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Abstract

YourTTS brings the power of a multilingual ap-
proach to the task of zero-shot multi-speaker TTS.
Our method builds upon the VITS model and adds
several novel modifications for zero-shot multi-
speaker and multilingual training. We achieved
state-of-the-art (SOTA) results in zero-shot multi-
speaker TTS and results comparable to SOTA in
zero-shot voice conversion on the VCTK dataset.
Additionally, our approach achieves promising
results in a target language with a single-speaker
dataset, opening possibilities for zero-shot multi-
speaker TTS and zero-shot voice conversion sys-
tems in low-resource languages. Finally, it is pos-
sible to fine-tune the YourTTS model with less
than 1 minute of speech and achieve state-of-the-
art results in voice similarity and with reasonable
quality. This is important to allow synthesis for
speakers with a very different voice or recording
characteristics from those seen during training.

Index Terms: cross-lingual zero-shot multi-speaker TTS,
text-to-speech, cross-lingual zero-shot voice conversion,
speaker adaptation.

1. Introduction
Text-to-Speech (TTS) systems have significantly advanced
in recent years with deep learning approaches, allowing suc-
cessful applications such as speech-based virtual assistants.
Most TTS systems were tailored from a single speaker’s
voice, but there is current interest in synthesizing voices for
new speakers (not seen during training), employing only a
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few seconds of speech. This approach is called zero-shot
multi-speaker TTS (ZS-TTS) as in Jia et al. (2018); Cooper
et al. (2020); Choi et al. (2020); Casanova et al. (2021).

ZS-TTS using deep learning was first proposed by Arik
et al. (2018) which extended the DeepVoice 3 method (Ping
et al., 2017). Meanwhile, Tacotron 2 (Shen et al., 2018) was
adapted using external speaker embeddings extracted from a
trained speaker encoder using a generalized end-to-end loss
(GE2E) (Wan et al., 2018), allowing for speech generation
that resembles the target speaker (Jia et al., 2018). Similarly,
Tacotron 2 was used with a different speaker embeddings
methods (Cooper et al., 2020), with LDE embeddings (Cai
et al., 2018) to improve similarity and naturalness of speech
for unseen speakers (Snyder et al., 2018). The authors
also showed that a gender-dependent model improves the
similarity for unseen speakers (Cooper et al., 2020). In
this context, Attentron (Choi et al., 2020) proposed a fine-
grained encoder with an attention mechanism for extracting
detailed styles from various reference samples and a coarse-
grained encoder. As a result of using several reference
samples, they achieved better voice similarity for unseen
speakers. ZSM-SS (Kumar et al., 2021) is a Transformer-
based architecture with a normalization architecture and an
external speaker encoder based on Wav2vec 2.0 (Baevski
et al., 2020). The authors conditioned the normalization
architecture with speaker embeddings, pitch, and energy.
Despite promising results, the authors did not compare the
proposed model with any of the related works mentioned
above. SC-GlowTTS (Casanova et al., 2021) was the first
application of flow-based models in ZS-TTS. It improved
voice similarity for unseen speakers in training with respect
to previous studies while maintaining comparable quality.

Despite these advances, the similarity gap between observed
and unobserved speakers during training is still an open re-
search question. ZS-TTS models still require a considerable
amount of speakers for training, making it difficult to obtain
high-quality models in low-resource languages. Further-
more, according to Tan et al. (2021), the quality of current
ZS-TTS models is not sufficiently good, especially for tar-
get speakers with speech characteristics that differ from
those seen in training. Although SC-GlowTTS (Casanova
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et al., 2021) achieved promising results with only 11 speak-
ers from the VCTK dataset (Veaux et al., 2016), when one
limits the number and variety of training speakers, it also
further hinders the model generalization for unseen voices.

In parallel with the ZS-TTS, multilingual TTS has also
evolved aiming at learning models for multiple languages
at the same time (Cao et al., 2019; Zhang et al., 2019;
Nekvinda & Dušek, 2020; Li et al., 2021). Some of these
models are particularly interesting as they allow for code-
switching, i.e. changing the target language for some part
of a sentence, while keeping the same voice (Nekvinda &
Dušek, 2020). This can be useful in ZS-TTS as it allows
using of speakers from one language to be synthesized in
another language. Voice conversion is yet another task that
may benefit from multilingual contexts (Choi et al., 2021).

In this paper, we propose YourTTS with several novel ideas
focused on zero-shot multi-speaker and multilingual train-
ing. We report state-of-the-art zero-shot multi-speaker TTS
results, as well as results comparable to SOTA in zero-shot
voice conversion for the VCTK dataset.

Our novel zero-shot multi-speaker TTS approach includes
the following contributions:

• State-of-the-art results in the English Language;

• The first work proposing a multilingual approach in
the zero-shot multi-speaker TTS scope;

• Ability to do zero-shot multi-speaker TTS and
zero-shot Voice Conversion with promising quality
and similarity in a target language using only one
speaker in the target language during model training;

• Require less than 1 minute of speech to fine-tune
the model for speakers who have voice/recording
characteristics very different from those seen in model
training, and still achieve good similarity and quality
results.

The audio samples for each of our experiments are available
on the demo web-site1. For reproducibility, our source-
code is available at the Coqui TTS2 , as well as the model
checkpoints of all experiments3.

1https://edresson.github.io/YourTTS/
2https://github.com/coqui-ai/TTS
3https://github.com/Edresson/YourTTS

2. YourTTS Model
YourTTS builds upon VITS (Kim et al., 2021), but includes
several novel modifications for zero-shot multi-speaker and
multilingual training. First, unlike previous work (Casanova
et al., 2021; Kim et al., 2021), in our model we used raw text
as input instead of phonemes. This allows more realistic
results for languages without good open-source grapheme-
to-phoneme converters available.

As in previous works, e.g. (Kim et al., 2021), we use a
transformer-based text encoder (Kim et al., 2020; Casanova
et al., 2021). However, for multilingual training, we con-
catenate 4-dimensional trainable language embeddings into
the embeddings of each input character. In addition, we also
increased the number of transformer blocks to 10 and the
number of hidden channels to 196. As a decoder, we use
a stack of 4 affine coupling layers (Dinh et al., 2017) each
layer is itself a stack of 4 WaveNet residual blocks (Oord
et al., 2016), as in VITS model.

As a vocoder we use the HiFi-GAN (Kong et al., 2020)
version 1 with the discriminator modifications introduced
by Kim et al. (2021). Furthermore, for efficient end2end
training, we connect the TTS model with the vocoder using
a variational autoencoder (VAE) (Kingma & Welling, 2013).
For this, we use the Posterior Encoder proposed by Kim
et al. (2021). The Posterior Encoder consists of 16 non-
causal WaveNet residual blocks (Prenger et al., 2019; Kim
et al., 2020). As input, the Posterior Encoder receives a
linear spectrogram and predicts a latent variable, this latent
variable is used as input for the vocoder and for the flow-
based decoder, thus, no intermediate representation (such
as mel-spectrograms) is necessary. This allows the model
to learn an intermediate representation; hence, it achieves
superior results to a two-stage approach system in which
the vocoder and the TTS model are trained separately (Kim
et al., 2021). Furthermore, to enable our model to synthesize
speech with diverse rhythms from the input text, we use the
stochastic duration predictor proposed in Kim et al. (2021).

YourTTS during training and inference is illustrated in Fig-
ure 1, where (++) indicates concatenation, red connections
mean no gradient will be propagated by this connection, and
dashed connections are optional. We omit the Hifi-GAN
discriminator networks for simplicity.

To give the model zero-shot multi-speaker generation capa-
bilities we condition all affine coupling layers of the flow-
based decoder, the posterior encoder, and the vocoder on
external speaker embeddings. We use global conditioning
(Oord et al., 2016) in the residual blocks of the coupling
layers as well as in the posterior encoder. We also sum the
external speaker embeddings with the text encoder output
and the decoder output before we pass them to the duration
predictor and the vocoder, respectively. We use linear pro-
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jection layers to match the dimensions before element-wise
summations (see Figure 1).

Also, inspired by Xin et al. (2021), we investigated Speaker
Consistency Loss (SCL) in the final loss. In this case, a
pre-trained speaker encoder is used to extract speaker em-
beddings from the generated audio and ground truth on
which we maximize the cosine similarity. Formally, let
ϕ(.) be a function outputting the embedding of a speaker,
cos sim be the cosine similarity function, α a positive real
number that controls the influence of the SCL in the final
loss, and n the batch size, the SCL is defined as follows:

LSCL =
−α

n
·

n∑
i

cos sim(ϕ(gi), ϕ(hi)), (1)

where g and h represent, respectively, the ground truth and
the generated speaker audio.

During training, the Posterior Encoder receives linear spec-
trograms and speaker embeddings as input and predicts a
latent variable z. This latent variable and speaker embed-
dings are used as input to the GAN-based vocoder generator
which generates the waveform. For efficient end-to-end
vocoder training, we randomly sample constant length par-
tial sequences from z as in Kong et al. (2020); Bińkowski
et al. (2019); Ren et al. (2021); Kim et al. (2021). The
Flow-based decoder conditions the latent variable z and
speaker embeddings with respect to the prior PZp. To align
the PZp distribution with the output of the text encoder, we
use the Monotonic Alignment Search (MAS) (Kim et al.,
2020; 2021). The stochastic duration predictor receives as
input speaker and language embeddings, and the duration
obtained through MAS. To generate human-like rhythms
of speech, the objective of the stochastic duration predictor
is a variational lower bound of the log-likelihood of the
phoneme duration (pseudo-phoneme in our case).

During inference, MAS is not used. Instead, PZp distribu-
tion is predicted by the text encoder and the duration is sam-
pled from random noise through the inverse transformation
of the stochastic duration predictor and then, converted to
integer. In this way, a latent variable zp is sampled from the
distribution PZp. The inverted Flow-based decoder receives
as input the latent variable zp and the speaker embeddings,
transforming the latent variable zp into the latent variable
z which is passed as input to the vocoder generator, thus
obtaining the synthesized waveform.

3. Experiments
3.1. Speaker Encoder

As speaker encoder, we use the H/ASP model (Heo et al.,
2020) publicly available, that was trained with the Prototyp-
ical Angular (Chung et al., 2020) plus Softmax loss func-
tions in the VoxCeleb 2 (Chung et al., 2018) dataset. This

model was chosen for achieving state-of-the-art results in
VoxCeleb 1 (Nagrani et al., 2017) test subset. In addition,
we evaluated the model in the test subset of Multilingual
LibriSpeech (MLS) (Pratap et al., 2020) using all languages.
This model reached an average Equal Error Rate (EER) of
1.967 while the speaker encoder used in the SC-GlowTTS
paper (Casanova et al., 2021) reached an EER of 5.244.

3.2. Audio Datasets

We investigated 3 languages, using one dataset per language
to train the model. For all datasets, pre-processing was
carried out in order to have samples of similar loudness
and to remove long periods of silence. All the audios to
16Khz and applied voice activity detection (VAD) using
Webrtcvad toolkit4 to trim the trailing silences. Additionally,
we normalized all audio to -27dB using the RMS-based
normalization from the Python package ffmpeg-normalize5.

English: VCTK (Veaux et al., 2016) dataset, which contains
44 hours of speech and 109 speakers, sampled at 48KHz.
We divided the VCTK dataset into: train, development (con-
taining the same speakers as the train set) and test. For
the test set, we selected 11 speakers that are neither in the
development nor the training set; following the proposal
by Jia et al. (2018) and Casanova et al. (2021), we selected
1 representative from each accent totaling 7 women and
4 men (speakers 225, 234, 238, 245, 248, 261, 294, 302,
326, 335 and 347). Furthermore, in some experiments we
used the subsets train-clean-100 and train-clean-360 of the
LibriTTS dataset (Zen et al., 2019) seeking to increase the
number of speakers in the training of the models.

Portuguese: TTS-Portuguese Corpus (Casanova et al.,
2022), a single-speaker dataset of the Brazilian Portuguese
language with around 10 hours of speech, sampled at 48KHz.
As the authors did not use a studio, the dataset contains am-
bient noise. We used the FullSubNet model (Hao et al.,
2021) as denoiser and resampled the data to 16KHz. For
development we randomly selected 500 samples and the rest
of the dataset was used for training.

French: fr FR set of the M-AILABS dataset (Munich Ar-
tificial Intelligence Laboratories GmbH, 2017), which is
based on LibriVox6. It consists of 2 female (104h) and 3
male speakers (71h) sampled at 16KHz.

To evaluate the zero-shot multi-speaker capabilities of our
model in English, we use the 11 VCTK speakers reserved
for testing. To further test its performance outside of the
VCTK domain, we select 10 speakers (5F/5M) from subset
test-clean of LibriTTS dataset (Zen et al., 2019). For Por-
tuguese we select samples from 10 speakers (5F/5M) from

4https://github.com/wiseman/py-webrtcvad
5https://github.com/slhck/ffmpeg-normalize
6https://librivox.org/
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Figure 1. YourTTS diagram depicting (a) training procedure and (b) inference procedure.

the Multilingual LibriSpeech (MLS) (Pratap et al., 2020)
dataset. For French, no evaluation dataset was used, see
Section 4 for reasons. Finally, for speaker adaptation experi-
ments, to mimic a more realistic setting, we used 4 speakers
from the Common Voice dataset (Ardila et al., 2020).

3.3. Experimental Setup

We carried out four training experiments with YourTTS:

• System 1: using VCTK dataset (monolingual);

• System 2: using both VCTK and TTS-Portuguese
datasets (bilingual);

• System 3: using VCTK, TTS-Portuguese and
M-AILABS french datasets (trilingual);

• System 4: starting with the model obtained in
system 3 we continue training with 1,151 additional

English speakers from both LibriTTS partitions
train-clean-100 and train-clean-360.

To accelerate training, in every experiment, we use transfer
learning. In system 1, we start from a model trained 1M
steps on LJSpeech (Ito et al., 2017) and continue the train-
ing for 200K steps with the VCTK dataset. However, due
to the proposed changes, some layers of the model were
randomly initialized due to the incompatibility of the shape
of the weights. For systems 2 and 3, training is done by
continuing from the previous experiment for approximately
140k steps, learning one language at a time. In addition,
for each experiment a fine-tuning was performed for 50k
steps using the Speaker Consistency Loss (SCL), described
in section 2, with α = 9. Finally, for system 4, we continue
training from the model from system 3 fine-tuned with the
Speaker Consistency Loss. Note that, although the latest
works in ZS-TTS (Cooper et al., 2020; Choi et al., 2020;
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Casanova et al., 2021) only use the VCTK dataset, this
dataset has a limited number of speakers (109) and little
variety of recording conditions. Thus, after training with
VCTK only, in general, ZS-TTS models do not generalize
satisfactorily to new speakers where recording conditions
or voice characteristics are very different than those seen in
the training (Tan et al., 2021).

The models were trained using an NVIDIA TESLA V100
32GB with a batch size of 64. For the TTS model training
and for the discrimination of vocoder HiFi-GAN we use
the AdamW optimizer (Loshchilov & Hutter, 2017) with
betas 0.8 and 0.99, weight decay 0.01 and an initial learn-
ing rate of 0.0002 decaying exponentially by a gamma of
0.999875 (Paszke et al., 2019). For the multilingual exper-
iments, we use weighted random sampling (Paszke et al.,
2019) to guarantee a language balanced batch.

4. Results and Discussion
In this paper, we evaluate synthesized speech quality using
a Mean Opinion Score (MOS) study, as in (Ribeiro et al.,
2011). To compare the similarity between the synthesized
voice and the original speaker, we calculate the Speaker
Encoder Cosine Similarity (SECS) (Casanova et al., 2021)
between the speaker embeddings of two audios extracted
from the speaker encoder. It ranges from -1 to 1, and a larger
value indicates a stronger similarity (Cooper et al., 2020).
Following previous works (Choi et al., 2020; Casanova et al.,
2021), we compute SECS using the speaker encoder of the
Resemblyzer (Jemine, 2019) package, allowing for compar-
ison with those studies. We also report the Similarity MOS
(Sim-MOS) following the works of Jia et al. (2018), Choi
et al. (2020), and Casanova et al. (2021).

Although we used 3 languages, due to the high cost of the
MOS metrics, only two languages were used to compute
such metrics: English, which has the largest number of
speakers, and Portuguese, which has the smallest number.
Also, following Casanova et al. (2021) we present such
metrics only for speakers unseen during training. MOS
scores were obtained with rigorous crowdsourcing7. For
the calculation of MOS and the Sim-MOS in the English
language, we use 276 and 200 native English contributors,
respectively. For the Portuguese language, we use 90 native
Portuguese contributors for both metrics.

During evaluation we use the fifth sentence of the VCTK
dataset (i.e, speakerID 005.txt) as reference audio for the
extraction of speaker embeddings, since all test speakers
uttered it and because it is a long sentence (20 words). For
the LibriTTS and MLS Portuguese, we randomly draw one
sample per speaker considering only those with 5 seconds
or more, to guarantee a reference with sufficient duration.

7https://www.definedcrowd.com/evaluation-of-experience/

For the calculation of MOS, SECS, and Sim-MOS in En-
glish, we select 55 sentences randomly from the test-clean
subset of the LibriTTS dataset, considering only sentences
with more than 20 words. For Portuguese we use the transla-
tion of these 55 sentences. During inference, we synthesize
5 sentences per speaker in order to ensure coverage of all
speakers and a good number of sentences. As ground truth
for all test subsets, we randomly select 5 audios for each of
the test speakers. For the SECS and Sim-MOS ground truth,
we compared such randomly selected 5 audios per speaker
with the reference audios used for the extraction of speaker
embeddings during synthesis of the test sentences.

Table 1 shows MOS and Sim-MOS with 95% confidence
intervals and SECS for all of our experiments in English
for the datasets VCTK and LibriTTS and in Portuguese
with the Portuguese sub-set of the dataset MLS. We also
present the result of models SC-GlowTTS and Attentron for
comparison on the VCTK dataset.

4.1. VCTK Dataset

For the VCTK dataset, the best similarity results were ob-
tained with systems 1 (monolingual) and 2 + SCL (bilin-
gual). Both achieved the same SECS and a similar Sim-
MOS. According to the Sim-MOS, the use of SCL did not
bring any improvements; however, the confidence intervals
of all experiments overlap, making this analysis inconclu-
sive. On the other hand, according to SECS, using SCL
improved the similarity in 2 out of 3 experiments. Also, for
system 2, both metrics agree on the positive effect of SCL
in similarity.

Another noteworthy result is that SECS for all of our ex-
periments on the VCTK dataset are higher than the ground
truth. This can be explained by characteristics of the VCTK
dataset itself which has, for example, significant breathing
sounds in most audios. The speaker encoder may not be
able to handle these features, hereby lowering the SECS
of the ground truth. Overall, in our best experiments with
VCTK, the similarity (SECS and Sim-MOS) and quality
(MOS) results are similar to the ground truth. Our results
in terms of MOS match the ones reported by the VITS ar-
ticle (Kim et al., 2021). However, we show that with our
modifications, the model manages to maintain good qual-
ity and similarity for unseen speakers. Finally, our best
experiments achieve superior results in similarity and qual-
ity when compared to Choi et al. (2020); Casanova et al.
(2021); therefore, achieving the SOTA in the VCTK dataset
for zero-shot multi-speaker TTS.

4.2. LibriTTS Dataset

We achieved the best LibriTTS similarity in system 4. This
result can be explained by the use of more speakers (∼ 1.2k)
than any other experiment ensuring a broader coverage of
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Table 1. SECS, MOS and Sim-MOS with 95% confidence intervals for all our experiments.
VCTK LIBRITTS MLS-PT

SYSTEMS SECS MOS SIM-MOS SECS MOS SIM-MOS SECS MOS SIM-MOS
GROUND TRUTH 0.824 4.26±0.04 4.19±0.06 0.931 4.22±0.05 4.22±0.06 0.9018 4.61±0.05 4.41±0.05
ATTENTRON ZS (0.731) (3.86±0.05) (3.30 ±0.06) – – – – – –
SC-GLOWTTS (0.804) (3.78±0.07) (3.99±0.07) – – – – – –
SYS. 1 0.864 4.21±0.04 4.16±0.05 0.754 4.25±0.05 3.98±0.07 – – –
SYS. 1 + SCL 0.861 4.20±0.05 4.13±0.06 0.765 4.21±0.04 4.05±0.07 – – –
SYS. 2 0.857 4.24±0.04 4.15±0.06 0.762 4.22±0.05 4.01±0.07 0.740 3.96±0.08 3.02±0.1
SYS. 2 + SCL 0.864 4.19±0.05 4.17±0.06 0.773 4.23±0.05 4.01±0.07 0.745 4.09±0.07 2.98±0.1
SYS. 3 0.851 4.21±0.04 4.10±0.06 0.761 4.21±0.04 4.01±0.05 0.761 4.01±0.08 3.19±0.1
SYS. 3 + SCL 0.855 4.22±0.05 4.06±0.06 0.778 4.17±0.05 3.98±0.07 0.766 4.11±0.07 3.17±0.1
SYS. 4 + SCL 0.843 4.23±0.05 4.10±0.06 0.856 4.18±0.05 4.07±0.07 0.798 3.97±0.08 3.07±0.1

voice and recording condition diversity. On the other hand,
MOS achieved the best result for the monolingual case.
We believe that this was mainly due to the quality of the
training datasets. System 1 uses VCTK dataset only, which
has higher quality when compared to other datasets added
in other experiments.

4.3. Portuguese MLS Dataset

For the Portuguese MLS dataset, the highest MOS metric
was achieved by system 3+SCL, with MOS 4.11±0.07, al-
though the confidence intervals overlap with the other exper-
iments. It is interesting to observe that the model trained in
Portuguese with a single-speaker dataset of medium quality,
manages to reach a good quality in the zero-shot multi-
speaker synthesis. System 3 is the best experiment accord-
ing to Sim-MOS (3.19±0.10) however, with an overlap
with other ones considering the confidence intervals. In
this dataset, Sim-MOS and SECS do not agree: based on
the SECS metric, the model with higher similarity was ob-
tained in system 4+SCL. We believe this is due to the variety
in the LibriTTS dataset. The dataset is also composed of
audiobooks, therefore tending to have similar recording
characteristics and prosody to the MLS dataset. We believe
that this difference between SECS and Sim-MOS can be
explained by the confidence intervals of Sim-MOS. Finally,
Sim-MOS achieved in this dataset is relevant, considering
that our model was trained with only one male speaker in
the Portuguese language.

Analyzing the metrics by gender, the MOS for system 4
considering only male and female speakers are respectively
4.14 ± 0.11 and 3.79 ± 0.12. Also, the Sim-MOS for male
and female speakers are respectively 3.29 ± 0.14 and 2.84
± 0.14. Therefore, the performance of our model in Por-
tuguese is affected by gender. We believe that this happened
because our model was not trained with female Portuguese
speakers. Despite that, our model was able to produce fe-
male speech in the Portuguese language. Attentron achieved
a Sim-MOS of 3.30±0.06 after being trained with approxi-
mately 100 speakers in the English language. Considering
confidence intervals, our model achieved a similar Sim-

MOS even when seeing only one male speaker in the target
language. Hence, we believe that our approach can be the so-
lution for the development of zero-shot multi-speaker TTS
models in low-resourced languages.

Including French (i.e. system 3) appear to have improved
both quality and similarity (according to SECS) in Por-
tuguese. The increase in quality can be explained by the
fact that the M-AILABS French dataset has better quality
than the Portuguese corpus; consequently, as the batch is
balanced by language, there is a decrease in the amount
of lower quality speech in the batch during model training.
Also, increase in similarity can be explained by the fact
that TTS-Portuguese is a single speaker dataset and with
the batch balancing by language in system 2, half of the
batch is composed of only one male speaker. When French
is added, then only a third of the batch will be composed of
the Portuguese speaker voice.

4.4. Speaker Consistency Loss

The use of Speaker Consistency Loss (SCL) improved simi-
larity measured by SECS. On the other hand, for the Sim-
MOS the confidence intervals between the experiments are
inconclusive to assert that the SCL improves similarity. Nev-
ertheless, we believe that SCL can help the generalization in
recording characteristics not seen in training. For example,
in system 1, the model did not see the recording characteris-
tics of the LibriTTS dataset in training but during testing on
this dataset, both the SECS and Sim-MOS metrics showed
an improvement in similarity thanks to SCL. On the other
hand, it seems that using SCL slightly decreases the quality
of generated audio. We believe this is because with the
use of SCL, our model learns to generate recording char-
acteristics present in the reference audio, producing more
distortion and noise. However, it should be noted that in our
tests with high-quality reference samples, the model is able
to generate high-quality speech.
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Table 2. MOS and Sim-MOS with 95% confidence intervals for the zero-shot voice conversion experiments.
REF/TAR

M-M M-F F-F F-M ALL
MOS SIM-MOS MOS SIM-MOS MOS SIM-MOS MOS SIM-MOS MOS SIM-MOS

EN-EN 4.22±0.10 4.15±0.12 4.14±0.09 4.11±0.12 4.16±0.12 3.96±0.15 4.26±0.09 4.05±0.11 4.20±0.05 4.07±0.06
PT-PT 3.84 ± 0.18 3.80 ± 0.15 3.46 ± 0.10 3.12 ± 0.17 3.66 ± 0.2 3.35 ± 0.19 3.67 ± 0.16 3.54 ± 0.16 3.64 ± 0.09 3.43 ± 0.09
EN-PT 4.17±0.09 3.68 ± 0.10 4.24±0.08 3.54 ± 0.11 4.14±0.09 3.58 ± 0.12 4.12±0.10 3.58 ± 0.11 4.17±0.04 3.59 ± 0.05
PT-EN 3.62 ± 0.16 3.8 ± 0.10 2.95 ± 0.2 3.67 ± 0.11 3.51 ± 0.18 3.63 ± 0.11 3.47 ± 0.18 3.57 ± 0.11 3.40 ± 0.09 3.67 ± 0.05

5. Zero-Shot Voice Conversion
As in the SC-GlowTTS (Casanova et al., 2021) model, we
do not provide any information about the speaker’s identity
to the encoder, so the distribution predicted by the encoder
is forced to be speaker independent. Therefore, YourTTS
can convert voices using the model’s Posterior Encoder,
decoder and the HiFi-GAN Generator. Since we conditioned
YourTTS with external speaker embeddings, it enables our
model to mimic the voice of unseen speakers in a zero-shot
voice conversion setting.

Wang & Borth (2021) reported the MOS and Sim-MOS met-
rics for the AutoVC (Qian et al., 2019) and NoiseVC (Wang
& Borth, 2021) models for 10 VCTK speakers not seen dur-
ing training. To compare our results, we selected 8 speakers
(4M/4F) from the VCTK test subset. Although Wang &
Borth (2021) uses 10 speakers, due to gender balance, we
were forced to use only 8 speakers. Furthermore, to analyze
the generalization of the model for the Portuguese language,
and to verify the result achieved by our model in a language
where the model was trained with only one speaker, we used
the 8 speakers (4M/4F) from the test subset of the MLS Por-
tuguese dataset. Therefore, in both languages we use speak-
ers not seen in the training. Following Qian et al. (2019) for
a deeper analysis, we compared the transfer between male,
female and mixed gender speakers individually. During
the analysis, for each speaker, we generate a transfer in the
voice of each of the other speakers, choosing the reference
samples randomly, considering only samples longer than 3
seconds. In addition, we analyzed voice transfer between
English and Portuguese speakers. We calculate the MOS
and the Sim-MOS as described in Section 4. However, for
the calculation of the sim-MOS when transferring between
English and Portuguese (pt-en and en-pt), as the reference
samples are in one language and the transfer is done in an-
other language, we used evaluators from both languages (58
and 40, respectively, for English and Portuguese).

Table 2 presents the MOS and Sim-MOS for these exper-
iments. Samples of the zero-shot voice conversion are
present in the demo page8.

8https://edresson.github.io/YourTTS/

5.1. Intra-lingual Results

For zero-shot voice conversion from one English-speaker to
another English-speaker (en-en) our model achieved a MOS
of 4.20±0.05 and a Sim-MOS of 4.07±0.06. For compari-
son, Wang & Borth (2021) reported the MOS and Sim-MOS
results for the AutoVC (Qian et al., 2019) and NoiseVC
(Wang & Borth, 2021) models. For 10 VCTK speakers not
seen during training, the AutoVC model achieved a MOS of
3.54± 1.089 and a Sim-MOS of 1.91± 1.34. On the other
hand, the NoiseVC model achieved a MOS of 3.38± 1.35
and a Sim-MOS of 3.05 ± 1.25. Therefore, our model
achieved results comparable to the SOTA in zero-shot voice
conversion in the VCTK dataset. Alhtough the model was
trained with more data and speakers, the similarity results
of the VCTK dataset in Section 4 indicate that the model
trained with only the VCTK dataset (system 1) presents
a better similarity than the model explored in this Section
(system 4). Therefore, we believe that YourTTS can achieve
a result very similar or even superior in zero-shot voice
conversion when being trained and evaluated using only the
VCTK dataset.

For zero-shot voice conversion from one Portuguese speaker
to another Portuguese speaker our model achieved a MOS
of 3.64 ± 0.09 and a Sim-MOS of 3.43 ± 0.09. We note
that our model performs significantly worse in voice transfer
similarity between female speakers (3.35 ± 0.19) compared
to transfers between male speakers (3.80 ± 0.15). This can
be explained by the lack of female speakers for the Por-
tuguese language during the training of our model. Again,
it is remarkable that our model manages to approximate
female voices in Portuguese without ever having seen a
female voice in that language.

5.2. Cross-lingual Results

Apparently, the transfer between English and Portuguese
speakers works as well as the transfer between Portuguese
speakers. However, for the transfer of a Portuguese speaker
to an English speaker (pt-en) the MOS scores drop in qual-
ity. This was especially due to the low quality of voice
conversion from Portuguese male speakers to English fe-
male speakers. In general, as discussed above, due to the

9The authors presented the results in a graph without the ac-
tual figures, so the MOS scores reported here are approximations
calculated considering the length in pixels of those graphs.
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lack of female speakers in the training of the model, the
transfer to female speakers achieves poor results. In this
case, the challenge is even greater as it is necessary to con-
vert audios from a male speaker in Portuguese to the voice
of a English female speaker.

In English, during conversions, the speaker’s gender did not
significantly influence the model’s performance. However,
for transfers involving Portuguese, the absence of female
voices in the training of the model hindered generalization.

6. Speaker Adaptation
The different recording conditions are a challenge for the
generalization of the zero-shot multi-speaker TTS models.
Speakers who have a voice that differs greatly from those
seen in training also become a challenge (Tan et al., 2021).
Nevertheless, to show the potential of our model for adapta-
tion to new speakers/recording conditions, we selected sam-
ples from 20 to 61 seconds of speech for 2 Portuguese and
2 English speakers (1M/1F) in the Common Voice (Ardila
et al., 2020) dataset. Using these 4 speakers, we perform
fine-tuning on the checkpoint from system 4 with Speaker
Consistency Loss individually for each speaker. During
fine-tuning, to ensure that multilingual synthesis is not im-
paired, we use all the datasets used in system 4. However,
we use Weighted random sampling (Paszke et al., 2019) to
guarantee that samples from adapted speakers appear in a
quarter of the batch. The model is trained that way for 1,500
steps. For evaluation, we use the same approach described
in Section 4.

Table 3 shows the gender, total duration in seconds and
number of samples used during the training for each speaker,
and the metrics SECS, MOS and Sim-MOS for the ground
truth (GT), zero-shot multi-speaker TTS mode (ZS), and the
fine-tuning (FT) with speaker samples.

In general, our model’s fine-tuning with less than 1 minute
of speech from speakers who have recording characteristics
not seen during training achieved very promising results,
significantly improving similarity in all experiments.

In English, the results of our model in zero-shot multi-
speaker TTS mode are already good and after fine-tuning
both male and female speakers achieved Sim-MOS compa-
rable to the ground truth. The fine-tuned model achieves
greater SECS than the ground truth, which was already
observed in previous experiments. We believe that this phe-
nomenon can be explained by the model learning to copy the
recording characteristics and reference sample’s distortions,
giving an advantage over other real speaker samples.

In Portuguese, compared to zero-shot, fine-tuning seems
to trade a bit of naturalness for a much better similar-
ity. For the male speaker, the Sim-MOS increased from

3.35±0.12 to 4.19±0.07 after fine-tuning with just 31 sec-
onds of speech for that speaker. For the female speaker, the
similarity improvement was even more impressive, going
from 2.77±0.15 in zero-shot mode to 4.43±0.06 after the
fine-tuning with just 20 seconds of speech from that speaker.

Although our model manages to achieve high similarity us-
ing only seconds of the target speaker’s speech, Table 3
seems to presents a direct relationship between the amount
of speech used and the naturalness of speech (MOS). With
approximately 1 minute of speech in the speaker’s voice
our model can copy the speaker’s speech characteristics,
even increasing the naturalness compared to zero-shot mode.
On the other hand, using 44 seconds or less of speech re-
duces the quality/naturalness of the generated speech when
compared to the zero-shot or ground truth model. There-
fore, although our model shows good results in copying
the speaker’s speech characteristics using only 20 seconds
of speech, more than 45 seconds of speech are more ade-
quate to allow higher quality. Finally, we also noticed that
voice conversion improves significantly after fine-tuning the
model, mainly in Portuguese and French where few speakers
are used in training.

7. Conclusions, Limitations and Future Work
In this work, we presented YourTTS, which achieved SOTA
results in zero-shot multi-speaker TTS and zero-shot voice
conversion in the VCTK dataset. Furthermore, we show
that our model can achieve promising results in a target lan-
guage using only a single speaker dataset. Additionally, we
show that for speakers who have both a voice and recording
conditions that differ greatly from those seen in training,
our model can be adjusted to a new voice using less than 1
minute of speech.

However, our model exhibits some limitations. For the TTS
experiments in all languages, our model presents instability
in the stochastic duration predictor which, for some speakers
and sentences, generates unnatural durations. We also note
that mispronunciations occur for some words, especially in
Portuguese. Unlike Casanova et al. (2022; 2020); Kim et al.
(2021), we do not use phonetic transcriptions, making our
model more prone to such problems. For Portuguese voice
conversion, the speaker’s gender significantly influences the
model’s performance, due to the absence of female voices in
training. For Speaker Adaptation, although our model shows
good results in copying the speaker’s speech characteristics
using only 20 seconds of speech, more than 45 seconds of
speech are more adequate to allow higher quality.

In future work, we intend to seek improvements to the du-
ration predictor of the YourTTS model as well as training
in more languages. Furthermore, explore the application of
this model for data augmentation in the training of automatic
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Table 3. SECS, MOS and Sim-MOS with 95% confidence intervals for the speaker adaptation experiments.
SEX DUR. (SAM.) MODE SECS MOS SIM-MOS

EN

M 61S (15)
GT 0.875 4.17±0.09 4.08±0.13
ZS 0.851 4.11±0.07 4.04±0.09
FT 0.880 4.17±0.07 4.08±0.09

F 44S (11)
GT 0.894 4.25±0.11 4.17±0.13
ZS 0.814 4.12±0.08 4.11±0.08
FT 0.896 4.10±0.08 4.17±0.08

PT

M 31S (7)
GT 0.880 4.76±0.12 4.31±0.14
ZS 0.817 4.03±0.11 3.35±0.12
FT 0.915 3.74±0.12 4.19±0.07

F 20S (5)
GT 0.873 4.62±0.19 4.65±0.14
ZS 0.743 3.59±0.13 2.77±0.15
FT 0.930 3.48±0.13 4.43±0.06

speech recognition models in low-resource settings.
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