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Abstract
Off-policy reinforcement learning (RL) from
pixel observations is notoriously unstable. As
a result, many successful algorithms must com-
bine different domain-specific practices and auxil-
iary losses to learn meaningful behaviors in com-
plex environments. In this work, we provide
novel analysis demonstrating that these instabil-
ities arise from performing temporal-difference
learning with a convolutional encoder and low-
magnitude rewards. We show that this new visual
deadly triad causes unstable training and prema-
ture convergence to degenerate solutions, a phe-
nomenon we name catastrophic self-overfitting.
Based on our analysis, we propose A-LIX, a
method providing adaptive regularization to the
encoder’s gradients that explicitly prevents the
occurrence of catastrophic self-overfitting using
a dual objective. By applying A-LIX, we signifi-
cantly outperform the prior state-of-the-art on the
DeepMind Control and Atari 100k benchmarks
without any data augmentation or auxiliary losses.

1. Introduction
One of the core challenges in real world Reinforcement
Learning (RL) is achieving stable training with sample-
efficient algorithms (Dulac-Arnold et al., 2019). Combining
these properties with the ability to reason from visual obser-
vations has great implications for the application of RL to
the real world (Kalashnikov et al., 2018; Zhu et al., 2020).
Recent works utilizing temporal-difference (TD-) learning
have made great progress advancing sample-efficiency (Lil-
licrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al.,
2018a; Cetin & Celiktutan, 2021). However, stability has
remained a key issue for these off-policy algorithms (Sutton,
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Figure 1. Performance of agents in DMC (left) and Atari 100k
(right) benchmarks from 10 seeds. A-LIX outperforms previous
methods without using image augmentations or auxiliary losses.

1988; Duan et al., 2016; Van Hasselt et al., 2018; Buşoniu
et al., 2018), making their general applicability limited as
compared to their on-policy counterparts (Schulman et al.,
2017; Cobbe et al., 2021). At the same time, using pixel
observations has been another orthogonal source of insta-
bilities, with several successful approaches relying on pre-
training instead of end-to-end learning (Finn et al., 2015;
Dwibedi et al., 2018). In fact, alternative optimization ob-
jectives, large amounts of simulation data, and symbolic
observations have been common factors in most contempo-
rary large-scale RL milestones (Silver et al., 2017; Vinyals
et al., 2019; Berner et al., 2019).

In this work, we provide novel insights behind why ap-
plying successful off-policy RL algorithms designed for
proprioceptive tasks to pixel-based environments is gener-
ally underwhelming (Lee et al., 2019; Yarats et al., 2021).
In particular, we provide evidence that three key elements
strongly correlate with the occurrence of detrimental insta-
bilities: i) Exclusive reliance on the TD-loss. ii) Unregu-
larized end-to-end learning with a convolutional encoder.
iii) Low-magnitude sparse rewards. Using this framework,
we are able to motivate the effectiveness of auxiliary losses
(Laskin et al., 2020b; Schwarzer et al., 2020; Yarats et al.,
2021) and many domain-specific practices (Hessel et al.,
2018b; Laskin et al., 2020a) by explaining how they address
elements of this new visual deadly triad.

We focus our analysis on the popular DeepMind Control
suite (DMC) (Tassa et al., 2018), where the introduction
of random shift augmentations has played a key role in re-
cent advances (Laskin et al., 2020a; Kostrikov et al., 2021;
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Table 1. Practices from recent pixel-based TD-learning methods
to mitigate elements of the visual deadly triad. †DrQ uses 10-step
returns on Atari. *CURL uses 20-step returns on Atari.

Algorithm Visual Deadly Triad Mitigation

TD-Loss CNN Overfit Low-Density Reward

DrQ/RAD - Shift/Jitter Augmentations 10-step returns†

DrQ-v2 - Shift Augmentations 3-step returns
SAC-AE VAE Loss - -
SPR Model-Based Loss Shift/Jitter Augmentations 10-step returns
DER - Non-Overlapping Strides 20-step returns
CURL Contrastive Loss Shift Augmentations 20-step returns*

Yarats et al., 2022). In this domain, we observe that the
presence of the visual deadly triad results in the TD-loss
gradients through the convolutional encoder’s feature maps
having high spatial frequencies. We find these gradients are
spatially inconsistent and result in degenerate optimization
landscapes when backpropagated to the encoder’s param-
eters. Furthermore, repeatedly updating the convolutional
encoder with these gradients consistently leads to early con-
vergence to degenerate feature representations causing the
critic to fit high-variance erroneous targets, a phenomenon
we name catastrophic self-overfitting. As a way of iden-
tifying the direct implications of the visual deadly triad
in the gradient signal, we propose a new measure called
the Normalized Discontinuity (ND) score and show how its
value precisely correlates with agent performance. Thus, we
explain the effectiveness of shift augmentations by recog-
nizing that they regularize the gradient signal by providing
an implicit spatial smoothing effect.

Based on our analysis, we propose Adaptive Local SIgnal
MiXing (A-LIX) a novel method to prevent catastrophic
self-overfitting with two key components: i) A new parame-
terized layer (LIX) that explicitly enforces smooth feature
map gradients. ii) A dual objective that ensures learning sta-
bility by adapting the LIX parameters based on the estimated
ND scores. We show that integrating A-LIX with existing
off-policy algorithms achieves state-of-the-art performance
in both DeepMind Control and Atari 100k benchmarks with-
out requiring image augmentations or auxiliary losses and
significantly fewer heuristics. We open-source our code to
facilitate reproducibility and future extensions1.

Our main contribution can be summarized as follows:

• We conjecture the existence of a visual deadly triad as
a principal source of instability in reinforcement learn-
ing from pixel observations and provide clear empirical
evidence validating our hypothesis.

• We show these instabilities affect the gradient signal
causing catastrophic self-overfitting, a phenomenon
that can severely harm TD-learning. As a result, we
design the normalized discontinuity score to explicitly

1https://github.com/Aladoro/Stabilizing-Off-Policy-RL
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Figure 2. Returns of agents over 5 seeds. Solid lines represent
median performance, faded lines represent individual runs. The
vertical dashed line shows when augmentations are turned off.

anticipate its occurrence.

• We propose A-LIX, a new method that adaptively reg-
ularizes convolutional features to prevent catastrophic
self-overfitting, achieving state-of-the-art results on
two popular pixel-based RL benchmarks.

2. Background
We consider problem settings described by Markov Deci-
sion Processes (MDPs) (Bellman, 1957), defined as the tuple
(S,A, P, p0, r, γ). This comprises a state space S, an action
space A, transitions dynamics given by P and p0, and a re-
ward function r. The RL objective is then for an agent to re-
cover an optimal policy π∗, yielding a distribution of trajec-
tories pπ(τ) that maximizes its expected sum of discounted
future rewards, π∗ = argmaxπ Epπ(τ) [

∑∞
t=0 γ

tr(st, at)].
In off-policy RL, this objective is usually approached by
learning a critic function to evaluate the effectiveness of the
agent’s behavior. A common choice for the critic is to param-
eterize the policy’s Q-function Qπ : S ×A→ R, that quan-
tifies the agent’s performance after performing a particular
action: Qπ(s, a) = Epπ(τ |s0=s,a0=a) [

∑∞
t=0 γ

tr(st, at)].
Most off-policy algorithms entail storing trajectories in a
buffer D, and learning parameterized Q-functions by itera-
tively minimizing a squared temporal difference (TD-) loss:

JQ(φ) = E(s,a,s′,r)∼D
[
(Qπφ(s, a)− y)2

]
,

y = r + γEa∼π(s′)
[
Q̂πφ′(s′, a)

]
.

(1)

Here, the TD-targets y are computed from a 1-step bootstrap
operation with a slowly-changing target Q-function Q̂πφ′ . In
continuous action spaces, we also learn a separate parame-
terized policy to exploit the information in the critic. This
practically results in alternating TD-learning with maximiz-
ing the Q-function’s expected return predictions, following
the policy gradient theorem (Sutton et al., 2000).

3. Instabilities in TD-Learning from Pixels
Unlike proprioceptive observations, off-policy RL from
pixel observations commonly requires additional domain-
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Figure 3. Evidence of overfitting when augmentations are not used.
On the left, shaded lines are individual estimates, the solid line
represents the median Q-value. On the right, the Q-values Pearson
correlation with target values and Monte-Carlo returns (RMC ).

specific practices to ensure stability. In this section, we
provide a novel analysis of this phenomenon by focusing
on the DeepMind Control Suite (Tassa et al., 2018). In this
benchmark, the introduction of random shift data augmen-
tations has been a core component of recent advances in
pixel-based off-policy RL (Laskin et al., 2020a; Yarats et al.,
2022), allowing us to isolate and reproduce stable and un-
stable training regimes. Our analysis suggests the existence
of specific elements that cause instabilities and strives to
explain their implications on learning dynamics. We vali-
date our findings via thorough empirical experimentation
showing numerous results corroborating our hypotheses.
Based on our discoveries, in Section 4 we provide a new
interpretation of random shifts and propose a new improved
method to isolate and counteract instabilities.

3.1. Why Do Augmentations Help?

The underlying mechanism behind the effectiveness of ran-
dom shifts is not immediately clear. While this augmen-
tation may appear to assist generalization by encoding an
invariance (Shorten & Khoshgoftaar, 2019), we note that all
the environments from DMC employ a camera that is fixed
relative to the agent’s position. Hence, robustness to shifts
does not appear to introduce any useful inductive bias about
the underlying tasks. Moreover, prior work successfully
learned effective controllers without augmentations (Hafner
et al., 2020; Yarats et al., 2021), suggesting that shift gen-
eralization might not be the primary benefit of this method.
We analyze the effect of random shifts by training a DrQ-v2
agent (Yarats et al., 2022) on Cheetah Run but turning off
augmentations after an initial 500,000 time-steps learning
phase. As shown in Fig. 2, while training without any shift
augmentation fails to make consistent progress, turning off
augmentations after the initial learning phase actually ap-
pears to slightly improve the performance of DrQ-v2. This
result is a clear indication that augmentations are not needed
for asymptotic performance, and are most helpful to coun-
teract instabilities present in the earlier stages of learning,
which we now focus on analyzing (see App. F.1-F.2 for
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Figure 4. TD-loss of offline fixed transitions during training, sepa-
rated based on having non-zero reward.

complementary experiments validating these claims).

3.2. Identifying a New Deadly Triad

To reduce confounding factors and to disentangle the origin
of these instabilities, we design an offline RL experiment
(Levine et al., 2020). This experiment isolates three distinct
elements affecting off-policy RL: exploration, policy eval-
uation, and policy improvement. First, we gather a set of
15,000 transitions with pixel observations using a random
policy in Cheetah Run. This allows us to ground explo-
ration and analyze learning from fixed data resembling the
early stages of online training (when augmentations appear
most helpful). We then isolate policy evaluation by training
both critic and encoder using SARSA (Rummery & Niran-
jan, 1994) until convergence on this fixed data. Finally, we
run policy improvement, training an actor to maximize the
expected discounted return as predicted by the converged
critic (see App. B.1 for details). Interestingly, we find that
turning on augmentations exclusively during exploration
or policy improvement has no apparent effect on stability
and final performance. Hence, we focus on the effects that
augmentations have on TD-learning and analyze applying
augmentations only during policy evaluation.

Table 2. Performance and training statistics of different agent types
in the offline experiments from 15,000 random transitions.

Agent Final TD-Loss Final Policy Loss Return

Augmented 0.021 −0.99 86.5± 11.3
Non-Augmented 0.002 −1.05 9.2± 12.1

Proprioceptive 0.012 −1.14 79.1± 7.7
Frozen CNN (random) 0.023 −0.95 43.6± 20.2
Frozen CNN (pre-trained) 0.012 −0.99 77.6± 18.5

Non-Augmented (norm r) 18.616 3.86 38.6± 16.5
Non-Augmented (10-step returns) 0.003 −1.24 36.5± 20.3

As shown in Table 2, applying augmentations during pol-
icy evaluation enables us to learn policies that achieve a
return of 86.5, despite the best trajectory in the offline data
achieving only 10.8. In contrast, without augmentations we
consistently recover near 0 returns, resembling the failures
observed in the online experiments. On the left of Fig. 3
we show the evolution of the predicted Q-values for both
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agents on a fixed batch of offline data. In particular, when
performing policy evaluation without augmentations, these
predictions display extremely high variance across different
state-action pairs. In Table 2 we further show that the non-
augmented agent displays significantly lower loss, despite
having higher average Q-values than the augmented agent
(Schaul et al., 2021). We argue this is a clear indication of
the occurrence of overfitting. We corroborate our claim by
analyzing the evolution of the Pearson bi-variate correlation
between the estimated Q-values and target Q-values on the
right of Fig. 3. These results show that the non-augmented
agent displays near-perfect correlation with its own target
Q-values throughout training, indicating that it immediately
learns to fit its own noisy, randomly-initialized predictions.
We also record the correlation with the actual discounted
Monte-Carlo returns, which represent the true targets the
Q-values should ideally approximate during policy evalu-
ation. For these results, we observe that the relationship
between applying augmentations and the recorded correla-
tion is reversed, with the non-augmented agent displaying
significantly lower correlation. This dichotomy appears to
indicate that fitting the noisy targets severely affects learn-
ing the useful training signal from the collected transitions
regarding the experienced rewards. We confirm this phe-
nomenon by splitting the data into non-zero and zero reward
transitions, where the only learning signal propagated in
the TD-loss is from the initially random target values. In
Fig. 4 we illustrate that the non-augmented agents initially
experience much higher TD-errors on zero reward transi-
tions, confirming that they focus on fitting uninformative
components of the TD-objective.

In Table 2 we provide the results of additional experiments
that indicate that TD-learning is not the only cause for
the observed instabilities. First, we confirm that the ob-
served overfitting appears to be exclusive to performing
end-to-end TD-learning with convolutional neural network
(CNN) encoders. Concretely, we run the same offline exper-
iment without training an encoder in three different settings.
First, we consider performing policy evaluation directly
from non-augmented proprioceptive observations with a
fully-connected critic network. Moreover, we also consider
freezing the encoder weights either to their initial random
values or to pre-trained values from the augmented agent
experiments. In all three cases, we attain largely superior
performance, almost matching the augmented agent’s per-
formance for both the proprioceptive and pre-trained exper-
iments. In addition, we also find that the observed over-
fitting phenomenon is diminished when simply increasing
the magnitude of the reward signal in the TD-loss. We
test this through two additional experiments which consider
normalizing the collected rewards before policy evaluation
and incorporating large n-step returns (Sutton, 1988). As
reported, both modifications considerably improve the non-

Augmented Final Feature Map

Non-augmented Final Feature Map

Figure 5. Feature maps in the final layer of both augmented (top)
and non-augmented (bottom) agent encoders. Non-augmented
agents manifest inconsistent, high-frequency feature maps.

augmented agent’s performance. However, we note that
both practices introduce further unwanted variance in the
optimization, failing to yield the same improvements as
augmentations (see App. C.2).

Taken together, our results appear to strongly indicate that
instabilities in off-policy RL from pixel observation come
from three key conditions, which we refer to as the visual
deadly triad: i) Exclusive reliance on the TD-loss; ii) Un-
regularized learning with an expressive convolutional en-
coder; iii) Initial low-magnitude sparse rewards. Further
evidence arises when considering the ubiquity of partic-
ular practices employed in pixel-based off-policy RL. In
particular, as summarized in Table 1, most popular prior
algorithms feature design choices that appear to counteract
at least two elements of this triad, either directly or implic-
itly. Furthermore, we show these instabilities result in the
non-augmented critics focusing on learning their own noisy
predictions, rather than the actual experienced returns. We
observe this ultimately leads to convergence to erroneous
and high-variance Q-value predictions, a phenomenon we
name catastrophic self-overfitting.

3.3. Anticipating Catastrophic Self-Overfitting

We now attempt to unravel the links that connect the visual
deadly triad with catastrophic self-overfitting. We start by
observing that catastrophic self-overfitting comes with a
significant reduction of the critic’s sensitivity to changes
in action inputs, implying that the erroneous high-variance
Q-value predictions arise primarily due to changes in the
observations (see App. F.3 for action-value surface plots).
Hence, we focus on analyzing the feature representations of
the pixel observations, computed by the convolutional en-
coder, z ∈ RC×H×W . In particular, we wish to quantify the
sensitivity of feature representations to small perturbations
in the input observations. To measure this, we evaluate the
Jacobians of the encoder across a fixed batch of offline data
for the augmented and non-augmented agents. We then cal-
culate the Frobenius norm of each agent’s Jacobians, giving
us a measure of how quickly the encoder feature represen-
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tations are changing locally around an input (see App. B.2
for details). Our results show a stark difference, with the
feature representations of the non-augmented agents being
on average 2.85 times more sensitive. This suggests that
overfitting is driven by the CNN encoder’s representations
learning high-frequency information about the input obser-
vations and, thus, breaking useful inductive biases about
this class of models (Rahaman et al., 2019).

In App. E.1 we demonstrate that lower sensitivity to ran-
dom noise, while desirable for optimization (Rosca et al.,
2020), is actually a byproduct of a stable feature represen-
tations, and not its defining factor. Furthermore, observing
the actual feature maps of different observations in Fig. 5,
we see that augmentations make the encoder produce fea-
tures that are spatially consistent, aligned with common
understandings of how natural representations should ap-
pear (Alsallakh et al., 2021; Allen-Zhu & Li, 2021). In
contrast, the non-augmented agents display high-frequency
and discontinuous feature maps that do not reflect the spa-
tial properties of their inputs. Hence, our evidence suggests
that catastrophic self-overfitting specifically follows from
the same learning process that produces highly-sensitive
and discontinuous encoder feature maps. Therefore, we
turn our focus to analyzing the gradients backpropagated
to the encoder’s features maps and observe one key prop-
erty: the gradients of the output feature maps consistently
reflect the same spatial properties of their resulting features.
In particular, the gradients of the feature maps appear spa-
tially consistent for the augmented agent, and discontinuous
for the non-augmented agent. This optimization property
reflects intuitive understandings of backpropagation since
discontinuous gradients should push the encoder’s weights
to encode discontinuous representations. To provide further
complementary evidence that discontinuous gradients are
the direct cause of catastrophic self-overfitting, we analyze
the normalized loss surfaces when backpropagating these
discontinuous gradients to the encoder’s parameters (fol-
lowing Li et al. (2018)). In Fig. 6, we see that gradient
discontinuities in the non-augmented agent yield extreme
peaks in its encoder’s loss surface, clearly suggestive of

overfitting (Keskar et al., 2017) 2.

To quantify the level of discontinuity in the features and
their gradients, we propose a new metric that encodes the
aggregated immediate spatial ‘unevenness’ of each feature
location within its relative feature map. In particular, we
define D(z) ∈ RC×H×W as the expected squared local
discontinuity of z in any spatial direction, i.e.:

D(z)ijc ≈ Ev∼S1

[(
∂zijc
∂v

)2
]
, (2)

practically estimated via sampling. We then normalize each
value in D(z) by its squared input and average over all
the feature positions. We name this metric the normalized
discontinuity (ND) score:

ND(z) =
1

C ×H ×W

C∑
c=1

H∑
j=1

W∑
i=1

D(z)ijc
z2ijc

. (3)

Intuitively, this score reflects how locally discontinuous z
is expected to be at any spatial location. In Fig. 7, we show
how the ND score of ∇z evolves during training in the
offline and an online setting for both augmented and non-
augmented agents. We see that augmented agents experi-
ence considerably less discontinuous gradients through their
features, and that recordings of lower ND scores also ap-
pear to be highly correlated with performance improvements.
We additionally show an accumulated ND score, using an
exponential moving average of ∇z in each spatial position
to calculate this metric. Interestingly, we observe that the
ND score over accumulated gradients is almost identical to
the instantaneous ND score, showing that similar gradient
discontinuities are propagated persistently through training
in each position of the feature map. This property confirms
that the discontinuities are not smoothed by the stochastic
sampling of different consecutive training batches, in which
case we would expect to observe lower accumulated ND
scores. Thus, it suggests that self-overfitting emerges in
the non-augmented agents due to repeated gradient steps
towards persistent feature map discontinuities.

4. Counteracting Gradient Discontinuities
4.1. Gradient Smoothing and Random Shifts

As analyzed in Section 3, catastrophic self-overfitting oc-
curs when the gradients in the convolution layers are locally
discontinuous. As a result, we argue that the efficacy of
random shifts arises from their downstream effect on feature
gradient computation, which counteracts these discontinu-
ities during backpropagation. In particular, while random
shifts do not act directly on the latent representation or their

2Instead, the loss surface with respect to the fully-connected
weights is smoother (App. F.5).
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respective gradients, they do affect how the latent represen-
tations are computed. This has an impact on how persistent
discontinuous components of the gradient are backpropa-
gated to the encoder’s parameters during learning. From
the approximate shift invariance of convolutional layers,
we can view a convolutional encoder as computing each
of the feature vectors [z1ij , ..., zCij ]

T with the same param-
eterized function, Vφ, that takes as input a subset of each
observation O ∈ RC

′×H′×W ′
. This subset corresponds to a

local neighborhood around some reference input coordinates
i′, j′. Thus, the only factor differentiating features in the
same feature map (e.g., zcij and zckl) is some implicit func-
tion f(i, j) = i′, j′ translating each of the output features
coordinate into the relative reference input coordinate, i.e.
zcij = Vφ(O, i

′, j′)c (determined by kernel sizes, strides...).
Therefore, random shifts are approximately equivalent to
further translating each reference coordinate by adding some
uniform random variables δ′x, δ

′
y:

zcij ≈ Vφ(O, i′ + δ′x, j
′ + δ′y)c,

where δ′x, δ
′
y ∼ U [−s′, s′], f(i, j) = i′, j′.

Due to the employed strides from the convolutional archi-
tectures used in DrQ-v2 (Yarats et al., 2022), the difference
in reference coordinates of adjacent features in a feature
map is less than the maximum allowable shift employed
in the augmentations, i.e., (i+ 1)′ − i′, (j + 1)′ − j′ < s′

(where s′ is the maximum allowable shift). Consequently,
shift augmentations effectively turn the deterministic com-
putation graph of each feature zcij into a random variable,
whose sample space comprises the computation graphs of
all nearby features within its feature map. Hence, applying
different random shifts to samples in a minibatch makes the
gradient of each feature ∇zcij backpropagate to a random
computation graph, sampled from a set that extends the
set of non-augmented computation graphs for all features
in a local neighborhood of coordinates i, j. Therefore, ag-
gregating the parameter gradients produced with different
δ′x, δ

′
y, provides a smoothing effect on how each discon-

tinuous component of ∇z affects learning, and prevents

persistent discontinuities from accumulating. Hence, ran-
dom shifts break the second condition of the visual deadly
triad, by providing effective implicit regularization of the
convolutional encoder’s learning process. At the same time,
this minimally disrupts the information content of the re-
sultant features, since discarded observation borders almost
exclusively comprise background textures that are irrele-
vant for performing the task. This interpretation of random
shifts aligns with the analysis in Section 3, showing that im-
plicitly smoothing over the backpropagated gradient maps
consistently prevents catastrophic self-overfitting.

4.2. Local Signal Mixing

We extrapolate our hypotheses about catastrophic self-
overfitting and random shifts by proposing a technique that
aims to enforce gradient smoothing regularization explic-
itly. We propose Local SIgnal MiXing, or LIX, a new layer
specifically designed to prevent catastrophic self-overfitting
in convolutional reinforcement learning architectures. LIX
acts on the features produced by the convolutional encoder,
z ∈ RC×H×W , by randomly mixing each component zcij
with its neighbors belonging to the same feature map. Hence,
LIX outputs a new latent representation with the same di-
mensionality ẑ ∈ RC×H×W , whose computation graph
minimally disrupts the information content of each feature
zcij while smoothing discontinuous components of the gra-
dient signal during backpropagation.

LIX is a regularization layer that acts as a simple random
smoothing operation, reducing the expected magnitude of
gradient discontinuities by preventing higher frequency sig-
nals to persist. In the forward pass, LIX produces a new
latent representation where for each of the C feature maps,
ẑcij is computed as a randomly weighted average of its
spatial neighbors around coordinates i, j. We further param-
eterize this stochastic operation using some maximum range
radius S, and consequently sample two uniform continuous
random variables δx, δy ∼ U [−S, S], representing shifts
in the x and y coordinates respectively. Correspondingly,
we define ĩ = i + δx and j̃ = j + δy and perform the
weighted averaging as a bilinear interpolation with weights
determined by the random shifts:

ẑcij =zcbĩcbj̃c(d̃ie − ĩ)(dj̃e − j̃) + zcbĩcdj̃e(d̃ie − ĩ)(j̃ − bj̃c)

+zcdiebj̃c(̃i− b̃ic)(dj̃e − j̃) + zcdiedj̃e(̃i− b̃ic)(j̃ − bj̃c).

Since nearby features in a convolutional feature map are
computed with very similar receptive fields, the mixing
effect of LIX should have a trivial effect on the informa-
tion the encoder can convey in its latent representations.
In addition, LIX should have a direct regularization ef-
fect on the gradients by acting on the feature maps them-
selves. In particular, since LIX computes each output
feature from a weighted average of its neighbors, back-
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propagation will split each gradient ∇ẑcij , to a random
local combination of features within the same feature map,
{∇zcb̃icbj̃c,∇zcb̃icdj̃e,∇zcdiebj̃c,∇zcdiedj̃e}. Thus, LIX
should mostly preserve the consistent component of ∇z,
while randomly smoothing its discontinuous component.

There are multiple key differences between the regulariza-
tion from LIX and random shifts. LIX provides a local
smoothing effect over the gradients explicitly and exactly,
without having to deal with the implications of padding
and strided convolutions breaking shift-invariance assump-
tions. Moreover, LIX smooths the gradient signal not only
across different inputs but also within each feature map.
In addition, by applying its operation solely at the feature
level, the encoder can still learn to entirely circumvent LIX’s
smoothing effect on the information encoded in the latent
representations, given enough capacity. This means that
LIX does not forcibly preclude any input information from
affecting the computation. Consequently, LIX also does not
have to enforce learning invariances which might not neces-
sarily reflect useful inductive biases about the distribution
of observations. In contrast, random shifts need to exploit
the particular uninformativeness of the observations borders
to avoid disrupting the features’ information content.

4.3. A-LIX

LIX introduces a single key parameter: the range radius S
used for sampling δx and δy. Intuitively, this value should
reflect how much we expect gradients to be locally consis-
tent for a given architecture and task. Therefore, we argue
that the value of S should ideally decrease throughout train-
ing as the useful learning signal from the TD-loss becomes
stronger. This is consistent with the results illustrated in
Figure 2, showing that turning off random shift augmenta-
tions after the TD-targets become informative can improve
learning. Hence, we propose an adaptive strategy to learn S
throughout training. Utilizing the normalized discontinuity
(ND) score in Section 3.3, we set up a dual optimization
objective to ensure a minimum value of local smoothness in
the representation gradients, ND. However, computing the
ND score of the gradient signal involves a ratio between po-
tentially very small values. As a result, estimation of these
values from a batch of gradient samples can lead to outliers
having an extreme impact on this average measure, trans-
lating into large erroneous updates of S. To overcome this,
we propose using a slightly modified version of the ND
score with increased robustness to outliers (see App. C.1 for
further details):

ÑD(∇ẑ) =
C∑
c=1

H∑
j=1

W∑
i=1

log

(
1 +

D(∇ẑ)cij
∇ẑ2ijc

)
. (4)

In practice, we set up a dual optimization objective similar
to the automatic temperature adjustment from Haarnoja et al.
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Figure 8. A-LIX’s S parameter evolution during training in Chee-
tah Run (left) and Quadruped Run (right). As the critic targets
become more informative, S falls, improving data efficiency and
asymptotic performance.

(2018b). This entails alternating the optimization of the TD-
learning objectives described in Section 2 with minimizing
a dual objective loss:

argmin
S

−S × Eẑ
[
ÑD(∇ẑ)−ND

]
, (5)

approximating dual gradient descent (Boyd et al., 2004).
Hence, we call this new layer Adaptive LIX (A-LIX). In
Fig. 8 we show that A-LIX effectively anneals S as the agent
escapes its unstable regimes, in line with our intuition.

5. Performance Evaluation
We evaluate the effectiveness of A-LIX in pixel-based re-
inforcement learning tasks in two popular and distinct do-
mains featuring a diverse set of continuous and discrete
control problems. We integrate A-LIX with existing popu-
lar algorithms and compare against current state-of-the-art
model-free baselines. We provide further details of our
integration and full hyperparameters in App. D. We also
extend this section by providing more granular evaluation
metrics in App. A. Furthermore, we provide ablation studies
analyzing different components of A-LIX in App. E.

5.1. DeepMind Control Evaluation

We first evaluate the effectiveness of A-LIX for pixel-based
RL on continuous control tasks from the DeepMind Control
Suite (DMC) (Tassa et al., 2018). Concretely, we integrate
A-LIX with the training procedure and network architecture
from DrQ-v2 (Yarats et al., 2022), but without using image
augmentations. To show the generality of our method we do
not modify any of the environment-specific hyperparameters
from DrQ-v2 and simply add our A-LIX layer after each
encoder nonlinearity. For simplicity, we optimize a shared
S for all the A-LIX layers with the dual objective in Eq. 5.
Hence, this introduces a single additional parameter and
negligible computational overhead. We compare A-LIX to
DrQ-v2, which represents the current state-of-the-art on this
benchmark. We also compare against three further baselines:
the original DrQ (Kostrikov et al., 2021), which foregoes n-
step returns and includes an entropy bonus; CURL (Laskin
et al., 2020b), which includes an auxiliary contrastive ob-
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Figure 9. Average performance in 10 seeds for DMC Medium (left)
and Hard tasks (right). Shaded regions represent ±1 SE.

jective; an extension of SAC (Haarnoja et al., 2018b) with
the encoder from Yarats et al. (2021). These last three base-
lines have been performant on a prior DMC benchmark that
considers fewer tasks with high action repeats, as described
by Hafner et al. (2019). Instead, we evaluate on the more
challenging ‘Medium’ and ‘Hard’ benchmarks from Yarats
et al. (2022), comprising 15 tasks with low action repeats.

Results. We summarize the results in Figure 9, showing the
mean performance curves for both medium and hard bench-
mark tasks. We provide further details and the full list of
results across all 15 environments in App. A.1. Overall, A-
LIX surpasses all prior methods with clear margins, both in
terms of efficiency and final performanc. This is particularly
notable in the more complex ‘Hard’ tasks. As highlighted in
prior work (Cetin & Celiktutan, 2021), DrQ-v2 appears to
yield inconsistent results on some of the harder exploration
tasks with sparse rewards. This likely indicates that the
gradient regularization induced by random shifts (described
in Section 4.1) is unable to consistently prevent catastrophic
self-overfitting in scenarios where the initial learning signal
from TD-learning is particularly low. Finally, DrQ, CURL,
and SAC fail to make consistent meaningful progress on
this harder benchmark. This performance gap corroborates
the third component of the visual deadly triad, showing
how lower magnitude rewards due to harder exploration and
lower action-repeats further destabilize TD-learning based
algorithms, and explains the gains seen in DrQ-v2 when
incorporating n-step returns. We believe these results em-
phasize the challenge of overcoming the visual deadly triad
in continuous control problems and the particular effective-
ness of A-LIX to counteract its direct implications.

5.2. Atari 100k Evaluation

We perform a second set of experiments in an entirely dif-
ferent setting, discrete control. We make use of the popular
Atari Learning Environment (ALE) (Bellemare et al., 2013)
and consider the 100k evaluation benchmark from Kaiser
et al. (2020). In particular, this benchmark comprises eval-
uating performance for 26 tasks after only two hours of
play-time (100k interaction steps), following the evaluation

Table 3. Results summary for the Atari 100k benchmark. The
reported performance of A-LIX is from 10 seeds.

Metrics SimPLe DER OTRainbow CURL DrQ SPR A-LIX

Norm. Mean 0.443 0.285 0.264 0.381 0.357 0.704 0.753
Norm. Median 0.144 0.161 0.204 0.175 0.268 0.415 0.411

# SOTA 7 1 1 1 1 4 11
# Super 2 2 1 2 2 7 7
Average Rank 3.92 5.00 5.21 3.92 4.85 2.88 2.21

protocol in Machado et al. (2018). We integrate A-LIX with
Data-Efficient Rainbow (DER) (van Hasselt et al., 2019),
a simple extension to Rainbow (Hessel et al., 2018a) with
improved data-efficiency. We would like to note that our
integration has key differences to DER, designed to high-
light the generality of our method in tackling the visual
deadly triad. In particular, we reduce the n-step returns to 3
(from 20), and we maintain the same encoder architecture
as in DrQ-v2. To speak to the latter point, this means we
do not require the highly regularized encoders with large
convolutional filters and strides, used ubiquitously in off-
policy learning for Atari environments. Instead, to stabilize
learning we simply apply our A-LIX layer after the final
encoder nonlinearity. We compare against three algorithms
that, like A-LIX, do not employ data-augmentation: Data-
Efficient Rainbow (DER); Overtrained Rainbow (OTRain-
bow) (Kielak, 2019); and Simulated Policy Learning (Sim-
PLe) (Kaiser et al., 2020) (model-based). Moreover, we also
compare with additional state-of-the-art off-policy baselines
that make use of data augmentations: the aforementioned
CURL and DrQ; and Self-Predictive Representations (SPR)
(Schwarzer et al., 2020), the current state-of-the-art TD-
learning based algorithm on this benchmark. SPR combines
data augmentation with numerous additional algorithmic
design choices, such as an auxiliary self-supervised loss for
learning a latent dynamics model.

Results. We summarize the results in Table 3, showing
the mean and median human-normalized scores together
with the number of environments where each algorithm ei-
ther achieves state-of-the-art or super-human performance.
We include the full per-environment results in App. A.2.
Remarkably, A-LIX obtains a substantially higher human-
normalized mean performance than all other considered
algorithms. While the recorded normalized median per-
formance is slightly inferior to SPR, we argue that such
difference is not particularly significant since this metric de-
pends on the performance obtained in just two environments.
Moreover, A-LIX achieves super-human performance in 7
games (the same as SPR), and state-of-the-art performance
in 11 games, considerably more than all other algorithms.
These results corroborate how tuned architectures, data aug-
mentation, and auxiliary losses used on ALE mostly serve
the purpose of counteracting the direct implications of the
visual deadly triad and show that A-LIX enables us to learn
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Figure 10. Probability of improvement and performance profiles obtained from the recorded results in DMC (left) and Atari 100k (right).
A-LIX displays statistically significantly improvements and stochastically dominates most prior algorithms.

powerful models without relying on these design choices.

5.3. Statistical Significance

To validate the significance of our improvements, we sta-
tistically analyze our results using the Rliable tools and
practices from Agarwal et al. (2021). We summarize some
of our key findings in Fig. 10, showing the probability of
improvements of A-LIX over prior methods (computed with
the Mann-Whitney U statistic (Mann & Whitney, 1947))
and the relative normalized performance profiles (Dolan &
Moré, 2002). The ranges correspond to 95% stratified boot-
strap confidence intervals (Efron, 1992). In both DMC and
Atari benchmarks, we find that our improvements are sta-
tistically significant (lower confidence intervals >0.5) and
observe ‘stochastic dominance’ of our algorithm against
almost all considered baselines (Dror et al., 2019). We pro-
vide further results and details of the employed statistical
analysis in App. A.1 and App. A.3 respectively.

6. Related Work
Previous works have characterized several optimization is-
sues related to performing RL via TD-learning (Baird &
Moore, 1998; Baird, 1999). In this work, we instead fo-
cus on the empirical analysis of modern TD-learning al-
gorithms, specific to the pixel-based RL setting. We also
observe links with recent work studying observational over-
fitting (Song et al., 2020). Our work differs by focusing
on memorization effects particular to the combination of
CNNs and TD-learning. There are also connections with
existing feature-level augmentation work, such as Dropout
(Srivastava et al., 2014) and DropBlock (Ghiasi et al., 2018).
In particular, the latter also applies structured transforma-
tions directly to the feature maps and introduces a heuristic
to adjust this transformation over training, validating our
findings on the utility of adaptivity. Outside RL, there is a
rich body of work on implicit regularization and memoriza-
tion in CNNs (Keskar et al., 2017; Neyshabur et al., 2017;
Arpit et al., 2017; Liu et al., 2020; Maennel et al., 2020).
Rahaman et al. (2019) show that higher frequency data man-
ifolds cause CNNs to learn higher spectral frequency terms,
aligning with our analysis of higher frequency representa-

tions. Chatterjee (2020) show generalization arises when
similar examples induce similar gradients during learning
(i.e., coherence). Their work supports our findings since
inconsistent feature gradients are a manifestation of non-
coherence, explaining their poor generalization. Finally,
our dual objective falls under automatic tuning methods
in RL (AutoRL) (Parker-Holder et al., 2022). These ap-
proaches have been applied very successfully to manage
non-stationary trade-offs, such as exploration and exploita-
tion (Ball et al., 2020) and optimism (Moskovitz et al., 2021;
Cetin & Celiktutan, 2021). Finally, we note links with re-
cent work concerning implicit regularization in TD-learning
(Kumar et al., 2021). However, while Kumar et al. (2021)
observe an implicit ‘underfitting’ phenomenon in later train-
ing stages, we analyze an opposed ‘overfitting’ phenomenon
occurring during the first training steps, which we find to be
specific to learning from visual inputs.

7. Conclusion
In this work, we provide a novel analysis demonstrating that
instabilities in pixel-based off-policy RL come specifically
from performing TD-learning with a convolutional encoder
in the presence of a sparse reward signal. We show this
visual deadly triad affects the encoder’s gradients, causing
the critic to catastrophically self-overfit to its own noisy
predictions. Therefore, we propose Adaptive Local SIgnal
MiXing (A-LIX), a powerful regularization layer to explic-
itly counteract this phenomenon. Applying A-LIX enables
us to outperform prior state-of-the-art algorithms on pop-
ular benchmarks without relying on image augmentations,
auxiliary losses, or other notable design choices.
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A. Detailed Results
A.1. DMC Medium and Hard Tasks

In Table 4, we show the performance in each of the evaluated 15 DMC environments by reporting the mean and standard
deviations over the cumulative returns obtained midway and at the end of training for the medium and hard benchmark tasks,
respectively. A-LIX attains state-of-the-art performance in the majority of the tasks at both reported checkpoints, while
still closely matching DrQ-v2’s performance on the remaining tasks. On the other hand, DrQ-v2 struggles to consistently
solve some of the harder exploration tasks such as Cartpole Swingup Sparse and Humanoid Run, as shown by the high
standard deviations. Interestingly, unlike in the simpler DMC benchmark from Hafner et al. (2019) with higher action repeat,
CURL appears have a slight edge over DrQ. In particular, the self-supervised signal from CURL appears to aid precisely
in the sparse reward environments where DrQ-v2 struggles. Hence, this appears to suggest that including an additional
self-supervised signal to the TD-loss, lessens the hindering effects of a lower-magnitude reward signal. We interpret this
result as additional evidence showing how addressing any individual component of the deadly triad helps counteracting the
catastrophic self-overfitting phenomenon.

We also test the significance of our results by performing a Wilcoxon signed-rank test (Wilcoxon, 1945) between A-LIX and
DrQ-v2. We perform a paired rank test across both seeds and tasks, allowing us to obtain an p-value that takes into account
both population size and relative performance gains across all tasks. The choice of Wilcoxon signed-rank test also does not
presume normality in the distributions of performance which we believe is a more appropriate assumption than for instance
a paired t-test (Student, 1908), despite a potential loss of statistical power. To ensure correct population pairing, A-LIX and
DrQ-v2 seeds were identical, resulting in the same initially collected data and network initialization. Performing this test
over all 15 tasks and 5 seeds, we achieve a p-value of 0.0057 at 50% total frames (1.5M and 15M for Medium and Hard
respectively) and 0.0053 at 100% total frames (3.0M and 30M for Medium and Hard Respectively), much lower than the
typical rejection criteria of p > 0.05. We therefore believe this shows clear evidence that our results in DMC are strongly
statistically significant.

Table 4. Full results for the DeepMind Control Suite benchmark. Each displayed return is averaged over 10 random seeds and from 10
evaluation runs collected at each experience checkpoint.

1.5M frames 3.0M frames

Medium tasks SAC CURL DrQ DrQv2 A-LIX (Ours) SAC CURL DrQ DrQv2 A-LIX (Ours)

Acrobot Swingup 8±9 6±5 24±27 256±47 270±99 12±11 6±5 28±25 442±64 402±100
Cartpole Swingup Sparse 118±233 479±329 318±389 485±396 718±250 185±295 499±349 316±389 505±412 742±250
Cheetah Run 9±8 507±114 788±59 792±29 806±78 7±8 590±95 835±45 873±60 864±78
Finger Turn Easy 190±137 297±150 199±132 854±73 546±101 200±155 309±176 216±158 934±54 901±109
Finger Turn Hard 79±73 174±106 100±63 491±182 587±109 100±78 146±95 86±70 902±77 906±101
Hopper Hop 0±0 184±127 268±91 198±102 287±48 0±0 224±135 285±96 240±123 372±48
Quadruped Run 68±72 164±91 129±97 419±204 528±107 63±45 175±104 130±59 523±271 759±107
Quadruped Walk 75±65 134±53 144±149 591±256 776±37 48±32 168±49 142±67 920±36 900±37
Reach Duplo 1±1 8±10 8±12 220±7 212±3 2±3 7±10 9±9 228±2 221±3
Reacher Easy 52±64 707±142 600±201 971±4 887±19 115±98 667±182 612±181 940±50 966±19
Reacher Hard 3±2 463±196 320±233 727±172 720±83 10±23 678±350 397±273 935±49 855±83
Walker Run 26±4 379±234 474±148 571±276 691±10 25±3 447±224 547±143 616±297 756±10

Average score 52.28 291.73 281.03 547.96 585.67 63.80 326.45 300.27 671.40 720.30

15.0M frames 30.0M frames

Hard tasks SAC CURL DrQ DrQv2 A-LIX (Ours) SAC CURL DrQ DrQv2 A-LIX (Ours)

Humanoid Walk 7±3 5±3 3±2 243±162 476±79 4±3 4±3 5±3 675±86 754±79
Humanoid Stand 5±3 6±3 4±3 167±159 519±94 6±3 6±2 6±2 588±63 781±94
Humanoid Run 5±3 6±2 5±3 22±30 122±59 3±3 4±3 4±2 170±122 242±59

Average score 5.64 5.74 4.02 144.16 372.78 4.30 4.89 4.90 477.74 592.48

We now compare our results using the Rliable framework introduced in Agarwal et al. (2021) (see App. A.3 for a detailed
explanation about the metrics introduced).
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Figure 11. Performance profiles at 50% (left) and 100% (right) of the total steps in Medium and Hard DMC Tasks.

We plot performance profiles in Fig. 11 at both 50% and 100% the total training steps in DMC, which aim to represent
sample efficiency and asymptotic performance respectively. We see that in almost all cases, A-LIX improves upon DrQ-v2.
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We plot ranking statistics in Fig. 11 at both 50% and 100% the total training steps in DMC. We see that A-LIX clearly
appears most in the 1st ranked column, and rarely appears in lower ranked (i.e., > 3), suggesting strong performance across
all environments in DMC Medium and Hard. We also provide a further aggregated statistics plot in Fig. 12b (this time
at 50% the total steps), which shows A-LIX is particularly sample-efficient and consistent (i.e., low error bars) across all
environments.
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Figure 13. Probability of Improvement statitistics at both 50% (left) and 100% (right) of the total timesteps in Medium and Hard DMC
Tasks.

In Fig. 13 we observe that A-LIX likely improves over prior work, and note that whilst the improvement probability over
DrQ-v2 may seem slightly low at∼60%, we note that this value is in line with statistics in prior works that achieve significant
gains (as seen in Agarwal et al. (2021)), and furthermore it does not take into account absolute performance values, and
instead only compares relative values, which explains why the gains of A-LIX appear larger when evaluated under IQM
and OG. Furthermore, the lower CI for 50% total steps does not fall below 0.5, which means improvements are indeed
statistically significant.
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A.2. Atari 100k

In Table 5, we show the final average performance for all the evaluated algorithms in each of the twenty-six tasks in the
Atari 100k benchmark. A-LIX outperforms SPR, the previous state-of-the-art off-policy algorithm on this benchmark, on 16
out of 26 tasks. Moreover, it attains comparatively similar performance on most of the remaining tasks despite using no
augmentation, auxiliary losses, or model-based elements.

Table 5. Full results for the Atari 100k benchmark, following the evaluation protocol from Machado et al. (2018). We report the results
collected from 10 random seeds.

Tasks Random Human SimPLe DER OTRainbow CURL DrQ SPR A-LIX (Ours)

Alien 227.80 7127.70 616.9 739.9 824.7 558.2 771.2 801.5 902
Amidar 5.80 1719.50 88 188.6 82.8 142.1 102.8 176.3 174.27
Assault 222.40 742.00 527.2 431.2 351.9 600.6 452.4 571 660.53
Asterix 210.00 8503.30 1128.3 470.8 628.5 734.5 603.5 977.8 809.5
Bank Heist 14.20 753.10 34.2 51 182.1 131.6 168.9 380.9 639.4
Battle Zone 2360.00 37187.50 5184.4 10124.6 4060.6 14870 12954 16651 14470
Boxing 0.10 12.10 9.1 0.2 2.5 1.2 6 35.8 21.5
Breakout 1.70 30.50 16.4 1.9 9.8 4.9 16.1 17.1 23.52
Chopper Command 811.00 7387.80 1246.9 861.8 1033.3 1058.5 780.3 974.8 747
Crazy Climber 10780.50 35829.40 62583.6 16185.3 21327.8 12146.5 20516.5 42923.6 53166
Demon Attack 152.10 1971.00 208.1 508 711.8 817.6 1113.4 545.2 888.15
Freeway 0.00 29.60 20.3 27.9 25 26.7 9.8 24.4 31.04
Frostbite 65.20 4334.70 254.7 866.8 231.6 1181.3 331.1 1821.5 1845.7
Gopher 257.60 2412.50 771 349.5 778 669.3 636.3 715.2 500.6
Hero 1027.00 30826.40 2656.6 6857 6458.8 6279.3 3736.3 7019.2 7185.85
Jamesbond 29.00 302.80 125.3 301.6 112.3 471 236 365.4 341.5
Kangaroo 52.00 3035.00 323.1 779.3 605.4 872.5 940.6 3276.4 6507
Krull 1598.00 2665.50 4539.9 2851.5 3277.9 4229.6 4018.1 3688.9 4884.04
Kung Fu Master 258.50 22736.30 17257.2 14346.1 5722.2 14307.8 9111 13192.7 16316
Ms Pacman 307.30 6951.60 1480 1204.1 941.9 1465.5 960.5 1313.2 1258.4
Pong -20.70 14.60 12.8 -19.3 1.3 -16.5 -8.5 -5.9 6.03
Private Eye 24.90 69571.30 58.3 97.8 100 218.4 -13.6 124 100
Qbert 163.90 13455.00 1288.8 1152.9 509.3 1042.4 854.4 669.1 2974
Road Runner 11.50 7845.00 5640.6 9600 2696.7 5661 8895.1 14220.5 17471
Seaquest 68.40 42054.70 683.3 354.1 286.9 384.5 301.2 583.1 654.6
Up N Down 533.40 11693.20 3350.3 2877.4 2847.6 2955.2 3180.8 28138.5 5011.7

Human Norm. Mean 0.000 1.000 0.443 0.285 0.264 0.381 0.357 0.704 0.753
Human Norm. Median 0.000 1.000 0.144 0.161 0.204 0.175 0.268 0.415 0.411

# SOTA N/A N/A 7 1 1 1 1 4 11
# Super N/A N/A 2 2 1 2 2 7 7
Average Rank N/A N/A 3.92 5.00 5.21 3.92 4.85 2.88 2.21

We now present additional evaluations under the Rliable framework, continuing on from the analysis in Fig. 10b.
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Figure 14. Performance profiles with linear (left) and logarithmic (right) scaling in Atari 100k.

In Fig. 14 A-LIX performs noticeably better than previous work, and performs at least as well as SPR over all settings of
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normalized scores.
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Figure 15. Bootstrapped ranking statistics (left) and probability of improvement plots (right) on Atari 100k.

In Fig. 15a A-LIX constitutes the majority of the algorithms ranked in 1st, and shows far fewer instances of being ranked in
lower positions (i.e., > 4). In Fig. 15b we observe A-LIX likely improves upon prior work. Similar to Fig. 13, while the
∼60% improvement value over SPR may seem low, this is justified due to shortcomings in this metric, such as not taking
into account actual performance values, and instead relative improvements. Furthermore, the lower CI does not fall below
0.5, which means improvements due to A-LIX are statistically significant.

A.3. Rliable: A Primer

In addition to providing traditional methods of evaluation (e.g., performance tables, significance testing), we use robust
metrics and evaluation strategies introduced in Rliable (Agarwal et al., 2021). Rliable advocates for computing aggregate
performance statistics not just across many seeds, but also across the many tasks within a benchmark suite.

We give details on how these metrics achieve reliable performance evaluation in RL, denoting number of seeds as N and
number of tasks as M . We follow Agarwal et al. (2021) as closely as possible; please refer to their paper for further details.

A.3.1. SEED AND TASK AGGREGATION

In order to aggregate performances across different tasks in the same benchmark suite, we must first normalize each
benchmark to the same range. In Atari, this is usually done by normalizing scores with respect to those achieved by humans,
and in DMC this is done with respect to the maximum achievable score (i.e., 1, 000). We refer to this normalized score as τ .

A.3.2. IQM AND OG

Interquartile Mean (IQM) takes the middle 50% of the runs across seeds and benchmarks (i.e., [NM/2]) and then calculates
its mean score, improving outlier robustness whilst maintaining statistical efficiency. Optimality Gap (OG) calculates the
proportion of performances (NM ) that fail to meet a minimum threshold γ, with the assumption that improvements beyond
γ are not important. In both cases, stratified bootstrap sampling is used to calculate confidence intervals (CIs).

A.3.3. PERFORMANCE PROFILES

Performance profiles are a form of empirical CDF, but with stratified bootstrap sampling to produce confidence bands that
account for the underlying variability of the score. We can also establish ‘stochastic dominance’ by observing whether one
method’s performance profile is consistently above another’s for all normalized performance values τ .

A.3.4. RANKING

Ranking shows the proportion of times a given algorithm ranks in a given position across all tasks, with distributions
produced using stratified bootstrap sampling having 200, 000 repetitions.

A.3.5. PROBABILITY OF IMPROVEMENT

Probability of improvement is calculated by calculating the Mann-Whitney U-statistic (Mann & Whitney, 1947) across all
M tasks. The distribution is then plotted as a boxplot, and if the lower CI > 0.5, the improvement is statistically significant.
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B. Experiments Description
B.1. Offline Experiments

We follow the original training hyperparameters of DrQ-v2, and run policy evaluation and policy improvement until we saw
convergence in the TD-loss, which would occur at similar points in all agents (i.e., between 10-20k and 5-10k steps of SGD
in policy evaluation and policy iteration respectively). For the proprioceptive experiments, we keep everything consistent,
except the input to the critic and actor MLP layers are now the proprioceptive states from the DMC simulator, not the latent
representation z from the encoder. That is to say we do not modify the MLP architectures nor their learning rates in the
interests of a fair comparison. Furthermore, for any given seed of the offline experiment, we also instantiate all networks in
the agents identically and train on the same random offline data, with minibatches presented in the same order.

We also note that a similar algorithm is described in Brandfonbrener et al. (2021), but in the context of minimizing
extrapolation errors.

Now we present some additional analysis to provide further context to our offline experiments. First, we see that the
proprioceptive statistics mirror those of the augmented agent, further illustrating the crucial role of CNN regularization for
successful TD-learning from pixels:
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Figure 16. Q values and Pearson Correlation of the offline Proprioceptive agent on an offline fixed batch.

Secondly, we observe that the exact same self-overfit also manifests in the online setting by plotting the Pearson correlation
values over the initial stages of training in 5 seeds, confirming that phenomena of our offline analysis applies to the online
RL problem:
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Figure 17. Pearson Correlation of augmented and non-augmented online agents in Cheetah Run and Quadruped Walk across 5 seeds.
Shaded lines represent individual runs, and solid lines represent the median. We see that augmented agents do not immediately overfit to
their target networks, and become correlated only after useful signal is learned.

B.2. Jacobian Analysis

In order to measure local sensitivity, we linearize the encoder around its input using a Taylor series expansion. Consider an
N -dimensional input x ∈ RN and perturbation ε ∈ RN , an M -dimensional output y ∈ RM , and a function F : RN → RM .
Now, performing a Taylor series expansion around x̃:

F(x̃+ ε) = F(x̃) + εF(x)∇T |x=x̃ +
ε2

2
∇F(x)∇T |x=x̃ + . . . (6)

≈ F(x̃) + J(x̃)ε (7)
= ỹ (8)
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where we make the approximation in the second line by dropping the second order/Hessian and higher terms under the
assumption the perturbation vector ε is small. This allows us to write F in the form of a local linear system: y =
F(x) + J(x)ε. It is straightforward to see that if the entries of the Jacobian matrix J are larger, then small perturbations ε
will cause larger changes in the output y. To measure the magnitude of the Jacobian entries, we take the Frobenius norm:

||J(x)||F =
∑
n

∑
m

(
∂Fm(x)

∂xn

)2

(9)

where xn is the ‘n’th entry of x and Fm is the ‘m’th entry of the codomain of F. The calculation of the Jacobian is trivial
through the use of an automatic differentiation framework.

In our analysis we calculate the Jacobians of both agents on of a fixed batch of 128 frame stacked images taken from the
offline training dataset, and compare the corresponding ratios of their Frobenius norms, and take this average ratio over the
batch across 4 seeds.

C. Additional Analysis
C.1. Adaptive ND Dual Objective Optimization

The alternative ND score with increased outlier robustness, ÑD, proposed in Section 4.3 is inspired by recordings of
signal-to-noise ratio measurements. In particular, by passing the individual normalized D(z) terms through a log(1 + x)
smoothing function we downweight the effect that large individual outliers might have on this aggregated metric. We would
like to remark that since we set up the optimization of S with a dual objective, changes in the actual target value relating to
some appropriate smoothness constraint are mostly irrelevant when considering the optimization’s dynamics. Therefore, we
argue that tuning S with the actual ND should not considerably diverge from tuning S based on a re-scaled appropriate
target for ÑD.

We provide further plots comparing agent performance and respective adaptive parameter S during training:
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Figure 18. Performance of agents across 4 different seeds of the Cheetah Run environment and their adaptive scalar parameter S. We
observe that initially, S is high until agents learn useful behaviors, whereupon it drops to maintain ND due to presence of useful signal in
the feature gradients.
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Figure 19. Performance of agents across 4 different seeds of the Quadruped Run environment and their adaptive scalar parameter S. We
observe that as meaningful behaviors are learned in agents towards the end of training, S falls accordingly, whereupon it drops to maintain
ND due to presence of useful signal in the feature gradients.

We see the same effect in these two contrasting environments; in Cheetah Run, where learning is more stable due to more
predictable initializations and fewer degrees of freedom, we see the A-LIX parameter S drop almost immediately as the
TD-targets quickly become more accurate. In the less stable Quadruped Run, we also notice this annealing effect, however
this occurs later on in training, when the agent can consistently recover from poor initializations.
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C.2. N-Step Returns

Large n-step rewards have become an important part of many algorithms that use TD-learning from visual observations.
As motivated in Section 3, large n-step rewards can help towards mitigating self-overfitting by densifying the reward and
downweighting the contribution of the inaccurate target critic, especially early in training; indeed as shown in (Yarats
et al., 2022), using 1-step learning has a significant negative impact on performance. However, it is known that there is a
bias-variance trade-off with multi-step approaches (Kearns & Singh, 2000), and furthermore, almost all approaches using
this method do not apply off-policy bias correction when sampling from a replay buffer. While we motivate the use of n-step
returns as a way to mitigate self-overfitting through incurring fewer 0 reward tuples (especially common in sparse reward
environments early in training), we believe there is evidence to show that this introduces bias when n is sufficiently large,
despite prior work suggesting this is not the case (Hernandez-Garcia & Sutton, 2019).
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Figure 20. Returns of agents over 5 seeds. Solid lines represent median performance, faded lines represent individual runs.

We show in Fig. 20 that 10-step (as is commonly done in algorithms used to solve Atari) returns can mitigate failure seeds
as predicted under the visual deadly triad framework (indeed in Cheetah Run there are no seeds that completely flat-line
when 10-step returns are used). However, we also see evidence that applying 10-step returns can have negative impacts
on convergence and asymptotic performance in Cheetah Run when the deadly triad is sufficiently managed, such as using
augmentations; in Quadruped Run we see moderate benefit initially, but note that asymptotically the 10-step and 3-step
agents converge to the same performance. We also provide further evidence in App. E.3, where applying 10-step returns to
an A-LIX agent generally has a laregely negative impact on performance. Finally, we note that trying 20-step returns, as
is done in some algorithms that solve Atari (Laskin et al., 2020b), caused significant performance reductions in DMC. In
conclusion, this provides evidence that we should consider using lower values of ‘n’ in multi-step returns, and achieve this
through addressing other elements of the deadly triad.
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D. Implementation Details
In Tables 6 and 7 we provide the full list of hyperparameters used in our implementations for DMC and Atari 100k,
respectively. We show significant differences from standard practices in bold. In particular, A-LIX uses the same encoder
architecture and n-step returns for both benchmarks, highlighting its lower reliance to environment-specific heuristics.
Moreover, unlike prior state-of-the-art algorithms it does not employ any data augmentation or auxiliary loss function. These
factors show the effectiveness of our adaptive method in counteracting instabilities from the visual deadly triad without any
additional help, highlighting its applicability.

Table 6. Full hyperparameters list used for the DeepMind Control A-LIX experiments. Bolded values represent significant differences
from canonical implementations.

DDPG-integration hyperparameters (following (Yarats et al., 2022))

Replay data buffer size 1000000 (100000 for Quadruped Run)
Batch size 256 (512 for Walker Run)
Minimum data before training 4000
Random exploration steps 2000
Optimizer Adam (Kingma & Ba, 2014)

Policy/critic learning rate
medium: 0.0001
hard: 0.00008

Policy/critic β1 0.9
Critic UTD ratio 0.5
Policy UTD ratio 0.5
Discount γ 0.99
Polyak coefficient ρ 0.99
N-step returns 3 (1 for Walker Run)
Hidden dimensionality 1024

Feature dimensionality
medium: 50
hard: 100

Nonlinearity ReLU
Exploration stddev. clip 0.3

Exploration stddev. schedule
medium: linear: 1→ 0.1 in 500000 steps
hard: linear: 1→ 0.1 in 2000000 steps

Augmentations OFF

A-LIX-specific hyperparameters

Initial maximum sampling shift S 1.0
Normalized discontinuity targets ND 0.635
Maximum sampling shift learning rate 0.003
Maximum sampling shift β1 0.5
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Table 7. Full hyperparameters list used for the Atari 100k A-LIX experiments. Bolded values represent significant differences from
canonical implementations.

DER-integration hyperparameters

Gray-scaling True
Down-sampling 84× 84
Frames stacked 4
Action repetitions 4
Reward clipping [−1, 1]
Max episode frames 108000
Replay data buffer size 100000
Replay period every 1
Batch size 32
Minimum data before training 1600
Random exploration steps 1600
Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 0.0001
Critic β1 0.9
Critic ε 0.000015
Max gradient norm 10
Critic UTD ratio 2
Discount γ 0.99
Target update period 1
N-step returns 3
Feature maps 32,32,32
Filter sizes 3× 3,3× 3,3× 3
Strides 2,1,1
Hidden dimensionality 256
Feature dimensionality 50
Nonlinearity ReLU
Exploration noisy nets parameter 0.1
Augmentations OFF

A-LIX-specific hyperparameters

Initial maximum sampling shift S 1.0
Normalized discontinuity targets ND 0.75
Maximum sampling shift learning rate 0.0001
Maximum sampling shift β1 0.5



Stabilizing Off-Policy Deep Reinforcement Learning from Pixels

E. Additional Ablations
E.1. Smoothness Regularization through Spectral Normalization

To distinguish between general smoothness contraints in convolutional features, and the smoothness that arises as a result
spatial consistency, we apply spectral normalization (Miyato et al., 2018) to the final convolutional layer in the encoder to
represent the former class of constraints. Spectral normalization operates on the parameters of a network and constrains
its outputs to be 1-Lipschitz and has shown benefits in prior work (Gogianu et al., 2021), but does not explicitly enforce a
spatial regularization in the features. We train agents without augmentations using spectral normalization.
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Figure 21. Returns of agents over 5 seeds. Solid lines represent median performance, faded lines represent individual runs.

We see that whilst there is clear improvement above the original non-augmented agents in some cases, the performance is
still lower than agents that use spatial consistency regularization, such as random shift augmentations.

E.2. Is Gradient Smoothing All We Need?

Following the argument in Section 4.1, we can view augmentations as a gradient smoothing regularizer. This naturally leads
us to ask the following: can we replace the stochastic shifting mechanism with a fixed smoothing mechanism? To test this,
we instead apply a Gaussian smoothing kernel to the feature gradients in the CNN, and utilize our ND score to vary the
width of the kernel adaptively through training; we call this method A-Gauss (Adaptive Gaussian Feature Gradient Kernel).
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Figure 22. Returns of agents over 5 seeds. Solid lines represent median performance, faded lines represent individual runs.

We see that while there is improvement over non-augmented agents, overall performance is still lower than even simple
non-adaptive augmentation. We believe this is due to the Gaussian kernel having too significant an effect on the information
contained in the feature gradients during backpropagation, causing information to be lost. We believe this explains the
effectiveness of shift-augmentations in reinforcement learning, which is that they effectively balance the information
contained in the gradients, as well as ensuring their smoothness to reduce overfitting.

E.3. Ablations to A-LIX

We now provide a set of ablations on both DMC and Atari, assessing the impact of individual components in A-LIX.
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Figure 23. An ablation study of A-LIX, showing the contribution of its individual components to ultimate performance in DMC and Atari
100k.

In Fig. 23a we choose the following ablations for DMC:

• A-LIX

• Adaptive Random Shifts (where the magnitude of the random shift image augmentation is adjusted using the dual ND
objective)

• LIX

• Random Shifts (i.e., DrQ-v2)

While we see a slight asymptotic performance improvement in Cheetah Run by using LIX layers instead of random shifts,
we notice significant differences in the less stable Quadruped Run environment. Concretely, we see much greater stability in
both LIX approaches compared with image augmentation approaches, with the former having no failure seeds. Furthermore,
we observe stronger asymptotic performance with the inclusion of the adaptive dual objective for both approaches. As
motivated in Fig. 19, this is likely a result of reducing the shift parameter as the signal in the target values increases.

In Fig. 23b, we choose the following ablations for Atari 100k on a subset of environments that represent a diverse set of
tasks and performances with baseline algorithms:

• A-LIX

• Adaptive Random Shifts (as before)

• LIX

• A-LIX with 10-step returns

• Random Shifts

We see that A-LIX performs consistently strongly across the environments tested, always placing in the top 2 with regards to
Human Normalized Score. We also notice that generally, LIX layer methods outperform random shift methods apart from in
Crazy Climber, where the opposite is true. We believe this may be due to random shift augmentations actually reflecting
the inductive biases concerning generalization in this environment, and believe this merits further investigation. Finally,
we observe that using 10-step returns instead of 3 generally harms performance with A-LIX, with justification given in
App. C.2.
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F. Additional Offline Experiment Analysis
F.1. Behavior Cloning without Augmentations
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Figure 24. Returns of agents over 5 seeds. Solid lines represent median performance, faded lines represent individual runs. The grey
dotted horizontal line represents mean expert performance.

To illustrate that test time shift invariance is not required, we show that it is possible to learn a policy through supervised
learning. To do this, we generate a pixel-based dataset of 500,000 timesteps under an expert policy in Cheetah Run, and
jointly train a CNN encoder and policy using behavior cloning/supervised learning by minimizing the loss L = (a− π(o))2
until convergence, where o follows the stacked frame image inputs of (Mnih et al., 2013). We see that the pixel-based
policy performs as well as the behavior agent, despite using both higher dimensional data and fewer than half the samples
compared to existing expert offline RL benchmarks from proprioceptive states (Fu et al., 2021).

This provides clear evidence that shift invariance is not required at test time, and motivates us to find an alternative
explanation for why random shift augmentations help the learning process in TD-learning. An alternative perspective is
that when the learning signal is strong, as is the case for supervised learning (and later stages during online learning when
target values are more accurate), the natural bias of CNNs to learn lower order representations acts as an implicit regularizer
(Rahaman et al., 2019) that results in test-time generalization.

F.2. Turning Off Augmentations

We present more evidence showing that augmentations benefit learning the most at the beginning of training. In Fig. 25 we
show the effect of turning off augmentations at 200,000 steps in Cheetah Run, and at 500,000 in Quadruped Walk. In both
instances, we see large improvements over not augmenting at all, and both nearly converge to the same value as DrQ-v2,
showing further evidence that stability initially in learning is vital. We posit that turning off augmentations here did not
yield similar benefits to Fig. 2 due to the fact that there is still high-frequency information in the targets (consider that
the augmentations in Cheetah Run are switched off significantly earlier) that cause a marginal amount of self-overfitting,
reducing the rate of learning due to feature space degeneration.
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Figure 25. Returns of agents over 5 seeds. Solid lines represent median performance, faded lines represent individual runs. The grey
dashed line shows when augmentations are turned off.
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F.3. Action-Value Surfaces

Here we show the action-value surfaces of the offline agents’ critics at various tuples sampled from the data. This provides us
with an intuition over the loss landscape that the policies will be optimizing during the policy improvement, as accordingly
the policy under the deterministic policy gradient (Silver et al., 2014) updates its own weights towards maximizing the
action-values defined by the critic through the chain rule:

∇φJπ ≈ Es∼E
[
∇aQθ(s, a)|a=fφ(s)∇φfφ(s)

]
(10)

where φ and θ are policy and critic weights respectively. We hypothesize that self-overfitting reduces the sensitivity of
the critic to actions, discarding important information regarding the causal link between actions and expected returns. To
evaluate this, we sample state-action pairs from our replay buffer, and then visualize the action-value surface by sampling
two random orthogonal direction vectors from the action space A. We then normalize the direction vectors to have a 2-norm
of 1, and then multiply each direction vector by scalars α, β ∈ [−2, 2] respectively. We then plot the action-value surface as
a result of adding the random vectors multiplied by their respective scalars onto the action sampled from offline dataset,
giving us a 3-D surface. We clip actions to a ∈ [−1, 1]|A| as actions are squashed to this range in the policy through a
truncated normal distribution.
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Figure 26. Action-Value loss surface plotted with respect two orthogonal random directions sampled from the action space (i.e., dr ∈ A
and d1 ⊥ d2).

We see that the critics learned by the augmented agents are more sensitive to changes in action. We believe this is due to the
non-augmented agents overfitting to the observations, thus ignoring the lower-dimensional action inputs. To validate this, we
sampled 128 random state-action tuples from the offline buffer, and calculated the average variance across the loss surfaces.
We see a significant difference, with the augmented agent having an average loss surface variance of 0.0129, whereas the
non-augmented agent has an average loss surface variance of 0.0044, suggestive of lower sensitivity.

F.4. Evidence of Critic MLP Overfitting from High-Frequency Features

We provide further evidence that measuring high-frequency features through the ND score is vital to understanding overfit
by showing how overfitting is able to occur in the fully-connected critic layers, which are usually stable under proprioceptive
observations (see Table 2). To do this, we construct a pattern containing high frequency checkerboard noise c ∈ RH×W ,
and produce as many patterns as there are channels C in the final layer. To ensure consistency across each individual feature
map, we normalize each checkerboard pattern by the maximum value in its respective feature map, and then divide by the
width of the checkerboard. We then add this pattern multiplied by a scalar α onto each feature map.
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(a) Example checkerboard artefacts.

0.00 0.25 0.50 0.75
 (Checkerboard Weight)

0.0

0.1

0.2

0.3

0.4

T
D

 L
o
ss

Non Augs
Augs

(b) Sensitivity of agents to checkerboard artifact weight
Figure 27. Effect of checkerboard artifacts on feature maps and resultant loss sensitivity. We see the non-augmented agent is significantly
more sensitive to this high-frequency noise.

As we see, the loss is significantly more sensitive to high-frequency perturbations in the non-augmented agent, justifying its
reliance on high-frequency patterns in the feature maps to enable self-overfitting.

F.5. Additional Loss Surfaces

Here we show the loss surfaces of the offline agents under policy evaluation with at 1,000, 5,000, and 10,000 training steps.
We also show the surfaces respect to only the MLP layers, again following the normalization approach of Li et al. (2018).
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Figure 28. Loss surface plotted with respect to Encoder parameters at various stages of training.

Weight Subspace 1

1
0

1

W
ei
gh

t S
ub

sp
ac

e 
2

1

0

1

T
D

 L
o
ss

2

4

Critic with Augmentations

1
0

1 1

0

1

2

4

Critic w/o Augmentations

TD Loss

2

4

(a) 1,000 SGD Steps

Weight Subspace 1

1
0

1

W
ei
gh

t S
ub

sp
ac

e 
2

1

0

1

T
D

 L
o
ss

10

20

Critic with Augmentations

1
0

1 1

0

1

10

20

Critic w/o Augmentations

TD Loss

10

20

(b) 5,000 SGD Steps

Weight Subspace 1

1
0

1

W
ei
gh

t S
ub

sp
ac

e 
2

1

0

1

T
D

 L
o
ss

5

10

Critic with Augmentations

1
0

1 1

0

1

5

10

Critic w/o Augmentations

TD Loss

5

10

(c) 10,000 SGD Steps

Figure 29. Loss surface plotted with respect to Critic MLP parameters at various stages of training.

As we see, the loss surface with respect to the MLP parameters is significantly less sharp, lending further evidence that
self-overfitting is predominately a result of the flexibility of the CNN layers to learn high-frequency features.


