recovered initial preferences
as shown in 8, enabling us to make predictions of the form P

(
uπ
′

k+1|bπ0:T (u0), xπ
′

0:k, s
π′

0:k

)
. For training, we first recover initial

preference beliefs for each user j in the data Dj with the initial preference estimation model (which we assume has already
been trained). We then train this counterfactual estimation network to reconstruct the user j’s actual interactions (under π)
simply based on this initial preference estimate (similarly to the case in Sec. 4.2 but by additionally conditioning on the
initial preference belief). This teaches the network to leverage the information contained user’s initial preferences estimate
to better estimate their preferences and behaviors based on what their interactions have been so far. In practice, we train
these models using a transformer architecture similar to (Sun et al., 2019), and we detail in Appendix E.2 why this is a good
fit for our tasks.

At inference time, we recover an estimate of initial preferences based on interaction data (sπ
′

0:T , x
π′

0:T ) of a new user with a
new recommender policy π′ with model (1), and then can estimate the preferences such user would have had under a new
policy π′′ with model (2). Such counterfactual preference estimate is obtained with Monte Carlo simulations similarly to
Sec. 4.2 with the difference that the network is also conditioned on the initial preferences estimate. See Algorithm 2 for the
full algorithm and Appendix E.2 for why this approximates the NHMM task.

We now have a way to estimate – for a new policy π′ – what we would expect its impact would have been on a user relative
to having deployed π (from which we have observational data; note that similarly to future preferences estimation, this
procedure too can suffer if π′ induces a strong distribution shift relative to the training data).

D. Casting our problem to a Non-Homogeneous Markov Model
In our NHMM instance, the observation for each timestep is the corresponding (st, xt) pair, the hidden state is zt, and the
probability of an observation is given by the joint probability of the policy choosing a specific slate given the history so
far P(st|s0:t−1, x0:t−1) = P

(
π(s0:t−1, x0:t−1) = st

)
and the user choosing a specific item from that slate P(xt|st). The

dynamics model is instead given by P(zt+1|zt, s0:t−1, x0:t−1) =
∑
st+1

P(zt+1|zt, st)P(st|s0:t−1, x0:t−1) (the output of π
depends on the history of slates and choices so far, but we omit them from the notation for simplicity). Note that if the
policy π were deterministic, the dynamics model of the NHMM reduces to P(zt+1|zt, st), as conditioning on st or on the
full history is equivalent. We use this notation throughout the main text of the paper for simplicity.

E. Preference estimation: additional information
E.1. Future preference estimation

Future preference estimation with known dynamics

The Hidden Markov Model (HMM) “prediction task” corresponds to the inference of the hidden state of the system at the
next timestep given the history so far: P(hT |o0:k) where h and o are respectively the hidden state and the observations of
the HMM, and T > k. We will provide here a proof sketch of how the HMM prediction task can be easily extended to
NHMM prediction. On a high level, by taking into account the time-dependent dynamics (computing forward inferences
differently for every timestep), inference tasks in a NHMM should be no different than those in an HMM. We illustrate this
more formally below for the prediction task.

The prediction inference in HMMs is performed by recursively repeating two steps: first, obtaining the filtering estimate
which incorporates the latest observation as P(ht|o0:t) = αP(ot|ht)P(ht|o0:t−1), where α is a constant; then using the
filtering estimate for prediction without the addition of new evidence, P(ht+1|o0:t) =

∑
t P(ht+1|ht)P(ht|o0:t). Once all

evidence is incorporated and we have P(hk|o0:k), one can repeatedly apply the second step to obtain P(hT |o0:k) – the
quantity we set out to obtain. This can be thought of as simply propagating the belief over the hidden state one timestep at a
time in the future using the dynamics model P(ht+1|ht). See (Russell & Norvig, 2002) for more information.

This is where the difference with the HMM comes in: the forward model will be time dependent, as the output of the
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policy π depends on the history so far. By using the same exact approach as in the paragraph above (with this modification
in the prediction step), one can perform the same inference also in a NHMM. In the HMM notation, we would have
P(ht+1|o0:t) =

∑
t P(ht+1|ht, o0:t)P(ht|o0:t), where we cannot drop the evidence term o0:t in the forward model.

One peculiarity of our specific task is that we want to infer the preferences in the future under a different policy π′, even
though our evidence is under a different policy π. Note that this is not an issue as long as π and π′ are known, as it just
means that the time-dependent dynamics will be different in the timesteps in which the policy π′ was used.

Future preference estimation with Algorithm 1 and why it approximates NHMM prediction.

Algorithm 1 is used to obtain the belief over the preferences a user would have at timestep H – assuming that the user
interacted for T timesteps with a policy π (for which we have actual interaction data), and then interacted from timestep T
to H with a policy π′. We refer to this belief as bπ0:T (uH) = P(uπ′H |sπ0:T , xπ0:T ).

The first model inference pass in Algorithm 1 resulting in b0:T (uT+1) will be a distribution over uT+1 conditioned on
sπ0:T , x

π
0:T . A minimizer for this prediction problem would be for the network to represent the actual belief that would be

obtained by performing the prediction step in the NHMM (described in Sec. 4.1). This is because the expected cross-entropy
between user choices and the induced choice distribution (induced by the preference belief prediction) would be minimized.

One limitation is that there are possibly multiple beliefs over preferences that induce the same exact distribution over choices:
in that sense, the correct preference belief might be unidentifiable. Experimentally, we don’t find this to be a problem: the
choice of having the representation of the preference belief be a mixture of Von Mises distributions (see the “Preference
estimation model form” heading later in this section) – which can be thought of as Normals over a circle – is already a good
enough inductive bias to be able to recover good preference beliefs.

In the NHMM, note that the unrolling the forward model (i.e. computing P(uπ′H |zπT+1)) could be computed exactly, or be
performed with Monte Carlo estimation, by sampling many internal states zπT+1 from the forward prediction distribution,
and then sampling internal state evolutions according to the dynamics. In our algorithm, by sampling choices and slates then
conditioning on them, we are approximating the Monte Carlo estimation approach. When simulating each user choice, the
model can be thought of as implicitly sampling a preference for this simulated user (from the preference belief) and then
sampling a choice from the corresponding choice distribution. This means that each simulation rollout should be equivalent
to “sampling a user” (according to the distribution of users in the data) and then sampling their choices.

Algorithm 1 Predicting future user preferences at timestep H under RS policy π′

Input: past interactions xπ0:T , sπ0:T , policy π′, future preference estimator P̂f , horizon H , number of Monte Carlo
simulations N

{if no past interaction data is given}
if x0:T = s0:T = ∅ then

Sample slate s0 ∼ π′(∅, ∅)
Obtain belief over initial preferences and choice b∅(u0), b∅(x0) = P̂f (∅, ∅)
Simulate a user choice x0 ∼ b∅(x0) {we now have past interactions with T = 0}

end if
for i = 0; i < N ; i++ do

while k = T ; k < H; k ++ do
b0:k(uk+1), b0:k(xk+1) = P̂f (s0:k, x0:k) {estimate pref. and choices}
sk+1 ∼ π′(x0:k, s0:k) {sample next timestep slate}
xk+1 ∼ b0:k(xk+1) {simulate a user choice}
Add xk+1 and sk+1 to the current simulated trajectory’s history

end while
end for
Average b0:k−1(uk) and b0:k−1(xk) across the N futures (for each k, with T < k ≤ H)
Return: Belief over future pref. bπ0:T (uk) and behaviors bπ0:T (xk) for each k s.t. T < k ≤ H .

E.2. Counterfactual preference estimation

Initial preference prediction model output correction

Below, we show that one can recover the smoothing estimate P(u0|x0:t, s0:t) from the predicted preferences P(u0|x1:t, s1:t)
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which will be a biased estimate of the initial preferences (as it does not incorporate the information from timestep t = 0) .
Note that:

P(u0|x0:t, s0:t) =
P(u0|x0, s0)P(x1:t, s1:t|u0)

P(x0:t, s0:t)
=

P(u0|x0, s0)
P(x0:t, s0:t)

P(u0|x1:t, s1:t)P(x1:t, s1:t)
P(u0)

(1)

=
P(x0, s0|u0)P(u0|x1:t, s1:t)P(x1:t, s1:t)

P(x0:t, s0:t)P(x0, s0)
∝ P(x0, s0|u0)P(u0|x1:t, s1:t) (2)

The first equality is given by the definition of smoothing applied to t = 0 (Russell & Norvig, 2002). The second equality is
obtained by using Bayes Rule on the backwards message P(x1:t, s1:t|u0), and the third is obtained by using Bayes Rule on
P(u0|x0, s0). Finally, we can ignore P(x1:t, s1:t), P(x0:t, s0:t), and P(x0, s0) as they are constants.

Counterfactual preference estimation with Algorithm 2 and why it approximates NHMM prediction.

A similar argument to that in Appendix E.1 can be made as to why the initial preference estimation model would approximate
the corresponding NHMM smoothing task.

However, for the second step of counterfactual preference estimation, one issue arises. Relative to having access to the full
dynamics of the internal state, when performing approximate inference with our model we lose some information: we are
only able to recover a belief over the initial preferences, whereas the NHMM with full dynamics access would be able to
recover a belief over the full internal state of the user. This will reduce the accuracy of our counterfactual estimation, but is
the best we can do without further assumptions.

Mathematically, we approximate the NHMM target distribution P(uπ′T |xπ0:t, sπ0:t) as:

P(uπ
′

T |xπ0:t, sπ0:t) ≈
∑
u0

P(uπ
′

T |u0)P(u0|xπ0:t, sπ0:t) = P
(
uπ
′

T |bπ0:t(u0)
)

(3)

=
∑

xπ
′

0:T−1,s
π′
0:T−1

P(xπ
′

0:T , s
π′

0:T )P
(
uπ
′

T |bπ0:t(u0), xπ
′

0:T , s
π′

0:T

)
(4)

where we the last expression is approximated with a Monte Carlo estimate detailed in Algorithm 21 (similarly to what was
done in Algorithm 1). To do well at this second trajectory reconstruction task, the network necessarily needs to learn how
to make best use of the belief over initial preferences, and implicitly learn their dynamics, as for the future preference
estimation task.

Algorithm 2 Predicting counterfactual user preferences at timestep T under policy π′, given t timesteps of interaction data
with π.

Inputs: past interactions xπ0:t, s
π
0:t, policy π′, future, initial, and counterfactual preference estimators P̂f , P̂i, P̂c, horizon

T , constant N

bπ0:t(u0) = P̂i(s
π
0:t, x

π
0:t) {initial pref. belief given interactions with π}

P̂f = P̂c(b = bπ0:t(u0)
)

{future pref predictor conditioned on init belief}(
bπ0:k−1(u

π′

k ), bπ0:k−1(x
π′

k )
)
0<k≤T =Algorithm 1

(
∅, ∅, π′, P̂f , T,N

)
Return: Distributions of counterfactual preferences and behaviors under policy π′

Preference estimation model form

When considering all models described in Sec. 4 and in Appendix 2, we have three models for preference estimation:
respectively initial, counterfactual, and future preference estimators P̂i, P̂c, P̂f . Any sequence model, such as RNNs or

1This algorithm is not actually used in it’s pure form in the experiments. Our choice of “safe policy” πrnd happens to choose constant
slates (i.e. a uniform distribution no matter the history), so there is a shortcut to the procedure: by simply setting the inputted slated for
counterfactual prediction to be uniforms, and predicting preferences without any user choices, one can train the model to directly output
the belief over counterfactual preferences for any timestep, across the whole userbase.
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transformers, would be appropriate for these tasks that have variable number of inputs. We choose to use transformers, as
described in Appendix H.2.

One detail of note that was omitted from Fig. 2 is that – to enable to represent multi-modal beliefs over preference space
– we let the models’ output be parameters of multiple Von Mises distributions and additionally some weights w. The w
weighted average of these distributions will form the predicted belief over ut.

F. Computing metrics
For computing the metrics defined in Sec. 5 for estimated future preferences of a user, one can use the approach delineated in
Sec. 4. If one wants instead to compute the metrics for counterfactual preferences of a user, one should use the methodology
from Appendix C. Computing metrics for counterfactual metrics is necessary in the case of penalized RL training: we want
to know, for the user at hand and the current simulated trajectory under the policy π′ we are training, what the preferences of
such a user would have been under an alternate safe policy πsafe. See Algorithm 3 for more details.

G. Penalized RL
The underlying MDP

One could cast the recommendation problem as a POMDP (Lu & Yang, 2016; Mladenov et al., 2019) in which the state of
the environment is hidden and contains the user’s internal state, which evolves over time. Equivalently, one can consider the
belief-MDP induced by the recommender POMDP (Kaelbling et al., 1998), and approximate a solution to such belief-MDP
via Deep-RL with a policy trained with observation histories as input (this is theoretically sufficient for the policy to recover
a belief over the current hidden state and take the optimal action). The action space will be given by the space of possible
slates that the RS can choose. The reward signal will be the expected reward for the current timestep E

[
r̂t(u

π
t )
]

(or with the
extra terms for the proxies in the case of penalized training). The introduction of expectation can be thought of as expected
SARSA (Sutton & Barto, 1998), as argued in (Ie et al., 2019b).

Penalized RL training

The full set of steps to run RL training are as follows: once the human models described in Sec. 4 are trained, one can
use them to simulate user trajectories and compute penalty metrics for such trajectories (see Algorithm 3). One can then
optimize the RL policy based on the on-policy simulated trajectory rollouts.

Algorithm 3 Generating a trajectory for RL training and computing metrics

Input: Initial, counterfactual, and future preference estimators P̂i, P̂c, P̂f ; a policy π, a safe policy πsafe, a horizon H , a
constant N .

Sample slate sπ0 ∼ π(∅, ∅) and imagine user choice xπ0 ∼ P̂i(x0|∅, ∅)
for t = 1; t ≤ H; t++ do
bπ0:t−1(u0) = P̂i(s

π
0:t−1, x

π
0:t−1) {current belief over initial preferences}

bπ0:t−1(ut), b
π
0:t−1(xt) = P̂f (s

π
0:t−1, x

π
0:t−1) {belief over pref and choices}

E[bπ0:t−1(u
πsafe
t )] ∈ Algorithm 2

(
t, πsafe, P̂c, P̂i, x

π
0:t−1, s

π
0:t−1

)
{belief over counterfactual preferences under safe policy for this user}

sπt ∼ π(xπ0:t−1, sπ0:t−1) {sample slate}
xπt ∼ bπ0:t−1(xt) {imagine a user choice}
Dt(u

π
t , u

safe
t ) = Euπt ,uπsafe

t ,xπt

[
(xπt )

Tuπt − (xπt )
Tuπsafe

t

]
{compute penalty metric(s) for timestep}

rRLt = E[rt] +Dt(u
π
t , u

safe
t )

end for
Return: User-RS interactions and training rewards for the simulated trajectory

Reduction of distances to final penalized objective

Note that the full penalized RL objective
(∑T

t E
[
r̂t(u

π
t )
])
− ν1D(uπ0:T , u0)− ν2D(uπ0:T , u

πrnd
0:T ) for our choice of distance

function D reduces to
∑T
t E
[
r̂t(u

π
t ) + ν′1 r̂t(u0, π) + ν′2 r̂t(u

πrnd
t , π)

]
for some choice of ν′1, ν

′
2 which can be treated

as hyperparameters of how much we want to value the engagement under each safe policy preferences relative to the
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engagement under the main policy.

H. Experiment details
H.1. Ground truth users

Reduction of logit model to our case.

In our experimental setup, the traditional conditional logit model P(xt = x|st, ut) = eβcx
T ut∑

x∈s e
βcxT ut

doesn’t apply directly

in this form, as we consider slates to be distributions rather than sets of discrete items. Intuitively, user’s choices should
still depend on the slate: the proportion of a certain item in the current slate (one can think of this as the proportion of
a certain item type), should influence the probability of the user of selecting that item (type). We operationalize this as
P(xt = x|st, ut) ∝ P(st = x)eβcx

Tut , with an additional term P(st = x) which takes into account the proportion of each
item (type). Note that this also mathematically corresponds to the generalization of the traditional logit model: when the
slate is discrete, P(st = x) will simply be an indicator for whether the item is in the slate, leading to the traditional logit
model form.

Feed belief update

Our ground truth user has a belief over future slates bHt (s). Users’ initial belief matches the content feature distribution
itself bH0 (s) = D. After receiving a slate st, the user’s induces a belief bHt (s) ∝ s3t over the future slates in the user, i.e.
the user will expect the next feeds to look like the most common items in the current feed, as a result of availability bias
(MacLeod & Campbell, 1992).

Lack of no-op choice.

While the assumption that user must pick item from the slate is unrealistic, this could be resolved by adding an extra no-op
choice to every slate (Sunehag et al., 2015).

Preference shift model.

Our preference shift model is inspired by (Bernheim et al., 2021), but adapted to our experimental setup as described below.
The choice of preferences is modulated by a “mindset flexibility” parameter λwhich captures how open they are to modifying
their current preferences. Users assign value to the choice of next-timestep preferences ut+1 as: V

(
ut, b

H
t (s), ut+1, λ

)
=

Ext+1∼bHt (s)[λr̂t+1(ut) + (1− λ)r̂t+1(ut+1)], where with r̂t+1(ut) indicates the engagement value obtained by the user
under the choice xt+1 and preference ut. Users pick their next timestep preferences also according to the conditional logit
model, but over their expected value of such preferences choices: P(ut+1|bHt (s), ut, λ) ∝ eβdV (ut,b

H
t (s),ut+1,λ). Intuitively,

users update their preference to more “convenient” ones – ones that they expect will lead them to higher engagement value.
The main change we introduce from the original model is incorporating the belief over future feeds.

Ground truth human parameters for experiments (β, λ, u0, etc.).

The users’ preference-flexibility parameter is given by λ = 0.9, and their initial preferences are drawn from a normal
distribution2 with mean u = 130◦ and standard deviation 20◦. The temperature parameter β is set as mentioned in the main
text and shown in Fig. 9.

As users obtain higher engagement value when they act less stochastically, these portions of preference space form attractor
points as can be seen in all policies in Fig. 1. Also in Fig. 1 we see that while naturally preferences shift to mostly focus on
one of these modes, some RS policies drive preferences to the other mode. While preferences naturally tend to shift towards
one of these modes, some RS policies drive preferences to the other mode. As the engagement does not correspond to actual
value, converging to the higher local optimum of engagement (u = 270◦ instead of u = 80◦) is not necessarily desirable.

H.2. Learned human models

For our learned human models, we use the BERT transformer architecture (similarly to (Sun et al., 2019)) with 2 layers, 2
attention heads, 4 sets of Von Mises distribution parameters, a learning rate of 0.00003, batch size of 500, and 100 epochs.

2Technically one should use Von Mises distributions – a distribution similar to normals, but for which the domain is a circle. As Von
Mises distributions are not implemented in numpy (Harris et al., 2020), for simplicity we use clipped normal distributions (disregarding
probability mass beyond 180◦ in either direction) in all places except for the the transformer output (which uses PyTorch’s (Paszke et al.,
2019) Von Mises implementation)
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Figure 9: How the temperature parameter β varies across
the preference space for our ground truth humans, which
defines the true choice model.

Figure 10: How the temperature parameter β varies across
the preference space for our mis-specified choice model
used for the mis-specification robustness experiments in
Sec. 7.1 and Appendix I.

Figure 11: BERT representation of the inference tasks. While our method is compatible with any sequence model, we
choose to use a BERT transformer models. Left: estimation of the user’s future preferences and choice at t=2, given the
interaction history history so far (this modality of prediction is closest in setup to Sun et al. (2019)). Middle: recovering a
belief over the initial preferences and choice of the user based on later interactions. Right: conditioning on the estimate of
initial preferences (†) recovered from the smoothing network one can estimate counterfactual preferences and choices under
slates (*) (chosen from a policy π′ we are interested in) and imagined choices (not shown due to space).

We train on the data described in Sec. H.3.

In architecture, we use a similar form to that of BERT4Rec (Sun et al., 2019) for ease of performing inference on future
or past preferences given contexts of interaction, as described in Fig. 11. We mask all inputs that should not be used for
prediction.

Mis-specification model. For the mis-specified human choice model experiments, we set the beta parameters of the choice
model across the preference space as shown in Fig. 10 (in contrast to the true values, shown in Fig. 9). We found that
increasing the mis-specification further led to worse results as expected.

H.3. Simulated dataset

See Fig. 12 for a summary of how content is generally instantiated in our setup.

We set the distribution of content in such a way that it forms a uniform distribution across features, that is D =
Uniform(0◦, 360◦). We simulate historical user interaction data with a mixed policy π which is similar (but not equal to) a
random policy in half the rollouts and for the other half is goal-directed:

• Half of the data is created with a RS policy which chooses an action uniformly among a set of possible slates
(distributions over the feature space with means 0◦, 10◦, ..., 340◦, 350◦, and standard deviations equal to 30◦ or 60◦).
Each of these slate types can be thought of as a slate which contain mostly one specific type of content.

• The other half of the data is created with a RS which chooses st = D = Uniform(0◦, 360◦) 80% of the time (i.e. the
slate that would be chosen by the random RS πrnd), and chooses a random action from the same set of possible slates as
above the remaining 20% of the time.

This is to simulate the setting in which the safe policy we are interested in (the random NPS policy) is similar to previously
deployed ones that are represented in the data (although not the same, so the network still has to generalize across RS
policies at test time) – but also not quite the same, requiring some amount of generalization.
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Figure 12: a) → b) The content can be mapped to an empirical distribution over feature space D in Rd. We consider
dimension d = 2 for ease of visualization. Restricting preferences and choices to be unit vectors, one can think of them as
a points on a circle: the engagement value r̂t will thus be related to the angle θ between ut and xt. c) We discretize this
circular preference and feature space into n = 36 bins (i.e. binning the angles) which enables to visualize distributions over
preferences and over content features as histograms over angles. d) We model slates st as categorical distributions over the
discretized n-bin feature space.

H.4. RS training

For RL optimization, we use PPO (Schulman et al., 2017) trained with Rllib (Liang et al., 2018). The action space of the
recommender system is given by distributions over feature space with means 0◦, 60◦, ..., 260◦, 320◦, and standard deviations
equal to 60◦. As observations to the system, we provide the current slate, the previous user choice, and the current estimates
from the HMM for smoothing, filtering, and natural preference shift counterfactual distributions, in order to increase training
speed (note that these will not change the optimal policy). All policies are recurrent so they are able to reason about the
history of interactions so far.

For training our myopic policies, we use the same exact infrastructure as above, but set γ = 0, similarly to previous work
(Krueger et al., 2020).

We use batch size 1200, minibatch size 600, 4 parallel workers, 0.005 learning rate, 50 gradient updates per minibatch per
iteration, policy function clipping parameter of 0.5, value function clipping parameter of 50 and loss coefficient of 8, with
an LSTM network with 64 cell size. γ = 0 for the myopic training and γ = 0.99 for long-horizon RL training. Training
runs in less than 30 minutes for each condition on a MacBook Pro 16” (2020).

I. Results
We report here additional experimental results on for the preference estimation task, this time using the other models
described in Fig. 11: the initial preference estimation network and the counterfactual preference estimation network.

Quality of initial preference estimates. The setup for this experiment is identical to that of Fig. 5, except that now we
are evaluating the initial preference predictor which approximates the inference P(u0|xπ0:T , sπ0:T ). We show the results in
Fig. 13. Both under the correct choice model and with some mis-specification, preference prediction performs similarly to
oracle estimation. For the initial preference prediction, mis-specification seems to have a less detrimental effect relative to
Fig. 3-Fig. 14. The preference losses for our model are (slightly) higher than oracle. Preference prediction accuracies are
very slightly higher than those of the oracle by random variability.

Quality of counterfactual preference estimates. We now turn to evaluating the quality of our counterfactual preference
estimation model. As mentioned in Appendix C, such a model is trained to predict the preferences and choices of users
for which we have seen interactions for, based on the approximate smoothing estimate obtained by the initial preference
estimation model. To test this model in a harder setting we consider oracle access to counterfactual trajectories of the
users in the normal dataset, while interacting with a random recommender policy πrnd. We obtain the smoothing estimates
from the usual trajectories present in the validation data (the ones from the section above), but query the counterfactual
network to predict preferences for the counterfactual NPS trajectories for each user. We then can compute validation losses
and accuracies based on this counterfactual dataset that we pre-computed. The results for this experiment are in Fig. 14.
Interestingly, we see that generally our network does somewhat worse than in the other settings considered. This is likely
due to 1) the approximate nature of the smoothing estimate which is used to perform the counterfactual task, and 2) the task
that requires estimation for preference-evolutions induced by a policy that is different from the one seen at training time.
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Figure 13: Equivalent setup to Fig. 3, except computed
using the initial preference estimation network from Fig. 11.
Error bars are standard deviations over 3 seeds.

Figure 14: Similar setup to Fig. 3-Fig. 13, except computed
using the counterfactual preference estimation network from
Fig. 11. More details in Appendix I. Error bars are standard
deviations over 3 seeds.


