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Abstract

We propose Compressed Vertical Federated
Learning (C-VFL) for communication-efficient
training on vertically partitioned data. In C-VFL,
a server and multiple parties collaboratively train
a model on their respective features utilizing sev-
eral local iterations and sharing compressed in-
termediate results periodically. Our work pro-
vides the first theoretical analysis of the effect
message compression has on distributed training
over vertically partitioned data. We prove con-
vergence of non-convex objectives at a rate of
O( 1√

T
) when the compression error is bounded

over the course of training. We provide specific
requirements for convergence with common com-
pression techniques, such as quantization and top-
k sparsification. Finally, we experimentally show
compression can reduce communication by over
90% without a significant decrease in accuracy
over VFL without compression.

1. Introduction
Federated Learning (McMahan et al., 2017) is a distributed
machine learning approach that has become of much in-
terest in both theory (Li et al., 2020; Wang et al., 2019;
Liu et al., 2020) and practice (Bonawitz et al., 2019; Rieke
et al., 2020; Lim et al., 2020) in recent years. Naive dis-
tributed learning algorithms may require frequent exchanges
of large amounts of data, which can lead to slow training
performance (Lin et al., 2020). Further, participants may be
globally distributed, with high latency network connections.
To mitigate these factors, Federated Learning algorithms
aim to be communication-efficient by design. Methods such
as local updates (Moritz et al., 2016; Liu et al., 2019), where
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parties train local parameters for multiple iterations with-
out communication, and message compression (Stich et al.,
2018; Wen et al., 2017; Karimireddy et al., 2019) reduce
message frequency and size, respectively, with little impact
on training performance.

Federated Learning methods often target the case where
the data among parties is distributed horizontally: each
party’s data shares the same features but parties hold data
corresponding to different sample IDs. This is known as
Horizontal Federated Learning (HFL) (Yang et al., 2019).
However, there are several application areas where data is
partitioned in a vertical manner: the parties store data on
the same sample IDs but different feature spaces.

An example of a vertically partitioned setting includes a hos-
pital, bank, and insurance company seeking to train a model
to predict something of mutual interest, such as customer
credit score. Each of these institutions may have data on the
same individuals but store medical history, financial trans-
actions, and vehicle accident reports, respectively. These
features must remain local to the institutions due to pri-
vacy concerns, rules and regulations (e.g., GDPR, HIPAA),
and/or communication network limitations. In such a sce-
nario, Vertical Federated Learning (VFL) methods must be
employed. Although VFL is less well-studied than HFL,
there has been a growing interest in VFL algorithms re-
cently (Hu et al., 2019; Gu et al., 2021; Cha et al., 2021),
and VFL algorithms have important applications includ-
ing risk prediction, smart manufacturing, and discovery of
pharmaceuticals (Kairouz et al., 2021).

Typically in VFL, each party trains a local embedding func-
tion that maps raw data features to a meaningful vector
representation, or embedding, for prediction tasks. For ex-
ample, a neural network can be an embedding function for
mapping the text of an online article to a vector space for
classification (Koehrsen, 2018). Referring to Figure 1, sup-
pose Party 1 is a hospital with medical data features x1. The
hospital computes its embedding h1(θ1;x1) for the features
by feeding x1 through a neural network. The other parties
(the bank and insurance company), compute embeddings
for their features, then all parties share the embeddings in a
private manner (e.g., homomorphic encryption, secure multi-
party computation, or secure aggregation). The embeddings
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Figure 1. Example global model with neural networks. To obtain
a ŷ prediction for a data sample x, each party m feeds the local
features of x, xm, into a neural network. The output of this neural
network is the embedding hm(θm;xm). All embeddings are then
fed into the server model neural network with parameters θ0.

are then combined in a server model θ0 to determine the
final loss of the global model. A server model (or fusion
network) captures the complicated interactions of embed-
dings and is often a complex, non-linear model (Gu et al.,
2019; Nie et al., 2021; Han et al., 2021b). Embeddings can
be very large, in practice, sometimes requiring terabytes of
communication over the course of training.

Motivated by this, we propose Compressed Vertical
Federated Learning (C-VFL), a general framework for
communication-efficient Federated Learning over vertically
partitioned data. In our algorithm, parties communicate
compressed embeddings periodically, and the parties and
the server each run block-coordinate descent for multiple
local iterations, in parallel, using stochastic gradients to
update their local parameters.

C-VFL is the first theoretically verified VFL algorithm that
applies embedding compression. Unlike in HFL algorithms,
C-VFL compresses embeddings rather than gradients. Previ-
ous work has proven convergence for HFL algorithms with
gradient compression (Stich et al., 2018; Wen et al., 2017;
Karimireddy et al., 2019). However, no previous work ana-
lyzes the convergence requirements for VFL algorithms that
use embedding compression. Embeddings are parameters in
the partial derivatives calculated at each party. The effect of
compression error on the resulting partial derivatives may
be complex; therefore, the analysis in previous work on
gradient compression in HFL does not apply to compression
in VFL. In our work, we prove that, under a diminishing
compression error, C-VFL converges at a rate of O( 1√

T
),

which is comparable to previous VFL algorithms that do not
employ compression. We also analyze common compres-
sors, such as quantization and sparsification, in C-VFL and
provide bounds on their compression parameters to ensure
convergence.

Figure 2. Example local view of a global model with neural net-
works. When running C-VFL, Party 1 (in green) only has a com-
pressed snapshot of the other parties embeddings and the server
model. To calculate ŷ, Party 1 uses its own embedding calculated
at iteration t, and the embeddings and server model calculated at
time t0, the latest communication iteration, and compressed with
Cm.

C-VFL also generalizes previous work by supporting an
arbitrary server model. Previous work in VFL has either
only analyzed an arbitrary server model without local up-
dates (Chen et al., 2020), or analyzed local updates with a
linear server model (Liu et al., 2019; Zhang et al., 2020; Das
& Patterson, 2021). C-VFL is designed with an arbitrary
server model, allowing support for more complex prediction
tasks than those supported by previous VFL algorithms.

We summarize our main contributions in this work.

1. We introduce C-VFL with an arbitrary compression
scheme. Our algorithm generalizes previous work in VFL
by including both an arbitrary server model and multiple
local iterations.

2. We prove convergence of C-VFL to a neighborhood of
a fixed point on non-convex objectives at a rate of O( 1√

T
)

for a fixed step size when the compression error is bounded
over the course of training. We also prove that the algo-
rithm convergence error goes to zero for a diminishing step
size if the compression error diminishes as well. Our work
provides novel analysis for the effect of compressing em-
beddings on convergence in a VFL algorithm. Our analysis
also applies to Split Learning when uploads to the server
are compressed.

3. We provide convergence bounds on parameters in com-
mon compressors that can be used in C-VFL. In particular,
we examine scalar quantization (Bennett, 1948), lattice vec-
tor quantization (Zamir & Feder, 1996), and top-k sparsifi-
cation (Lin et al., 2018).

4. We evaluate our algorithm by training on MIMIC-III,
CIFAR-10, and ModelNet10 datasets. We empirically show



Communication-Efficient Learning with Vertically Partitioned Data

how C-VFL can reduce the number of bits sent by over 90%
compared to VFL with no compression without a significant
loss in accuracy of the final model.

Related Work. (Richtárik & Takác, 2016; Hardy et al.,
2017) were the first works to propose Federated Learning
algorithms for vertically partitioned data. (Chen et al., 2020;
Romanini et al., 2021) propose the inclusion of an arbitrary
server model in a VFL algorithm. However, these works
do not consider multiple local iterations, and thus commu-
nicate at every iteration. (Liu et al., 2019), (Feng & Yu,
2020), and (Das & Patterson, 2021) all propose different
VFL algorithms with local iterations for vertically parti-
tioned data but do not consider an arbitrary server model.
Split Learning is a related concept to VFL (Gupta & Raskar,
2018). Split Learning can be thought of a special case of
VFL when there is only one party. Recent works (He et al.,
2020; Han et al., 2021a) have extended Split Learning to a
Federated Learning setting. However, these works focus on
the HFL setting and do not apply message compression. In
contrast to previous works, our work addresses a vertical
scenario, an arbitrary server model, local iterations, and
message compression.

Message compression is a common topic in HFL scenarios,
where participants exchange gradients determined by their
local datasets. Methods of gradient compression in HFL
include scalar quantization (Bernstein et al., 2018), vector
quantization (Shlezinger et al., 2021), and top-k sparsifica-
tion (Shi et al., 2019). In C-VFL, compressed embeddings
are shared, rather than compressed gradients. Analysis in
previous work on gradient compression in HFL does not
apply to compression in VFL, as the effect of embedding
compression error on each party’s partial derivatives may
be complex. No prior work has analyzed the impact of
compression on convergence in VFL.

Outline. In Section 2, we provide the problem formula-
tion and our assumptions. Section 3 presents the details
of C-VFL. In Section 4, we present our main theoretical
results. Our experimental results are given in Section 5.
Finally, we conclude in Section 6.

2. Problem Formulation
We present our problem formulation and notation to be used
in the rest of the paper. We let ∥a∥ be the 2-norm of a vector
a, and let ∥A∥F be the Frobenius norm of a matrix A.

We consider a set of M parties {1, . . . ,M} and a server.
The dataset X ∈ RN×D is vertically partitioned a priori
across the M parties, where N is the number of data sam-
ples and D is the number of features. The i-th row of X
corresponds to a data sample xi. For each sample xi, a party
m holds a disjoint subset of the features, denoted xi

m, so

that xi = [xi
1, . . . , x

i
M ]. For each xi, there is a correspond-

ing label yi. Let y ∈ RN×1 be the vector of all sample
labels. We let Xm ∈ RN×Dm be the local dataset of a party
m, where the i-th row correspond to data features xi

m. We
assume that the server and all parties have a copy of the
labels y. For scenarios where the labels are private and only
present at a single party, the label holder can provide enough
information for the parties to compute gradients for some
classes of model architectures (Liu et al., 2019).

Each party m holds a set of model parameters θm as well
as a local embedding function hm(·). The server holds a set
of parameters θ0 called the server model and a loss function
l(·) that combines the embeddings hm(θm;xi

m) from all
parties. Our objective is to minimize the following:

F (Θ;X; y)

:=
1

N

N∑
i=1

l(θ0, h1(θ1;x
i
1), . . . , hM (θM ;xi

M ); yi) (1)

where Θ = [θT0 , . . . , θ
T
M ]T is the global model. An example

of a global model Θ is in Figure 1.

For simplicity, we let m = 0 refer to the server,
and define h0(θ0;x

i) := θ0 for all xi, where
h0(·) is equivalent to the identity function. Let
hm(θm;xi

m) ∈ RPm for m = 0, . . . ,M , where Pm

is the size of the m-th embedding. Let ∇mF (Θ;X; y) :=
1
N

∑N
i=1∇θm l(θ0, h1(θ1;x

i
1), . . . , hM (θM ;xi

M ); yi) be
the partial derivatives for parameters θm.

Let XB and yB be the set of samples and labels cor-
responding to a randomly sampled mini-batch B
of size B. We let the stochastic partial deriva-
tives for parameters θm be ∇mFB(Θ;X; y) :=
1
B

∑
xi,yi∈XB,yB ∇θm l(θ0, h1(θ1;x

i
1), . . . , hM (θM ;xi

M ); y).
We may drop X and y from F (·) and FB(·). With
a minor abuse of notation, we let hm(θm;XB

m) :=

{hm(θm;xB1

m ), . . . , hm(θm;xBB

m )} be the set of all party
m embeddings associated with mini-batch B, where Bi is
the i-th sample in the mini-batch B. We let ∇mFB(Θ) and
∇mFB(θ0, h1(θ1;XB

1 ), . . . , hM (θM ;XB
M )) be equivalent,

and use them interchangeably.
Assumption 1. Smoothness: There exists positive constants
L <∞ and Lm <∞, for m = 0, . . . ,M , such that for all
Θ1, Θ2, the objective function satisfies:

∥∇F (Θ1)−∇F (Θ2)∥ ≤ L ∥Θ1 −Θ2∥
∥∇mFB(Θ1)−∇mFB(Θ2)∥ ≤ Lm ∥Θ1 −Θ2∥ .

Assumption 2. Unbiased gradients: For m = 0, . . . ,M ,
for every mini-batch B, the stochastic partial derivatives are
unbiased, i.e., EB∇mFB(Θ) = ∇mF (Θ).
Assumption 3. Bounded variance: For m = 0, . . . ,M ,
there exists constants σm <∞ such that the variance
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of the stochastic partial derivatives are bounded as:
EB∥∇mF (Θ)−∇mFB(Θ)∥2 ≤ σ2

m

B for a mini-batch B
of size B.

Assumption 1 bounds how fast the gradient and stochastic
partial derivatives can change. Assumptions 2 and 3 require
that the stochastic partial derivatives are unbiased estima-
tors of the true partial derivatives with bounded variance.
Assumptions 1–3 are common assumptions in convergence
analysis of gradient-based algorithms (Tsitsiklis et al., 1986;
Nguyen et al., 2018; Bottou et al., 2018). We note As-
sumptions 2–3 are similar to the IID assumptions in HFL
convergence analysis. However, in VFL settings, all parties
store identical sample IDs but different subsets of features.
Hence, there is no equivalent notion of a non-IID distribu-
tion in VFL.
Assumption 4. Bounded Hessian: There exists positive
constants Hm for m = 0, . . . ,M such that for all Θ, the
second partial derivatives of FB with respect to hm(θm;XB

m)
satisfy:

∥∇2
hm(θm;XB

m)FB(Θ)∥F ≤ Hm (2)

for any mini-batch B.
Assumption 5. Bounded Embedding Gradients: There
exists positive constants Gm for m = 0, . . . ,M such that
for all θm, the stochastic embedding gradients are bounded:

∥∇θmhm(θm;XB
m)∥F ≤ Gm (3)

for any mini-batch B.

Since we are assuming a Lipschitz-continuous loss func-
tion (Assumption 1), we know the Hessian of F is bounded.
Assumption 4 strengthens this assumption slightly to also
bound the Hessian over any mini-batch. Assumption 5
bounds the magnitude of the partial derivatives with respect
to embeddings. This embedding gradient bound is neces-
sary to ensure convergence in the presence of embedding
compression error (see Appendix A.2 for details).

3. Algorithm
We now present C-VFL, a communication-efficient method
for training a global model with vertically partitioned data.
In each global round, a mini-batch B is chosen randomly
from all samples and parties share necessary information for
local training on this mini-batch. Each party m, in parallel,
runs block-coordinate stochastic gradient descent on its local
model parameters θm for Q local iterations. C-VFL runs
for a total of R global rounds, and thus runs for T = RQ
total local iterations.

For party m to compute the stochastic gradient with respect
to its features, it requires the embeddings computed by all
other parties j ̸= m. In C-VFL, these embeddings are

Algorithm 1 Compressed Vertical Federated Learning
1: Initialize: θ0m for all parties m and server model θ00
2: for t← 0, . . . , T − 1 do
3: if t mod Q = 0 then
4: Randomly sample Bt ∈ {X, y}
5: for m← 1, . . . ,M in parallel do
6: Send Cm(hm(θtm;XBt

m )) to server
7: end for
8: Φ̂t0 ← {C0(θt0), C1(h1(θ

t
1)), . . . , CM (hM (θtM ))}

9: Server sends Φ̂t0 to all parties
10: end if
11: for m← 0, . . . ,M in parallel do
12: Φ̂t

m ← {Φ̂
t0
−m;hm(θtm;XBt0

m )}
13: θt+1

m ← θtm − ηt0∇mFB(Φ̂
t
m; yBt0

)
14: end for
15: end for

shared with the server then distributed to the parties. We re-
duce communication cost by only sharing embeddings every
global round. Further, each party compresses their embed-
dings before sharing. We define a set of general compressors
for compressing party embeddings and the server model:
Cm(·) : RPm → RPm for m = 0, . . . ,M . To calculate the
gradient for data sample xi, party m receives Cj(hj(θj ;x

i
j))

from all parties j ̸= m. With this information, a party m can
compute∇mFB and update its parameters θm for multiple
local iterations. Note that each party uses a stale view of the
global model to compute its gradient during these local iter-
ations, as it is reusing the embeddings it receives at the start
of the round. In Section 4, we show that C-VFL converges
even though parties use stale information. An example view
a party has of the global model during training is in Figure 2.
Here, t is the current iteration and t0 is the start of the most
recent global round, when embeddings were shared.

Algorithm 1 details the procedure of C-VFL. In each global
round, when t mod Q = 0, a mini-batch B is randomly
sampled from X and the parties exchange the associated
embeddings, compressed using Cm(·), via the server (lines
3-9). Each party m completes Q local iterations, using the
compressed embeddings it received in iteration t0 and its
own m-th uncompressed embeddings hm(θtm,XBt0

m ). We
denote the set of embeddings that each party receives in
iteration t0 as:

Φ̂t0 := {C0(θt00 ), C1(h1(θ
t0
1 )), . . . , CM (hM (θt0M ))}. (4)

We let Φ̂t0
−m be the set of compressed embeddings from

parties j ̸= m, and let Φ̂t
m := {Φ̂t0

−m;hm(θtm;XBt0

m )}. For
each local iteration, each party m updates θm by comput-
ing the stochastic partial derivatives ∇mFB(Φ̂

t
m; yBt0

) and
applying a gradient step with step size ηt0 (lines 11-14).

A key difference of C-VFL from previous VFL algorithms
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is the support of a server model with trainable parameters,
allowing for arbitrary fusion networks. To support such
a model with multiple local iterations, the server model
parameters are shared with the parties. Also note that the
same mini-batch is used for all Q local iterations, thus com-
munication is only required every Q iterations. Therefore,
without any compression, the total communication cost is
O(R ·M · (B ·

∑
m Pm + |θ0|)) for R global rounds. Our

compression technique replaces Pm and |θ0| with smaller
values based on the compression factor. For cases where
embeddings, the batch size, and the server model are large,
this reduction can greatly decrease the communication cost.

Privacy. We now discuss privacy-preserving mechanisms
for C-VFL. In HFL settings, model update or gradient in-
formation is shared in messages. It has been shown that
gradients can leak information about the raw data (Phong
et al., 2018; Geiping et al., 2020). However in C-VFL, par-
ties only share embeddings and can only calculate the partial
derivatives associated with the server model and their local
models. Commonly proposed HFL gradient attacks cannot
be performed on C-VFL. Embeddings may be vulnerable
to model inversion attacks (Mahendran & Vedaldi, 2015),
which are methods by which an attacker can recover raw
input to a model using the embedding output and black-box
access to the model. One can protect against such an at-
tack using homomorphic encryption (Cheng et al., 2021;
Hardy et al., 2017) or secure multi-party computation (Gu
et al., 2021). Alternatively, if the input to the server model
is the sum of party embeddings, then secure aggregation
methods (Bonawitz et al., 2016) can be applied. Several
works have proposed privacy-perserving methods for VFL
settings (Cheng et al., 2021; Çatak, 2015; Zheng et al., 2022)
that are compatible with the C-VFL algorithm.

Note that C-VFL assumes all parties have access to the la-
bels. For low-risk scenarios, such as predicting credit score,
labels may not need to be private among the parties. In cases
where labels are private, one can augment C-VFL to apply
the method in (Liu et al., 2019) for gradient calculation with-
out the need for sharing labels. Our analysis in Section 4
would still hold in this case, and the additional communica-
tion is reduced by the use of message compression.

4. Analysis
In this section, we discuss our analytical approach and
present our theoretical results. We first define the com-
pression error associated with Cm(·):

Definition 4.1. Compression Error: Let vectors ϵx
i

m for
m = 0, . . . ,M , be the compression errors of Cm(·) on a
data sample xi: ϵx

i

m := Cm(hm(θm;xi))−hm(θm;xi). Let
ϵt0m be the Pm × B matrix with ϵx

i

m for all data samples xi

in mini-batch Bt0 as the columns. We denote the expected

squared message compression error from party m at round
t0 as Et0m := E ∥ϵt0m∥

2
F .

Let Ĝ
t

be the stacked partial derivatives at iteration t:

Ĝ
t
:= [(∇0FB(Φ̂

t
0; yBt0

))T , . . . , (∇MFB(Φ̂
t
M ; yBt0

))T ]T .

The model Θ evolves as:

Θt+1 = Θt − ηt0Ĝ
t
. (5)

We note the reuse of the mini-batch of Bt0 for Q iterations in
this recursion. This indicates that the stochastic gradients are
not unbiased during local iterations t0+1 ≤ t ≤ t0+Q−1.
Using conditional expectation, we can apply Assumption 2
to the gradient calculated at iteration t0 when there is no
compression error. We define Φt0 to be the set of embed-
dings that would be received by each party at iteration t0 if
no compression error were applied:

Φt0 := {θt00 , h1(θ
t0
1 ), . . . , hM (θt0M )}. (6)

We let Φt0
−m be the set of embeddings from parties j ̸= m,

and let Φt
m := {Φt0

−m;hm(θtm;XBt0

m )}. Then, if we take
expectation over Bt0 conditioned on previous global models
Θt up to t0:

EBt0 [∇mFB(Φ
t0
m) | {Θτ}t0τ=0] = ∇mF (Φt0

m). (7)

With the help of (7), we can prove convergence by bounding
the difference between the gradient at the start of each global
round and those calculated during local iterations (see the
proof of Lemma 2 in Appendix A.2 for details).

To account for compression error, using the chain rule and
Taylor series expansion, we obtain:
Lemma 1. Under Assumptions 4-5, the norm of the differ-
ence between the objective function value with compressed
and uncompressed embeddings is bounded as:

E∥∇mFB(Φ̂
t
m)−∇mFB(Φ

t
m)∥2 ≤ H2

mG2
m

M∑
j=0,j ̸=m

Et0j .

The proof of Lemma 1 is given in Appendix A.2. Using
Lemma 1, we can bound the effect of compression error on
convergence.

We present our main theoretical results. All proofs are
provided in Appendix A.

Theorem 4.2. Convergence with fixed step size: Under
Assumptions 1-5, if ηt0 = η for all iterations and satis-
fies ηt0 ≤ 1

16Qmax{L,maxm Lm} , then the average squared
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Table 1. Choice of common compressor parameters to achieve a convergence rate of O(1/
√
T ). Pm is the size of the m-th embedding. In

scalar quantization, we let there be 2q quantization levels, and let hmax and hmin be respectively the maximum and minimum components
in hm(θtm;xi

m) for all iterations t, parties m, and xi
m. We let V be the size of the lattice cell in vector quantization. We let k be the

number of parameters sent in an embedding after top-k sparsification, and (∥h∥2)max be the maximum value of ∥hm(θtm;xi
m)∥2 for all

iterations t, parties m, and xi
m.

Scalar Quantization Vector Quantization Top-k Sparsification

Parameter Choice q = Ω
(
log2

(
BPm(hmax − hmin)

2
√
T
))

V = O
(

1

BPm
√
T

)
k = Ω

(
Pm − Pm

B(∥h∥2)max
√
T

)
Compression Error Et0

m ≤ BPm
(hmax−hmin)

2

12
2−2q Et0

m ≤ V BPm
24

Et0
m ≤ B(1− k

Pm
)(∥h∥2)max

gradient over R global rounds of Algorithm 1 is bounded:

1

R

R−1∑
t0=0

E
[∥∥∇F (Θt0)

∥∥2]

≤
4
[
F (Θ0)− E

[
F (ΘT )

]]
ηT

+ 6ηQL

M∑
m=0

σ2
m

B

+
92Q2

R

M∑
m=0

H2
mG2

m

R−1∑
t0=0

M∑
j=0,j ̸=m

Et0j . (8)

The first term in (8) is based on the difference between the
initial model and final model of the algorithm. The second
term is the error associated with the variance of the stochas-
tic gradients and the Lipschitz constants L and Lm’s. The
third term relates to the average compression error over all
iterations. The larger the error introduced by a compres-
sor, the larger the convergence error is. We note that setting
Et0j = 0 for all parties and iterations provides an error bound
on VFL without compression and is an improvement over
the bound in (Liu et al., 2019) in terms of Q, M , and B. The
second and third terms include a coefficient relating to local
iterations. As the number of local iterations Q increases, the
convergence error increases. However, increasing Q also
has the effect of reducing the number of global rounds. Thus,
it may be beneficial to have Q > 1 in practice. We explore
this more in experiments in Section 5. The second and third
terms scale with M , the number of parties. However, VFL
scenarios typically have a small number of parties (Kairouz
et al., 2021), and thus M plays a small role in convergence
error. We note that when M = 1 and Q = 1, Theorem 4.2
applies to Split Learning (Gupta & Raskar, 2018) when only
uploads to the server are compressed.
Remark 4.3. Let E = 1

R

∑R−1
t0=0

∑M
m=0 Et0m . If ηt0 = 1√

T
for all global rounds t0, for Q and B independent of T , then

1

R

R−1∑
t0=0

E
[
∥∇F (Θt0)∥2

]
= O

(
1√
T

+ E
)
.

This indicates that if E = O( 1√
T
) then we can achieve a con-

vergence rate of O( 1√
T
). Informally, this means that C-VFL

can afford compression error and not worsen asymptotic
convergence when this condition is satisfied. We discuss
how this affects commonly used compressors in practice
later in the section.

We consider a diminishing step size in the following:

Theorem 4.4. Convergence with diminishing step size:
Under Assumptions 1-5, if 0 < ηt0 < 1 satisfies ηt0 ≤

1
16Qmax{L,maxm Lm} , then the minimum squared gradient
over R global rounds of Algorithm 1 is bounded:

min
t0=0,...,R−1

E
[∥∥∇F (Θt0)

∥∥2] =
O

(
1∑R−1

t0=0 η
t0

+

∑R−1
t0=0(η

t0)2∑T−1
t=0 ηt0

+

∑R−1
t0=0

∑M
m=0 η

t0Et0m∑R−1
t0=0 η

t0

)
.

If ηt0 and Et0m satisfy
∑∞

t0=0 η
t0 = ∞,∑∞

t0=0(η
t0)2 < ∞, and

∑∞
t0=0

∑M
m=0 η

t0Et0m < ∞,

then mint0=0,...,R−1 E
[
∥∇F (Θt0)∥2

]
→ 0 as R→∞.

According to Theorem 4.4, the product of the step size and
the compression error must be summable over all iterations.
In the next subsection, we discuss how to choose common
compressor parameters to ensure this property is satisified.
We also see in Section 5 that good results can be achieved
empirically without diminishing the step size or compres-
sion error.

Common Compressors. In this section, we show how to
choose common compressor parameters to achieve a con-
vergence rate of O( 1√

T
) in the context of Theorem 4.2,

and guarantee convergence in the context of Theorem 4.4.
We analyze three common compressors: a uniform scalar
quantizer (Bennett, 1948), a 2-dimensional hexagonal lat-
tice quantizer (Zamir & Feder, 1996), and top-k sparsifica-
tion (Lin et al., 2018). For uniform scalar quantizer, we let
there be 2q quantization levels. For the lattice vector quan-
tizer, we let V be the volume of each lattice cell. For top-k
sparsification, we let k be the number of embedding compo-
nents sent in a message. In Table 1, we present the choice
of compressor parameters in order to achieve a convergence
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rate of O( 1√
T
) in the context of Theorem 4.2. We show how

we calculate these bounds in Appendix B and provide some
implementation details for their use. We can also use Table 1
to choose compressor parameters to ensure convergence in
the context of Theorem 4.4. Let ηt0 = O( 1

t0
), where t0 is

the current round. Then setting T = t0 in Table 1 provides
a choice of compression parameters at each iteration to en-
sure the compression error diminishes at a rate of O( 1√

t0
),

guaranteeing convergence. Diminishing compression error
can be achieved by increasing the number of quantization
levels, decreasing the volume of lattice cells, or increasing
the number of components sent in a message.

5. Experiments
We present experiments to examine the performance of
C-VFL in practice. The goal of our experiments is to exam-
ine the effects that different compression techniques have
on training, and investigate the accuracy/communication
trade-off empirically. We run experiments on three
datasets: the MIMIC-III dataset (Johnson et al., 2016), the
ModelNet10 dataset (Wu et al., 2015), and the CIFAR-10
dataset (Krizhevsky et al., 2009). We provide more details
on the datasets and training procedure in Appendix C, as
well as additional plots and experiments in Appendix D.

MIMIC-III: MIMIC-III is an anonymized hospital patient
time series dataset. In MIMIC-III, the task is binary classifi-
cation to predict in-hospital mortality. We train with a set
of 4 parties, each storing 19 of the 76 features. Each party
trains an LSTM and the server trains two fully-connected
layers. We use a fixed step size of 0.01, a batch size of 1000,
and train for 1000 epochs.

CIFAR-10: CIFAR-10 is an image dataset for object clas-
sification. We train with a set of 4 parties, each storing a dif-
ferent quadrant of every image. Each party trains ResNet18,
and the server trains a fully-connected layer. We use a fixed
step size of 0.0001 and a batch size of 100, and train for
200 epochs.

ModelNet10: ModelNet10 is a set of CAD models, each
with images of 12 different camera views. The task of Mod-
elNet10 is classification of images into 10 object classes.
We run experiments with both a set of 4 and 12 parties,
where parties receive 3 or 1 view(s) of each CAD model,
respectively. Each party’s network consists of two convo-
lutional layers and a fully-connected layer, and the server
model consists of a fully-connected layer. We use a fixed
step size of 0.001 and a batch size of 64, and train for 100
epochs.

We consider the three compressors discussed in Section 4: a
uniform scalar quantizer, a 2-dimensional hexagonal lattice
(vector) quantizer, and top-k sparsification. For both quan-
tizers, the embedding values need to be bounded. In the

(a) MIMIC-III by epochs (b) MIMIC-III by cost

(c) CIFAR-10 by epochs (d) CIFAR-10 by cost

(e) ModelNet10 by epochs (f) ModelNet10 by cost

Figure 3. C-VFL when compressing to 2 bits per component. The
solid lines are the mean of 5 runs, while the shaded region repre-
sents the standard deviation. We show test F1-Score on MIMIC-III
dataset and test accuracy on CIFAR-10 and ModelNet10 dataset,
plotted by epochs and communication cost.

case of the models used for MIMIC-III and CIFAR-10, the
embedding values are already bounded, but the CNN used
for ModelNet10 may have unbounded embedding values.
We scale embedding values for ModelNet10 to the range
[0, 1]. We apply subtractive dithering to both the scalar quan-
tizer (Wannamaker, 1997) and vector quantizer (Shlezinger
et al., 2021).

In our experiments, each embedding component is a 32-bit
float. Let b be the bits per component we compress to. For
the scalar quantizer, this means there are 2b quantization
levels. For the 2-D vector quantizer, this means there are
22b vectors in the codebook. The volume V of the vector
quantizer is a function of the number of codebook vectors.
For top-k sparsification, k = Pm · b

32 as we use 32-bit
components. We train using C-VFL and consider cases
where b = 2, 3, and 4. We compare with a case where
b = 32. This corresponds to a standard VFL algorithm
without embedding compression (Liu et al., 2019), acting
as a baseline for accuracy.

In Figure 3, we plot the test F1-Score and test accuracy for
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Table 2. MIMIC-III maximum F1-Score reached during training,
and communication cost to reach a target test F1-Score of 0.4.
Value shown is the mean of 5 runs, ± the standard deviation. In
these experiments, Q = 10 and M = 4.

Compressor Max F1-Score Cost (MB)
Reached Target = 0.4

None b = 32 0.448 ± 0.010 3830.0 ± 558.2

Scalar b = 2 0.441 ± 0.018 233.1 ± 28.7
Vector b = 2 0.451 ± 0.021 236.1 ± 17.9
Top-k b = 2 0.431 ± 0.016 309.8 ± 93.6

Scalar b = 3 0.446 ± 0.011 343.1 ± 18.8
Vector b = 3 0.455 ± 0.020 330.5 ± 10.6
Top-k b = 3 0.435 ± 0.030 470.7 ± 116.8

Scalar b = 4 0.451 ± 0.020 456.0 ± 87.8
Vector b = 4 0.446 ± 0.017 446.5 ± 21.3
Top-k b = 4 0.453 ± 0.014 519.1 ± 150.4

MIMIC-III, CIFAR-10, and ModelNet10 when training with
b = 2. We use F1-Score for MIMIC-III as the in-hospital
mortality prediction task has high class imbalance; most
people in the dataset did not die in the hospital. For these
experiments, we let M = 4 for ModelNet10. The solid line
in each plot represents the average accuracy over five runs,
while the shaded regions represent one standard deviation.
In Figures 3a, 3c, and 3e, we plot by the number of training
epochs. We can see in all cases, although convergence can
be a bit slower, training with compressed embeddings still
reaches similar accuracy to no compression. In Figures 3b,
3d, and 3f, we plot by the communication cost in bytes.
The cost of communication includes both the upload of
(compressed) embeddings to the server and download of
embeddings and server model to all parties. We can see that
by compressing embeddings, we can reach higher accuracy
with significantly less communication cost. In all datasets,
the compressors reach similar accuracy to each other, though
top-k sparsification performs slightly worse than the others
on MIMIC-III, while vector quantization performs the best
in both on CIFAR-10 and ModelNet10.

In Tables 2, 3 and 4, we show the maximum test accu-
racy reached during training and the communication cost to
reach a target accuracy for MIMIC-III, CIFAR-10, and Mod-
elNet10. We show results for all three compressors with
b = 2, 3, and 4 bits per component, as well as the baseline of
b = 32. For the MIMIC-III dataset, we show the maximum
test F1-Score reached and the total communication cost of
reaching an F1-Score of 0.4. The maximum F1-Score for
each case is within a standard deviation of each other. How-
ever, the cost to reach target score is much smaller as the
value of b decreases for all compressors. We can see that
when b = 2, we can achieve over 90% communication cost
reduction over no compression to reach a target F1-Score.

Table 3. CIFAR-10 maximum test accuracy reached during train-
ing, and communication cost to reach a target accuracy of 70%.
Value shown is the mean of 5 runs, ± the standard deviation. A
“–” indicates that the target was not reached during training. We let
Q = 10 and M = 4.

Compressor Max Accuracy Cost (GB)
Reached Target = 70%

None b = 32 73.18% ± 0.44% 7.69 ± 0.35

Scalar b = 2 65.16% ± 1.85% –
Vector b = 2 71.43% ± 0.47% 0.68 ± 0.06
Top-k b = 2 66.02% ± 2.24% –

Scalar b = 3 71.49% ± 1.05% 1.22 ± 0.17
Vector b = 3 72.50% ± 0.40% 0.81 ± 0.05
Top-k b = 3 71.56% ± 0.81% 1.24 ± 0.22

Scalar b = 4 71.80% ± 1.18% 1.72 ± 0.26
Vector b = 4 73.17% ± 0.39% 0.98 ± 0.08
Top-k b = 4 72.03% ± 1.77% 1.43 ± 0.26

Table 4. ModelNet10 maximum test accuracy reached during train-
ing, and communication cost to reach a target accuracy of 75%.
Value shown is the mean of 5 runs, ± the standard deviation. We
let Q = 10 and M = 4.

Compressor Max Accuracy Cost (MB)
Reached Target = 75%

None b = 32 85.68% ± 1.57% 9604.80 ± 2933.40

Scalar b = 2 76.94% ± 5.87% 1932.00 ± 674.30
Vector b = 2 84.80% ± 2.58% 593.40 ± 170.98
Top-k b = 2 79.91% ± 2.86% 1317.90 ± 222.95

Scalar b = 3 81.32% ± 1.61% 1738.80 ± 254.79
Vector b = 3 85.66% ± 1.36% 900.45 ± 275.01
Top-k b = 3 81.63% ± 1.24% 1593.90 ± 225.34

Scalar b = 4 81.19% ± 1.88% 2194.20 ± 266.88
Vector b = 4 85.77% ± 1.69% 1200.60 ± 366.68
Top-k b = 4 83.50% ± 1.21% 1821.60 ± 241.40

For the CIFAR-10 and ModelNet10 datasets, Tables 3 and 4
show the maximum test accuracy reached and the total com-
munication cost of reaching a target accuracy. We can see
that, for both datasets, vector quantization tends to outper-
form both scalar quantization and top-k quantization. Vector
quantization benefits from considering components jointly,
and thus can have better reconstruction quality than scalar
quantization and top-k sparsification (Woods, 2006).

In Table 5, we consider the communication/computation
tradeoff of local iterations. We show how the number of
local iterations affects the time to reach a target F1-Score in
the MIMIC-III dataset. We train C-VFL with vector quanti-
zation b = 3 and set the local iterations Q to 1, 10, and 25.
Note that the Q = 1 case corresponds to adding embedding
compression to previously proposed VFL algorithms that do
not have multiple local iterations (Hu et al., 2019; Romanini
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Table 5. MIMIC-III time in seconds to reach a target F1-Score for
different local iterations Q and communication latency tc with
vector quantization and b = 3. Value shown is the mean of 5 runs,
± one standard deviation.

tc Time to Reach Target F1-Score 0.45
Q = 1 Q = 10 Q = 25

1 694.53 ± 150.75 470.86 ± 235.35 445.21 ± 51.44
10 1262.78 ± 274.10 512.82 ± 256.32 461.17 ± 53.29
50 3788.32 ± 822.30 699.30 ± 349.53 532.12 ± 61.49
200 13259.14 ± 2878.04 1398.60 ± 699.05 798.19 ± 92.23

(a) Parties M = 4 (b) Parties M = 12

Figure 4. Communication cost of training on ModelNet10 with
vector quantization. The solid lines are the mean of 5 runs, and the
shaded region represents one standard deviation.

et al., 2021). We simulate a scenario where computation
time for training a mini-batch of data at each party takes
10 ms, and communication of embeddings takes a total of
1, 10, 50, and 200 ms roundtrip. These different commu-
nication latencies correspond to the distance between the
parties and the server: within the same cluster, on the same
local network, within the same region, and across the globe.
According to Theorem 4.2, increasing the number of local it-
erations Q increases convergence error. However, the target
test accuracy is reached within less time when Q increases.
The improvement over Q = 1 local iterations increases as
the communication latency increases. In systems where
communication latency is high, it may be beneficial to in-
crease the number of local iterations. The choice of Q will
depend on the accuracy requirements of the given prediction
task and the time constraints on the prediction problem.

Finally, in Figure 4, we plot the test accuracy of Model-
Net10 against the communication cost when using vector
quantization with b = 2, 3, 4, and 32. We include plots for 4
and 12 parties. We note that changing the number of parties
changes the global model structure Θ as well. We can see in
both cases that smaller values of b reach higher test accura-
cies at lower communication cost. The total communication
cost is larger with 12 parties, but the impact of increasing
compression is similar for both M = 4 and M = 12.

6. Conclusion
We proposed C-VFL, a distributed communication-efficient
algorithm for training a model over vertically partitioned
data. We proved convergence of the algorithm at a rate of
O( 1√

T
), and we showed experimentally that communication

cost could be reduced by over 90% without a significant
decrease in accuracy. For future work, we seek to relax
our bounded gradient assumption and explore the effect of
adaptive compressors.
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A. Proofs of Theorems 4.2 and 4.4
In this section, we provide the proofs for Theorems 4.2 and 4.4.

A.1. Additional Notation

Before starting the proofs, we define some additional notation to be used throughout. At each iteration t, each party m trains
with the embeddings Φ̂t

m. This is equivalent to the party training directly with the models θtm and θt0j for all j ̸= m, where
t0 is the last communication iteration when party m received the embeddings. We define:

γt
m,j =

{
θtj m = j

θt0j otherwise
(A.1)

to represent party m’s view of party j’s model at iteration t. We define the column vector Γt
m = [(γt

m,0)
T ; . . . ; (γt

m,M )T ]T

to be party m’s view of the global model at iteration t.

We introduce some notation to help with bounding the error introduced by compression. We define F̂B(Γ
t
m) to be the

stochastic loss with compression error for a randomly selected mini-batch B calculated by party m at iteration t:

F̂B(Γ
t
m) := FB

(
θt00 + ϵt00 , h1(θ

t0
1 ;XBt0

1 ) + ϵt01 , . . . , hm(θtm;XBt0

m ), . . . , hM (θt0M ;XBt0

M ) + ϵt0M

)
. (A.2)

Recall the recursion over the global model Θ:

Θt+1 = Θt − ηt0Ĝ
t
. (A.3)

We can equivalently define Ĝ
t

as follows:

Ĝ
t
=
[
(∇0F̂B(Γ

t
0))

T , . . . , (∇M F̂B(Γ
t
M ))T

]T
. (A.4)

Note that the compression error in F̂ (·) is applied to the embeddings, and not the model parameters. Thus, F (·) and F̂ (·)
are different functions. In several parts of the proof, we need to bound the compression error in∇mF̂B(Γ

t
m).

For our analysis, we redefine the set of embeddings for a mini-batch B of size B from party m as a matrix:

hm(θm;XB
m) :=

[
hm(θm;xB1

m ), . . . , hm(θm;xBB

m )
]
. (A.5)

hm(θm;XB
m) is a matrix with dimensions Pm ×B where each column is the embedding from party m for a single sample

in the mini-batch.

Let P =
∑M

m=0 Pm be the sum of the sizes of all embeddings. We redefine the set of embeddings used by a party m to
calculate its gradient without compression error as a matrix:

Φ̂t
m =

[
(θt00 )T , (h1(θ

t0
1 ;XBt0

1 ))T , . . . , (hm(θtm;XBt0

m ))T , . . . , (hM (θt0M ;XBt0

M ))T
]T

. (A.6)

Φ̂t
m is a matrix with dimensions P ×B where each column is the concatenation of embeddings for all parties for a single

sample in the mini-batch.

Recall the set of compression error vectors for a mini-batch B of size B from party m is the matrix:

ϵt0m :=
[
ϵB1

m , . . . , ϵBB

m

]
. (A.7)

ϵt0m is a matrix of dimensions Pm ×B where each column is the compression error from party m for a single sample in the
mini-batch.
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We define the compression error on each embedding used in party m’s gradient calculation at iteration t:

Et0
m =

[
(ϵt00 )T , . . . , (ϵt0m−1)

T , 0T , (ϵt0m−1)
T , . . . , (ϵt0M )T

]T
. (A.8)

Et0
m is a matrix with dimensions P ×B where each column is the concatenation of compression error on embeddings for all

parties for a single sample in the mini-batch.

With some abuse of notation, we define:

∇mFB(Φ
t
m + Et0

m) := ∇mF̂B(Γ
t
m). (A.9)

Note that we can apply the chain rule to∇mF̂B(Γ
t
m):

∇mF̂B(Γ
t
m) = ∇θmhm(θtm)∇hm(θm)FB(Φ

t
m + Et0

m). (A.10)

With this expansion, we can now apply Taylor series expansion to∇hm(θm)FB(Φ
t
m + Et0

m) around the point Φt
m:

∇hm(θm)FB(Φ
t
m + Et0

m) = ∇hm(θm)FB(Φ
t
m) +∇2

hm(θm)FB(Φ
t
m)tEt0

m + . . . (A.11)

We let the infinite sum of all terms in this Taylor series from the second partial derivatives and up be denoted as Rm
0 :

Rm
0 (Φt

m + Et0
m) := ∇2

hm(θm)FB(Φ
t
m)TEt0

m + . . . (A.12)

Note that all compression error is in Rm
0 (Φt

m + Et0
m). Presented in Section A.2, the proof of Lemma 1’ shows how we can

bound Rm
0 (Φt

m + Et0
m), bounding the compression error in∇mF̂B(Γ

t
m).

Let Et0 = EBt0 [ · | {Θτ}t0τ=0]. Note that by Assumption 2, Et0
[
Gt0
]
= ∇F (Θt0) as when there is no compression error

in the gradients G, they are equal to the full-batch gradient in expectation when conditioned on the model parameters up to
the iteration t0. However, this is not true for iterations t0 + 1 ≤ t ≤ t0 +Q− 1, as we reuse the mini-batch Bt0 in these
local iterations. We upper bound the error introduced by stochastic gradients calculated during local iterations in Lemma 2.

A.2. Supporting Lemmas

Next, we provide supporting lemmas and their proofs.

We restate Lemma 1 here:
Lemma 1. Under Assumptions 4-5, the norm of the difference between the objective function value with and without error
is bounded:

E
∥∥∥∇mFB(Φ̂

t
m)−∇mFB(Φ

t
m)
∥∥∥2 ≤ H2

mG2
m

M∑
j=0,j ̸=m

Et0j . (A.13)

To prove Lemma 1, we first prove the following lemma:
Lemma 1’. Under Assumptions 4-5, the squared norm of the partial derivatives for party m’s embedding multiplied by the
Taylor series terms Rm

0 (Φt
m + Et0

m) is bounded:∥∥∇θmhm(θtm)Rm
0 (Φt

m + Et0
m)
∥∥2 ≤ H2

mG2
m

∥∥Et0
m

∥∥
F . (A.14)

Proof. ∥∥∇θmhm(θtm)Rm
0 (Φt

m + Et0
m)
∥∥2 ≤ ∥∥∇θmhm(θtm)

∥∥2
F

∥∥Rm
0 (Φt

m + Et0
m)
∥∥2
F (A.15)

≤ H2
m

∥∥∇θmhm(θtm)
∥∥2
F

∥∥Et0
m

∥∥2
F (A.16)

where (A.16) follows from Assumption 4 and the following property of the Taylor series approximation error:∥∥Rm
0 (Φt

m + Et0
m)
∥∥
F ≤ Hm

∥∥Et0
m

∥∥
F . (A.17)
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Applying Assumption 5, we have:

∥∥∇θmhm(θtm)Rm
0 (Φt

m + Et0
m)
∥∥2 ≤ H2

mG2
m

∥∥Et0
m

∥∥2
F . (A.18)

We now prove Lemma 1.

Proof. Recall that:

∇mF̂B(Γ
t
m) = ∇mFB(Φ

t
m + Et0

m) (A.19)

= ∇θmhm(θtm)∇hm(θm)FB(Φ
t
m + Et0

m). (A.20)

Next we apply Taylor series expansion as in (A.11):

∇mF̂B(Γ
t
m) = ∇θmhm(θtm)

(
∇hm(θm)FB(Φ

t
m) +Rm

0 (Φt
m + Et0

m)
)

(A.21)

= ∇mFB(Γ
t
m) +∇θmhm(θtm)Rm

0 (Φt
m + Et0

m) (A.22)

Rearranging and applying expectation and the squared 2-norm, we can bound further:

E
∥∥∥∇mF̂B(Γ

t
m)−∇mFB(Γ

t
m)
∥∥∥2 = E

∥∥∇θmhm(θtm)Rm
0 (Φt

m + Et0
m)
∥∥2 (A.23)

≤ H2
mG2

mE
∥∥Et0

m

∥∥2
F (A.24)

= H2
mG2

m

∑
j ̸=m

E
∥∥ϵt0j ∥∥2F (A.25)

= H2
mG2

m

∑
j ̸=m

Et0j (A.26)

where (A.24) follows from Lemma 1’, (A.25) follows from the definition of Et0
m , and (A.26) follows from Definition 4.1.

Lemma 2. If ηt0 ≤ 1
4Qmaxm Lm

, then under Assumptions 1-5 we can bound the conditional expected squared norm

difference of gradients Gt0 and Ĝ
t

for iterations t0 to t0 +Q− 1 as follows:

t0+Q−1∑
t=t0

Et0

[∥∥∥Ĝ
t
−Gt0

∥∥∥2] ≤ 16Q3(ηt0)2
M∑

m=0

L2
m

∥∥∇mF (Θt0)
∥∥2

+ 16Q3(ηt0)2
M∑

m=0

L2
m

σ2
m

B

+ 64Q3
M∑

m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.27)
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Proof.

Et0

[∥∥∥Ĝ
t
−Gt0

∥∥∥2] = M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t
m)−∇mFB(Γ

t0
m)
∥∥∥2] (A.28)

=

M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t
m)− F̂B(Γ

t−1
m ) +∇mF̂B(Γ

t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2] (A.29)

≤ (1 + n)

M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t
m)−∇mF̂B(Γ

t−1
m )

∥∥∥2]

+

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2] (A.30)

≤ 2 (1 + n)

M∑
m=0

Et0
[∥∥∇mFB(Γ

t
m)−∇mFB(Γ

t−1
m )

∥∥2]
+ 2 (1 + n)

M∑
m=0

Et0
[∥∥∇θmhm(θtm)Rm

0 (Φt
m + Et0

m)−∇θmhm(θt−1
m )Rm

0 (Φt−1
m + Et−1

m )
∥∥2]

+

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2] (A.31)

≤ 2 (1 + n)

M∑
m=0

Et0
[∥∥∇mFB(Γ

t
m)−∇mFB(Γ

t−1
m )

∥∥2]+ 8 (1 + n)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
+

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2] (A.32)

where (A.30) follows from the fact that (X + Y )2 ≤ (1 + n)X2 + (1 + 1
n )Y

2 for some positive n and (A.32) follows from
Lemma 1’.

Applying Assumption 1 to the first term in (A.30) we have:

Et0

[∥∥∥Ĝ
t
−Gt0

∥∥∥2] ≤ 2 (1 + n)

M∑
m=0

L2
mEt0

[∥∥Γt
m − Γt−1

m

∥∥2]
+ 2

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 8 (1 + n)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2 (A.33)

= 2(ηt0)2 (1 + n)

M∑
m=0

L2
mEt0

[∥∥∥∇mF̂B(Γ
t−1
m )

∥∥∥2]

+ 2

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 8 (1 + n)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2 (A.34)

where (A.34) follows from the update rule Γt
m = Γt−1

m − ηt0∇mF̂B(Γ
t−1
m ).
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Bounding further:

Et0

[∥∥∥Ĝ
t
−Gt0

∥∥∥2] ≤ 2(ηt0)2 (1 + n)

M∑
m=0

L2
mEt0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m) +∇mFB(Γ

t0
m)
∥∥∥2]

+

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 8 (1 + n)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2 (A.35)

≤ 4(ηt0)2 (1 + n)

M∑
m=0

L2
mEt0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 4(ηt0)2 (1 + n)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+

(
1 +

1

n

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 8 (1 + n)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2 (A.36)

=

M∑
m=0

(
4(ηt0)2 (1 + n)L2

m +

(
1 +

1

n

))
Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 4(ηt0)2 (1 + n)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+ 8 (1 + n)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2 . (A.37)

Let n = Q. We simplify (A.37) further:

Et0

[∥∥∥Ĝ
t
−Gt0

∥∥∥2]
≤

M∑
m=0

(
4(ηt0)2 (1 +Q)L2

m +

(
1 +

1

Q

))
Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 4(ηt0)2 (1 +Q)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+ 8 (1 +Q)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.38)
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Let ηt0 ≤ 1
4Qmaxm Lm

. We bound (A.38) as follows:

Et0

[∥∥∥Ĝ
t
−Gt0

∥∥∥2] ≤ ( (1 +Q)

4Q2
+

(
1 +

1

Q

)) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 4(ηt0)2 (1 +Q)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+ 8(1 +Q)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F (A.39)

≤
(

1

2Q
+

(
1 +

1

Q

)) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 4(ηt0)2 (1 +Q)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+ 8(1 +Q)
M∑

m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F (A.40)

≤
(
1 +

2

Q

) M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t−1
m )−∇mFB(Γ

t0
m)
∥∥∥2]

+ 4(ηt0)2 (1 +Q)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+ 8(1 +Q)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.41)

We define the following notation for simplicity:

At :=

M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t
m)−∇mFB(Γ

t0
m)
∥∥∥2] (A.42)

B0 := 4(ηt0)2 (1 +Q)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2] (A.43)

B1 := 8(1 +Q)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F (A.44)

C :=

(
1 +

2

Q

)
. (A.45)

Note that we have shown that At ≤ CAt−1 +B0 +B1. Therefore:

At0+1 ≤ CAt0 + (B0 +B1) (A.46)

At0+2 ≤ C2At0 + C(B0 +B1) + (B0 +B1) (A.47)

At0+3 ≤ C3At0 + C2(B0 +B1) + C(B0 +B1) + (B0 +B1) (A.48)
... (A.49)

At ≤ Ct−t0−1At0 + (B0 +B1)

t−t0−2∑
k=0

Ck (A.50)

= Ct−t0−1At0 + (B0 +B1)
Ct−t0−1 − 1

C − 1
. (A.51)
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We bound the first term in (A.51) by applying Lemma 1:

At0 =

M∑
m=0

Et0

[∥∥∥∇mF̂B(Γ
t0
m)−∇mFB(Γ

t0
m)
∥∥∥2] (A.52)

≤
M∑

m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.53)

Summing over the set of local iterations t0, . . . , t+0 , where t+0 := t0 +Q− 1:

t+0∑
t=t0

Ct−t0−1At0 = At0

t+0∑
t=t0

Ct−t0−1 (A.54)

= At0
CQ − 1

C − 1
(A.55)

= At0

(
1 + 2

Q

)Q
− 1(

1 + 2
Q

)
− 1

(A.56)

≤ QAt0
e2 − 1

2
(A.57)

≤ 4QAt0 (A.58)

≤ 4Q

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.59)

It is left to bound the second term in (A.51) over the set of local iterations t0, . . . , t0 +Q− 1.

t+0∑
t=t0

(B0 +B1)
Ct−t0−1 − 1

C − 1
≤

t+0∑
t=t0

(B0 +B1)
Ct−t0−1 − 1

C − 1
(A.60)

=
(B0 +B1)

C − 1

 t+0∑
t=t0

Ct−t0−1 −Q

 (A.61)

=
(B0 +B1)

C − 1

(
CQ − 1

C − 1
−Q

)
(A.62)

=
(B0 +B1)(
1 + 2

Q

)
− 1


(
1 + 2

Q

)Q
− 1(

1 + 2
Q

)
− 1

−Q

 (A.63)

=
Q(B0 +B1)

2

Q

[(
1 + 2

Q

)Q
− 1

]
2

−Q

 (A.64)

=
Q2(B0 +B1)

2


(
1 + 2

Q

)Q
− 1

2
− 1

 (A.65)

≤ Q2(B0 +B1)

2

(
e2 − 1

2
− 1

)
(A.66)

≤ 2Q2(B0 +B1) (A.67)
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Plugging the values for B0 and B1:

t+0∑
t=t0

(B0 +B1)
Ct−t0−1 − 1

C − 1
≤ 8Q2(ηt0)2 (1 +Q)

M∑
m=0

L2
mEt0

[∥∥∇mFB(Γ
t0
m)
∥∥2]

+ 16Q2(1 +Q)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F (A.68)

Applying Assumption 3 and adding in the first term in (A.51):

t+0∑
t=t0

At ≤ 8Q2(ηt0)2 (1 +Q)

M∑
m=0

L2
m

∥∥∇mF (Θt0)
∥∥2

+ 8Q2(ηt0)2 (1 +Q)

M∑
m=0

L2
m

σ2
m

B

+ 4(4Q2(1 +Q) +Q)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F (A.69)

≤ 16Q3(ηt0)2
M∑

m=0

L2
m

∥∥∇mF (Θt0)
∥∥2

+ 16Q3(ηt0)2
M∑

m=0

L2
m

σ2
m

B

+ 64Q3
M∑

m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.70)

A.3. Proof of Theorems 4.2 and 4.4

Let t+0 := t0 +Q− 1. By Assumption 1:

F (Θt+0 )− F (Θt0) ≤
〈
∇F (Θt0),Θt+0 −Θt0

〉
+

L

2

∥∥∥Θt+0 −Θt0
∥∥∥2 (A.71)

= −

〈
∇F (Θt0),

t+0∑
t=t0

ηt0Ĝ
t

〉
+

L

2

∥∥∥∥∥∥
t+0∑

t=t0

ηt0Ĝ
t

∥∥∥∥∥∥
2

(A.72)

≤ −
t+0∑

t=t0

ηt0
〈
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t
〉
+

LQ

2

t+0∑
t=t0

(ηt0)2
∥∥∥Ĝ
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where (A.73) follows from fact that (
∑N

n=1 xn)
2 ≤ N

∑N
n=1 x

2
n.
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We bound further:
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t
−Gt0

〉
−

t+0∑
t=t0

ηt0
〈
∇F (Θt0),Gt0

〉

+ LQ

t+0∑
t=t0

(ηt0)2
∥∥∥Ĝ
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t
−Gt0

∥∥∥2 − t+0∑
t=t0

ηt0
〈
∇F (Θt0),Gt0

〉

+ LQ

t+0∑
t=t0

(ηt0)2
∥∥∥Ĝ
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where (A.77) follows from the fact that A ·B = 1
2A

2 + 1
2B

2 − 1
2 (A−B)2.

We apply the expectation Et0 to both sides of (A.77):
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where (A.78) follows from applying Assumption 2 and noting that Et0
[
Gt0
]
= ∇F (Θt0), and (A.80) follows from

Assumption 3.
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Applying Lemma 2 to (A.80):

Et0
[
F (Θt+0 )

]
− F (Θt0) ≤ −Q

2
ηt0(1− 2LQηt0)

∥∥∇F (Θt0)
∥∥2

+ 8Q3(ηt0)3(1 + 2LQηt0)

M∑
m=0

L2
m

∥∥∇mF (Θt0
m)
∥∥2

+ 8Q3(ηt0)3(1 + 2LQηt0)

M∑
m=0

L2
m

σ2
m

B

+ 32Q3ηt0(1 + 2LQηt0)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F

+ LQ2(ηt0)2
M∑

m=0

σ2
m

B
(A.81)

≤ −Q

2

M∑
m=0

ηt0(1− 2LQηt0 − 16Q2L2
m(ηt0)2 − 16Q3L2

mL(ηt0)3))
∥∥∇mF (Θt0)

∥∥2
+ (LQ2(ηt0)2 + 8Q3L2

m(ηt0)3 + 8Q4LL2
m(ηt0)4)

M∑
m=0

σ2
m

B

+ 32Q3ηt0(1 + 2LQηt0)

M∑
m=0

H2
mG2

m

∥∥Et0
m

∥∥2
F . (A.82)

Let ηt0 ≤ 1
16Qmax{L,maxm Lm} . Then we bound (A.82) further:
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After some rearranging of terms:
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Summing over all global rounds t0 = 0, . . . , R− 1 and taking total expectation:
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Note that:
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where (A.89) follows from Definition 4.1.

Plugging this into (A.87)
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Suppose that ηt0 = η for all global rounds t0. Then, averaging over R global rounds, we have:
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where (A.92) follows from our assumption that ηt0 ≤ 1
16Qmax{L,maxm Lm} . This completes the proof of Theorem 4.2.
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We continue our analysis to prove Theorem 4.4. Starting from (A.90), we bound the left-hand side with the minimum over
all iterations:

min
t0=0,...,R−1

E
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As R → ∞, if
∑R−1

t0=0 η
t0 = ∞,

∑R−1
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t0)2 < ∞, and
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t0=0 η
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j < ∞, then

mint0=0,...,R−1 E
[
∥∇F (Θt0)∥2

]
→ 0. This completes the proof of Theorem 4.4.

B. Common Compressors
In this section, we calculate the compression error and parameter bounds for uniform scalar quantization, lattice vector
quantization and top-k sparsification, as well as discuss implementation details of these compressors in C-VFL.

We first consider a uniform scalar quantizer (Bennett, 1948) with a set of 2q quantization levels, where q is the number
of bits to represent compressed values. We define the range of values that quantize to the same quantization level as the
quantization bin. In C-VFL, a scalar quantizer quantizes each individual component of embeddings. The error in each
embedding of a batch B in scalar quantization is ≤ Pm

∆2

12 = Pm
(hmax−hmin)

2

12 2−2q where ∆ the size of a quantization bin,
Pm is the size of the m-th embedding, hmax and hmin are respectively the maximum and minimum value hm(θtm;xi

m)
can be for all iterations t, parties m, and xi

m. We note that if hmax or hmin are unbounded, then the error is unbounded
as well. By Theorem 4.2, we know that 1

R

∑R−1
t0=0

∑M
m=0 Et0m = O( 1√

T
) to obtain a convergence rate of O( 1√

T
). If

we use the same q for all parties and iterations, we can solve for q to find that the value q must be lower bounded by
q = Ω(log2(Pm(hmax−hmin)

2
√
T )) to reach a convergence rate of O( 1√

T
). For a diminishing compression error, required

by Theorem 4.4, we let T = t0 in this bound, indicating that q, the number of quantization bins, must increase as training
continues.

A vector quantizer creates a set of d-dimensional vectors called a codebook (Zamir & Feder, 1996). A vector is quantized
by dividing the components into sub-vectors of size d, then quantizing each sub-vector to the nearest codebook vector in
Euclidean distance. A cell in vector quantization is defined as all points in d-space that quantizes to a single codeword.
The volume of these cells are determined by how closely packed codewords are. We consider the commonly applied
2-dimensional hexagonal lattice quantizer (Shlezinger et al., 2021). In C-VFL, each embedding is divided into sub-vectors
of size two, scaled to the unit square, then quantized to the nearest vector by Euclidean distance in the codebook. The
error in this vector quantizer is ≤ V Pm

24 where V is the volume of a lattice cell. The more bits available for quantization,
the smaller the volume of the cells, the smaller the compression error. We can calculate an upper bound on V based on
Theorem 4.2: V = O( 1

Pm

√
T
). If a diminishing compression error is required, we can set T = t0 in this bound, indicating

that V must decrease at a rate of O( 1
Pm

√
t0
). As the number of iterations increases, the smaller V must be, and thus the

more bits that must be communicated.

In top-k sparsification (Lin et al., 2018), when used in distributed SGD algorithms, the k largest magnitude components
of the gradient are sent while the rest are set to zero. In the case of embeddings in C-VFL, a large element may be as
important as an input to the server model as a small one. We can instead select the k embedding elements to send with the
largest magnitude partial derivatives in ∇θmhm(θtm). Since a party m cannot calculate ∇θmhm(θtm) until all parties send
their embeddings, party m can use the embedding gradient calculated in the previous iteration, ∇θmhm(θt−1

m ). This is an
intuitive method, as we assume our gradients are Lipschitz continuous, and thus do not change too rapidly. The error of
sparsification is ≤ (1 − k

Pm
)(∥h∥2)max where (∥h∥2)max is the maximum value of ∥hm(θtm;xi

m)∥2 for all iterations t,
parties m, and xi

m. Note that if (∥h∥2)max is unbounded, then the error is unbounded. We can calculate a lower bound
on k: k = Ω(Pm − Pm

(∥h∥2)max

√
T
). Note that the larger (∥h∥2)max, the larger k must be. More components must be

sent if embedding magnitude is large in order to achieve a convergence rate of O( 1√
T
). When considering a diminishing
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compression error, we set T = t0, showing that k must increase over the course of training.

C. Experimental Details
For our experiments, we used an internal cluster of 40 compute nodes running CentOS 7 each with 2× 20-core 2.5 GHz
Intel Xeon Gold 6248 CPUs, 8× NVIDIA Tesla V100 GPUs with 32 GB HBM, and 768 GB of RAM.

C.1. MIMIC-III

The MIMIC-III dataset can be found at: mimic.physionet.org. The dataset consists of time-series data from ∼60,000
intensive care unit admissions. The data includes many features about each patient, such as demographic, vital signs,
medications, and more. All the data is anonymized. In order to gain access to the dataset, one must take the short online
course provided on their website.

Our code for training with the MIMIC-III dataset can be found in in the folder titled “mimic3”. This is an extension of the
MIMIC-III benchmarks repo found at: github.com/YerevaNN/mimic3-benchmarks. The original code preprocesses the
MIMIC-III dataset and provides starter code for training LSTMs using centralized SGD. Our code has updated their existing
code to TensorFlow 2. The new file of interest in our code base is “mimic3models/in hospital mortality/quant.py” which
runs C-VFL. Both our code base and the original are under the MIT License. More details on installation, dependencies,
and running our experiments can be found in “README.md”. Each experiment took approximately six hours to run on a
node in our cluster.

The benchmarking preprocessing code splits the data up into different prediction cases. Our experiments train models to
predict for in-hospital mortality. For in-hospital mortality, there are 14,681 training samples, and 3,236 test samples. In our
experiments, we use a step size of 0.01, as is standard for training an LSTM on the MIMIC-III dataset.

C.2. ModelNet10 and CIFAR10

Details on the ModelNet10 dataset can be found at: modelnet.cs.princeton.edu/. The specific link we downloaded the dataset
from is the following Google Drive link: https://drive.google.com/file/d/0B4v2jR3WsindMUE3N2xiLVpyLW8/view. The
dataset consists of 3D CAD models of different common objects in the world. For each CAD model, there are 12 views
from different angles saved as PNG files. We only trained our models on the following 10 classes: bathtub, bed, chair,
desk, dresser, monitor, night stand, sofa, table, toilet. We used a subset of the data with 1,008 training samples and 918 test
samples. In our experiments, we use a step size of 0.001, as is standard for training a CNN on the ModelNet10 dataset.

Our code for learning on the ModelNet10 dataset is in the folder “MVCNN Pytorch” and is an extension of the MVCNN-
PyTorch repo: github.com/RBirkeland/MVCNN-PyTorch. The file of interest in our code base is “quant.py” which runs
C-VFL. Both our code base and the original are under the MIT License. Details on how to run our experiments can be found
in the “README.md”. Each experiment took approximately six hours to run on a node in our cluster.

In the same folder, “MVCNN Pytorch”, we include our code for running CIFAR-10. The file of interest is “quant cifar.py”
which trains C-VFL with CIFAR-10. We use the version of CIFAR-10 downloaded through the torchvision library. More
information on the CIFAR-10 dataset can be found at: cs.toronto.edu/ kriz/cifar.html.

C.3. ImageNet

In Section D, we include additional experiments that use the ImageNet dataset. Details on ImageNet can be found at:
image-net.org/. We specifically use a random 100-class subset from the 2012 ILSVRC version of the data.

Our code for learning on the ImageNet dataset is in the folder “ImageNet CVFL” and is a modification on the
moco align uniform repo: https://github.com/SsnL/moco align uniform. The file of interest in our code base is
“main cvfl.py” which runs C-VFL. Both our code base and the original are under the CC-BY-NC 4.0 license. Details on how
to run our experiments can be found in the “README.txt”. Each experiment took approximately 24 hours to run on a node
in our cluster.

https://mimic.physionet.org/
https://github.com/YerevaNN/mimic3-benchmarks
https://modelnet.cs.princeton.edu/
https://drive.google.com/file/d/0B4v2jR3WsindMUE3N2xiLVpyLW8/view
https://github.com/RBirkeland/MVCNN-PyTorch
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/
https://github.com/SsnL/moco_align_uniform
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D. Additional Plots and Experiments
In this section, we include additional plots using the results from the experiments introduced in Section 5 of the main paper.
We also include new experiments with the ImageNet100 dataset. Finally, we include additional experiments with an alternate
C-VFL for Q = 1.

D.1. Additional Plots

We first provide additional plots from the experiements in the main paper. The setup for the experiments is described in the
main paper. These plots provide some additional insight into the effect of each compressor on convergence in all datasets.
As with the plots in the main paper, the solid lines in each plot are the average of five runs and the shaded regions represent
one standard deviation.

(a) 2 bits per parameter (b) 3 bits per parameter (c) 4 bits per parameter

Figure D.1. Test F1-Score on MIMIC-III dataset. Scalar and vector In these experiments, Q = 10 and M = 4. quantization achieve
similar test F1-Score even when only using 2 bits in quantization. On the other hand, top-k sparsification performs worse than the other
compressors in the MIMIC-III dataset.

Figure D.1 plots the test F1-Score for training on the MIMIC-III dataset for different levels of compression. We can see that
scalar and vector quantization perform similarly to no compression and improve as the number of bits available increase.
We can also see that top-k sparsification has high variability on the MIMIC-III dataset and generally performs worse than
the other compressors.

(a) 2 bits per parameter (b) 3 bits per parameter (c) 4 bits per parameter

Figure D.2. Test F1-Score on MIMIC-III dataset plotted by communication cost. In these experiments, Q = 10 and M = 4. We can see
that all compressors reach higher F1-Scores with lower communication cost than no compression. We can see that the standard deviation
for each compressor decreases as the number of bits available increases. Top-k sparsification generally performs worse than the other
compressors on the MIMIC-III-dataset.
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(a) Scalar quantization (b) Vector quantization (c) Top-k sparsification

Figure D.3. Test F1-Score on MIMIC-III dataset plotted by communication cost. In these experiments, Q = 10 and M = 4. We can see
that all compressors reach higher F1-Scores with lower communication cost than no compression. We can see that the variability for each
compressor decreases as the number of bits available increases.

Figures D.2 and D.3 plot the test F1-Score for training on the MIMIC-III dataset plotted against the communication cost.
The plots in Figure D.2 include all compression techniques for a given level of compression, while the plots in Figure D.3
include all levels of compression for a given compression technique. We can see that all compressors reach higher F1-Scores
with lower communication cost than no compression. It is interesting to note that increasing the number of bits per parameter
reduces the variability in all compressors.

(a) 2 bits per parameter (b) 3 bits per parameter (c) 4 bits per parameter

Figure D.4. Test accuracy on ModelNet10 dataset. Vector quantization In these experiments, Q = 10 and M = 4. and top-k sparsification
perform similarly to no compression, even when only 2 bits are available. Scalar quantization converges to a lower test accuracy, and has
high variability on the ModelNet10 dataset.

Figure D.4 plots the test accuracy for training on the ModelNet10 dataset. Vector quantization and top-k sparsification
perform similarly to no compression, even when only 2 bits are available. We can see that scalar quantization has high
variability on the ModelNet10 dataset.

(a) 2 bits per parameter (b) 3 bits per parameter (c) 4 bits per parameter

Figure D.5. Test accuracy on ModelNet10 dataset plotted by communication cost. In these experiments, Q = 10 and M = 4. We can see
that all compressors reach higher accuracies with lower communication cost than no compression. Scalar quantization generally performs
worse than the other compressors on the ModelNet10 dataset.
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(a) Scalar quantization (b) Vector quantization (c) Top-k sparsification

Figure D.6. Test accuracy on ModelNet10 dataset plotted by communication cost. In these experiments, Q = 10 and M = 4. We can see
that all compressors reach higher accuracies with lower communication cost than no compression. We can see that when less bits are used
in each compressor, higher test accuracies are reached at lower communication costs. Scalar quantization generally performs worse than
the other compressors on the ModelNet10 dataset.

Figures D.5 and D.6 plot the test accuracy for training on the ModelNet10 dataset against the communication cost. The plots
in Figure D.5 include all compression techniques for a given level of compression, while the plots in Figure D.6 include all
levels of compression for a given compression technique. We can see that all compressors reach higher accuracies with
lower communication cost than no compression. Scalar quantization generally performs worse than the other compressors
on the ModelNet10 dataset. From Figure D.6, we also see that when fewer bits are used in each compressor, higher test
accuracies are reached at lower communication costs.

(a) Plotted by epochs (b) Plotted by cost (c) Vector quantization

Figure D.7. Test accuracy on CIFAR-10 dataset with the number of parties M = 4 and number of local iterations Q = 10. In the first two
plots, the compressors have b = 2, where b is the number of bits used to represent embedding components. In the third plot, b = 32
indicates there is no compression. The results show vector quantization performs the best our of the compressors, and all compressors
show improvement over no compression in terms of communication cost to reach target test accuracies.

In Figure D.7, we plot the test accuracy for the CIFAR-10 dataset. The test accuracy is fairly low compared to typical
baseline accuracies, which is expected, as learning object classification from only a quadrant of a 32× 32 pixel image is
difficult. Figure D.7a shows the test accuracy plotted by epochs. We can see that vector quantization performs almost as
well as no compression in the CIFAR-10 dataset. When plotting by communication cost, seen in Figure D.7b, we can see
that vector quantization performs the best, though scalar quantization and top-k sparsification show communication savings
as well. In Figure D.7c, we plot the test accuracy of C-VFL using vector quantization for different values of b, the number
of bits to represent compressed values. Similar to previous results, lower b tends to improve test accuracy reached with the
same amount of communication cost.

D.2. Additional Experiments With ImageNet

We also run C-VFL on ImageNet100 (Deng et al., 2009). ImageNet is a large image dataset for object classification. We
use a random subset of 100 classes (ImageNet100) from the ImageNet dataset (about 126,000 images). We train a set of 4
parties, each storing a different quadrant of every image. Each party trains ResNet18, and the server trains a fully-connected
layer. We use a variable step size, that starts at 0.001, and drops to 0.0001 after 50 epochs. We use a batch size of 256 and
train for 100 epochs.
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(a) Plotted by epochs (b) Plotted by cost (c) Vector quantization

Figure D.8. Test accuracy on ImageNet-100 dataset with the number of parties M = 4 and number of local iterations Q = 10. In the first
two plots, the compressors have b = 2, where b is the number of bits used to represent embedding components. In the third plot, b = 32
indicates there is no compression. The results show vector quantization performs the best our of the compressors, and all compressors
show improvement over no compression in terms of communication cost to reach target test accuracies.

In Figure D.8, we plot the top-5 test accuracy for ImageNet100. Figure D.8a shows the test accuracy plotted by epochs. We
can see that vector quantization performs almost as well as no compression in the ImageNet100 dataset. When plotting by
communication cost, seen in Figure D.8b, we can see that vector quantization performs the best, though scalar quantization
and top-k sparsification show communication savings as well. In Figure D.8c, we plot the test accuracy of C-VFL using
vector quantization for different values of b, the number of bits to represent compressed values. Similar to previous results,
lower b tends to improve test accuracy reached with the same amount of communication cost.

D.3. Comparison With Alternative C-VFL Algorithm For Q = 1

In C-VFL, the server distributes party embeddings to all parties along with the server model parameters. This allows parties
to calculate their partial derivatives for local model updates for multiple local iterations. However, if the number of local
iterations Q = 1, then a more efficient method of communication is for the server to compute partial derivative updates for
the parties (Hu et al., 2019; Ceballos et al., 2020; Romanini et al., 2021), avoiding the need for parties to receive embeddings
from other parties. This approach can be applied to C-VFL as well.

Algorithm 2 Compressed Vertical Federated Learning for Q = 1

1: Initialize: θ0m for all parties m and server model θ00
2: for t← 0, . . . , T − 1 do
3: Randomly sample Bt ∈ {X, y}
4: for m← 1, . . . ,M in parallel do
5: Send Cm(hm(θtm;XBt

m )) to server
6: end for
7: Φ̂t ← {C0(θ0), C1(h1(θ

t
1)), . . . , CM (hM (θtM ))}

8: θt+1
0 = θt0 − ηt∇0FB(Φ̂

t; yBt

)

9: Server sends∇hm(θt
m;XBt

m )FB(Φ̂
t; yBt

) to each party m

10: for m← 1, . . . ,M in parallel do
11: ∇mFB(Φ̂

t; yBt

) = hm(θtm;XBt

m )∇hm(θt
m;XBt

m )FB(Φ̂
t; yBt

)

12: θt+1
m = θtm − ηt∇mFB(Φ̂

t; yBt

)
13: end for
14: end for

The pseudo-code for this method is presented in Algorithm 2. In this version of C-VFL, parties send their compressed
embeddings to the server. The server calculates the loss by feeding the embeddings through the server model. The server
calculates the gradient with respect to the loss. The server then sends to each party m the partial derivative with respect to
its embedding: ∇hm(θt

m;XBt
m )FB(Φ̂

t; yBt

). Each party m calculates the following partial derivative with respect to its local
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Table D.1. MIMIC-III communication cost to reach a target test F1-Score of 0.4. Value shown is the mean of 5 runs, ± the standard
deviation. The first row has no embedding compression, while the second row employs vector quantization on embeddings with b = 3.
For the cases where Q = 1, Algorithm 2 is used, and for cases where Q > 1, Algorithm 1 is used. In these experiments, the number of
clients M = 4.

Compressor Cost (MB) to Reach Target F1-Score 0.4
Q = 1 Q = 10 Q = 25

None b = 32 4517.59 ± 465.70 3777.21 ± 522.43 1536.69 ± 201.99

Vector b = 3 433.28 ± 79.83 330.47 ± 10.63 125.09 ± 4.56

model parameters:

∇mFB(Φ̂
t; yBt

) = hm(θtm;XBt

m )∇hm(θt
m;XBt

m )FB(Φ̂
t; yBt

). (D.1)

Using this partial derivative, the party updates its local model:

θt+1
m = θtm − ηt0∇mFB(Φ̂

t
m; yBt0

). (D.2)

Note that this process is mathematically equivalent to C-VFL when Q = 1; thus the analysis in Section 4 holds. The
communication cost of Algorithm 2 per communication round without compression is O(B ·

∑
m Pm), a reduction in

communication compared to the communication cost per round of Algorithm 1: O(M · (B ·
∑

m Pm + |θ0|)). Although
Algorithm 2 reduces communication in a given round, it is limited to the case when Q = 1. For Q > 1, we must use
Algorithm 1.

We run experiments on the MIMIC-III dataset to compare C-VFL using Algorithm 2 with C-VFL using Algorithm 1 with
values of Q > 1. We show the results of these experiments in Table D.1. Here, we show the communication cost to reach a
target F1-Score of 0.4. The results in the column labeled Q = 1 are from running Algorithm 2, while all other results are
from running Algorithm 1. We include results for the case where C-VFL is run without embedding compression, as well as
results for the case where vector quantization with b = 3 is used to compress embeddings. We can see that for this dataset,
values of Q > 1 reduce the cost of communication to reach the target F1-Score. In all cases, Algorithm 1 achieves lower
communication cost to reach a target model accuracy than Algorithm 2, despite Algorithm 2 having a lower communication
cost per communication round than Algorithm 1. The use of multiple local iterations in Algorithm 1 decreased the number
of global rounds required to attain the target accuracy compared to Algorithm 2.


