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Abstract
This work investigates the compatibility between
label smoothing (LS) and knowledge distilla-
tion (KD). Contemporary findings addressing this
thesis statement take dichotomous standpoints:
Müller et al. (2019); Shen et al. (2021b). Criti-
cally, there is no effort to understand and resolve
these contradictory findings, leaving the primal
question − to smooth or not to smooth a teacher
network? − unanswered. The main contributions
of our work are the discovery, analysis and valida-
tion of systematic diffusion as the missing concept
which is instrumental in understanding and resolv-
ing these contradictory findings. This systematic
diffusion essentially curtails the benefits of dis-
tilling from an LS-trained teacher, thereby ren-
dering KD at increased temperatures ineffective.
Our discovery is comprehensively supported by
large-scale experiments, analyses and case stud-
ies including image classification, neural machine
translation and compact student distillation tasks
spanning across multiple datasets and teacher-
student architectures. Based on our analysis, we
suggest practitioners to use an LS-trained teacher
with a low-temperature transfer to achieve high
performance students. Code and models are avail-
able at https://keshik6.github.io/
revisiting-ls-kd-compatibility/

1. Introduction
This paper deeply investigates the compatibility between
label smoothing (Szegedy et al., 2016) and knowledge dis-
tillation (Hinton et al., 2015). Specifically, we aim to revisit
and resolve the contradictory standpoints of Müller et al.
(2019) and Shen et al. (2021b), thereby establishing a foun-
dational understanding on the compatibility between label
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smoothing (LS) and knowledge distillation (KD). Both LS
and KD involve training a model (i.e.: deep neural net-
works) with soft-targets. In LS, instead of computing cross
entropy loss with the hard-target (one-hot encoding) of a
training sample, a soft-target is used, which is a weighted
mixture of the one-hot encoding and the uniform distribu-
tion. A mixture parameter α is used in LS to specify the
extent of mixing. On the other hand, KD involves training
a teacher model (usually a powerful model) and a student
model (usually a compact model). The objective of KD is
to transfer knowledge from the teacher model to the student
model. In the most common form, the student model is
trained to match the soft output of the teacher model. The
success of KD has been attributed to the transference of
logits’ information about resemblances between instances
of different classes (logits are the inputs to the final softmax
which produces the soft targets). In KD (Hinton et al., 2015),
a temperature T is introduced to facilitate the transference:
an increased T may produce more suitable soft targets that
have more emphasis on the probabilities of incorrect classes
(or equivalently, logits of the incorrect classes).

LS and KD research dialogue. Recently, a notable amount
of research efforts has been conducted to understand the
relationship between LS and KD (Müller et al., 2019; Shen
et al., 2021b; Lukasik et al., 2020; Yuan et al., 2020; Tang
et al., 2021). One of the most intriguing and controversial
discussion is the compatibility between LS and KD. Partic-
ularly, in KD, does label smoothing in a teacher network
suppress the effectiveness of the distillation?

Müller et al. (2019) are the first to investigate this topic,
and their findings suggest that applying LS to a teacher
network impairs the performance of KD. In particular, they
visualize the penultimate layer representations in the teacher
network to show that LS erases information in the logits
about resemblances between instances of different classes.
Since this information is essential for KD, they conclude
that applying LS for the teacher network can hurt KD. • “If a
teacher network is trained with label smoothing, knowledge
distillation into a student network is much less effective.”
(Müller et al., 2019) • “Label smoothing can hurt distillation”
(Müller et al., 2019)

The conclusion of Müller et al. (2019) is widely accepted
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(Khosla et al., 2020; Arani et al., 2021; Tang et al., 2021;
Mghabbar & Ratnamogan, 2020; Shen et al., 2021a). How-
ever, very recently, this is questioned by Shen et al. (2021b).
In particular, their work discussed a new finding: infor-
mation erasure in teacher can actually enlarge the central
distance between semantically similar classes, allowing the
student to learn to classify these categories easily. Shen
et al. (2021b) claim that this benefit of using an LS-trained
teacher outweighs the detrimental effect due to information
erasure. Therefore, they conclude that LS in a teacher net-
work does not suppress the effectiveness of KD. • “Label
smoothing will not impair the predictive performance of
students.” (Shen et al., 2021b) • “Label smoothing is com-
patible with knowledge distillation” (Shen et al., 2021b)

LS and KD compatibility remains unresolved. We were
perplexed by the seemingly contradictory findings by Müller
et al. (2019) and Shen et al. (2021b). While the latter has
shown empirical results to support their own finding, their
work does not investigate the opposite standpoint and con-
tradictory results by Müller et al. (2019). Critically, there
is no effort to understand and resolve the seemingly con-
tradictory arguments and supporting evidences by Müller
et al. (2019) and Shen et al. (2021b). Consequently, for
practitioners, it remains unclear as to under what situations
LS can be applied to the teacher network in KD, and under
what situations it must be avoided.

Our contributions. We begin by meticulously scrutiniz-
ing the opposing findings of Müller et al. (2019) and Shen
et al. (2021b). In particular, we discover that in the pres-
ence of an LS-trained teacher, KD at higher temperatures
systematically diffuses penultimate layer representations
learnt by the student towards semantically similar classes.
This systematic diffusion essentially curtails the benefits (as
claimed by Shen et al. (2021b)) obtained by distilling from
an LS-trained teacher, thereby rendering KD at increased
temperatures ineffective. We perform large-scale KD exper-
iments including image classification using ImageNet-1K
(Deng et al., 2009), fine-grained image classification using
CUB200-2011 (Wah et al., 2011), neural machine transla-
tion (English → German, English → Russian translation)
using IWSLT, compact student distillation (MobileNetV2
(Sandler et al., 2018), EfficientNet-B0 (Tan & Le, 2019))
and multiple teacher-student architectures to comprehen-
sively demonstrate this systematic diffusion in the student
qualitatively using penultimate layer visualizations, and
quantitatively using our proposed relative distance metric
called diffusion index (η).

Our finding on systematic diffusion is very critical when
distilling from an LS-trained teacher. Particularly, we argue
that this diffusion maneuvers the penultimate layer represen-
tations learnt by the student of a given class in a systematic
way that targets in the direction of semantically similar

classes. Therefore, this systematic diffusion directly cur-
tails the distance enlargement (between semantically similar
classes) benefits obtained by distilling from an LS-trained
teacher. Our qualitative and quantitative analysis with our
proposed relative distance metric (η) in Sec. 4 aims to estab-
lish not only the existence of this diffusion, but also establish
that such diffusion is systematic and not isotopic.

Importantly, using systematic diffusion analysis, we explain
and resolve the contradictory findings by Müller et al. (2019)
and Shen et al. (2021b), thereby establishing a foundational
understanding on the compatibility between LS and KD.
Finally, using our discovery on systematic diffusion, we
provide empirical guidelines for practitioners regarding the
combined use of LS and KD. We summarize our key find-
ings in Table 1. The key takeaway from our work is:
• In the presence of an LS-trained teacher, KD at higher

temperatures systematically diffuses penultimate layer
representations learnt by the student towards semantically
similar classes. This systematic diffusion essentially cur-
tails the benefits of distilling from an LS-trained teacher,
thereby rendering KD at increased temperatures ineffec-
tive. Specifically, systematic diffusion was the missing
concept that is instrumental in explaining and resolving
the contradictory findings of Müller et al. (2019) and Shen
et al. (2021b), thereby clearing up the existential conun-
drum regarding the compatibility between LS and KD.

A rule of thumb for practitioners. We suggest to use an
LS-trained teacher with a low-temperature transfer (i.e. T =
1) to achieve high performance students.

Paper organization. In Sec. 2, we review LS and KD. In
Sec. 3, we revisit key findings of (Müller et al., 2019) and
Shen et al. (2021b) to emphasize the research gap. Our
main contribution is Sec. 4, where we introduce our discov-
ered systematic diffusion, conduct qualitative, quantitative
and analytical studies to verify that the diffusion is not iso-
topic but systematic towards semantically-similar classes,
and therefore it directly curtails the benefits of using an
LS-trained teacher. In Sec. 5, we perform rich empirical
studies to support our main finding on Systematic Diffusion.
In Sec. 6 , we conduct extended experiments using com-
pact students and neural machine translation tasks to further
support our finding. In Sec. 7, we provide our perspective
regarding the combined use of LS and KD as empirical
guidelines for practitioners, and finally conclude this study.

2. Prerequisites
Label Smoothing (LS) (Szegedy et al., 2016): LS was
formulated as a regularization strategy to alleviate models’
over-confidence. LS replaces the original hard target distri-
bution with a mixture of original hard target distribution and
the uniform distribution characterized by the mixture param-
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Table 1. Main findings regarding LS and KD compatibility in recent works and our work.
Information
erasure
(incompatibility)

Distance
enlargement
(compatibility)

Our main finding:
Systematic diffusion
(incompatibility)

Conclusion

Müller et al. (2019) LS erases relative
information in the
logits

LS-trained
teacher can hurt
KD

Shen et al. (2021b) With LS, some rel-
ative information
in the logits is still
retained

LS enlarges the dis-
tance between seman-
tically similar classes

Benefits outweigh
disadvantages.
LS is compatible
with KD

Our work

Lower
T (i.e. :
T = 1)

We agree with
(Shen et al.,
2021b) in informa-
tion erasure

We experimentally
validate the inher-
itance of distance
enlargement in the
student, see Figure 1.
(Shen et al. (2021b)
has not shown this).

With KD of lower T (i.e.:
T=1), there is lower degree of
systematic diffusion of penul-
timate representations towards
semantically similar classes.
This doesn’t curtail the dis-
tance enlargement benefit.

At lower levels
of systematic dif-
fusion in student.
LS is compatible
with KD

Increase
of T

The loss of log-
its relative infor-
mation cannot be
recovered with an
increased T

We agree with (Shen
et al., 2021b) observa-
tion, but the distance
enlargement is cur-
tailed at an increased
T .

With KD of increased T ,
there is systematic diffusion
of penultimate representations
towards semantically similar
classes, curtailing the distance
enlargement (Sec. 4).

At higher levels
of systematic dif-
fusion in student.
LS and KD are
not compatible.

eter α. Many state-of-the-art models have leveraged on LS
to improve the accuracy of deep neural networks across mul-
tiple tasks including image classification (He et al., 2019;
Real et al., 2019; Zoph et al., 2018; Huang et al., 2019),
machine translation (Vaswani et al., 2017) and speech recog-
nition (Chorowski & Jaitly, 2017; Chiu et al., 2018; Pereyra
et al., 2017). Consider the formulation of LS objective with
mixture parameter α as follows: Let pk,wk represent the
probability and last layer weights (including biases) cor-
responding to the k-th class. Let x, yk, yLS

k represent the
penultimate layer activations, true targets and LS-targets
where yk = 1 for the correct class and 0 for all the incorrect
classes1. xT is the transpose of x. Then for a classification
network trained with LS containing K classes, we minimize
the cross entropy loss between LS-targets yLS

k and model
predictions pk given by LLS(y,p) =

∑K
k=1 −yLS

k log(pk),
where pk = exp(xTwk)/

∑K
l=1 exp(x

Twl) and yLS
k =

yk(1− α) + α
K .

Knowledge distillation (KD) Hinton et al. (2015): KD uses
a larger capacity teacher model(s) to transfer the knowl-
edge to a compact student model. Recently KD meth-
ods have been widely used in visual recognition (Zhang
et al., 2020; Peng et al., 2019; Lopez-Paz et al., 2016), NLP
(Hu et al., 2018; Jiao et al., 2020; Nakashole & Flauger,
2017) and speech recognition (Shen et al., 2020; Kwon
et al., 2020; Perez et al., 2020) The success of KD meth-
ods is largely attributed to the information about incor-

1x is concatenated with 1 at the end to include bias as wk

includes biases at the end.

rect classes encoded in the output distribution produced
by the teacher model(s) (Hinton et al., 2015). Consider
KD for a classification objective. Let T indicate the tem-
perature factor that controls the importance of each soft
target. Given the k-th class logit xTwk, let the temperature
scaled probability be pk(T ). For KD training, let the loss be
LKD. For LKD, we replace the cross entropy loss H(y,p)
with a weighted sum (parametrized by β) of H(y,p)
and H(pt(T ),p(T )) where pt(T ),p(T ) correspond to the
temperature-scaled teacher and student output probabili-
ties. That is, pk(T ) = exp(x

Twk

T )/
∑K

l=1 exp(
xTwl

T ) and
LKD = (1 − β)H(y,p) + βT 2H(pt(T ),p(T )). Follow-
ing Hinton et al. (2015) T 2 scaling is used for the soft-target
optimization as T will scale the gradients approximately by
a factor of 1/T 2. Following Müller et al. (2019); Shen et al.
(2021b), we set β = 1 for this study since we primarily aim
to isolate and study the effects of KD. β = 1 achieves good
performance (Shen et al., 2021b).

3. A Closer Look at LS and KD compatibility
In this section, we review the contradictory findings of
Müller et al. (2019) and Shen et al. (2021b) from the per-
spective of information erasure in LS-trained teacher. This
discussion is a necessary preamble to understand our main
finding, Systematic Diffusion in the student in Sec. 4.

Information erasure in LS-trained teacher. LS objective
optimizes the probability of the correct class to be equal to
1−α + α/K, and incorrect classes to be α/K. This directly
encourages the differences between logits of the correct
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Figure 1. Visualization of the penultimate layer representations (Teacher = ResNet-50, Student = ResNet-18,
Dataset = ImageNet). We follow the same setup and procedure used in Müller et al. (2019) and Shen et al. (2021b). We
also follow their three-class analysis: two semantically similar classes (miniature poodle, standard poodle) and one seman-
tically different class (submarine). Additional visualization can be found in the Supplementary. Observation 1: The use of LS on
the teacher leads to tighter clusters and erasure of logits’ information as claimed by Müller et al. (2019). In addition, increase in central
distance between semantically similar classes (miniature poodle, standard poodle) as claimed by Shen et al. (2021b) can be
observed. Observation 2: We further visualize the student’s representations. Increase in central distance between semantically similar
classes can also be observed. This confirms the transfer of this benefit from the teacher to the student. Note that in Müller et al. (2019)
and Shen et al. (2021b), student’s representations have not been visualized. Observation 3 (Our main discovery): KD of an increased
T causes systematic diffusion of representations between semantically similar classes (miniature poodle, standard poodle).
This curtails the increment of central distance between semantically similar classes due to the use of LS-trained teacher. We notice similar
observations in other datasets and networks, see Figures A.1, A.3, A.4, A.2 and A.5. We also include image samples for these 3 classes in
Supplementary Figure L.1. Best viewed in color.

class and incorrect classes to be a constant (Müller et al.,
2019) determined by α. Following Müller et al. (2019),
the logit xTwk can be approximately measured using the
squared Euclidean distance between penultimate layer’s ac-
tivations and the template corresponding to class k. That
is, xTwk can be approximately measured by ∥x−wk∥2.
This allows to establish 2 important geometric properties of
LS (Müller et al., 2019): With LS, penultimate layer acti-
vations 1) are encouraged to be close to the template of the
correct class (large logit value for the correct class, therefore
small distance between the activations and the correct class
template), and 2) are encouraged to be equidistant to the
templates of the incorrect classes (equal logit values for all
the incorrect classes). This results in penultimate layer acti-
vations to tightly cluster around the correct class template

compared to the model trained with standard cross entropy
objective. We demonstrate this clearly in Figure 1 Obser-
vation 1. With LS applied on the ResNet-50 model, we
observe that the penultimate layer representations become
much tighter. As a result, substantial information regarding
the resemblances of these instances to those of other dif-
ferent classes is lost. This is referred to as the information
erasure in LS-trained teacher (Müller et al., 2019).

Müller et al. (2019) finding: Information erasure in LS-
trained teacher cause LS and KD to be Incompatible:
Müller et al. (2019) are the first to investigate this compat-
ibility, and they argue that the information erasure effect
due to LS (shown in Figure 1 Observation 1) can impair
KD. Given the prominent successes in KD methods being
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largely attributed to dark knowledge/ inter-class informa-
tion emerging from the trained-teacher (Hinton et al., 2015;
Tang et al., 2021), the argument by Müller et al. (2019)
that LS and KD are incompatible due to information loss
in the logits is generally convincing and widely accepted
(Khosla et al., 2020; Arani et al., 2021; Tang et al., 2021;
Mghabbar & Ratnamogan, 2020; Shen et al., 2021a). This
is also supported by empirical evidence.

Shen et al. (2021b) finding: Information erasure in LS-
trained teacher provides distance enlargement benefits
between semantically similar classes, resulting in LS and
KD to be Compatible: Recently an interesting finding by
Shen et al. (2021b) argue that LS and KD are compatible.
Though they agree that information erasure generally hap-
pens with LS, their argument focuses more on the effect of
LS on semantically similar classes. They argue that infor-
mation erasure in LS-trained teacher can promote enlarge-
ment of central distance of clusters between semantically
similar classes. This allows the student network to eas-
ily learn to classify semantically similar classes which are
generally difficult to classify in conventional training proce-
dures. We show this increased separation between semanti-
cally similar classes with LS in Figure 1 Observation 1. It
can be observed that the central distance between the clus-
ters of standard poodle and miniature poodle
increases with using LS on the ResNet-50 teacher. In our
work, we further extend to show that this property is inher-
ited by the ResNet-18 student as well in Observation 2.
We remark that this inheritance is not shown by Shen et al.
(2021b). This finding by Shen et al. (2021b) is supported
by experiments and quantitative results. Though they claim
that the benefit derived from larger separation between se-
mantically similar classes outweigh the drawbacks due to
information erasure, thereby making LS and KD compati-
ble, their investigation does not address the contradictory
findings and results reported by Müller et al. (2019).

Research Gap: Studied in isolation, both these contradic-
tory arguments are convincing and well supported empiri-
cally. This has caused serious perplexity among the research
community regarding the combined use of LS and KD.

4. Systematic Diffusion in Student
Through profound investigation, we discover an intriguing
phenomenon occurring in the student called systematic dif-
fusion when distilling from an LS-trained teacher at higher
T . Particularly, this diffusion maneuvers the penultimate
layer representations learnt by the student of a given class
in a systematic way that targets in the direction of seman-
tically similar classes. This systematic diffusion is critical
as it directly curtails the distance enlargement benefits be-
tween semantically similar classes when distilling from an
LS-trained teacher.

Penultimate layer visualization as evidence of system-
atic diffusion. We follow Müller et al. (2019), and use
their visualization method based on linear projections of the
penultimate layer representations. See Figure 1 for visual-
ization (We discuss Figure 1 deeply in Sec. 5). Particularly,
our discovery on systematic diffusion affects the distance
between semantically similar classes in the student when
distilled from an LS-trained teacher at higher T . This sys-
tematic diffusion can be clearly observed by visualizing
the penultimate layer representations of the student. We
include the visualization algorithm and Numpy-style code
in Supplementary F.

Given that the increased cluster center separation between
semantically similar classes being the reason for the com-
patibility claim between LS and KD (Shen et al., 2021b),
we discover that this cluster center separation is affected
by the degree of systematic diffusion in the student. Impor-
tantly, systematic diffusion is instrumental in explaining and
resolving the contradictory findings of Müller et al. (2019)
and Shen et al. (2021b), thereby establishing a foundational
understanding on the compatibility between LS and KD.

Formulation of Diffusion index (η) to measure system-
atic diffusion. To comprehensively support our discovery,
we formulate a novel metric called diffusion index (η) to
quantitatively measure this systematic diffusion. Given that
the interpretation of ‘semantics’ is rather subjective, we
carefully construct this metric to support our discovery. The
basic idea of this metric is to quantify the distance change
between clusters in the student network when distilled from
an LS-trained teacher at higher T . Critically, the design
of the metric is to verify that the diffusion is systematic: i.e.
at higher T , inter-cluster distance decreases for semantic
similar classes and increases (relatively) for the remaining
classes. As explained in the Introduction, this systematic
behaviour is critical in our study. There are important
considerations in formulating this metric discussed below.

• A target class π can be characterized by the centroid of
the penultimate layer representations of samples belong-
ing to π. Let the centroid of class π be cπ .

• Consider the sets S1, S2 where S1 contains |S1| seman-
tically similar classes to π and S2 contains |S2| seman-
tically dissimilar classes to π. |S| indicates the number
classes in the set S. For easier understanding, consider
2 classes p, q where p ∈ S1, q ∈ S2.

• The proximity of cπ to cp can approximately measure the
semantic similarity between class π and p. Though this
proximity can be directly measured by Euclidean dis-
tance between centroids, it requires some careful thought
on normalization. The reason is as follows: What we are
interested is how close is centroid of class π to class p
compared to class q. In other words, we are interested in
the relative distance between centroids of classes (π, p)
and (π, q). Hence to measure this relative distance we
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normalize the distance by the sum of pairwise distance
from cπ to centroids of all other classes in S.

• Do note that the location of the centroids will change
with temperature. In fact, we are interested in the change
of centroids with increased T to measure this systematic
diffusion. We formulate the following diffusion index η
to measure the average percentage change in distances
between semantically similar classes and semantically
dissimilar classes with respect to a target class.

Given a class π and its centroid cπ. Let the centroid of a
class k be represented by ck, k ∈ S1, S2. Let the tempera-
ture be T . We quantify the relative distance between classes
π and k:

d(cπ(T ), ck(T )) = ∥cπ(T )−ck(T )∥2

R , where R =∑
p∈S1

∥cπ(T )−cp(T )∥2+
∑

q∈S2
∥cπ(T )−cq(T )∥2 (nor-

malization constant). The diffusion index η measures the
average percentage change in distance between a target class
π and classes in the set S when temperature is changed from
T1 to T2 defined as follows:

η(T1, T2;π, S) =
1

|S|
∑
k∈S

δ

d(cπ(T1), ck(T1))
, (1)

where δ = d(cπ(T2), ck(T2))−d(cπ(T1), ck(T1)). Substi-
tuting S1, S2 into S of Eq. 1, we have: i) η(T1, T2;π, S1)
measures the change in relative distance between class π
and its semantically similar class in S1. ii) η(T1, T2;π, S2)
measures the change in relative distance between class π and
its semantically dissimilar class in S2. We discuss empirical
results for η in Sec. 5

To give more intuition on η, consider the 3 class ex-
ample (Figure 1): miniature poodle (as π class),
standard poodle (as p ∈ S1 and |S1| = 1),
submarine (as q ∈ S2 and |S2| = 1). As T increases
from T1 = 1 to T2 = 3, the relative distance between
miniature poodle and standard poodle reduces
due to diffusion (Figure 1), therefore d(cπ(T2), cp(T2)) <
d(cπ(T1), cp(T1)). From Eq. 1, it is clear that the numera-
tor will be negative. We normalize by the reference distance
to calculate the percentage change. As a result, the aver-
age percentage change over S1 will be negative, indicating
diffusion towards semantically similar classes. Similarly
when measured over S2, the average percentage change
between miniature poodle and submarine will be
positive (because d(cπ(T2), cq(T2)) > d(cπ(T1), cq(T1))
as observed in Figure 1) indicating diffusion away from π.

Why is this diffusion systematic and not isotopic? We re-
visit discussion from Hinton et al. (2015) to motivate the in-
tuition behind this systematic diffusion. Hinton et al. (2015)
introduce T to scale the logits at the final softmax in order
to produce soft targets that are more suitable for transfer.
As argued by Hinton et al. (2015) on MNIST classification,
a sample of ‘2’ may be assigned a probability of 10−6 of

being a ‘3’ and 10−9 of being a 7. The resemblance be-
tween ‘2’ and ‘3’ is valuable information, but a probability
of 10−6 has negligible influence on the loss when distilling
to student. Hinton et al. (2015) introduce a temperature
T to emphasize the probabilities of such incorrect classes:
during KD, their T -scaled counterparts have more notice-
able effects on the student. On the other hand, the effect
of T scaling on the probability of 10−9 is negligible; con-
sequently, the T -scaled counterparts of such probabilities
remain to have unnoticeable effects on the student.

In particular, for a given sample of ground-truth class k∗, we
let ptk∗ represent the probability of the correct class output
by the teacher, ptm represent the probability of one of the
K − 1 incorrect classes. Among these K − 1 ptm, one or
a few could be significantly larger than the other; we refer
such probability as ptml (i.e.: probability of being a 3 in
the above example). In particular, the class ml is usually
a semantically similar class of class k∗, therefore ptml is
not negligible for a class k∗ sample (See Figure 2). For
the rest of ptm which are almost zero (noise level), we refer
them as ptms (e.g., probability of being a 7 in the above
example). Therefore, {ptm} = {ptml} ∪ {ptms}. Usually, we
have ptml ≫ ptms and ptms ≈ 0. We remark that {ptm} are
not all the same and can be observed even for an LS-trained
teacher. It is because logits’ information is not completely
erased (see Figure 2).

When KD of an increased T is used, the soft output of
the teacher is scaled and becomes pt(T ). In particu-
lar, the effect of T scaling is to bring ptml closer to ptk∗ ,
i.e., ptml(T ) is closer to ptk∗(T ) relatively. Consequently,
with soft target pt(T ), student is encouraged to produce
a penultimate representation of a class k∗ sample that is
closer to the incorrect class ml. This results in system-
atic diffusion of representations of class k∗ towards the
incorrect class ml. This can be observed in Figure 1
Observation 3 for standard poodle activations (here
class ml being miniature poodle), and similarly for
miniature poodle activations. On the other hand, be-
cause ptms is negligibly small, even with T scaling ptms(T )
remains negligible and has unnoticeable effect for student’s
penultimate representation. Therefore, the diffusion due to
an increased T is not isotopic but towards semantically sim-
ilar classes (class ml). We provide more detailed discussion
on systematic diffusion in Supplementary E.

We remark that this systematic diffusion can sometimes be
observed when using a teacher without LS, see Figure 1,
row 2 subplot 1 and row 3 subplot 1. For a teacher without
LS (i.e. no information erasure), this systematic diffusion
could in fact be advantageous in some cases, as it improves
generalization of the student network using the rich logits’
information about instance resemblances. However, we
focus on our thesis statement: compatibility between LS and
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Figure 2. Soft output of the LS-trained ResNet-50 teacher (α = 0.1) same as the one in Figure 1. Left: soft output at T = 1; Right:
soft output at T = 2. The figures show the average of the soft outputs for 1300 training standard poodle samples. Index 1 is
the soft output for the standard poodle class, i.e. ptk∗(T ). Index 2 and 3 are the soft outputs for the semantically similar classes
miniature poodle and toy poodle respectively, i.e. ptml(T ). The rest are soft outputs of randomly-chosen semantically dissimilar
classes, i.e. ptms(T ). Note that an increase of T brings ptml(T ) closer to ptk∗(T ). Therefore, soft targets at an increased T encourage
student to learn penultimate representations closer to semantically similar class ml, which are miniature poodle and toy poodle
in this case. Therefore, in Figure 1 Observation 3, standard poodle activations has more overlapping with miniature poodle
when KD of T = 2 is used. Also, ptms(T ) remains negligible after T scaling, as shown in the figure. Furthermore, the figure of T = 1
(Left) suggests that even with LS probabilities of incorrect classes {ptm} are not all the same, and information erasure is not prefect in
practice. Therefore, the diffusion of penultimate representations is not isotopic.

KD. In our case, systematic diffusion in student due to KD at
an increased T curtails the distance enlargement (between
semantically similar classes) benefits of using an LS-trained
teacher, rendering KD ineffective.

5. Empirical Studies
In this section, we conduct large-scale image classifica-
tion (standard, fine-grained) LS-KD experiments. We re-
mark that LS and KD are compatible when with all the
other factors fixed (including T ), student distilled from an
LS-trained teacher outperforms the student distilled from a
teacher trained without LS. We use ResNet-50 teacher and
ResNet-18, ResNet-50 students using ImageNet-1K and
CUB200-2011 datasets following similar procedure as Shen
et al. (2021b). Results are shown in Table 2.

Penultimate layer visualization analysis. We show this
systematic diffusion in ResNet-18 student using Figure 1
Observation 3. We focus on the two semantically simi-
lar classes: miniature poodle, standard poodle.
Given the same LS-trained ResNet-50 teacher and using
the exact distillation process, we observe that at increased
temperatures (T = 1 to T = 3), the above semanti-
cally similar classes start to diffuse. We also observe that
class submarine diffuses towards another class which
is semantically similar to submarine (not shown in the
figure). Because of this systematic diffusion, the cen-
tral cluster distances between miniature poodle and
standard poodle reduces with increased T in the pres-
ence of LS-trained teacher. Consequently, this systematic
diffusion results in detrimental performance in the student
causing an accuracy drop of 5.05% as shown in Table 2 A.

Supporting visualization showing systematic diffusion in
ResNet-50 student shown in Figure A.4 corresponding to
the 1.21% drop as shown in Table 2. CUB200-2011 visu-
alization for ResNet-18 and ResNet-50 students shown in
Figures A.3, A.4 respectively.

Analysis using diffusion index (η). We quantitatively
illustrate systematic diffusion in the ResNet-18, ResNet-
50 students using η for 10 target classes in Table 3. We
clearly observe that η(T1 = 1, T2 = 3;π, S1) < 0 and
η(T1 = 1, T2 = 3;π, S2) > 0 for all these 10 target classes,
thereby quantitatively showing that the penultimate layer
representations are diffused towards semantically similar
classes when distilled from an LS-trained teacher at a larger
temperature. This systematic diffusion results in detrimental
performance of the student resulting in an accuracy drop
of 5.05%, 1.21% for ResNet-18 and ResNet-50 students
respectively as shown in Table 2 A. We also include a rich
study on selecting S1 and S2 in Supplementary G.

Resolving the contradictory claims using systematic dif-
fusion. The seemingly contradictory findings of Müller et al.
(2019) and Shen et al. (2021b) can be resolved using our
discovery on systematic diffusion as follows: Müller et al.
(2019) make the incompatibility claim between LS and KD
due to observing students distilled from LS-trained teacher
performing inferior to students distilled from teacher trained
without LS at higher T . On the contrary, Shen et al. (2021b)
make the compatibility claim between LS and KD due to ob-
serving students distilled from LS-trained teacher perform-
ing superior to students distilled from teacher trained with-
out LS at lower T (i.e.: T = 1). Critically, our main finding
shows that in the presence of an LS-trained teacher, KD
at higher temperatures systematically diffuses penultimate
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Table 2. KD results from ResNet-50 Teacher to ResNet-18, ResNet-50 students for (A) standard image classification using ImageNet-1K
and (B) fine-grained image classification using CUB200-2011 benchmarks following similar procedure as Shen et al. (2021b). We show
the top1/ top5 test accuracies. Configurations where LS and KD are compatible are in bold. As one can clearly observe, with LS-trained
teacher, there is a consistent degrade in student performance as T increases. This can be observed in all our 34 experiments. These
results comprehensively support our claim: in the presence of an LS-trained teacher, KD at higher temperatures is rendered ineffective.
On the other hand, we observe that higher T can improve the performance of ResNet-18 student when using a teacher trained without LS
in fine-grained classification using CUB200-2011 (B). i.e.: We observe improvement of ResNet-18 student from T = 1 to T = 2, T = 3
when distilling from teacher trained without LS in (B). We particularly emphasize that our findings are exclusive to LS and KD: That is in
the presence of an LS-trained teacher, higher T renders ineffective KD due to systematic diffusion. All these results are averaged over 3
independent runs. Standard deviations are reported in Supplementary Tables D.1, D.2 respectively.

A. ImageNet-1K : ResNet-50 to ResNet-18, ResNet-50 KD

T
α

α = 0.0 α = 0.1

Teacher : ResNet-50 - 76.130 / 92.862 76.196 / 93.078

Student : ResNet-18

T = 1 71.547 / 90.297 71.616 / 90.233

T = 2 71.349 / 90.359 68.428 / 89.139

T = 3 69.570 / 89.657 66.570 / 88.631

T = 64 66.230 / 88.730 65.472 / 89.564

Student : ResNet-50

T = 1 76.502 / 93.059 77.035 / 93.327

T = 2 76.198 / 92.987 76.101 / 93.115

T = 3 75.388 / 92.676 75.821 / 93.065

T = 64 74.291 / 92.399 74.627 / 92.639

B. CUB200-2011 : ResNet-50 to ResNet-18, ResNet-50 KD

T
α

α = 0.0 α = 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : ResNet-18

T = 1 80.169 / 95.392 80.946 / 95.312

T = 2 80.808 / 95.593 80.428 / 95.518

T = 3 80.785 / 95.674 78.196 / 95.213

T = 64 73.611 / 94.529 67.161 / 93.062

Student : ResNet-50

T = 1 82.902 / 96.358 83.742 / 96.778

T = 2 82.534 / 96.427 83.379 / 96.537

T = 3 82.091 / 96.243 82.142 / 96.427

T = 64 79.784 / 95.927 77.206 / 95.812

Table 3. η analysis for ResNet-18 (top), ResNet-50 (bottom) students for 10 target classes in ImageNet-1K (We show in 2 sets). We use
standard, pre-defined ImageNet-1K knowledge graph derived from WordNet (Fellbaum, 1998) as a prior to select 4 semantically similar
classes and 20 semantically dissimilar classes (random) to compute the diffusion index η. |S1| = 4 and |S2| = 20 for each target class.
We demonstrate that when increasing T = 1 to T = 3, the diffusion index η between target class and S1 reduces substantially and vice
versa for S2 shown for both training and validation set. This quantitatively shows systematic diffusion when distilling at higher T in the
presence of an LS-trained teacher.

Set 1 : ResNet-18 student
Target class Train : S1 Train : S2 V al : S1 V al : S2

Chesapeake Bay retriever -0.392 0.162 -1.082 0.269

curly-coated retriever -0.578 0.179 -2.024 0.383

flat-coated retriever -1.729 0.380 -3.320 0.655

golden retriever -0.880 0.228 -2.594 0.555

Labrador retriever -2.758 0.501 -4.618 0.840

Set 2 : ResNet-18 student
Target class Train : S1 Train : S2 V al : S1 V al : S2

thunder snake -2.316 0.376 -3.584 0.511

ringneck snake -0.463 0.058 -0.757 0.094

hognose snake -1.528 0.258 -4.067 0.631

water snake -2.028 0.326 -3.053 0.478

king snake -2.474 0.521 -4.577 0.840

Set 1 : ResNet-50 student
Target class Train : S1 Train : S2 V al : S1 V al : S2

Chesapeake Bay retriever -1.061 0.180 -1.346 0.240

curly-coated retriever -0.764 0.127 -1.193 0.207

flat-coated retriever -0.983 0.169 -0.331 0.056

golden retriever -0.744 0.159 -0.911 0.182

Labrado retriever -1.336 0.236 -1.468 0.257

Set 2 : ResNet-50 student
Target class Train : S1 Train : S2 V al : S1 V al : S2

thunder snake -2.565 0.417 -0.778 0.105

ringneck snake -2.224 0.358 -0.726 0.102

hognose snake -3.748 0.623 -2.173 0.342

water snake -1.631 0.258 -0.390 0.037

king snake 2 -1.969 0.339 0.956 -0.159

layer representations learnt by the student towards semanti-
cally similar classes. This systematic diffusion essentially
curtails the distance enlargement (between semantically sim-
ilar classes) benefits of distilling from an LS-trained teacher,
thereby rendering KD at increased temperatures ineffective.
More specifically, in the presence of an LS-trained teacher,
the degree of systematic diffusion is low when distilling at
lower T thereby making LS and KD compatible. On the
other hand, the degree of systematic diffusion is relatively

higher when distilling at higher T , thereby making LS and
KD incompatible. Our findings are summarized in Table 1.
Importantly, systematic diffusion was the missing concept
that is instrumental in resolving the contradictory claims of
Müller et al. (2019) and Shen et al. (2021b).

2For king snake target class, η(T1 = 1, T2 = 3;π, S1) < 0
for training set and not validation. We remark that training set is
used during distillation.
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6. Extended Experiments
Compact Student Distillation. KD is one of the most
prominent methods used for neural network compression.
Hence, we conduct KD experiments to transfer knowledge
to compact student model. We conduct fine-grained clas-
sification experiments (CUB200-2011) using ResNet-50
teacher (25.6M params) and MobileNet-V2 student (3.50M
params). The results are shown in Table 4. Our results show
that in the presence of an LS-trained teacher, KD at higher
temperatures is rendered ineffective due to systematic dif-
fusion in the student. We also show supporting results for
EfficientNet-B0 (for ImageNet-1K classification): Table
B.3. Visualization : Figure A.2 and η results : Table B.4.

Table 4. Compact student distillation results: Top1/ Top5 Accu-
racy for KD experiments from ResNet-50 Teacher to MobileNetV2
student using CUB200-2011. Configurations where LS and KD
are compatible are in bold. These results support our claim: in the
presence of an LS-trained teacher, KD at higher temperatures is
rendered ineffective. We also observe that higher T is helpful when
distilling from a teacher trained without LS in this setup (Observe
improvement of student from T = 1 to T = 2, T = 3 when
distilling from teacher trained without LS). Standard deviations
reported in Table D.4.

T
α

α = 0.0 α = 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : MobileNet-V2

T = 1 81.144 / 95.677 81.731 / 95.754

T = 2 81.895 / 95.858 80.609 / 95.47

T = 3 81.257 / 95.677 78.961 / 95.306

T = 64 75.441 / 94.702 70.435 / 93.494

Neural machine translation. Following Shen et al.
(2021b), we conduct KD experiments for neural machine
translation task using IWSLT dataset. We report English →
German translation results in Table 5. Our results compre-
hensively show that in the presence of an LS-trained teacher,
KD at higher temperatures is rendered ineffective due to sys-
tematic diffusion in the student. We also show supporting
results for English → Russian translation in Table B.2.

Table 5. Neural Machine Translation results: BLEU scores for
KD experiments for Transformer Teacher to Transformer student
on IWSLT dataset using English → German translation task. Con-
figurations where LS and KD are compatible are in bold. These
results comprehensively support our claim: in the presence of an
LS-trained teacher, KD at higher temperatures is rendered ineffec-
tive. Standard deviations reported in Table D.3.

T
α

α = 0.0 α = 0.1

Teacher : Transformer - 26.461 26.750

Student : Transformer

T = 1 24.914 25.085

T = 2 23.103 23.421

T = 3 21.999 22.076

T = 64 6.564 6.461

7. Discussion and Conclusion
Discussion. While increased T is believed to be a helpful
empirical trick (Also observed in many of our experiments
when distilling from a teacher trained without LS) to pro-
duce better soft-targets for KD, we convincingly show that
in the presence of LS-trained teacher, an increased T causes
systematic diffusion in the student. This systematic diffu-
sion directly curtails the distance enlargement (between se-
mantically similar classes) benefits of an LS-trained teacher,
thereby rendering KD ineffective at increased T . For practi-
tioners, as a rule of thumb, we suggest to use an LS-trained
teacher with a low-temperature transfer (i.e. T = 1) to
render high performance students. We also remark that our
finding on systematic diffusion substantially reduces the
search space for the intractable parameter T when using an
LS-trained teacher. Our findings are summarized in Table 1.
With increasing use of KD, we hope that our findings can
benefit various applications including neural architecture
search (Li et al., 2020a; Yu et al., 2020; Wang et al., 2021),
self-supervised learning (Fang et al., 2021; Abbasi Kooh-
payegani et al., 2020), compact deepfake / anomaly detec-
tion (Dzanic et al., 2020; Chandrasegaran et al., 2021; Lim
et al., 2018; Tran et al., 2021) and GAN compression (Li
et al., 2020b; Fu et al., 2020; Yu & Pool, 2020).

Conclusion. Focusing on the compatibility between LS and
KD, we have conducted an empirical study to investigate
the seemingly contradictory findings of Müller et al. (2019)
and Shen et al. (2021b). Through comprehensive scrutiny
of these works, we discover an intriguing phenomenon
called systematic diffusion: That is in the presence of an LS-
trained teacher, KD at higher temperatures systematically
diffuses penultimate layer representations learnt by the stu-
dent towards semantically similar classes. This systematic
diffusion essentially curtails the benefits of distilling from
an LS-trained teacher, thereby rendering KD at increased
temperatures ineffective. We showed this systematic diffu-
sion both qualitatively and quantitatively using extensive
analysis. We also supported our findings with large scale
experiments including image classification (standard, fine-
grained), neural machine translation and compact student
distillation tasks. Critically, our discovery on systematic
diffusion was the missing concept that is instrumental in
resolving the contradictory findings of Müller et al. (2019)
and Shen et al. (2021b), thereby establishing a foundational
understanding on the compatibility between LS and KD.
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Supplementary Materials

Contents of this Supplementary
This Supplementary provides additional experiments, re-
sults (penultimate layer visualization and η analysis), case
studies and analyses to further support our main finding
on Systematic diffusion. The Supplementary materials are
organized as follows:

• Section A: Additional Penultimate Layer Visualiza-
tions

• Section B: Additional Experiments / Analysis

• Section C : Research Reproducibility Details

• Section D: Standard Deviation for main paper experi-
ments

• Section E: Additional Discussion: Why this diffusion
is systematic and not isotopic?

• Section F: Algorithm for Projection and visualization
of penultimate layer representations

• Section G: Semantically similar / dissimilar classes

– Section G.1: Using standard, pre-defined Ima-
geNet knowledge graph as a prior

– Section G.2: Using distance in the feature space

• Section H: Case study: Smoothness of targets are in-
sufficient to determine KD performance

– Section H.1: Case study at lower T with same
degree of smoothness

– Section H.2: Case study at moderately higher T
with same degree of smoothness

– Section H.3: Case study at very high T with same
degree of smoothness

• Section I: Class-wise accuracy for target classes

• Section J: Additional Exploration of α and T

• Section K: Alternative characterization of cluster dis-
tance

• Section L: Sample images of different classes used in
the study

A. Additional Penultimate Layer
Visualizations

In this section, we show additional penultimate layer visual-
izations to support our finding on systematic diffusion. The
details are included in Table A.1.

Table A.1. Penultimate layer visualization details supporting our
finding on systematic diffusion. Our visualizations cover multiple
tasks including image classification (standard, fine-grained) and
compact student distillation tasks spanning across multiple datasets
and teacher-student architectures.

Teacher / Student Dataset Visualization

ResNet-50 / ResNet-18 ImageNet-1K Figure 1

ResNet-50 / ResNet-50 ImageNet-1K Figure A.1

ResNet-50 / EfficientNet-B0 ImageNet-1K Figure A.2

ResNet-50 / ResNet-18 CUB200 Figure A.3

ResNet-50 / ResNet-50 CUB200 Figure A.4

ResNet-50 / ConvNext-T CUB200 Figure A.5

B. Additional Experiments / Analysis
Fine-grained image classification. We conduct experi-
ments using an additional student architecture, ConvNeXt-T
(Liu et al., 2022) to further support our findings. The results
are shown in Table B.1. We show systematic diffusion using
penultimate layer visualizations in Figure A.5.

Table B.1. Top1 / Top5 accuracies for fine-grained classification
(CUB200) using ConvNeXt-T student. We use T = 1, T = 3 for
distilling knowledge from ResNet-50 teacher. As one can clearly
observe, with LS-trained teacher, there is a consistent degrade
in student performance as T increases. This can be observed in
all our 34 experiments. These results comprehensively support
our claim: in the presence of an LS-trained teacher, KD at higher
temperatures is rendered ineffective.

T
α

α = 0.0 α = 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : T = 1 86.624 / 97.221 86.866 / 97.377

ConvNeXt-T T = 3 86.554 / 97.187 83.638 / 97.135

Neural Machine Translation. We conduct additional KD
experiments for English → Russian translation using IWSLT
dataset. We report BLUE scores in Table B.2. We remark
that all these experiments comprehensively support our main
finding on systematic diffusion.

Compact Student Distillation. We conduct experiments us-
ing an additional compact student architecture, EfficientNet-
B0 (Tan & Le, 2019) (5.3M params) to further support
our findings. We use ResNet-50 as the teacher model and
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Figure A.1. Visualization of the penultimate layer representations (Teacher = ResNet-50, Student = ResNet-50,
Dataset = ImageNet). We follow the same setup and procedure used in Müller et al. (2019) and Shen et al. (2021b). We also
follow their three-class analysis: two semantically similar classes (miniature poodle, standard poodle) and one semantically
different class (submarine). Observation 1: The use of LS on the teacher leads to tighter clusters and erasure of logits’ information as
claimed by Müller et al. (2019). In addition, increase in central distance between semantically similar classes (miniature poodle,
standard poodle) as claimed by Shen et al. (2021b) can be observed. Observation 2: We further visualize the student’s representa-
tions. Increase in central distance between semantically similar classes can also be observed. This confirms the transfer of this benefit
from the teacher to the student. Note that in Müller et al. (2019) and Shen et al. (2021b), student’s representations have not been visualized.
Observation 3 (Our main discovery): KD of an increased T causes systematic diffusion of representations between semantically similar
classes (miniature poodle, standard poodle). Since the student is also a very powerful network (ResNet-50), the extent of this
systematic diffusion is not large compared to the ResNet-18 student. We further show η analysis in Table 3 to quantitatively show this
systematic diffusion. We also show image samples for these 3 classes in Figure L.1. Best viewed in color.

perform large-scale experiments using ImageNet-1K. The
results are shown in Table B.3. We show systematic diffu-
sion using penultimate layer visualizations in Figure A.2
and η results are shown in Table B.4.

Advanced KD methods. We demonstrate our finding using
a popular advanced KD method by Heo et al. (2019). This
method performs optimized feature distillation (contains
margin-ReLU feature transforms, partial L2 distance func-
tions, optimized feature positions) combined with task loss
(In our experiments, the task is KD) 3 . The results are
shown in Table B.5. We show that advanced KD methods
also suffer from systematic diffusion when distilling from
an LS-trained teacher at larger T .

3https://github.com/clovaai/overhaul-distillation

C. Research Reproducibility Details
Code / Pre-trained models. Pytorch code to
reproduce all our results and analysis can be
found at https://keshik6.github.io/
revisiting-ls-kd-compatibility/. All
pretrained models for image classification using ImageNet-
1K, fine-grained classification using CUB200-2011, neural
machine translation using IWSLT and compact student dis-
tillation are available at https://keshik6.github.
io/revisiting-ls-kd-compatibility/.

Docker information : To allow for training in containerised
environments (HPC, Super-computing clusters), please use
nvcr.io/nvidia/pytorch:20.12-py3 container.

Experiment details and hyper-parameters:

https://github.com/clovaai/overhaul-distillation
https://keshik6.github.io/revisiting-ls-kd-compatibility/
https://keshik6.github.io/revisiting-ls-kd-compatibility/
https://keshik6.github.io/revisiting-ls-kd-compatibility/
https://keshik6.github.io/revisiting-ls-kd-compatibility/
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Observation 3 Observation 3

Observation 2 Observation 2

Student  
(EfficientNet-B0)

Figure A.2. Visualization of the penultimate layer representations (Teacher = ResNet-50, Student = EfficientNet-B0,
Dataset = ImageNet). We follow the same setup and procedure used in Müller et al. (2019) and Shen et al. (2021b). We also
follow their three-class analysis: two semantically similar classes (miniature poodle, standard poodle) and one semantically
different class (submarine). Observation 1: The use of LS on the teacher leads to tighter clusters and erasure of logits’ information as
claimed by Müller et al. (2019). In addition, increase in central distance between semantically similar classes (miniature poodle,
standard poodle) as claimed by Shen et al. (2021b) can be observed. Observation 2: We further visualize the student’s representa-
tions. Increase in central distance between semantically similar classes can also be observed. This confirms the transfer of this benefit
from the teacher to the student. Note that in Müller et al. (2019) and Shen et al. (2021b), student’s representations have not been visualized.
Observation 3 (Our main discovery): KD of an increased T causes systematic diffusion of representations between semantically similar
classes (miniature poodle, standard poodle). We also show image samples for these 3 classes in Figure L.1. Best viewed in
color.

ImageNet-1K: For ImageNet experiments, we follow similar
setup as Shen et al. (2021b) and use ILSVRC2012 version.
For training LS networks, we train for 90 epochs with initial
learning rate 0.1 decayed by a factor of 10 every 30 epochs.
For KD experiments, we train for 200 epochs with initial
learning rate 0.1 decayed by a factor of 10 every 80 epochs.
We conducted a grid search for hyper-parameters as well.
For all experiments, we use a batch size of 256 and SGD
with momentum 0.9 . For data augmentation, we use random
crops and random horizontal flips. All experiments were
repeated 3 times. For visualization of penultimate layer
representations, we use 150 samples for training set and 50
samples for validation set.

Fine-grained classification and compact student distillation.
We follow similar setup as Shen et al. (2021b). For training
both LS and KD networks, we train for 200 epochs with

initial learning rate 0.01 decayed by a factor of 10 every 80
epochs. We conducted a grid search for hyper-parameters
as well. For all experiments, we use a batch size of 256 and
SGD with momentum 0.9 . All experiments were repeated
3 times. For data augmentation, we use random crops,
random rotation, color jitter and random horizontal flips.
For visualization of penultimate layer representations, we
use all samples for training and validation sets.

Neural Machine Translation We use IWSLT dataset. We
follow similar setup as Shen et al. (2021b). We use Adam
as the optimizer, lr with 0.0005, dropout with drop rate as
0.3, weight-decay with 0 and max tokens with 4096, all
of these hyper-parameters are following settings of Shen
et al. (2021b). These hyper-parameters were used for both
translation tasks (English → German, English → Russian).
We use the code here similar to Shen et al. (2021b).

https://github.com/RayeRen/multilingual-kd-pytorch
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ResNet-50 Training 
w/o LS

ResNet-50 Training 
w/ LS ( =0.1)α

ResNet-50 Validation 
w/o LS

ResNet-50 Validation 
w/ LS ( =0.1)α

Observation 1

Teacher  
(ResNet-50)

Observation 3 Observation 3

Observation 2 Observation 2

ResNet-18 Training w/ KD T=3.0 
Teacher w/o LS

ResNet-18 Training w/ KD T=3.0 
Teacher w/ LS ( =0.1)α

ResNet-18 Validation w/ KD T=3.0 
Teacher w/o LS

ResNet-18 Validation w/ KD T=3.0 
Teacher w/ LS ( =0.1)α

Student  
(ResNet-18)

ResNet-18 Training w/ KD T=1.0 
Teacher w/o LS

ResNet-18 Training w/ KD T=1.0 
Teacher w/ LS ( =0.1)α

ResNet-18 Validation w/ KD T=1.0 
Teacher w/o LS

ResNet-18 Validation w/ KD T=1.0 
Teacher w/ LS ( =0.1)α

Figure A.3. Visualization of the penultimate layer representations (Teacher = ResNet-50, Student = ResNet-18,
Dataset = CUB200-2011). We follow the same setup and procedure used in Müller et al. (2019) and Shen et al. (2021b). We
also follow their three-class analysis: two semantically similar classes (Loggerhead Shrike, Great Grey Shrike) and one
semantically different class (Black footed Albatross). Observation 1: The use of LS on the teacher leads to tighter clusters and
erasure of logits’ information as claimed by Müller et al. (2019). In addition, increase in central distance between semantically similar
classes (Loggerhead Shrike, Great Grey Shrike) as claimed by Shen et al. (2021b) can be observed. Observation 2: We
further visualize the student’s representations. Increase in central distance between semantically similar classes can also be observed. This
confirms the transfer of this benefit from the teacher to the student. Note that in Müller et al. (2019) and Shen et al. (2021b), student’s
representations have not been visualized. Observation 3 (Our main discovery): KD of an increased T causes systematic diffusion of
representations between semantically similar classes (Loggerhead Shrike, Great Grey Shrike). We also show image samples
for these 3 classes in Figure L.2. Best viewed in color.

D. Standard Deviation for main paper
experiments

In this section, we report the standard deviation for all KD
experiments in the main paper. The standard deviation for
ImageNet-1K and CUB200-2011 main paper experiments
are reported in Tables D.1 and D.2 respectively. The stan-
dard deviation for Compact student distillation and neural
machine translation main paper experiments are reported in
Tables D.4 and D.3 respectively. All standard deviations are
within acceptable range.

E. Additional Discussion: Why this diffusion is
systematic and not isotopic?

We provide more perspective into why this diffusion is sys-
tematic and not isotopic. We use the LS-trained ResNet-50
teacher (same one in Figure 2) trained on ImageNet-1K to
numerically show more evidence as to why this diffusion is
systematic and not isotopic. Particularly we show that only
very few classes (out of the 1000 classes in ImageNet-1K)
have probabilities significantly larger than others. We ex-
amine the output probability for 3 classes: standard poodle
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ResNet-50 Training 
w/o LS

ResNet-50 Training 
w/ LS ( =0.1)α

ResNet-50 Validation 
w/o LS

ResNet-50 Validation 
w/ LS ( =0.1)α

Observation 1

Teacher  
(ResNet-50)

Observation 3 Observation 3

Observation 2 Observation 2

ResNet-50 Training w/ KD T=1.0 
Teacher w/o LS

ResNet-50 Training w/ KD T=3.0 
Teacher w/o LS

ResNet-50 Training w/ KD T=1.0 
Teacher w/ LS ( =0.1)α

ResNet-50 Training w/ KD T=1.0 
Teacher w/ LS ( =0.1)α

ResNet-50 Validation w/ KD T=3.0 
Teacher w/o LS

ResNet-50 Validation w/ KD T=3.0 
Teacher w/ LS ( =0.1)α

ResNet-50 Validation w/ KD T=3.0 
Teacher w/o LS

ResNet-50 Validation w/ KD T=3.0 
Teacher w/ LS ( =0.1)α

Student  
(ResNet-50)

Figure A.4. Visualization of the penultimate layer representations (Teacher = ResNet-50, Student = ResNet-50,
Dataset = CUB200-2011). We follow the same setup and procedure used in Müller et al. (2019) and Shen et al. (2021b). We
also follow their three-class analysis: two semantically similar classes (Loggerhead Shrike, Great Grey Shrike) and one
semantically different class (Black footed Albatross). Observation 1: The use of LS on the teacher leads to tighter clusters and
erasure of logits’ information as claimed by Müller et al. (2019). In addition, increase in central distance between semantically similar
classes (Loggerhead Shrike, Great Grey Shrike) as claimed by Shen et al. (2021b) can be observed. Observation 2: We
further visualize the student’s representations. Increase in central distance between semantically similar classes can also be observed. This
confirms the transfer of this benefit from the teacher to the student. Note that in Müller et al. (2019) and Shen et al. (2021b), student’s
representations have not been visualized. Observation 3 (Our main discovery): KD of an increased T causes systematic diffusion of
representations between semantically similar classes (Loggerhead Shrike, Great Grey Shrike). We also show image samples
for these 3 classes in Figure L.2. Best viewed in color.
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ResNet-50 Training 
w/o LS

ResNet-50 Training 
w/ LS ( =0.1)α

ResNet-50 Validation 
w/o LS

ResNet-50 Validation 
w/ LS ( =0.1)α

Observation 1

Teacher  
(ResNet-50)

Observation 3 Observation 3

Observation 2 Observation 2

Student  
(ConvNeXt-T)

Figure A.5. Visualization of the penultimate layer representations (Teacher = ResNet-50, Student = ConvNeXt-T,
Dataset = CUB200-2011). We follow the same setup and procedure used in Müller et al. (2019) and Shen et al. (2021b). We
also follow their three-class analysis: two semantically similar classes (Loggerhead Shrike, Great Grey Shrike) and one
semantically different class (Black footed Albatross). Observation 1: The use of LS on the teacher leads to tighter clusters and
erasure of logits’ information as claimed by Müller et al. (2019). In addition, increase in central distance between semantically similar
classes (Loggerhead Shrike, Great Grey Shrike) as claimed by Shen et al. (2021b) can be observed. Observation 2: We
further visualize the student’s representations. Increase in central distance between semantically similar classes can also be observed. This
confirms the transfer of this benefit from the teacher to the student. Note that in Müller et al. (2019) and Shen et al. (2021b), student’s
representations have not been visualized. Observation 3 (Our main discovery): KD of an increased T causes systematic diffusion of
representations between semantically similar classes (Loggerhead Shrike, Great Grey Shrike). We also show image samples
for these 3 classes in Figure L.2. Best viewed in color.
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Table B.2. BLEU scores for KD experiments from Transformer
Teacher to Transformer student on IWSLT dataset using English →
Russian translation task, following the similar procedure as Shen
et al. (2021b). Configurations where LS and KD are compatible are
in bold. As one can clearly observe, with LS-trained teacher, there
is a consistent degrade in student performance as T increases.
This can be observed in all our 34 experiments. These results
comprehensively support our claim: in the presence of an LS-
trained teacher, KD at higher temperatures is rendered ineffective.

T
α

α = 0.0 α = 0.1

Teacher : Transformer - 16.718 16.976

Student : Transformer

T = 1 16.140 16.197

T = 2 14.977 15.100

T = 3 13.826 14.106

T = 64 3.605 3.590

Table B.3. Top1 / Top5 accuracies for compact student distil-
lation (ImageNet-1K) using EfficientNet-B0 student. We use
T = 1, T = 3 for distilling knowledge from ResNet-50 teacher.
As one can clearly observe, with LS-trained teacher, there is a con-
sistent degrade in student performance as T increases. This can be
observed in all our 34 experiments. These results comprehensively
support our claim: in the presence of an LS-trained teacher, KD at
higher temperatures is rendered ineffective.

T
α

α = 0.0 α = 0.1

Teacher : ResNet-50 - 76.130 / 92.862 76.196 / 93.078

Student : T = 1 68.850 / 88.604 69.906 / 89.284

EfficientNet-B0 T = 3 68.546 / 88.704 58.182 / 83.918

samples, golden retriever samples and thunder snake sam-
ples (We choose this classes randomly, similar analysis can
be done for other classes as well).

For each class, we compute the average output probability
for 1300 training samples, and observe following: Let p1
be the largest probability which is also probability of the
correct class.

• For the average probability of standard poodle samples,
the second largest probability, p2 (miniature poodle) is
at least 100x larger than 976 other probabilities (out of
999 probabilities)

• For the average probability of golden retriever samples,
the second largest probability, p2 (Labrador retriever)
is at least 100x larger than 924 other probabilities (out
of 999 probabilities)

• For the average probability of thunder snake samples,
the second largest probability, p2 (ringneck snake) is
at least 100x larger than 964 other probabilities (out of
999 probabilities)

Table B.4. η calculation for EfficientNet-B0 for 10 target classes
(exact classes used in Table 3 main paper). Our finding is consis-
tently observed (see main paper). We clearly show that η(T1 =
1, T2 = 3;π, S1) < 0 and η(T1 = 1, T2 = 3;π, S2) > 0 for all
these 10 target classes, thereby quantitatively demonstrating our
discovery on systematic diffusion.

Set 1
Target class Train : S1 Train : S2 V al : S1 V al : S2

Chesapeake Bay retriever -2.276 0.490 -3.760 0.790

curly-coated retriever -0.830 0.235 -4.502 0.933

flat-coated retriever -0.979 0.173 -3.904 0.807

golden retriever -3.651 0.694 -4.356 0.890

Labrado retriever -2.747 0.469 -4.730 0.860

Set 2
Target class Train : S1 Train : S2 V al : S1 V al : S2

thunder snake -10.981 1.458 -12.916 1.789

ringneck snake -9.629 1.211 -10.617 1.373

hognose snake -7.984 1.271 -9.347 1.536

water snake -8.217 1.302 -9.645 1.489

king snake -8.371 1.365 -10.082 1.647

Table B.5. Advanced KD results using method proposed by (Heo
et al., 2019): We show top1 / top5 accuracies for fine-grained
classification (CUB200) using ResNet-50 teacher to ResNet-50
student. We use T = 1, T = 3 for distilling knowledge from
ResNet-50 teacher. As one can clearly observe, with LS-trained
teacher, there is a consistent degrade in student performance as
T increases when using advanced KD methods. These results
comprehensively support our claim: in the presence of an LS-
trained teacher, KD at higher temperatures is rendered ineffective.

T
α

α = 0.0 α = 0.1

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168

Student : ResNet-50 T = 1 82.568 / 96.479 83.794 / 96.686

Advanced KD T = 3 82.706 / 96.307 81.739 / 96.117

Can this support the diffusion is systematic? We use
results of standard poodle for discussion. When KD of an
increased T is used, these probabilities are scaled, and p2 is
brought closer to p1, see Figure 2. Consequently, student is
encouraged to produce penultimate layer representations of
standard poodle samples that are closer to miniature poodle.
This results in diffusion of penultimate layer representations
of standard poodle towards miniature poodle, curtailing the
distance enlargement benefit of distilling from an LS-trained
teacher. For the 976 classes which have probabilities at least
100x smaller than that of miniature poodle, even with T
scaling, the probabilities remain negligible. They have no
influence on the representation of standard poodle. There-
fore diffusion of standard poodle will be towards minia-
ture poodle and several semantically similar classes but
there is no diffusion towards these 976 classes. Therefore,
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Table D.1. KD results from ResNet-50 Teacher to ResNet-18, ResNet-50 students with standard deviations, following similar procedure
as Shen et al. (2021b) on ImageNet-1K (Deng et al., 2009). We show the top1/ top5 test accuracies. Configurations where LS and KD
are compatible are in bold. As one can clearly observe, with LS-trained teacher, there is a consistent degrade in student performance
as T increases. This can be observed in all our 34 experiments. These results comprehensively support our claim: in the presence of
an LS-trained teacher, KD at higher temperatures is rendered ineffective. On the other hand, we observe that higher T can improve the
performance when using a teacher trained without LS in fine-grained classification and compact student distillation experiments (See
Table 2 (B) and Table 4) All these results are averaged over 3 independent runs. The standard deviations are well within acceptable range.

T
α

α = 0.0 α = 0.1

Student : ResNet-18

T = 1 71.547 ± 0.122 / 90.297 ± 0.175 71.616 ± 0.114 / 90.233 ± 0.119

T = 2 71.349 ± 0.017 / 90.359 ± 0.054 68.799 ± 0.065 / 89.279 ± 0.092

T = 3 69.570 ± 0.320 / 89.657 ± 0.041 67.699 ± 0.079 / 89.043 ± 0.096

T = 64 66.230 ± 0.036 / 88.730 ± 0.071 64.506 ± 0.142 / 87.811 ± 0.100

Student : ResNet-50

T = 1 76.502 ± 0.234 / 93.059 ± 0.061 77.035 ± 0.061 / 93.327 ± 0.185

T = 2 76.198 ± 0.035 / 92.987 ± 0.105 76.101 ± 0.105 / 93.115 ± 0.017

T = 3 75.388 ± 0.095 / 92.676 ± 0.006 75.821 ± 0.006 / 93.065 ± 0.088

T = 64 74.291 ± 0.014 / 92.399 ± 0.035 74.627 ± 0.035 / 92.639 ± 0.085

the diffusion is systematic and is not isotopic.

In this discussion, we use 100x to mean significance/in-
significance. If a probability pi is 100x smaller than another
probability pj , then even with T scaling pi remains insignif-
icant compared to pj .

F. Algorithm for Projection and visualization
of penultimate layer representations

The algorithm for projection and visualization is included in
1 Müller et al. (2019). We also include a numpy style code
of the projection / visualization algorithm in 2.

G. Semantically similar / dissimilar classes
Given a target class π, let the set of semantically similar and
dissimilar classes be S1,, S2 respectively. In this section, we
discuss two important methods for identifying S1, S2 for
the target class π.

G.1. Method 1: Using standard, pre-defined ImageNet
knowledge graph as a prior

We use ImageNet hierarchy derived from WordNet (Fell-
baum, 1998) to select semantically similar classes and se-
mantically dissimilar classes to quantify systematic diffu-
sion. WordNet (Fellbaum, 1998) is a laboriously hand-
coded lexical database linking words into semantic relations
including synonyms, hyponyms, and meronyms 4. Do note
that ImageNet is organized using WordNet hierarchy. A web
browser version of the ImageNet hierarchy can be accessed

4https://en.wikipedia.org/wiki/WordNet

at this link (You can click any node to browse images that
correspond to the associated synset)

We use this ImagNet hierarchy to select semantically similar
classes and semantically dissimilar classes for the target
class π. This way, we ensure the selection of semantically
similar classes (S1) and semantically dissimilar classes (S2)
is based on a strong prior (knowledge graph) to support our
main finding.

G.2. Method 2: Using distance in the feature space to
quantitatively define semantically similar /
dissimilar classes

This method is a quantitative approach for defining seman-
tically similar / dissimilar classes. Specifically, we con-
sider the official ResNet-50 model trained on ImageNet-1K
(classification). We use the validation set of ImageNet-1K
and extract the penultimate layer representations for all
the samples. For each class, we consider the centroid of
the penultimate layer representations as the class prototype
and calculate the centroid-centroid distance between all the
classes (This will give a symmetric matrix of 1000 x 1000).

For selecting S1: Next, for the target class π, we identify
the closest 1% of classes (10 out of 999 classes) using the
centroid-centroid distances. These would be the seman-
tically similar classes to the target class as they have the
smallest distances to the centroid of the target class.

For selecting S2: Next, for the target class π, we identify
the distant 90% of classes (900 out of 999 classes) using the
centroid-centroid distances discussed above. These would
be the semantically dissimilar classes to the target class as

https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy
https://en.wikipedia.org/wiki/WordNet
https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy
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Table D.2. KD results from ResNet-50 Teacher to ResNet-18, ResNet-50 students with standard deviations, following similar procedure
as Shen et al. (2021b) on CUB200-2011 (Wah et al., 2011). We report top1/ top5 test accuracies. Configurations where LS and KD are
compatible are in bold. As one can clearly observe, with LS-trained teacher, there is a consistent degrade in student performance as
T increases. This can be observed in all our 34 experiments. These results comprehensively support our claim: in the presence of an
LS-trained teacher, KD at higher temperatures is rendered ineffective. On the other hand, we observe that higher T can improve the
performance when using a teacher trained without LS in fine-grained classification and compact student distillation experiments (See
Table 2 and Table 4). These experiments are repeated for 3 independent runs and as you can observe the standard deviations are within
acceptable range.

T
α

α = 0 α = 0.1

Student : ResNet-18

T = 1 80.169 ± 0.336 / 95.392 ± 0.03 80.946 ± 0.03 / 95.312 ± 0.18

T = 2 80.808 ± 0.314 / 95.593 ± 0.053 80.428 ± 0.053 / 95.518 ± 0.108

T = 3 80.785 ± 0.26 / 95.674 ± 0.163 78.196 ± 0.163 / 95.213 ± 0.125

T = 64 73.611 ± 0.314 / 94.529 ± 0.086 67.161 ± 0.086 / 93.062 ± 0.127

Student : ResNet-50

T = 1 82.902 ± 0.343 / 96.358 ± 0.141 83.742 ± 0.141 / 96.778 ± 0.12

T = 2 82.534 ± 0.137 / 96.427 ± 0.105 83.379 ± 0.105 / 96.537 ± 0.018

T = 3 82.091 ± 0.161 / 96.243 ± 0.13 82.142 ± 0.13 / 96.427 ± 0.211

T = 64 79.784 ± 0.26 / 95.927 ± 0.13 77.206 ± 0.13 / 95.812 ± 0.259

Algorithm 1 Projection and visualization of penultimate layer features

Input: 1⃝ High dimensional (h) features (X,Y ) of three classes extracted from penultimate layers of the trained model f
2⃝ Model weight w of the final layer of f

Output: The projected 2-D features X ′

Compute the othonormal basis as
w′ = qr-decomposition (w) # dim = (h, 3)
for all samples do

Obtain the projected features on new basis via dot product: proj(X) = np.dot(X , w′) # dim = (∗, 3)
Dimension reduction from 3-D to 2-D via PCA(proj(X)) # dim = (∗, 2)

end for
RETURN 2-D features: PCA(proj(X))

Table D.3. BLEU scores for KD experiments with standard devi-
ations for Transformer Teacher to Transformer student on IWSLT
dataset using English → German translation task, following the
similar procedure as Shen et al. (2021b). Configurations where LS
and KD are compatible are in bold. These results comprehensively
support our claim: in the presence of an LS-trained teacher, KD at
higher temperatures is rendered ineffective. These experiments are
repeated for 3 independent runs and standard deviations are within
acceptable range.

T
α

α = 0.0 α = 0.1

Student : Transformer

T = 1 24.914 ± 0.013 25.085 ± 0.082

T = 2 23.103 ± 0.103 23.421 ± 0.039

T = 3 21.999 ± 0.06 22.076 ± 0.125

T = 64 6.564 ± 0.288 6.461 ± 0.061

their centroids lie much far away from the centroid of the
target class.

Consistency measurements between the 2 methods:
Let the semantically similar and dissimilar classes iden-
tified using method 1 be S1,qualitative, S2,qualitative

respectively. Let the semantically similar and
dissimilar classes identified using method 1 be
S1,quantitative, S2,quantitative respectively. In this
section, we measure the consistency between qualitative
selection of S1,qualitative, S2,qualitative (method 1) and
the quantitative definition of S1,quantitative, S2,quantitative

(method 2). This consistency measurements are shown
for all the target classes in the Table G.1. As one can
clearly observe both method 1 and method 2 agree 85%
on average for semantically similar classes and 94% on
average for semantically dissimilar classes. Do note that we
use pre-defined knowledge graph for ImageNet-1K as prior
(method 1) to select the semantically similar / dissimilar
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Table D.4. KD results with standard deviations from ResNet-50 Teacher to MobileNet-V2 (Compact DNN) student using CUB200
Configurations where LS and KD are compatible are in bold. As one can clearly observe, with LS-trained teacher, there is a consistent
degrade in student performance as T increases. This can be observed in all our 34 experiments. These results comprehensively support
our claim: in the presence of an LS-trained teacher, KD at higher temperatures is rendered ineffective. These experiments are repeated for
2 independent runs and as you can observe the standard deviations are within acceptable range.

T
α

α = 0.0 α = 0.1

Student : ResNet-18

T = 1 81.144 ± 0.037 / 95.677 ± 0.062 81.731 ± 0.256 / 95.754 ± 0.098

T = 2 81.895 ± 0.024 / 95.858 ± 0.000 80.609 ± 0.061 / 95.47 ± 0.159

T = 3 81.257 ± 0.073 / 95.677 ± 0.012 78.961 ± 0.293 / 95.306 ± 0.196

T = 64 75.441 ± 0.049 / 94.702 ± 0.025 70.435 ± 0.171 / 93.494 ± 0.025

classes for our η computation in Table 3.

Table G.1. Consistency measurements between using pre-defined
knowledge graph for ImageNet-1K as prior vs. feature space
distance method for identifying semantically similar / dissimilar
classes. This table shows the agreement between these 2 methods
in identifying semantically similar / dissimilar classes. Each row
indicates the agreement between the 2 methods with respect to
the target class. An agreement value of 1.000 indicates a perfect
agreement between the 2 methods. As we can clearly observe on
average both methods agree 85% for semantically similar classes
and 94% for semantically dissimilar classes. This can suggest that
we can leverage on either one of the methods to select the seman-
tically similar / dissimilar classes for our analysis on systematic
diffusion. Do note that we use pre-defined knowledge graph for
ImageNet-1K as prior (method 1) to select the semantically similar
/ dissimilar classes for our η computation in Table 3.

Target class S1,qualitative∩S1,quantitative

∥S1,qualitative∥
S2,qualitative∩S2,quantitative

∥S2,qualitative∥

Chesapeake Bay retriever 1.000 0.950

curly-coated retriever 0.750 0.950

flat-coated retriever 1.000 1.000

golden retriever 0.500 1.000

Labrador retriever 0.750 1.000

thunder snake 1.000 0.900

ringneck snake 1.000 0.900

hognose snake 0.500 0.900

water snake 1.000 0.900

king snake 1.000 0.900

Average 0.850 0.940

H. Case study: Smoothness of targets are
insufficient to determine KD performance.
Systematic diffusion is critical.

An interesting perspective is whether the degree of smooth-
ness of targets produced by an LS-trained teacher can de-
termine the KD performance (of the student). We acknowl-
edge that smoothness of targets produced by the teacher
at different temperatures is important. However, we quan-
titatively show that the degree of smoothness cannot ade-
quately explain the KD performance in the presence of an

LS-trained teacher. More specifically, we show that the KD
performance in the presence of LS-trained teachers can be
explained by our discovered systematic diffusion and not
directly using the degree of smoothness. The detailed study
is discussed below.

Our view: The degree of smoothness of targets is rather un-
able to explain the performance of KD. We show this using 3
comprehensive case studies comprising 7 counterexamples.

Measuring smoothness of targets: To perform a quantita-
tive study to support our view, we measure the smoothness
of the targets produced by the teacher. The target produced
for every training sample by the teacher for KD is a discrete
probability distribution. To measure the smoothness of this
target, we can use entropy which is a very popular method.
Entropy of a discrete probability distribution with N classes
can be indicated by H(p) =

∑N
i −piln(pi) where pi indi-

cates the probability assigned to the ith class. The maximum
entropy/smoothness will be equal to Hmax(p) = ln(N)
which corresponds to the uniform probability distribution
over all classes. The key idea here is higher the entropy,
smoother the target. We measure the average entropy for
the training set (since this is the set used for distillation) to
approximate the smoothness of the targets. Do note that the
average entropy is measured using the targets produced by
the teacher at different T .

Table H.1 shows the average entropy/ smoothness of the
targets for the ResNet-50 teachers used in our CUB200-2011
experiments. Higher entropy indicates that the targets are
over-smoothed. Do note that the maximum average entropy
for CUB200-2011 (Wah et al., 2011) is ln(200) ≈ 5.298.

H.1. Case study at lower T with same degree of
smoothness

Consider a lower T .

As shown in Table H.1, the entropy / smoothness of targets
produced by LS-trained teacher (α = 0.1) at T = 1 is
approximately equal to the entropy/ smoothness of targets
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Algorithm 2 NumPy-style pseudo-code of the visualization algorithm

1 # Inputs
2 # weights_path: weights path of the final layer of your trained model
3 # feature_path: feature path of the penultimate layer high dimension features extracted by

your trained model
4

5 # Outputs
6 # 2-D features of each class
7

8 # ------------------------------------------------------------------- #
9 # Step 0. Init settings and select the class to visualize

10 CLASSES = [’miniature_poodle’, ’standard_poodle’, ’submarine’]
11 color = [’r’, ’g’, ’b’]
12 model = ’resnet18’ # the student model
13

14 # Step 1. Compute the orthonormal basis
15 weights = np.load(weights_path) # load the final layer weights
16 basis, _ = np.linalg.qr(weights.T) # dim=(*, 3)
17

18 # Step 2. Load the extracted features
19 num_sample = 150 # We sample 150 images per class
20 output_feature = np.load(feature_path)
21

22 # Step 3. Project the high dimension features to the new 3-D subspace
23 output_project = np.dot(output_feature, basis)
24

25 # Step 4. Dimension reduction from 3-D to 2-D using PCA
26 pca = PCA(n_components=2)
27 pca.fit(output_project)
28 output_array = pca.transform(output_project)
29

30 # Step 5. Plot the features on a 2-D plane
31 for i, subclass in enumerate(CLASSES):
32 plt.scatter(output_array[i * num_sample:(i + 1) * num_sample, 0],
33 output_array[i * num_sample:(i + 1) * num_sample, 1],
34 c=color[i], label=subclass)

produced by normally-trained teacher (α = 0.0) at T =
1.481375. If smoothness of targets can determine the KD
performance, then we expect comparable performances in
both the instances above as they have the same degree of
smoothness.

But using 2 counterexamples shown in Table H.2, we show
that even at the same degree of smoothness, distilling from
LS-trained teachers produces better students compared to
distilling from normally-trained teachers at lower T due
to lower degree of systematic diffusion (LS and KD are
compatible). Through these counterexamples we show that
whether or not LS was used during training of teacher is very
important in determining the performance of distillation
even at the same degree of smoothness, thereby showing
that the degree of smoothness is insufficient/ unreliable in
determining the performance of distillation.

H.2. Case study at moderately higher T with same
degree of smoothness

Consider a moderately higher T .

As shown in Table H.1, the entropy / smoothness of targets
produced by LS-trained teacher (α = 0.1) at T = 3 is
approximately equal to the entropy/ smoothness of targets
produced by normally-trained teacher (α = 0.0) at T =
5.638. If the smoothness is the most important factor, then
we expect comparable performances in both the instances
above as they have the same degree of smoothness.

But using 2 counterexamples shown in Table H.3, we show
that even at the same degree of smoothness, distilling from
LS-trained teachers produces poorer students compared
to distilling from normally-trained teachers at moderately
higher T due to increased degree of systematic diffusion (LS
and KD are incompatible). Through these counterexamples
we show that whether LS was used during training of teacher
or not is very important in determining the performance of
distillation even at the same degree of smoothness, thereby
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showing that the degree of smoothness is insufficient/ unre-
liable in determining the performance of distillation.

H.3. Case study at extremely high T with same degree
of smoothness

Consider a very high T .

As shown in Table H.1, the entropy / smoothness of targets
produced by LS-trained teacher (α = 0.1) at T = 64 is
approximately equal to the entropy/ smoothness of targets
produced by normally-trained teacher (α = 0.0) at T = 64
since at very high T both these models produce a probability
distribution that is very close to the uniform distribution. If
the smoothness is the most important factor, then we expect
comparable performances in both the instances above as
they have the same degree of smoothness.

But using 3 counterexamples shown in Table H.4, we show
that even at the same degree of smoothness, distilling from
LS-trained teachers produces poorer students compared to
distilling from normally-trained teachers at extremely higher
T due to extreme degree of systematic diffusion (LS and
KD are incompatible). Through these counterexamples we
show that whether LS was used during training of teacher
or not is very important in determining the performance of
distillation even at the same degree of smoothness, thereby
showing that the degree of smoothness is insufficient/ unre-
liable in determining the performance of distillation.

Conclusion regarding smoothness: Through these 3 quan-
titative case studies comprising of 7 counterexamples, we
show that whether or not LS was used during training of
teacher is very important in determining the performance of
distillation even at the same degree of smoothness, thereby
showing that the degree of smoothness is insufficient/ unre-
liable in determining the performance of distillation.

Another way to intuitively think about this is that smooth-
ness of targets can be characterized using the probability
output of the teacher at different temperatures. But system-
atic diffusion is a phenomenon happening exclusively in the
student. This is precisely the reason why we quantify the
degree of systematic diffusion using penultimate layer rep-
resentations of the student, as these student representations
are more indicative of the resulting student performance.
That is, in all our 34 experiments, increased systematic dif-
fusion definitely indicates lower performance of students
whereas the degree of smoothness of targets does not give
reliable insights as shown in the case studies H.1, H.2, H.3.

I. Class-wise accuracy for target classes
This section contains class-wise accuracy for all the target
classes used in the paper.

Given that we use the training set for distillation, let us

consider both the training set and the validation set for this
analysis. There are 1300 training and 50 validation samples
for each class in ImageNet-1k. We use an exhaustive list of
T values for this analysis, T = 1, T = 2, T = 3, and use
the exact LS-trained teacher (ResNet-50, α = 0.1) reported
in Table 2. There are 13 target classes used: 3 classes for the
visualization in Figure 1, and 10 classes in Table 3. We show
the complete class wise accuracies for both the training and
validation set at T = 1, T = 2, T = 3. For each set we
also compute the average accuracies to show the general
trend to support our main findings. The results are shown in
Tables I.1, I.2 and I.3. As one can observe in Tables I.1, I.2,
I.3 , in the presence of an LS-trained teacher, KD at higher
temperatures causes systematic diffusion thereby rendering
KD ineffective. We can see this for most classes at increased
temperatures shown below. That is, in the presence of an
LS-trained teacher as we increase the temperature from
T = 1, the accuracies for most of these classes drop due to
systematic diffusion. This can be seen in both training and
validation sets.

J. Additional Exploration of α and T

Given that label smoothing was originally formulated as a
regularization strategy to alleviate models’ overconfidence,
most works spanning different learning problems use a
smaller α = 0.1, including work closely related to our
study. The intuition is that a larger α can introduce too
much regularization that may subsequently hurt the model
performance.

To show this, here we conduct additional experiments using
larger α (α = 0.2) for compact student distillation. We use
CUB200-2011 dataset for these experiments.

The results are shown in Table J.1. These additional results
further support our findings on systematic diffusion.

In particular, we can make two important observations here:
(i) larger α (α = 0.2) results in a weaker ResNet-50 teacher.
We emphasize that it is reasonable to expect such behaviour,
and this suggests why most works use α = 0.1 as in our
main experiments. (ii) As one can clearly observe, with α =
0.2, KD at higher T causes systematic diffusion, thereby
rendering KD substantially ineffective.

These experiments further support our main finding, and
we emphasize that our findings can be generalized to larger
values of α (α = 0.2).

K. Alternative characterization of cluster
distance

Here we discuss an alternative characterization of cluster
distance based on pairwise distances.
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Table H.1. This table shows the degree of smoothness as measured by average entropy using the training set of CUB200-2011 at different
temperatures for normally trained ResNet-50 teacher and LS-trained ResNet-50 teacher. Do note that this analysis is done using
CUB200-2011. We make important observations regarding the smoothness of the targets produced by LS-trained teachers and teachers
training without LS. (1) As one can observe, at T = 1, LS-trained teacher produces smoother targets compared to the normal teacher. (2)
As T increases, the targets become smoother. At moderate levels of T (See T = 2, 3), the LS-trained teacher will produce over smoothed
targets compared to the normal teacher. (3) At very high T (See T = 64), both LS-trained teacher and normal teacher will have almost
the same amount of smoothness (almost closer to maximum entropy) as they produce a probability distribution that is very close to the
uniform distribution. We particularly identify pairs of specific temperatures where the entropy/ smoothness of normally-trained teacher is
approximately equal to a configuration of LS-trained teacher in the table. These pairs are in bold . I..e: The entropy / smoothness of
targets produced by LS-trained teacher (α = 0.1) at T = 1 is approximately equal to the entropy/ smoothness of targets produced by
normally-trained teacher (α = 0.0) at T = 1.481375 which is ≈ 0.888.

CUB200-2011 Training Set: Average Entropy of the targets from ResNet-50 teacher α = 0.0 α = 0.1

T = 1 0.184 0.888

T = 1.481375 0.888 3.225

T = 2 2.246 4.550

T = 3 4.160 5.118

T = 5.638 5.118 5.269

T = 64 5.298 5.298

Table H.2. Results of case study at lower T with same degree of smoothness. In Counterexample #1, Teacher is ResNet-50, Student is
ResNet-50. Two α/T configurations have been identified such that average entropy of the teachers output are the same (0.888). We
clearly observe different performances for Student. Similarly, in Counterexample #2, Teacher is ResNet-50, Student is ResNet-18 and we
clearly observe different performances for Student. For each counterexample, the higher KD performance is in bold. Through these
2 counterexamples, we show that even at the same degree of smoothness, distilling from LS-trained teachers produces better students
compared to distilling from normally-trained teachers at lower T due to lower degree of systematic diffusion (LS and KD are compatible).

Counterexample Student α/T Average Entropy KD performance: Top1/Top5

#1 ResNet-50 α = 0.1/T = 1.0 0.888 83.742 / 96.778

ResNet-50 α = 0.0/T = 1.481375 0.888 82.603 / 96.496

#2 ResNet-18 α = 0.1/T = 1.0 0.888 80.946 / 95.312

ResNet-18 α = 0.0/T = 1.481375 0.888 80.808 / 95.547

Table H.3. Results of case study at moderately higher T with same degree of smoothness. In Counterexample #3, Teacher is ResNet-50,
Student is ResNet-18. Two α/T configurations have been identified such that average entropy of the teachers output are the same (5.188).
We clearly observe different performances for Student. Similarly, in Counterexample #4, Teacher is ResNet-50, Student is MobileNetV2
and we clearly observe different performances for Student. For each counterexample, the higher KD performance is in bold. Through
these 2 counterexamples, we show that even at the same degree of smoothness, distilling from LS-trained teachers produces poorer
students compared to distilling from normally-trained teachers. This is due to increased degree of systematic diffusion as T increases in
the presence of LS-trained teachers, thereby producing poor students (LS and KD are incompatible).

Counterexample Student α/T Average Entropy Student performance: Top1/Top5

#3 ResNet-18 α = 0.1/T = 3.0 5.118 78.196 / 95.213

ResNet-18 α = 0.0/T = 5.638 5.118 78.719 / 95.478

#4 MobileNetV2 α = 0.1/T = 3.0 5.118 78.961 / 95.306

MobileNetV2 α = 0.0/T = 5.638 5.118 79.341 / 95.461
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Table H.4. Results of case study at extremely high T with same degree of smoothness. In Counterexample #5, Teacher is ResNet-50,
Student is ResNet-18. Two α/T configurations have been identified such that average entropy of the teachers output are the same (5.298).
We clearly observe different performances for Student. Similarly, in Counterexample #6, Teacher is ResNet-50, Student is ResNet-50 and
we clearly observe different performances for Student. In Counterexample #7, Teacher is ResNet-50, Student is MobileNetV2 and we
clearly observe different performances for Student. For each counterexample, the higher KD performance is in bold. Through these 3
counterexamples, we show that even at the same degree of smoothness, distilling from LS-trained teachers produces extremely poorer
students compared to distilling from normally-trained teachers. This is due to extreme degree of systematic diffusion at very high T in the
presence of LS-trained teachers, thereby producing poor students (LS and KD are incompatible).

Counterexample Student α/T Average Entropy Student performance: Top1/Top5

#5 ResNet-18 α = 0.1/T = 64 5.298 67.161 / 93.062

ResNet-18 α = 0.0/T = 64 5.298 73.611 / 94.529

#6 ResNet-50 α = 0.1/T = 64 5.298 77.206 / 95.812

ResNet-50 α = 0.0/T = 64 5.298 79.784 / 95.927

#7 MobileNetV2 α = 0.1/T = 64 5.298 70.435 / 93.494

MobileNetV2 α = 0.0/T = 64 5.298 75.441 / 94.702

Table I.1. The table shows the class-wise accuracies for the 3
classes used in Figure1 (penultimate layer visualization). As one
can observe, in the presence of an LS-trained teacher, KD at higher
temperatures causes systematic diffusion thereby rendering KD
ineffective. We can see this for most classes at increased tem-
peratures shown below. That is, in the presence of an LS-trained
teacher as we increase the temperature from T = 1, the accuracies
for most of these classes drop due to systematic diffusion. This
can be seen in both training and validation sets. Do note that since
the validation set contains only 50 samples per class, class wise
validation accuracies may not be statistically reliable and contain
outlier points, and we suggest observing the general trend as shown
by the average for the set.

Set A (Figure1) T = 1 T = 2 T = 3

Train Val Train Val Train Val

miniature poodle 58.077 46.000 47.462 46.000 49.846 34.000

standard poodle 72.077 80.000 65.462 76.000 61.846 74.000

submarine 89.692 68.000 85.077 64.000 82.000 54.000

Average 73.282 64.667 66.000 62.000 64.564 54.000

While our proposed η (Table 3) to use centroids to charac-
terise distance between clusters should be very robust, here
we discuss an alternative.

In this alternative, we propose to replace centroid-centroid
distance with average pairwise distance between the pro-
jected penultimate layer representations. Note that this al-
ternative is more computationally expensive.

We perform additional experiments using this alternative
pairwise distance metric. We show that diffusion index
based on this alternative distance, ηpairwise, for all the 10
target classes used in the paper with this pairwise distance
below (see Table K.1).

As one can clearly observe, using this alternative (pairwise

Table I.2. The table shows the class-wise accuracies for the 5 tar-
gets classes used in our systematic diffusion analysis (η calcula-
tion as shown in 3). As one can observe, in the presence of an
LS-trained teacher, KD at higher temperatures causes systematic
diffusion thereby rendering KD ineffective. We can see this for
most classes at increased temperatures shown below. That is, in
the presence of an LS-trained teacher as we increase the temper-
ature from T = 1, the accuracies for most of these classes drop
due to systematic diffusion. This can be seen in both training and
validation sets. Do note that since the validation set contains only
50 samples per class, class wise validation accuracies may not
be statistically reliable and contain outlier points, and we suggest
observing the general trend as shown by the average for the set.

Set B T = 1 T = 2 T = 3

Train Val Train Val Train Val

Chesapeake Bay retriever 86.308 84.000 80.846 80.000 78.846 76.000

curly-coated retriever 83.826 76.000 81.199 82.000 80.296 74.000

flat-coated retriever 82.538 80.000 79.154 72.000 79.462 70.000

golden retriever 81.154 86.000 75.615 84.000 76.000 76.000

Labrador retriever 70.692 82.000 62.692 86.000 58.385 78.000

Average 80.900 81.600 75.900 80.800 74.600 74.800

distances) we obtain consistent findings for all 10 target
classes as that in the paper Table 3: negative ηpairwise for
S1, positive ηpairwise for S2.

L. Sample images
In this section, we include samples images from 3 differ-
ent classes used in the penultimate layer visualizations for
ImageNet-1K and CUB200-2011 experiments. Refer to
Figures L.1 and L.2 for ImageNet-1K and CUB200-2011
samples respectively.
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Table I.3. The table shows the class-wise accuracies for the 5 tar-
gets classes used in our systematic diffusion analysis (η calcula-
tion as shown in 3). As one can observe, in the presence of an
LS-trained teacher, KD at higher temperatures causes systematic
diffusion thereby rendering KD ineffective. We can see this for
most classes at increased temperatures shown below. That is, in
the presence of an LS-trained teacher as we increase the temper-
ature from T = 1, the accuracies for most of these classes drop
due to systematic diffusion. This can be seen in both training and
validation sets. Do note that since the validation set contains only
50 samples per class, class wise validation accuracies may not
be statistically reliable and contain outlier points, and we suggest
observing the general trend as shown by the average for the set.

Set B T = 1 T = 2 T = 3

Train Val Train Val Train Val

thunder snake 84.615 78.000 69.231 68.000 68.462 66.000

ringneck snake 70.000 86.000 78.923 82.000 77.538 78.000

hognose snake 76.692 60.000 60.154 56.000 52.000 42.000

water snake 86.154 64.000 67.385 60.000 68.385 72.000

king snake 58.077 78.000 80.385 72.000 79.692 78.000

Average 75.110 73.200 71.220 67.600 69.220 67.200

Table J.1. The table shows results of additional exploration of α
and T . CUB200-2011 dataset / MobileNetV2 setup is used for
these experiments.

T
α

α = 0 α = 0.1 α = 0.2

Teacher : ResNet-50 - 81.584 / 95.927 82.068 / 96.168 81.412 / 96.186

Student : MobileNetV2

T=1 81.144 / 95.677 81.731 / 95.754 81.498 / 95.892

T=2 81.895 / 95.858 80.609 / 95.470 79.997 / 95.599

T=3 81.257 / 95.677 78.961 / 95.306 76.959 / 95.202

T=64 75.441 / 94.702 70.435 / 93.494 63.738 / 91.992

Table K.1. Results of using alternative distance, i.e., pairwise dis-
tance, to define the diffusion index ηpairwise. Our findings on
systematic diffusion are consistent with using alternative distance
characterization.

Train: S1 Train: S2 Val: S1 Val: S2

Chesapeake Bay retriever -2.532 1.025 -2.919 1.154

curly-coated retriever -2.359 1.208 -3.068 1.354

flat-coated retriever -3.201 1.183 -3.643 1.237

golden retriever -2.307 0.895 -2.994 1.038

Labrador retriever -3.586 1.089 -4.337 1.355

thunder snake -5.438 1.642 -6.419 1.939

ringneck snake -5.680 1.814 -5.914 1.775

hognose snake -5.327 1.742 -5.393 1.707

water snake -5.266 1.672 -5.301 1.640

king snake -5.454 1.941 -5.783 1.998

Figure L.1. We show 5 samples of miniature poodle, stan-
dard poodle and submarine classes in top, middle and bottom rows
respectively. These samples are obtained from the ImageNet-1K
validation set (Deng et al., 2009). As one can observe minia-
ture poodle and standard poodle are semantically similar (They
belong to the same category poodle). On the other hand subma-
rine class is semantically dissimilar to both miniature poodle and
standard poodle classes. We can clearly observe the systematic
diffusion at increased T in the presence of an LS-trained teacher
for the semantically similar classes from the penultimate layer
visualizations shown in Figures 1, A.1 and A.2.

Figure L.2. We show 5 samples of Great grey shrike, logger-
head shrike and black footed albatross classes in top, middle and
bottom rows respectively. These samples are obtained from the
CUB200-2011 validation set (Wah et al., 2011). As one can ob-
serve Great grey shrike and loggerhead shrike are semantically
similar (They belong to the same category shrike). On the other
hand black footed albatross class is semantically dissimilar to both
Great grey shrike and loggerhead shrike classes. We can clearly
observe the systematic diffusion at increased T in the presence of
an LS-trained teacher for the semantically similar classes from the
penultimate layer visualizations shown in Figures A.3, A.4 and
A.5.


