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Abstract
In this paper, we propose a robust imitation learn-
ing (IL) framework that improves the robustness
of IL when environment dynamics are perturbed.
The existing IL framework trained in a single en-
vironment can catastrophically fail with perturba-
tions in environment dynamics because it does not
capture the situation that underlying environment
dynamics can be changed. Our framework effec-
tively deals with environments with varying dy-
namics by imitating multiple experts in sampled
environment dynamics to enhance the robustness
in general variations in environment dynamics.
In order to robustly imitate the multiple sample
experts, we minimize the risk with respect to the
Jensen-Shannon divergence between the agent’s
policy and each of the sample experts. Numerical
results show that our algorithm significantly im-
proves robustness against dynamics perturbations
compared to conventional IL baselines.

1. Introduction
Reinforcement Learning (RL) is a framework that produces
optimal policies for tasks. Deep neural networks enable RL
to handle complex tasks in various simulation environments
(Mnih et al., 2015; Lillicrap et al., 2015; Fujimoto et al.,
2018; Haarnoja et al., 2018; Schulman et al., 2015a; 2017).
However, current RL still has limitations for deployment
into the real world. Two of the main limitations are robust-
ness and design of reward function. A typical RL algorithm
interacts with a single environment and evaluates the policy
with the interaction environment, so the policy becomes spe-
cialized to the trained environment and mostly fails when
the underlying dynamics are perturbed from the trained envi-
ronment. In the real world, underlying dynamics are highly
likely to be perturbed. For example, consider autonomous
driving with RL. The physical dynamics of an autonomous
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driving car including handling, braking, the road friction
coefficient of a rainy day change from those of a clear day.
To cope with such uncertainty, one could consider learning
an expert policy for each of all possible environment dynam-
ics for a given task like car driving, estimating the realized
dynamics, and using one of the learned expert policies for
the estimated dynamics. However, estimating the realized
environment dynamics is difficult because the dynamics of
the environment depend on many correlated environment
parameters such as gravity, mass, aging, etc. Furthermore,
learning a policy for each of all possible dynamics perturba-
tions is infeasible when the dynamics vary continuously.

Robust Reinforcement Learning (Robust RL) is a framework
that produces a robust policy against such environment per-
turbations for a given task. The aim is to learn a policy that
works well in all possible dynamics perturbations without
estimating the perturbation. Typical robust RL allows the
agent to interact in multiple environments (Derman et al.,
2018; Mankowitz et al., 2018; 2019) and the policy opti-
mizes the worst case of the expected returns in the multiple
interaction environments. This agent can work well both
in all the interaction environments and even in an unseen
environment with similar dynamics. Even if such dynamics
variation can be handled by robust RL, there still remains
the issue of reward function design for many real-world con-
trol problems including our example of autonomous driving,
since robust RL relies on a well-designed reward function.
When we observe a human drive, it is difficult to know what
reward the driver has for each of the driver’s actions.

Imitation Learning (IL) has been developed to cope with
such situations by learning a policy for a given task without
a reward function (Torabi et al., 2018a; Finn et al., 2016;
Syed et al., 2008). IL uses demonstrations generated from
an expert for the task instead of a reward function, and the
agent tries to mimic the expert. GAIL is one of the popular
IL algorithms and tries to mimic an expert by matching
occupancy measure, which is the unnormalized distribution
of state-action pairs (Ho & Ermon, 2016). Up to now, how-
ever, most IL algorithms have been proposed for a single
interaction environment with perfect or non-perfect expert
demonstration to yield a policy that is specialized to the
single interaction environment.

In this paper, we consider robust IL to learn a robust policy
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by IL against continuous environment dynamics perturba-
tion and propose a novel IL framework to learn a robust
policy performing well over a range of continuous dynam-
ics variation based on demonstrations only at a few sam-
pled dynamics from the continuum, which does not require
demonstrations from all the continuum and thus significantly
reduces the amount of required demonstrations. The detail
of the proposed framework will follow in the upcoming
sections.

2. Related Works
Imitation Learning: IL aims to learn a policy by imitating
an expert. Behavior Cloning (BC) (Torabi et al., 2018a) is an
approach of IL based on supervised learning. Brantley et al.
(2019) alleviated the covariate shift problem of BC. Another
approach is adversarial imitation learning (Ho & Ermon,
2016; Torabi et al., 2018b) in which the agent imitates an
expert by matching a positive measure. Fu et al. (2017)
recovered the reward function using expert demonstration.
Cross-domain IL (Gangwani & Peng, 2020; Liu et al., 2019;
Viano et al., 2021; Raychaudhuri et al., 2021) considered the
IL problem under dynamics mismatch between the expert
and the learner.

The existing robust IL works addressed the IL problem with
non-perfect demonstrations (Wu et al., 2019; Tangkaratt
et al., 2020) or improved the stability of IL (Wang et al.,
2017; Laskey et al., 2017), and their settings are different
from our setting in this paper. Meta-IL (Duan et al., 2017;
Finn et al., 2017; James et al., 2018; Zhou et al., 2019) and
Meta-IRL (Xu et al., 2019; Yu et al., 2019) can learn a new
task using a few demonstrations by leveraging experiences
from similar tasks, whereas our framework doesn’t require
any demonstrations for test tasks. Multi-task IRL (Gleave &
Habryka, 2018) proposed a Maximum Causal Entropy IRL
framework for multi-task IRL and meta-learning to infer
multiple reward functions for each task. Toyer et al. (2020)
proposed a multi-task benchmark suite for evaluating the
robustness of IL algorithms. ADAIL (Lu & Tompson, 2020)
can learn an adaptive policy for environments of varying
dynamics, but it assumed that collecting expert demonstra-
tions in multiple environments is infeasible and used many
simulation environments for domain randomization and en-
vironment encoding.

Robust Reinforcement Learning: Robust RL produces a
robust policy over environment perturbations. Robust-MDP
(Iyengar, 2005; Wiesemann et al., 2013) extends uncertainty
transition set on MDP. Derman et al. (2018); Mankowitz
et al. (2018; 2019) estimated the worst case of the expected
return among multiple perturbed environments. Pinto et al.
(2017) addressed the Robust RL problem by using the adver-
sary. Tessler et al. (2019); Vinitsky et al. (2020) formalized
criteria of robustness to action uncertainty.

3. Preliminaries
3.1. Markov Decision Process

An MDP is denoted by a tuple M =< S,A,P, r, γ >,
where S is the state space, A is the action space, P : S ×
A× S → R+ is the transition probability, r : S ×A → R
is the reward function, and γ ∈ (0, 1) is the discount fac-
tor. A policy π is a (stochastic) mapping π : S 7→ A.
The return Gt is a discounted cumulative sum reward
from time step t, i.e., Gt =

∑∞
i=t γ

i−tr(si, ai). The goal
is to learn a policy π to maximize the expected return
J(π) = Es0∼µ0,τ∼π [G0] (Sutton & Barto, 2018), where
τ = {s0, a0, s1, a1, . . .} is an episode trajectory and µ0(s)
denotes the initial state distribution. The occupancy mea-
sure ρπ(s, a) = π(a|s)

∑∞
t=0 γ

tPr(st = s|π,P) is the un-
normalized state-action distribution induced by policy π,
and µπ(s) =

∑∞
t=0 γ

tPr(st = s|π,P) is the unnormalized
state distribution induced by policy π.

3.2. Generative Adversarial Imitation Learning

In IL, the agent does not receive a reward for its action. In-
stead, the agent learns a policy based on the demonstration
of an expert without knowing the explicit expert policy. Typi-
cally, expert demonstration is given as a trajectory generated
by the expert’s policy, τE = {s0, a0, s1, a1, . . .}. Genera-
tive adversarial imitation learning (GAIL) (Ho & Ermon,
2016) is one of the popular IL methods using expert demon-
stration. Based on Proposition 3.1, GAIL seeks a policy of
which occupancy measure is close to that of the expert so
that the agent’s policy π is close to the expert’s policy πE .
Proposition 3.1 (Theorem 2 of Syed et al. (2008) & Propo-
sition 3.1 of Ho & Ermon (2016)). In a single environment,
the occupancy measure ρπ(s, a) satisfies the following Bell-
man flow constraint for each (s, a) ∈ S ×A:

ρπ(s, a) = µ0(s)π(a|s) + γ

∫
(s′,a′)

P(s|s′, a′
)ρπ(s

′
, a

′
)π(a|s) (1)

and the policy π whose occupancy measure is ρπ is unique.
That is, the occupancy measure and the policy are in an
one-to-one relationship.

The policy π induces the occupancy measure ρπ, and
ρπ maps to the unique policy π. Therefore, GAIL repro-
duces the expert’s policy from the policy update (2), which
matches the occupancy measures of the agent’s policy and
the expert’s policy:

min
π

DJS(ρ̄π, ρ̄πE ) (2)

(a)
= min

π
EρπE

[
log

ρπE

ρπ + ρπE

]
+ Eρπ

[
log

ρπ
ρπ + ρπE

]
(b)
= min

π
max
D

EρπE
[logD(s, a)] + Eρπ [log(1−D(s, a))]

where DJS denotes the Jensen-Shannon (JS) divergence,
and ρ̄π and ρ̄πE

are the normalized occupancy distribu-
tions from ρπ and ρπE

, respectively. Here, (a) is valid since
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the constant normalizer is irrelevant in minimization, and
(b) is valid because the maximizing D value is given by
D(s, a) =

ρπE
(s,a)

ρπ(s,a)+ρπE
(s,a) , where discriminator D distin-

guishes whether a given pair (s, a) is from expert or not.

Gradient Penalty: A variant of GAIL (Kostrikov et al.,
2018) uses the gradient penalty (GP) proposed by Gulrajani
et al. (2017) as a regularization term to enhance the stability
of IL. The discriminator update of GAIL with GP is given
by

max
D

EρπE
[logD(s, a)] + Eρπ [log(1−D(s, a))] (3)

+ κEx̂ (∥∇x̂D(x̂)∥2 − 1)2 ,

where x̂ ∼ (ϵρπ +(1− ϵ)ρπE
) with ϵ ∼ Uniform[0, 1], and

κ is the regularization coefficient to control the GP term.
We will call this GAIL+GP.

4. Motivation
The existing IL methods typically interact with a single
nominal environment and try to imitate an expert that is
specialized at the single nominal environment. For further
discussion, we define three types of environment: the in-
teraction environment, the demonstration environment and
the test environment. The interaction environment is the
one with which the agent interacts to obtain policy sam-
ples during the training, the demonstration environment is
the one from which the expert demonstration is generated
to train the agent, and the test environment is the actual
test environment for the trained agent policy. The interac-
tion environment and the demonstration environment are the
same for conventional IL with a single nominal environment
(SNE). We will refer to this IL training setting as SNE/SNE
(interaction environment / demonstration environment). In
most cases, IL trained in the SNE/SNE setting fails when
the actual test environment dynamics are perturbed from
the nominal dynamics, as seen in Figures 1a and 1b. In
Figures 1a and 1b, the x-axis value denotes the ratio (in
percentage) of the gravity (or mass) of the test environment
to that of the nominal interaction/demonstration environ-
ment and the y-axis shows the mean return of the policy
trained under the SNE/SNE setting at the corresponding x
value. It is seen that the performance degrades severely as
the test environment dynamics deviate from the nominal
interaction/demonstration environment dynamics.

To handle such performance degradation, robust RL samples
a few environments with perturbed dynamics. For example,
in Figure 1c, three environments with gravity 50%, 150%
and nominal 100% are sampled. Then, robust RL allows
the agent to interact with these multiple sampled environ-
ments (MPE) so that the agent’s policy can capture the
various dynamics of the multiple environments. Then, ro-
bust RL typically solves maxπ minPi∈P Eπ[Gt|Pi], where
P = {Pi} is the selected environment set. By maximizing

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

GAIL+GP

(a) Walker2d+Gravity:
GAIL+GP

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

GAIL+GP

(b) Walker2d+Mass:
GAIL+GP

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%g
GAIL+GP-100%g
GAIL+GP-150%g

(c) Walker2d+Gravity:
SNEMPE-max

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%m
GAIL+GP-100%m
GAIL+GP-150%m

(d) Walker2d+Mass:
SNEMPE-max

Figure 1: Performance of the policy trained in a single nom-
inal environment against perturbation (left column - gravity
perturbation and right column - mass perturbation): (a,b) -
performance of GAIL+GP, and (c,d) - SNEMPE-max.

the worst-case expected return, the agent’s policy can cap-
ture the varying dynamics in the selected environment set
P = {Pi}. However, robust RL requires a well-designed
reward function, which we want to avoid.

Now, consider robust IL. One simple approach is to apply
the above robust RL principle to the IL setting. Here, we
obtain expert demonstrations from multiple sampled demon-
stration environments and have a single policy interacting
with the single nominal interaction environment. Then, we
use discriminators to distinguish the policy samples from
each of the multiple sampled expert demonstrations, and
train the policy to follow the worst-case, i.e., the expert
demonstration that is farthest from the policy sample based
on the discriminator outputs. The performance of so learned
policy in the perturbed test environment is shown in Fig-
ures 1c and 1d (the corresponding performance is denoted as
SNEMPE-max). It is seen that the policy learned in such way
improves robustness compared with conventional SNE/SNE
IL in Figures 1a and 1b, but the performance is not satisfac-
tory. This degradation implies that policy interaction with
the single nominal environment is not enough to capture
the dynamics variation even with expert demonstrations
from multiple sampled demonstration environments. Thus,
in order to fully capture the dynamics variation, we first
sample a few environments with different dynamics from
the continuous dynamics distribution and use these multiple
sampled environments not only for expert demonstrations
but also for policy interaction during the training. We refer
to this setting as the MPE/MPE IL setting. In the remainder
of this paper, we propose an efficient IL framework based
on the MPE/MPE IL setting to yield a policy that performs
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robustly against continuous environment dynamics variation
based only on a few sampled dynamics for training.

5. Robust Imitation Learning against
Variations in Environment Dynamics

5.1. Problem Formulation

We consider a collection of MDPs C = {M =< S,A,Pζ ,
r, γ >, ζ ∈ Z}, where the state and action spaces are the
same for all members of the collection, the reward is un-
available to the agent, the transition probability modeling
the dynamics is parameterized with parameter ζ, and the
dynamics parameter ζ can be continuously varied or per-
turbed from the nominal value ζ0 within the set Z. Among
this continuous collection, we sample N MDPs with dy-
namics parameters ζ1, ζ2, · · · , ζN . We denote these N envi-
ronments with dynamics Pζ1 , · · · ,PζN (simply denoted as
P1, · · · ,PN ) by E1, · · · , EN . We assume that there exists
an expert πi

E for each environment Ei, the expert πi
E gener-

ates expert demonstration for the agent, but the expert policy
πi
E itself is not available to the agent. We also assume that

the agent can interact with each of all sampled environments
E1, · · · , EN , and the initial state distributions of all interac-
tion environments are the same as µ0(s). Thus, according
to our definition in the previous section, E1, · · · , EN are
both demonstration and interaction environments, and the
setting is MPE/MPE. Note that the expert demonstrations
at E1, · · · , EN are partial information about the entire MDP
collection C. Our goal is for the agent to learn a policy π
that performs well for all members in the MDP collection
C based only on the expert demonstrations from and agent
interaction with the sampled environments E1, · · · , EN . We
will refer to this problem as Robust Imitation learning with
Multiple perturbed Environments (RIME).

Let us introduce a few more notations. ρiπ(s, a) =
π(a|s)

∑∞
t=0 γ

tPr(st = s|π,Pi) denotes the occupancy
measure of π in the i-th interaction environment Ei. µi

π(s) =∑∞
t=0 γ

tPr(st = s|π,Pi) denotes the unnormalized state
marginal of π in the i-th interaction environment Ei. For
simplicity, we denote ρj

πj
E

(s, a) and µj

πj
E

(s) by ρjE(s, a)

and µj
E(s), respectively. The expert demonstration τ iE is

given by the state-action pair trajectory from expert policy
πi
E specialized in the i-th demonstration environment Ei

with dynamics Pi. Dij(s, a) : S ×A → [0, 1] is a discrimi-
nator that distinguishes whether a state-action pair (s, a) is
from policy π interacting with Ei or from expert πj

E .

5.2. Direct Optimization in the Policy Space

In order to solve the RIME problem, one can consider the
occupancy matching technique which is used in GAIL. As
mentioned in Section 3.2, in the single environment setting,
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Figure 2: Overview of our algorithm. The blue line is the
flow of policy samples ρiπ , and the green line is the flow of
expert demonstrations τ jE ∼ ρjE .

the occupancy measure ρπ satisfies the Bellman flow con-
straint (1), and there exists a one-to-one mapping between
the occupancy measure and the policy. By this relationship,
the agent’s policy can imitate the expert by matching its
occupancy measure close to that of the expert. In the mul-
tiple environment setting, however, the situation is not so
simple as in the single environment case. Suppose that the
agent policy π interacts uniformly with N environments
E1, · · · , EN with the same state-action space but different
transition probabilities P1, · · · ,PN . Then, the occupancy
measure of π becomes the mixture, i.e., ρπ = 1

N

∑N
i=1 ρ

i
π,

and the corresponding Bellman flow equation is given by

ρπ(s, a) =
1

N

N∑
i=1

ρiπ(s, a) = µ0(s)π(a|s)

+ γ
1

N

N∑
i=1

∫
(s′,a′)

Pi(s|s′, a′)ρiπ(s′, a′)π(a|s). (4)

There exists a distinct characteristic in (4) from the single-
environment equation (1). For simplicity of exposition, sup-
pose that the state space S and the action space A are dis-
crete and finite with cardinalities |S| and |A|, respectively.
In the case of (1), we have a linear system of equations
with |S||A| unknowns ρπ(s, a), (s, a) ∈ S ×A and |S||A|
equations. Hence, we have a unique solution ρπ(s, a) if the
kernel P(s|s′, a′) satisfies certain Markov chain conditions.
In the case of (4), on the other hand, we have N |S||A| un-
knowns ρiπ(s, a), i = 1, · · · , N but |S||A| equations. So,
the system is underdetermined, there exist infinitely many
solutions for the set {ρiπ(s, a), i = 1, · · · , N}, and hence
the mixture ρπ = (1/N)

∑
i ρ

i
π can be infinitely many.

Thus, the mapping from π to ρπ can be one-to-many, so
there is no guarantee to recover π from ρπ unless we prove
{ρπ}∩ {ρπ′} = ∅, ∀π, π′ such that π ̸= π′. Hence, there is
no guarantee for policy recovery from occupancy measure
matching, and we need to consider a new approach to the
RIME problem.

Our approach is not to use the occupancy measure as in
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GAIL but to use the policy distribution itself. For the consid-
ered MPE/MPE setting, we propose the following objective
function to solve the RIME problem:

min
π

Es∼ 1
N

∑N
i=1 µi

π

[
N∑

j=1

λj(s) · D(π(·|s), πj
E(·|s))

]
, (5)

where D is some divergence between two policy distribu-
tions, and

∑
j λj(s) = 1. The objective function (5) means

that we want to design the agent policy π to appropriately
imitate all expert policies π1

E , · · · , πN
E on the state samples

generated by the agent policy interacting with all interaction
environments. Here, λj(s) is the weight to determine how
much πj

E(·|s) is imitated. Such an objective has been consid-
ered for integration of expert machines (Amari, 2016) and
is well suited to our purpose. The key difference between
(5) and (2) is that in (2), the distance between the occupancy
measures of the agent and the expert is minimized based on
Proposition 3.1, whereas in (5) the distance between the pol-
icy distribution of the agent and those of the multiple experts
is minimized, not requiring the occupancy measures. How-
ever, the key challenge to the objective function (5) is that
the expert policies π1

E , · · · , πN
E are not available but only

their demonstrations are at hand. The following theorem is
the first step to circumvent this difficulty.
Theorem 5.1. If ρiπ(s, a) > 0, λj(s) > 0 for any i, j ∈
{1, · · · , N}, γ ∈ (0, 1), and D in (5) is the Jensen-Shannon
divergence, then the objective function (5) is expressed as

min
π

N∑
i=1

N∑
j=1

max
Dij

{
E(s,a)∼ρiπ

[
λj(s)

2N
log(1−Dij(s, a))

]

+E
s∼µi

π,a∼π
j
E

[
λj(s)

2N
log(Dij(s, a))

]}
+

log 2

1− γ
, (6)

where Dij is a discriminator that distinguishes whether
(s, a) is from policy π interacting with Ei or from expert πj

E

Proof. See in Appendix A.1

5.3. Practical Methodology

Due to the second term Es∼µi
π(s),a∼πj

E(·|s)[·] in (6), which is
eventually replaced with sample expectation in implementa-
tion, we still require the expert policies πj

E , j = 1, · · · , N .
However, πj

E is not available. One way to circumvent this
is to reproduce the expert policy πj

E via Behavior Cloning
or GAIL+GP by using its demonstration τ jE . However, we
found that this method is not so effective. This is due to the
classical generalization problem. That is, the reproduced ex-
pert policy π̂j

E based on τ jE does not cover all states induced
by π (i.e., s ∼ µi

π). For some states, π̂j
E gives inappropriate

actions to the agent policy, and these actions lead to learning
failure. (The detailed description and experimental results
of this approach are in Appendix B.1.) To circumvent this,
using importance sampling, we modify (6) as follows:

min
π

N∑
i=1

N∑
j=1

max
Dij

{
E(s,a)∼ρiπ

[λj(s) log(1−Dij(s, a))]

+E
(s,a)∼ρ

j
E

[
µi
π(s)

µj
E(s)

λj(s) log(Dij(s, a))

]}
, (7)

where the last constant term log 2/(1− γ) and the constant
scaling factor 1/2N in (6) are removed. The difference of
(7) from (6) is that for the expectation in the second term, the
sample pair (s, a) is drawn from the expert trajectory, which
facilitates implementation. Instead, we need the importance
sampling ratio µi

π(s)

µj
E(s)

. However, computing µi
π(s) and µj

E(s)

for a continuous state space by the Bellman flow equation
is difficult because we have an infinitely large space, and
also the transition dynamics are unknown in the model-
free case. In addition, computing µi

π(s) and µj
E(s) based

on samples is also difficult unless we assume a predefined
model distribution. One can consider applying histogram-
based neural network approaches but then again faces the
generalization issue. Hence, instead of computing µi

π(s)

and µj
E(s), we directly estimate the ratio µi

π(s)

µj
E(s)

by using
f-divergence (Sinha et al., 2020) (detailed implementation
and experimental results are in Appendix D.2). However,
we found that properly estimating µi

π(s)

µj
E(s)

and setting µi
π(s)

µj
E(s)

simply to 1 have almost the same results for most tasks.
Thus, for algorithm simplicity, we set the importance ratio
to 1 without estimating the ratio. Indeed, similar approaches
were used in (Kostrikov et al., 2018; Liu et al., 2020).

With the importance sampling ratio set to 1, the optimiza-
tion over π and Dij in (7) is tractable. We can apply al-
ternating optimization over π and Dij . First, consider op-
timization over π for given Dij . Note that π affects only
the first term Eρi

π
[·] in (7). In the first term, we have the

weighting factor λj(s) such that
∑N

j=1 λj(s) = 1, and de-
termining proper λj(s) is cumbersome. Thus, exploiting
the fact

∑N
j=1 λj(s) = 1, we can rewrite the first term for

given Dij by pushing
∑N

j=1 into the expectation based on
the linearity of expectation, and obtain its upper bound as

min
π

N∑
i=1

Eρiπ

[
N∑

j=1

λj(s) log(1−Dij(s, a))

]

≤ min
π

N∑
i=1

Eρiπ

[
max

j
log(1−Dij(s, a))

]
, (8)

where Eρi
π
[·] denotes E(s,a)∼ρi

π
[·], and the inequality is valid

because
∑N

j=1 λj(s)[·] can be considered as an expectation
(maxDij

does not appear since Dij is given for this step).
Then, we optimize the upper bound of the objective function
(8) for policy π.

Next, consider the optimization of Dij for given π. This
optimization is simplified due to the following theorem:
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Theorem 5.2. The following maximization problem without
the λj(s) term has the same optimal solution for Dij as (7)
with µi

π(s)/µ
j
E(s) set to 1 for given π:

max
Dij

{
Eρiπ

[log(1−Dij(s, a))] + E
ρ
j
E
[log(Dij(s, a))]

}
.

Proof. See in Appendix A.2

Based on Theorem 5.2 and gradient penalty (GP), we finally
derive the objective function of Dij for given π as follows:

max
Dij

{
Eρiπ

[log(1−Dij(s, a))] + E
τ
j
E
[log(Dij(s, a))]

+ κEx̂ (∥∇x̂Dij(x̂)∥2 − 1)2
}
, (9)

where x̂ = (s, a) ∼ (ϵρiπ + (1− ϵ)τ jE) with ϵ ∼ Unif[0, 1],
and κ is the weight to control the GP term. Note that in (9)
we added a gradient penalty term mentioned in Section 3.2
for stable learning, and Eρj

E
is replaced with Eτj

E
.

Note that the number of discriminators Dij is given by
N2, and increases quadratically as the number N of envi-
ronments increases. We can reduce this number by using
discriminator weight sharing which makes the discrimina-
tor models share a subset of their weights (Liu & Tuzel,
2016). The discriminators Di1, · · · , DiN share the weights
of their input and hidden layers, and hence they can be im-
plemented as one discriminator with N output nodes. We
call this Weight-Shared Discriminator (WSD). For WSD
DWeight-Shared

i , the j-th output of its N output nodes corre-
sponds to the output of Dij , and its objective is given by∑

j Vij , where Vij is the individual objective for Dij in (9).

Using WSDs DWeight-Shared
i , i = 1, · · · , N , the complexity

of discriminators is reduced and is almost ∼ N .

5.4. Comparison with Occupancy Measure Matching

Even without guarantee of the recovery of policy distribution
from the occupancy measure in the case of MPE, we can
still apply the occupancy measure matching technique to
MPE/MPE. In this case, a reasonable objective is given by

min
π

N∑
j=1

λjDJS(ρ̄π, ρ̄
j
E), (10)

where
∑

j λj = 1, and ρ̄π and ρ̄jE are the normalized occu-
pancy distributions obtained from ρπ and ρjE , respectively.
(Other objectives are also considered in Section 6.) Then,
we can derive an upper bound of (10) as follows:

min
π

N∑
j=1

λjDJS(ρ̄π, ρ̄
j
E)

≤ min
π

N∑
i=1

N∑
j=1

λj(1− γ)

2N
max
Dij

{
Eρiπ

[log(1−Dij(s, a))]

+ E
ρ
j
E
[logDij(s, a)]

}
+ log 2,

where the derivation of this upper bound is in Appendix B.2.
Now consider the optimization of π for given Dij in this
case. Again, in order to handle λj , we can replace

∑
j λj

with maxj to yield another upper bound. Then, the objective
function of π for given Dij is given by

min
π

N∑
i=1

max
j

Eρiπ
[log(1−Dij(s, a))]. (11)

We refer to this method as Occupancy measure Matching
in Multiple Environments (OMME). The key difference of
the objective (11) from the proposed one in (8) is that the
operation maxj is outside the expectation Eρi

π
[·]. Note that

the order is not interchangeable since maxj is a nonlinear
operation. We will see that this seemingly-slight difference
makes a significant performance difference in Section 6.

6. Experiments
6.1. Experimental Settings

We considered our algorithm together with the following
baselines:
- Behavior Cloning (BC): The policy is trained by supervised
learning until validation errors of all expert demonstrations
stop decreasing.
- GAIL-mixture: It is a variant of GAIL+GP for MPE. In this
case, we have a single discriminator, and this discriminator
distinguishes between all ρ̄iπ’s and all ρ̄jE’s. Its objective
function for π is minπ DJS(

∑
i ρ̄

i
π/N,

∑
j ρ̄

j
E/N).

- GAIL-single: It is another variant of GAIL+GP for MPE. In
this case, we have multiple discriminators, and the objective
function for π is minπ

∑
i DJS(ρ̄

i
π, ρ̄

i
E).

- OMME (closest to our algorithm): this is described already.
The objective function is given by (10) with (11).

Detailed description of the baselines, implementation, ex-
pert demonstrations are in Appendix F. We considered two
versions of the proposed algorithm: RIME and RIME+WSD.
The only difference between RIME and RIME+WSD is the
implementation of discriminators Dij . RIME has the dis-
criminators Dij with the objective function (9) and hence
the number of the discriminator networks is N2. On the
other hand, RIME+WSD uses weight-shared discriminator
DWeight-Shared

i described at the end of Section 5.3.

We experimented the considered algorithms on MuJoCo
tasks: Hopper, Walker2d, HalfCheetah and Ant (Todorov
et al., 2012). Each expert demonstration contains 50 trajec-
tories (i.e., episodes) of state-action pairs generated by the
expert and one episode has 1000 timesteps. We considered
gravity or mass for the considered tasks as our dynamics per-
turbation parameter ζ. The nominal value ζ0 means 100%
gravity or mass for each MuJoCo task. We trained all algo-
rithms with 10M timesteps in the case of experiments with
a 1-D dynamics parameter and with 5M timesteps in the
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Table 1: Mean return / minimum return over the dynamics parameter range [50%,150%] in the 2 sampled environment case

Algorithm Hopper +Gravity Walker2d +Gravity HalfCheetah +Gravity Ant +Gravity

RIME (ours) 2886.7 / 2332.4 4577.1 / 4260.9 4268.9 / 3712.0 4402.2 / 3909.9
RIME+WSD (ours) 2857.8 / 2333.2 4539.3 / 4235.8 4292.9 / 3802.5 4388.7 / 3871.8
OMME 2020.3 / 1354.3 4467.2 / 3868.7 3854.4 / 3352.9 3787.8 / 2715.1
GAIL-mixture 1797.9 / 959.3 3286.7 / 1256.7 3688.6 / 2998.4 3614.1 / 2856.5
GAIL-single 1616.4 / 844.7 3210.0 / 1289.0 3571.8 / 2673.1 3314.3 / 2316.7
BC 1129.7 / 648.8 971.4 / 313.0 1299.5 / -18.3 2333.8 / 1988.6

Algorithm Hopper +Mass Walker2d +Mass HalfCheetah +Mass Ant +Mass

RIME (ours) 3535.7 / 3255.6 4597.0 / 3965.8 3959.0 / 3156.7 4554.5 / 4417.5
RIME+WSD (ours) 3499.4 / 3238.4 4564.7 / 4174.9 4071.7 / 3254.7 4539.6 / 4439.5
OMME 3008.6 / 2741.4 4046.6 / 3460.0 3533.5 / 2732.0 4494.6 / 4343.2
GAIL-mixture 2334.5 / 1333.5 3493.8 / 1425.3 2794.7 / 1951.0 4504.9 / 4301.7
GAIL-single 2194.1 / 1266.6 3031.5 / 1220.4 3164.9 / 1685.6 4031.1 / 3767.4
BC 726.5 / 453.9 962.6 / 607.4 474.2 / -132.9 3923.7 / 3519.0
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Figure 3: Performance on the actual test environment with gravity-perturbed dynamics (the graphs with mass perturbation
are in Appendix E.1)

case of experiments with 2-D dynamics parameters, and the
algorithm for updating the policy is PPO (Schulman et al.,
2017; 2015b).

6.2. Results

For the same task, we conducted 3 experiments. The first two
correspond to the case in which a single dynamics param-
eter (gravity or mass) is perturbed from the nominal value,
and the third is the case in which both gravity and mass
parameters are perturbed. The setting for the first is N = 2
sampled environments with sampled gravity (or mass) pa-
rameters 50%ζ0 and 150%ζ0, and the setting for the second
is N = 3 sampled environments with sampled gravity (or
mass) parameters 50%ζ0, 100%ζ0 and 150%ζ0. In the third
case, we sampled the joint dynamics of gravity and mass as
50%ζ0,g50%ζ0,m, 50%ζ0,g150%ζ0,m, 150%ζ0,g50%ζ0,m
and 150%ζ0,g150%ζ0,m with N = 4. Note that in the third
case, we want to cover the variation from 50% to 150% for
both parameters and only sampled the four corner points in
the joint gravity-mass parameter space.

With the sampled N environments, we trained the agent
by applying the IL algorithms considered in Section 6.1.
Then, in the 1-D perturbation case, we tested the trained
agent policy in each of test environments of which dy-
namics parameter ζ varies from 10%ζ0 to 230%ζ0 with

5%ζ0 step, i.e., 10%ζ0, 15%ζ0, · · · , 230%ζ0. In the 2-
D perturbation case, we tested the trained algorithms
for each of test environments with dynamics parameters
[50%, 70%, · · · , 150%]ζ0,g × [50%, 70%, · · · , 150%]ζ0,m.

IL with 2 Sampled Environments (50%, 150%): Figure 3
shows the result in the case of 2 sampled environments
with ζ = 50%ζ0 and 150%ζ0. Figures 3a and 3b show the
test environment performance of the trained policies of the
considered algorithms on the Ant+Gravity task, where the
gravity parameter varies. As seen in Figure 3a, GAIL+GP
trained at 50%ζ0 and GAIL+GP trained at 150%ζ0 perform
well only around the trained dynamics. On the other hand,
the proposed algorithm (RIME) performs well across all
dynamics variation range between the two trained points. It
is seen that in the middle the performance of RIME is even
better than the peak of the single-environment-specialized
GAIL+GP policy. Figure 3b shows the performance of other
MPE IL algorithms. It is seen that other MPE IL algorithms’
performance degrades for the unseen dynamics. Note that
the performance sensitivity with respect to the dynamics pa-
rameter is mild in the case of Ant+Gravity. Figures 3c and 3d
show the test environment performance for Hopper+Gravity
in which the performance sensitivity with respect to the dy-
namics parameter is high. As seen in Figure 3c, in this case,
GAIL+GP can perform only well in a very narrow region
around the trained point. On the other hand, the proposed
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Table 2: Mean return / minimum return over the dynamics parameter range [50%,150%] in the 3 sampled environment case

Algorithm Hopper +Gravity Walker2d +Gravity HalfCheetah +Gravity Ant +Gravity

RIME (ours) 3164.4 / 2315.5 5197.1 / 4820.6 5012.8 / 4599.2 4290.8 / 3485.3
RIME+WSD (ours) 3281.1 / 2764.5 5231.7 / 4894.4 5025.7 / 4727.9 4168.6 / 3338.2
OMME 2878.8 / 2260.6 5106.9 / 4484.9 4693.4 / 4516.8 3689.2 / 2091.5
GAIL-mixture 2905.0 / 2289.9 4549.7 / 2543.5 4746.0 / 4297.6 3882.4 / 3431.8
GAIL-single 2533.9 / 1276.7 4104.0 / 2342.8 4512.7 / 4033.1 3619.5 / 3088.7
BC 798.6 / 448.2 791.6 / 594.9 1621.9 / 509.8 2188.6 / 1129.2

Algorithm Hopper +Mass Walker2d +Mass HalfCheetah +Mass Ant +Mass

RIME (ours) 3597.1 / 3244.6 4752.9 / 4198.7 5248.2 / 4637.3 4506.1 / 4384.6
RIME+WSD (ours) 3585.7 / 3198.2 4704.2 / 4260.7 5308.5 / 4868.8 4417.0 / 4202.1
OMME 3109.3 / 2815.8 4495.2 / 3782.7 4802.9 / 4077.7 4268.0 / 4036.8
GAIL-mixture 3100.1 / 2525.6 4824.1 / 3605.3 4237.1 / 3223.3 4368.6 / 4075.5
GAIL-single 1526.0 / 1011.7 4663.1 / 3667.6 4088.0 / 2901.7 4055.3 / 3603.3
BC 410.7 / 162.7 704.5 / 354.0 1046.7 / -385.2 4057.1 / 3740.1
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Figure 4: (a-b): Performances when the algorithms use state-only expert demonstration (the graphs for other tasks are in
Appendix D.3), (c-e): The performance of RIME with respect to N for Hopper+Gravity task

method performs well in the full unseen region between
the two trained points. Note that the test performance of
the proposed algorithm is superb in the unseen region as
compared to other MPE IL baselines, as seen in Figure 3d.

Table 1 summarizes the robustness performance. We tested
each algorithm at the test dynamics 50%ζ0, 55%ζ0, · · · ,
150%ζ0 with 5% quantization between the two sampled
dynamics values 50% and 150%. We then averaged the
performance over the test values and took the minimum
performance over the test values. So, when the average and
minimum values are equal, the test performance is flat across
the tested region, showing the robustness over the variation.
It is seen that the proposed algorithm is superior to other
algorithms.

IL with 3 Sampled Environments (50%, 100%, 150%):
Next, we tested the algorithms trained based on N = 3 with
dynamics parameters 50%ζ0 and 100%ζ0 and 150%ζ0. This
setting has more densely-sampled environments compared
to N = 2. Table 2 shows the corresponding result. (Table 2
was constructed in a similar way to Table 1.) It is seen that
the proposed algorithm is superior to others for a variety of
tasks with wide ranges of perturbation.

2-D Perturbation Parameter Case: Table 3 summarizes
the robustness performance of the algorithms on the test

environments with 2-D perturbation (gravity and mass). Fig-
ure 5 shows the mean-return color plot for the performance
of the algorithms for the Hopper task. It is seen that our
proposed algorithm performs well within the entire 2-D
parameter space [50%,150%]ζ0,g × [50%,150%]ζ0,m by
only sampling the four corner points. With this result, we
conjecture that even for higher dimensional perturbation,
the proposed method with sampled environments only at
the corner points performs well. Additional experimental
results are available in Appendix E.

6.3. Ablation Studies

State-only Expert Demonstration: Torabi et al. (2018b)
stated that demonstrations from various resources lack the
information on expert’s action and addressed the problem of
Imitation from Observation (IfO). We tested the proposed
RIME algorithm and GAIL variants in a situation in which
state-only expert demonstrations are available. We trained
the algorithms by using state-only demonstrations, which
are variants of GAIfO, in the case of N = 2 sampled en-
vironments. The result is shown in Figures 4a and 4b. It
is seen that RIME performs well across the test environ-
ment perturbation. This result indicates that our method
can appropriately recover experts’ preference over the state
space.
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Table 3: Mean return / minimum return over the dynamics parameter range [50%g, 150%g] × [50%m, 150%m] in the 4
sampled environments case with 2-dimensional perturbation parameters

Algorithm Hopper + (G&M) Walker2d + (G&M) HalfCheetah + (G&M) Ant + (G&M)

RIME (ours) 3043.3 / 2430.8 4463.4 / 3824.1 3721.3 / 2753.1 4671.7 / 4233.5
RIME+WSD (ours) 2936.9 / 2331.6 4646.4 / 4000.2 3717.9 / 2891.7 4651.4 / 4304.5
OMME 2573.4 / 1986.4 4488.8 / 3029.3 3498.5 / 2502.2 4625.3 / 3594.5
GAIL-mixture 1636.4 / 712.0 3907.8 / 1245.1 3018.6 / 1982.3 3994.8 / 2746.1
GAIL-single 1684.9 / 840.0 3844.8 / 2484.2 3199.1 / 2072.6 3799.7 / 2194.1
BC 500.2 / 317.2 330.0 / 211.0 1289.3 / 30.2 1728.2 / 1032.7
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Figure 5: Performance on the test environment with both gravity and mass perturbation for Hopper (the graphs for other
tasks are in Appendix E.3)

Impact of the Sample Size of Expert Demonstration: In
the previous section, we used expert demonstrations con-
taining 50 trajectories. However, there may not be sufficient
expert demonstrations in the real world. Thus, we performed
experiments by reducing the expert demonstration samples
gradually from 50 trajectories. Due to space limitation, the
result is in Appendix D.4. There, we can see that the pro-
posed robust IL algorithm works quite well even if the expert
demonstration length decreases.

Tendency over N : From Tables 1 and 2, we observe that the
mean or minimum return performance of the proposed algo-
rithm did not improve monotonically as N changes from 2 to
3. In certain cases, mean return or minimum return slightly
decreased as N increases from 2 to 3, although the decrease
is not severe. For example, in the case of Hopper+Gravity,
the mean and minimum return values of 2886.7 and 2332.4
change to 3164.4 and 2315.5, as N increases from 2 to 3.
In order to check the performance tendency with respect to
N , we further tested the proposed algorithm trained with
N = 4 sampled environments E1, · · · , E4 with dynamics
parameters ζ1 = 050%ζ0, ζ2 = 085%ζ0, ζ3 = 115%ζ0 and
ζ4 = 150%ζ0. Figures 4c to 4e show the performance ten-
dency as N increases. It is hard to say that at every step of N
the performance increases as N increases, but there exists a
tendency of improvement as N increases. Note that the test
performance for N = 4 is smooth across the variation.

The source code of the proposed algorithm is available at
https://github.com/JongseongChae/RIME.

7. Conclusion
In this paper, we have considered two issues for the de-
ployment of RL for real-world control problems such as

autonomous driving: robustness and proper reward design.
To address these issues, we have introduced a new frame-
work for robust IL based on multiple environments with
dynamics parameters sampled from the continuous range
of dynamics parameter variation. Since it is not obvious
that one can recover the policy from the occupancy measure
in the case of multiple environments, we have approached
the problem by directly optimizing the agent policy in the
policy space. We have formulated the problem as minimiza-
tion of the weighted average of divergences from the agent
policy to the multiple expert policies. Through a series of
manipulations, we have shown that the proposed objective
function can be expressed eventually as a formula with im-
plementable familiar operations such as expectation, max
and discrimination. We have evaluated the robustness of
the resulting algorithm on MuJoCo tasks by varying grav-
ity or/and mass parameter(s). Numerical results show that
the proposed IL algorithm shows superior performance in
robustness across a wide range of dynamics parameter varia-
tion based only on training with a few sampled environment
dynamics.
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A. Proofs
A.1. Proof of Theorem 5.1

Theorem 5.1 If ρiπ(s, a) > 0, λj(s) > 0 for any i, j ∈ {1, · · · , N}, γ ∈ (0, 1), and D in eq. (5) in the main paper is the
Jensen-Shannon divergence, then eq. (5) in the main paper is expressed as

min
π

N∑
i=1

N∑
j=1

max
Dij

{
E(s,a)∼ρi

π

[
λj(s)

2N
log(1−Dij(s, a))

]
+ Es∼µi

π,a∼πj
E

[
λj(s)

2N
log(Dij(s, a))

]}
+

log 2

1− γ
.

Proof.

min
π

Es∼ 1
N
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i=1 µi

π

 N∑
j=1

λj(s)DJS(π(·|s), πj
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µi
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j=1

λj(s)DJS(π(·|s), πj
E(·|s))
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s∈S
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i=1
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where (a) holds by the definition of λj(s), (b) holds due to Lemma A.1 below with the condition of γ < 1, (c) holds due to
Dij ∈ [0, 1]; for any non-negative (a, b) ∈ R2\{0, 0}, the function f → a log(f)+b log(1−f) has maximum at a

a+b in [0, 1].
Thus if we represent ρiπ(s, a) · λj(s)/2N and µi

π(s) · π
j
E(a|s) · λj(s)/2N as g(s, a) and h(s, a) respectively, then we have
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Lemma A.1 (Lemma for proof of Theorem 5.1). Let f i
T (s) =

∑T
t=0 γ

tPr(st = s|π,Pi) and γ ∈ (0, 1). Then, we have∫
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Proof. For fixed s and i, 0 ≤ Pr(st = s|π,Pi) ≤ 1 because it is a probability. Since γ < 1, we have
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Also, by the definition of the discount factor γ mentioned in Section 3.1, its condition 0 < γ < 1, which implies that {f i
T (s)}

is a non-negative and monotone increasing sequence of positive measures with respect to T . Hence, by the monotone
convergence theorem (Theorem 1.5.7 in (Durrett, 2019)), limT→∞

∫
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where N,T ∈ N.

A.2. Proof of Theorem 5.2

Theorem 5.2 can be rewritten as follows:

Theorem 5.2 The two following maximizing problems have the same optimal solution.
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π
[λj(s) log(1−Dij(s, a))] + E(s,a)∼ρj

E
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For any non-negative (a, b) ∈ R2 \ {0, 0}, the function f → a log(f) + b log(1 − f) has maximum at a
a+b in [0, 1].

ρiπ(s, a)λj(s), ρ
j
E(s, a)λj(s) can be represented as g(s, a) and h(s, a), respectively. Therefore, the optimal solution of (12)

D∗
ij(s, a) becomes h(s,a)

g(s,a)+h(s,a) =
ρj
E(s,a)

ρi
π(s,a)+ρj
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, which is the same as the optimal solution of (13).
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B. Detailed Descriptions
B.1. Description for Reproduced Expert Policy

In order to optimize (6), expert policies πj
E , j = 1, · · · , N are required. However, πj

E’s are not available explicitly to us,
but we can use expert demonstration τ jE , which is in form of state-action pairs generated by the expert policy πj

E in the
j-th demonstration environment Ej . In this section, we evaluate an algorithm with the objective function (6) in the main
paper. In order to compute the second term Es∼µi

π,a∼πj
E
[·] in the objective function, we reproduce the expert policy πj

E(·|s)
by behavior cloning (BC) and GAIL+GP mentioned in Section 3.2 by using the given expert demonstration. Before we
optimize the objective function, each expert policy πj

E is first trained in the j-th demonstration environment Ej by using the
j-th expert demonstration τ jE .

With the above experimental setup, we tested the case N = 1 of the objective function (6) as follows:

min
π

max
D11

{
E(s,a)∼ρ1

π

[
λ1(s)

2
log(1−D11(s, a))

]
+ Es∼µ1

π,a∼π1
E

[
λ1(s)

2
log(D11(s, a))

]}
+

log 2

1− γ
, (14)

where λ1(s) is equal to 1 by the definition of λj(s). This setting is SNE/SNE. The agent policy is trained in the nominal
interaction environment, and the expert π1

E is also trained in the same environment. We evaluated the corresponding
performance with 10 random seeds. Figure 6 shows the results of the mean returns of both the expert’s and the agent’s
policies in the nominal test environment. In most cases, the agent policy either has almost the same performance as the
expert policy or totally fails to learn. Thus, learning is unstable. It implies that if the reproduced expert policy π̂j

E covers the
states induced by the agent policy π, then the agent policy can work well as the expert. On the other hand, if the reproduced
expert π̂j

E does not cover the states of the agent policy, then the agent policy fails to learn for the given task.

In practice, it is highly likely that we will have an expert demonstration that covers only a limited region of the entire
state-action space. Furthermore, the reproduced expert policy by an IL method would visit a limited region of the entire
state space during the training phase. These two reasons can cause extrapolation error. Due to this error, the reproduced
expert policy may sample an action that seems to be a non-expert action for a given state. This inappropriate action will give
incorrect information to the agent policy.
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Figure 6: Mean return performance of IL algorithm solving (14) with the reproduced expert policy π̂j
E . The x-axis is the

index of 10 random seeds and the y-axis is the mean return. The orange lines - the performance of reproduced experts, and
the blue line - IL algorithm solving (14) with the reproduced expert policy π̂j

E .
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B.2. Description for Occupancy measure Matching in Multiple Environments (OMME)

Equation (10) in the main paper is rewritten here as

min
π

N∑
j=1

λjDJS(ρ̄π, ρ̄
j
E), (15)

where
∑

j λj = 1. We assume γ ∈ (0, 1), and as in (Ho & Ermon, 2016; Wu et al., 2019), ρ̄iπ = (1 − γ)ρiπ and
ρ̄jE = (1− γ)ρjE are the normalized occupancy distributions from π in Ei and πj

E .

Then, we have
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where (a) holds by the convexity of the Jensen-Shannon divergence, (b) holds by the definition of λj .
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C. Algorithm: Robust Imitation Learning against Variations in Environment Dynamics

Algorithm 1 Robust Imitation learning with Multiple perturbed Environments (RIME)

Input: The number of sampled environments N , sampled environments E1, . . . , EN , expert demonstrations τ1E , . . . , τ
N
E ,

policy parameter θ, parameter of discriminators {ϕij}, the number of learning iterations nepoch, the weight of GP κ.
Initialize all parameters θ, {ϕij}.
for k = 1 to nepoch do

for i = 1 to N do
Sample trajectories τ iπ ∼ πθ in Ei
for j = 1 to N do

Update the discriminator Dϕij
by maximizing (9)

end for
end for
for i = 1 to N do

Update the policy πθ by minimizing (8) using PPO
end for

end for
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D. Ablation Studies
D.1. Ablation Study for an Algorithm Trained in the SNE/MPE Setting

To see the effect of interacting with MPE, we evaluated SNEMPE-max described in Section 4 in the perturbed test
environments. This algorithm is obtained by simply applying the robust RL principle to the IL setting. Furthermore, it is a
variant of our algorithm (7) applied to the SNE/MPE setting.

We used three expert demonstrations which are generated by their experts in demonstration environments with perturbations
050%ζ0, 100%ζ0, 150%ζ0, where ζ0 is the nominal dynamics value. With three expert demonstrations, we trained this
algorithm in the nominal interaction environment with ζ0. It has discriminators D1j , and the objective function for the
discriminator D1j is the same as our discriminator’s objective function (9). The objective function for the policy is given by

min
π

E(s,a)∼ρ1
π

[
max

j
log(1−D1j(s, a))

]
. (16)

Figure 7 shows that SNEMPE-max fails when the underlying environment dynamics are perturbed from those of the
interaction environment. It is seen that SNEMPE-max trained in a single interaction environment cannot properly capture
the diverse dynamics of multiple demonstration environments.

0 50 100 150 200
The Percentage of Environment Perturbation

0

500

1000

1500

2000

2500

3000

3500

4000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%g
GAIL+GP-100%g
GAIL+GP-150%g

(a) Hopper+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%m
GAIL+GP-100%m
GAIL+GP-150%m

(b) Hopper+Mass

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

6000
M

ea
n 

Re
tu

rn
SNEMPE-max
GAIL+GP-050%g
GAIL+GP-100%g
GAIL+GP-150%g

(c) Walker2d+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%m
GAIL+GP-100%m
GAIL+GP-150%m

(d) Walker2d+Mass

0 50 100 150 200
The Percentage of Environment Perturbation

2000

1000

0

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%g
GAIL+GP-100%g
GAIL+GP-150%g

(e) HalfCheetah+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

2000

1000

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%m
GAIL+GP-100%m
GAIL+GP-150%m

(f) HalfCheetah+Mass

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%g
GAIL+GP-100%g
GAIL+GP-150%g

(g) Ant+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

SNEMPE-max
GAIL+GP-050%m
GAIL+GP-100%m
GAIL+GP-150%m

(h) Ant+Mass

Figure 7: The performance of SNEMPE-max over environment perturbations.
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D.2. Ablation Study with Importance Sampling Ratio µi
π(s)

µj
E(s)

Estimator

To exactly compute µi
π(s) in the importance sampling ratio µi

π(s)

µj
E(s)

in (7), we need many interactions with the interaction
environment Ei, which could increase the sample complexity in practice. To avoid this sample complexity issue, we can
estimate the ratio µi

π(s)

µj
E(s)

directly. With an estimated ratio µi
π(s)

µj
E(s)

, eq. (7) is replaced with

min
π

N∑
i=1

N∑
j=1

max
Dij

{
Eρiπ

[λj(s) log(1−Dij(s, a))] + E
ρ
j
E
[w̃ij(s)λj(s) log(Dij(s, a))]

}
, (17)

where w̃ij(s) is a given estimator of the ratio µi
π(s)

µj
E(s)

. So, the policy in (17) affects only the first term Eρi
π
[·] and hence the

objective function for the policy update is the same as (8). The objective function for the discriminator Dij is given by

max
Dij

Eρi
π
[log(1−Dij(s, a))] + Eρj

E
[w̃ij(s) log(Dij(s, a))] (18)

In the same way as in Theorem 5.2, the optimal discriminator is given by D∗
ij =

w̃ij(s)λj(s)ρ
j
E(s,a)

λj(s)ρi
π(s,a)+w̃ij(s)λj(s)ρ

j
E(s,a)

=

w̃ij(s)ρ
j
E(s,a)

ρi
π(s,a)+w̃ij(s)ρ

j
E(s,a)

.
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Figure 8: Comparison with LFIW method in the N = 2 sampled environments case

Now we explain how to estimate the ratio w̃ij(s) :=
µi
π(s)

µj
E(s)

by a method of estimating probability measure ratio proposed in
(Sinha et al., 2020). They proposed the Likelihood-Free Importance Weights (LFIW) method, which estimates the ratio of
two probability measures by using the lower bound of f-divergence between the two measures. They showed that in (19), the
equality holds at w = dP

dQ , so they estimated the probability measure ratio w(x) by maximizing (19):

Df (P ||Q) ≥ EP [f ′(w(x))]− EQ [f∗(f ′(w(x)))] , (19)

where P and Q are probability measures, and Df is an f-divergence. However, directly using the probability measure ratio
w(x) may cause learning failure due to the finite sample size issue in practice. To address this issue, the LFIW applies the
self-normalization to the probability measures ratio w(x) over Q with a temperature hyperparameter T .

w̃(x) =
w(x)1/T

EQ

[
w(x)1/T

] (20)

By replacing P and Q with µi
π and µj

E , we can estimate the importance sampling ratio µi
π(s)

µj
E(s)

. Figure 8 shows that our

proposed method (RIME) which simply sets µi
π(s)

µj
E(s)

to 1 has almost same performance as the proposed method using the
estimated importance sampling ratio by LFIW for all tasks.
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D.3. Ablation Study with State-only Expert Demonstration

GAIfO (Torabi et al., 2018b) uses state-only expert demonstration and reproduces the expert policy πE by matching the
state-transition occupancy measures induced by the π and πE . Our algorithm (RIME) and other GAIL variant algorithms
can directly be applied to this setting by using state-only expert demonstration instead of state-action expert demonstration.
We refer to these methods as GAIfO-RIME, GAIfO-OMME, GAIfO-mixture, GAIfO-single.

We tested these GAIfO variants in the N = 2 sampled environment case (50% and 150%). Table 4 and Figure 9 show
similar results to Table 1 and Figure 3 (the case with the state-action expert demonstration) for all the tasks except for
Walker2d+Gravity and Ant. For Walker2d+Gravity, GAIfO-mixture and GAIfO-single have good performance around the
interaction environments, but they are over-fitted to these environments and do not perform near the test environment with ζ0.
On the other hand, our method (GAIfO-RIME) performs well near the test environment with ζ0. Therefore, the experimental
results show that our method can properly recover the experts’ preference over the state space. In the case of Ant+Gravity
and Ant+Mass, all algorithms failed to learn, and we think this is due to the difficulty of optimization due to the large state
space of the Ant task.

Table 4: Mean return / minimum return of GAIfO variants over the dynamics parameter range [50%,150%] in the N = 2
sampled environment case

Algorithm Hopper +Gravity Walker2d +Gravity HalfCheetah +Gravity

GAIfO-RIME (ours) 2758.9 / 2318.4 3767.7 / 3331.5 4247.9 / 3786.1
GAIfO-OMME 1491.4 / 1063.3 2918.1 / 1935.6 3600.4 / 3152.0
GAIfO-mixture 1424.8 / 719.6 3551.4 / 1808.0 3446.6 / 2851.8
GAIfO-single 1376.6 / 765.7 3346.0 / 1384.0 3208.0 / 2252.2

Algorithm Hopper +Mass Walker2d +Mass HalfCheetah +Mass

GAIfO-RIME (ours) 3496.5 / 3335.5 4757.3 / 4336.3 4247.6 / 3611.5
GAIfO-OMME 2937.7 / 2421.3 4154.2 / 3657.6 3906.5 / 3172.2
GAIfO-mixture 3188.3 / 2953.5 3872.0 / 2769.2 3239.8 / 2670.5
GAIfO-single 2269.2 / 1622.9 3478.5 / 1582.6 2947.1 / 1653.3
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Figure 9: Comparisons with variants of GAIfO in the N = 2 sampled environments case
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D.4. Ablation Study according to the Size of Expert Demonstration

Considering the fact that expert demonstrations are costly to obtain, we tested our algorithm by reducing the amount of
expert demonstration from the 50 trajectories (each trajectory with 1000 samples).

As seen in Table 5, for Hopper+Gravity, the robustness of our algorithm decreases as the size of expert demonstration
decreases. However, for Ant+Gravity and Walker2d+Mass and HalfCheetah+Gravity and Ant+Mass, our algorithm using
the reduced amount of expert demonstration still performs well. It seems that the amount of demonstration above a threshold
is sufficient.

Table 5: Mean return / minimum return over the dynamics parameter range [50%,150%] in the N = 2 sampled environment
case with expert demonstrations with various size

# of expert
trajectories Hopper +Gravity Walker2d +Gravity HalfCheetah +Gravity Ant +Gravity

50 2886.7 / 2332.4 4577.1 / 4260.9 4268.9 / 3712.0 4402.2 / 3909.9
25 2774.7 / 2021.0 4455.5 / 4044.1 4290.3 / 3720.9 4445.5 / 3666.5
10 2570.8 / 1811.5 4243.1 / 3529.8 4244.5 / 3622.7 4554.7 / 4038.6
5 2323.2 / 1754.2 4514.0 / 3906.0 4219.5 / 3578.2 4562.7 / 3985.9

# of expert
trajectories Hopper +Mass Walker2d +Mass HalfCheetah +Mass Ant +Mass

50 3535.7 / 3255.6 4597.0 / 3965.8 3959.0 / 3156.7 4554.5 / 4417.5
25 3510.4 / 3246.3 4608.7 / 4134.2 4185.2 / 3320.4 4602.1 / 4395.6
10 3352.2 / 2895.2 4552.2 / 3937.8 4025.4 / 3222.4 4662.6 / 4524.2
5 3365.5 / 2965.8 4614.4 / 4073.2 3698.9 / 2718.1 4679.9 / 4496.8

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(a) Hopper+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(b) Walker2d+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

1000

0

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(c) HalfCheetah+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(d) Ant+Gravity

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(e) Hopper+Mass

0 50 100 150 200
The Percentage of Environment Perturbation

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(f) Walker2d+Mass

0 50 100 150 200
The Percentage of Environment Perturbation

1000

0

1000

2000

3000

4000

5000

6000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(g) HalfCheetah+Mass

0 50 100 150 200
The Percentage of Environment Perturbation

3000

3500

4000

4500

5000

M
ea

n 
Re

tu
rn

50trajs
25trajs
10trajs
5trajs

(h) Ant+Mass

Figure 10: The performance of RIME trained in the N = 2 sampled environment setting with various sizes of expert
demonstrations.
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E. Additional Experimental Results
E.1. Results in the N = 2 Sampled Environment Setting (50%ζ0, 150%ζ0)

Here we provide all result plots in the 2 sampled environment setting for our algorithm and the baseline algorithms.
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Figure 11: All experimental results in the N = 2 sampled environment setting (50%ζ0, 150%ζ0).
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E.2. Results in the N = 3 Sampled Environment Setting (050%ζ0, 100%ζ0, 150%ζ0)

Here we provide all result plots in the 3 sampled environment setting for our algorithm and the baseline algorithms.
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Figure 12: All experimental results in the N = 3 sampled environment setting (50%ζ0, 100%ζ0, 150%ζ0)
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E.3. Results in the 2-D Perturbation Case

Here we provide all result plots in the 2-D perturbation case for our algorithm and the baselines.
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(b) Walker2d+2-dim(G&M)
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(c) HalfCheetah+2-dim(G&M)
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(d) Ant+2-dim(G&M)

Figure 13: Experimental results in the N = 4 sampled environments case with 2-dim perturbation parameters (Gravity+Mass)
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F. Experimental Information
F.1. Detailed Description of Other IL Baselines

We considered the following 4 IL baselines in Section 6. Here is the detailed description of these IL baselines.

1. Behavior Cloning (BC): All expert demonstrations are split out 70% training dataset and 30% validation dataset. The
policy is trained by supervised learning until validation errors of each expert demonstration stop decreasing.

2. GAIL-mixture: It is a variant of GAIL+GP applied directly to the multiple interaction environment setting. There is a
single discriminator, and this discriminator distinguishes between all ρ̄iπ’s and all ρ̄jE’s. The objective function of this
algorithm is (21), and the objective function without GP term can be reduced to minπ DJS(

∑
i ρ̄

i
π/N,

∑
j ρ̄

j
E/N). It

minimizes the divergence between the mixture of the normalized occupancy distributions of the policy and the experts
so that the mixtures are close. Thus, we call this algorithm GAIL-mixture.

min
π

max
D

N∑
i=1

{
Eρiπ

[log(1−D(s, a))] + Eρi
E
[log(D(s, a))] + κEx̂ (∥∇x̂D(x̂)∥2 − 1)2

}
(21)

3. GAIL-single: It is another variant of GAIL+GP applied directly to the multiple interaction environment setting. Unlike
GAIL-mixture, there are multiple discriminators. The objective function of this algorithm is (22), and the objective
function without GP term can be reduced to minπ

∑
i DJS(ρ̄

i
π, ρ̄

i
E). It minimizes the divergence between ρ̄iπ and ρ̄iE ,

which makes ρiπ close to ρiE , for each i. Thus, we call it GAIL-single.

min
π

N∑
i=1

max
Di

{
Eρiπ

[log(1−Di(s, a))] + Eρi
E
[log(Di(s, a))] + κEx̂ (∥∇x̂Di(x̂)∥2 − 1)2

}
(22)

4. Occupancy measures Matching in Multiple Environments (OMME): This algorithm is a method obtained by
matching occupancy measures in a different way from GAIL-mixture and GAIL-single. As mentioned in Sec-
tion 5.4 & Appendix B.2, if we match occupancy measures, the objective function for the policy would be
minπ

∑
i maxj Eρi

π
[log(1−Dij)], not minπ

∑
i Eρi

π
[maxj log(1−Dij)]. Except the objective function for the policy,

this algorithm is the same as our algorithm.

F.2. Model Architecture

We developed our code based on (Kostrikov, 2018). In our experiments, we used MLP that consists of two layers with 64
cells in each layer, and this network is used for the policy. For the discriminators, we used MLP that consists of two layers
with 100 cells in each layer. We used PPO as the algorithm for updating the policy. The batch size is set to 2048, the number
of update epochs for the policy at one iteration is set to 4, and the number of update epochs for the discriminator at one
iteration is set to 5. Finally, the coefficient of the GP term is set to 10, and the coefficient of entropy for PPO is 0. The rest of
the hyper-parameters are the same as those in (Schulman et al., 2017; 2015b).



Robust Imitation Learning against Variations in Environment Dynamics

F.3. Environments & Experts

Table 6: Interaction Environments & Expert Demonstrations

Task Observation Space Action Space Environment Perturbation Expert Performance

Hopper-v2 11 (Continuous) 3 (Continuous)

100%g & 100%m 3817.7 ± 21.9
50%g (Gravity) 3717.0 ± 72.1

150%g 3620.1 ± 4.3
50%m (Mass) 4415.7 ± 16.6

150%m 3442.0 ± 2.5

Walker2d-v2 17 (Continuous) 6 (Continuous)

100%g & 100%m 5617.6 ± 16.3
50%g 5612.4 ± 22.1

150%g 5791.8 ± 46.1
50%m 5359.0 ± 118.9
150%m 5616.7 ± 14.6

HalfCheetah-v2 17 (Continuous) 6 (Continuous)

100%g & 100%m 6106.3 ± 44.9
50%g 5396.7 ± 55.0

150%g 6171.4 ± 20.7
50%m 6159.7 ± 43.3
150%m 5889.9 ± 54.5

Ant-v2 111 (Continuous) 8 (Continuous)

100%g & 100%m 4136.5 ± 66.1
50%g 3618.8 ± 102.0

150%g 4182.6 ± 114.7
50%m 4255.3 ± 97.0
150%m 4399.8 ± 38.3

Task Observation Space Action Space Environment Perturbation Expert Performance

Hopper-v2 11 (Continuous) 3 (Continuous)

50%g+50%m 4042.7 ± 49.6
50%g+150%m 3473.4 ± 41.4
150%g+50%m 3789.8 ± 6.9

150%g+150%m 3386.8 ± 1.6

Walker2d-v2 17 (Continuous) 6 (Continuous)

50%g+50%m 6478.3 ± 84.2
50%g+150%m 4526.3 ± 33.0
150%g+50%m 5841.6 ± 49.9

150%g+150%m 5580.6 ± 12.5

HalfCheetah-v2 17 (Continuous) 6 (Continuous)

50%g+50%m 5015.4 ± 63.0
50%g+150%m 5466.5 ± 34.5
150%g+50%m 6051.8 ± 53.7

150%g+150%m 5843.9 ± 63.3

Ant-v2 111 (Continuous) 8 (Continuous)

50%g+50%m 3818.2 ± 97.4
50%g+150%m 3846.5 ± 106.6
150%g+50%m 4316.7 ± 114.9

150%g+150%m 4516.0 ± 77.3


