
Adaptive Model Design for Markov Decision Process

Siyu Chen * 1 Donglin Yang * 1 Jiayang Li 2 Senmiao Wang 2 Zhuoran Yang 3 Zhaoran Wang 2

Abstract
In a Markov decision process (MDP), an agent in-
teracts with the environment via perceptions and
actions. During this process, the agent aims to
maximize its own gain. Hence, appropriate regu-
lations are often required, if we hope to take the
external costs/benefits of its actions into consider-
ation. In this paper, we study how to regulate such
an agent by redesigning model parameters that
can affect the rewards and/or the transition kernels.
We formulate this problem as a bilevel program,
in which the lower-level MDP is regulated by the
upper-level model designer. To solve the resulting
problem, we develop a scheme that allows the
designer to iteratively predict the agent’s reaction
by solving the MDP and then adaptively update
model parameters based on the predicted reaction.
The algorithm is first theoretically analyzed and
then empirically tested on several MDP models
arising in economics and robotics.

1. Introduction
Markov decision process (MDP) is a powerful tool for mod-
eling various dynamic planning problems arising in eco-
nomic, social, and engineering systems. It has found applica-
tions in such diverse fields as financial investment (Derman
et al., 1975), repair and maintenance (Golabi et al., 1982;
Ouyang, 2007), resource management (Little, 1955; Russell,
1972), inventory and production (Onstad & Rabbinge, 1985;
Symonds, 1971), as well as robotic control (Koenig et al.,
1998). In an MDP, an agent interacts with the environment
via perceptions and actions, seeking to find a policy that
maximizes its total reward. However, during this process, it
usually does not bear the external costs (Maskin, 1994) of
its actions. Although these externalities are not received by
the agent, they may be detrimental to other individuals in
the system or the system’s overall performance.

*Equal contribution 1Tsinghua University, Beijing, China
2Northwestern University, Evanston, IL, USA 3Yale University,
New Haven, CT, USA. Correspondence to: Zhaoran Wang <zhao-
ranwang@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Take a small economy with one manufacturer as an example.
At each decision epoch, the manufacturer determines the
number of raw materials to purchase as well as the number
of products to produce based on system states including the
inventory levels, the prices of the materials, and its cash
balance (the amount of money on hand), etc. In such an
economy, the social welfare is affected by not only the profit
of the manufacturer but also the pollution caused by the
production. Unfortunately, the primary goal of the manufac-
turer is only to maximize its own profit. The environmental
impact, however, is not under its consideration. Therefore,
when the manufacturer’s profit is maximized, the environ-
ment may have already been damaged by the pollution.

To mitigate the potential environmental impact, appropriate
regulation is often necessary to guide the self-interests of
the manufacturer towards a systemically optimal state. For
example, the government can impose pollution taxes on
high-emission products, which would not only reshape the
manufacturer’s reward function and affect the transition
of system states (e.g., the cash balance). To maximize the
profit under the existence of the taxes, the manufacturer
then needs to change its production plan. With such power
to influence the manufacturer’s decision, the government
then can adaptively design the pollution taxes such that the
resulting production plan maximizes the social welfare.

The above discussion has led us to the following question
that motivates our study: how can we adaptively design the
reward function/transition kernel in an MDP to induce a
desirable outcome that fulfills the designer’s objective?

The resulting problem may be cast the resulting problem as
a Stackelberg game (Stackelberg, 1952) in which the leader
designs parameters in the MDP while the follower solves the
parameterized MDP accordingly. To solve this Stackelberg
game, we adaptively improve the designer’s decision based
on the MDP agent’s best response. To this end, we first
predict that response by solving the parameterized MDP and
then search for a direction to improve the designer’s decision
by examining the sensitivity of that response with respect
to the parameters, which in turn requires differentiating
through the parameterized MDP.

Over the past decades, numerous algorithms have been pro-
posed for solving MDPs. Particularly, the rapid development
of reinforcement learning (RL) algorithms (Sutton & Barto,
2018) has become one of the keys to the recent success

Adaptive Model Design for Markov Decision Process

of modern machine learning enterprises. However, how to
efficiently differentiate through an MDP, i.e., calculate the
gradient of the optimal policy with respect to system pa-
rameters, is still an open question. This task is intrinsically
difficult, because (i) the optimal policy of an MDP is not
always unique; (ii) even if the optimal policy is unique, it
may still be discontinuous or too sensitive with respect to
parameters in the environment (Ahmed et al., 2019). To
overcome these difficulties, we propose to add an entropy
regularizer to the MDP agent’s policy. It results in a reg-
ularized MDP model (Geist et al., 2019), which assumes
bounded rationality on the agent’s behavior. As we shall see,
it promises to kill two birds—passing the difficulty posed by
multiple lower-level solutions and smoothing the functional
geometry at the upper level—with one stone.

However, even though the optimal policy of a regularized
MDP is differentiable, calculating the gradient of that op-
timal policy is still a computational burden, as it requires
repeatedly solving the regularized MDP exactly first. To
resolve this difficulty, a single-looped algorithm is devel-
oped in our work, which updates the MDP agent’s policy
and the parameters in the MDP simultaneously. We prove
that it converges to the optimal solution to the MDP design
problem and establish sufficient convergence conditions.

1.1. Related work

Extensive research effort has been devoted to study how
to design a non-cooperative game (Requate, 1993; Ehtamo
et al., 2002; Lawphongpanich & Hearn, 2004; Li et al., 2020;
Liu et al., 2021a). In the optimization literature, the result-
ing problem is often formulated as a bi-level program. We
refer the reader’s to Colson et al. (2007) for a comprehensive
overview on conventional bi-level programming algorithms.
In the machine learning literature, bi-level programming
has also found applications in many other fields, e.g., hyper-
parameter tuning (Franceschi et al., 2018), model-agnostic
meta-learning (Finn et al., 2017), actor-critic method (Hong
et al., 2020) and ML-based optimal auctions (Dütting et al.,
2019). These bi-level programs are typically solved by the
gradient method that proposes differentiating through the
lower-level optimization problem (Liu et al., 2021b; Ra-
jeswaran et al., 2019; Maclaurin et al., 2015), which is also
a base for our work.

More recently, a few recent works have studied how to
design an MDP. For example, Li et al. (2019) show that
imposing incentives on the reward function can be utilized
by social planners to achieve auxiliary objectives in an MDP
congestion game. Another example is an “AI economist”
introduced to regulate the economical systems with mis-
aligned or unethical incentives at the agent level (Hill et al.,
2021). Metelli et al. (2018) focuses on simultaneous shap-
ing of the transition model and the agent’s policy to improve
the total reward. However, the upper-level designer and
lower-level agent in Metelli et al. (2018) share the same

objective, which means they are fully cooperative without
an externality effect.

1.2. Notation

We define P(X) as the set of probability measures over
the measurable space X . For a differential function f , we
denote by ḟ the derivative of f . For a finite setX , we denote
by |X | the cardinality of setX . For function f : X → R and
g : X → R, we denote by ⟨f, g⟩X the inner product of f and
g on X . We denote by ∥M(x, y)∥x∼px,y∼py

a hybrid norm
of order px on X and of order py on Y , which is defined by
∥M(x, y)∥x∼px,y∼py

= ∥∥M(x, y)∥x∼px
∥y∼py

.

2. Background
2.1. Markov Decision Process

In reinforcement learning, a sequential decision making
problem is usually formulated as a Markov decision process.
An MDP can be characterized by a tuple (S,A, P, r, γ),
where S denotes the state space and A denotes the finite
action space, P : S × A × S → P(S) is the transition
kernel, r : S×A → R is the reward function, and γ ∈ [0, 1)
is the discount factor. A policy π(·|s) : A → P(A) is a
distribution over action space A at any state s ∈ S. Given
a policy π, we can define the corresponding value function
and state-action value function as

V π(s) = Eπ

∑
m≥0

γm · r(sm, am)

∣∣∣∣s0 = s

 , (1)

Qπ(s, a) = r(s, a) + γ
〈
P (·|s, a), V π(·)

〉
S , (2)

where (sm+1, am+1) ∼ Pπ(·, · | sm, am). Moreover, Qπ

and V π satisfies the following equilibrium

V π(s) =
〈
π(·|s), Qπ(·, s)

〉
A. (3)

Accordingly, the advantage function Aπ : S × A → R is
defined as

Aπ(s, a) = Qπ(s, a)− V π(s). (4)

The visitation measurement in an MDP is defined as

ẼπD0
(ds,da)

=(1− γ)
∑
m≥0

γm · P((sm, am) ∈ (ds,da)|π,D0),

EπD0
(ds) = (1− γ)

∑
m≥0

γm · P(sm ∈ ds|π,D0),

(5)

where D0 is the initial distribution of s0 over the state space.
It’s well known that the optimal state-action value function
Qπ∗

satisfies the Bellman optimality equation, which could
refer to

Qπ∗
(s, a) = r(s, a) + γ · EP (·|s,a)

[
V π∗

(·)
]
, (6)

Adaptive Model Design for Markov Decision Process

where the optimal state value function and the optimal policy
are defined as

V π∗
(s) = max

π
⟨π(·|s), Qπ∗

(s, ·)⟩A, (7)

π∗ = argmax
π
⟨π(·|s), Qπ∗

(s, ·)⟩A ∈ Π∗, (8)

where the set of optimal policies is defined as

Π∗(S,A,P,R, γ) =
{
π|V π(s) ≥ V π′

(s),∀π′,∀s
}
.

(9)

2.2. Regularized Markov Decision Process

Let Ω : R → R be a strictly convex and doubly differen-
tiable function and ϵ > 0 be the regularization parameter.
The value function Q∗

ϵ of optimal policy πϵ with policy
entropy regularization satisfies the following equilibrium

Q∗
ϵ (s, a) = r(s, a) + γ · EP (· | s,a) [V

∗
ϵ (·)] , (10)

where

V ∗
ϵ (s) = max

π
⟨π(·|s), Q∗

ϵ (s, ·)⟩A − ϵ−1
∑
a

Ω(π(a|s)).

(11)

The difference between definition 11 with definition 7 is
the entropy regularization item Ω/ϵ. Note that Vϵ is the
convex conjugate of ϵ−1

∑
Ω. The maximizing argument

π∗
ϵ is unique because the regularization entropy Ω is strictly

convex. The optimal policy π∗
ϵ can be derived through KKT

condition of definition 11 as follows

π∗
ϵ (a|s) = φ(ϵ · (Q∗

ϵ (s, a) + v))

s.t.
∑
a

π∗
ϵ (a|s) = 1, (12)

where v is the dual variable for the equilibrium∑
a π

∗
ϵ (a|s) = 1 and φ(x) = max{Ω̇−1(x), 0}. A classi-

cal example is the KL divergence
∑

a Ω(π) = ⟨π, log(π)⟩A.
Its convex conjugate is the smoothing maximum V ∗

ϵ (s) =
ln
∑

a expQ
∗
ϵ (s, a), and the optimal policy π∗

ϵ (a|s) =
expQ∗

ϵ (s, a)/
∑

a expQ
∗
ϵ (s, a).

3. Problem Formulation
In our model, the system environment is formulated as a
Markov Decision Process (MDP) in which the MDP agent
pursues its interest. The designer seeks to stimulate the
desired policy from the MDP agent and achieve the system’s
overall well-being by tuning some design parameter θ ∈ X
that sculpts both the reward and the transition of the MDP.
Such a process is modeled as the original MDP design
(OMD) problem,

OMD : max
θ∈X

F (θ, π∗),

s.t. π∗ ∈ Π∗(S,A, γ, P (θ), r(θ)), (13)

where the MDP is given by (S,A, γ, P (θ), r(θ)), Π∗ is
the set of agent’s optimal policies in response to the MDP
dynamics given by θ and F corresponds to the objective
function the designer aims to maximize. Note that the nega-
tive externality is inherent in the inconsistency between F
and the agent’s reward r(θ) in such a bilevel problem. Here,
the optimal responses of the MDP agent form a set Π∗ for
the sake that the optimal policy of the MDP agent might
not be unique. Specifically, when Π∗ has more than one
element, the OMD is non-singleton (Liu et al., 2021b) and
thereby ill-defined since different π ∈ Π∗ yields different
F in the presence of externality. Even though the optimal
policy is unique, the optimal policy can be discontinuous
concerning θ, rendering it hard to differentiate through the
optimal policy. For example, Ahmed et al. (2019) studied
the landscape of objective functions during the policy op-
timization and suggested that even without stochastically
high variance, the objective function can still fluctuate too
significantly for policy optimization.

To address the non-singleton and discontinuity problems dis-
cussed before, we assume bounded rationality in the MDP
agent and introduce policy regularization in the agent’s pol-
icy. Specifically, we formulate the problem of regularized
Markov design (RMD) as follows,

RMD : max
θ∈X

F (θ, π),

s.t. π = π∗
ϵ (S,A, γ, P (θ), r(θ)), (14)

where π∗
ϵ is the optimal policy for the ϵ-regularized MDP

given by (12). For example, π∗
ϵ corresponds to a softmax

policy if the KL divergence is used as the entropy regu-
larization. We thus see that the MDP agent with bounded
rationality follows a unique regularized policy π∗

ϵ , making
the RMD problem well-defined. We remark that π∗

ϵ also
enjoys good properties that gradient methods need, e.g., π∗

ϵ

is continuous concerning Q∗
ϵ following (12). Naturally, we

will ask how the RMD is related to the OMD. To answer
the question, we have the following theorem showing that
the optimal objective function of the RMD is upper/lower
bounded by the optimistic/pessimistic objective function of
the OMD.

Theorem 3.1 (Sub-optimality of the RMD). Assume that
the designer’s objective function F (θ, π) is LF,π,0-Lipschitz
continuous with respect to π under the norm ∥·∥a∼1,s∼∞.
For any positive ∆π ∈ R+ and ∆r ∈ R+ such that
∆r ≥ ϵ−1(γUΩ + (1 + γ) · log(2|A|/∆π)) where UΩ =
maxπ

∑
a Ω(π(a)), it holds that

max
θ

F (θ, π∗
ϵ (rθ))

≤ max
θ

max
π∈Π∗(P (θ),r̂(θ)),

r̂(·)∈R̂(∆r)

F (θ, π) + ∆πLF,π,0, (15)

Adaptive Model Design for Markov Decision Process

and that

max
θ

F (θ, π∗
ϵ (rθ))

≥ max
θ

min
π∈Π∗(P (θ),r̂(θ)),

r̂(·)∈R̂(∆r)

F (θ, π)−∆πLF,π,0. (16)

Here, R̂ is the set of reward functions such that R̂(∆r) ={
r̂ : S ×A×Θ→ R | ∥r̂ − r∥(θ,s,a)∼∞ < ∆r

}
where r

is the exact reward function and Π∗(P (θ), r̂(θ)) is a simpli-
fied denotion for Π∗(S,A, γ, P (θ), r̂(θ)).

Proof. See §A.1 for more details.

We remark that the first terms on the right-hand side of
(15) and (16) correspond to the optimistic and pessimistic
objective function of the OMD, respectively. Here, the op-
timism/pessimism is taken with respect to π ∈ Π∗(P, r̂)

where r̂ ∈ R̂(∆r). Therefore, Theorem 3.1 shows that the
RMD can be solved to a place amid the pessimistic and
the optimistic versions of the OMD up to an error term
∆πLF,π,0. Note that the optimistic and the pessimistic solu-
tions are intrinsic to the OMD problem. Particularly, when
the optimistic and pessimistic objective functions of the
OMD are consistent as ∆r → 0, Theorem 3.1 implies the
convergence of the optimal objective function of the RMD
as ∆r and ∆π both diminish by letting ϵ → ∞. Such a
result coincides with the intuition that the RMD approaches
the OMD when less regularization is involved. In the re-
maining part, we will focus on solving the RMD problem
as an alternative to the ill-posed OMD problem.

Benefits of regularization. By introducing regulariza-
tion in the MDP, the RMD problem defined in (14) has a
smoother landscape that facilitates adaptive design with gra-
dient methods (Ahmed et al., 2019). Besides, regularization
is introduced in many reinforcement learning algorithms,
e.g., Trust Region Policy Optimization (TRPO), with the
motivation to improve exploration and robustness (Schul-
man et al., 2015). Moreover, regularization can improve the
stability of the proposed algorithm, as is demonstrated in
(Chaudhari et al., 2019) that penalty induces objectives with
higher β-smoothness and improves stability. Theorem 5.4 in
the following section also shows that convergence is guaran-
teed with enough regularization. Therefore, we remark that
by transforming the OMD into RMD, the problem becomes
well-defined and easy to solve at the price of introducing
some sub-optimality characterized by Theorem 3.1. In §4.1,
it is further shown that using Kullback-Leibler (KL) Diver-
gence for regularization enables the gradient of the optimal
policy to be updated via a Bellman operator. Making use of
such a fact, we propose an easy-to-implement algorithm.

4. Algorithm
In this section, We first propose a general framework for
solving the RMD and then study a special case where the
design objective function is the total reward on the MDP.

4.1. General Framework for Solving RMD

For simplicity, we define an operator as follows

T θ
r,γ(V)(s, a) = r(s, a) + γEP (· | s,a;θ) [V (·)] . (17)

In the regularized MDP, the optimal policy πϵ
∗ is uniquely

determined by the Q function by (12). Hence, we have

∇θπϵ
∗(a | s) =

〈
∂πϵ

∗(a | s)
∂Q∗

ϵ (a
′ | s)

,∇θQ
∗
ϵ (a

′ | s)
〉

a′∈A
. (18)

Following (18), we show that the gradient of the regularized
policy π∗

ϵ with respect to the design parameter θ is given by

∇θπ
∗
ϵ (a|s) = ϵφ̇(ϵ(Q∗

ϵ (s, a) + v))
∑
a′

(
φ̇(ϵ(Q∗

ϵ (s, a
′) + v))

(∇θQ
∗
ϵ (s, a)−∇θQ

∗
ϵ (s, a

′))

)(∑
a′′

φ̇(ϵ(Q∗
ϵ (s, a

′′) + v))

)−1

.

(19)

See §A.2 for more details. Although (19) shows that it is
possible to take the gradient of the optimal policy in the
regularized MDP, it is still too complicated as we have to
calculate the dual variables v. To further simplify (19), we
propose using KL divergence as the entropy regularization
in the following discussions, i.e. Ω(x) = x lnx. It is
observed that φ(x) = Ω̇−1(x) = exp (x− 1) and we have
the expression simplified to

∇θπ
∗
ϵ (a|s) = ϵ · π∗

ϵ (s, a) · ∇θAϵ(s, a), (20)

where we have

∇θV
∗
ϵ (s) = Eπϵ

∗(· | s) [∇θQ
∗
ϵ (s, ·)] , (21)

∇θQ
∗
ϵ = T θ

∇θr,γ
(∇θV

∗
ϵ + V ∗

ϵ ∇θ lnP) , (22)

∇θA
∗
ϵ (s, a) = ∇θQ

∗
ϵ (s, a)−∇θV

∗
ϵ (s). (23)

See §A.2 for more details. Here we remark that if r, ∇θr,
and ∇θ lnP are globally bounded, it follows that ∇θQ

∗
ϵ ,

∇θV
∗
ϵ , ∇θA

∗
ϵ , and ∇θπ

∗
ϵ are also bounded, which is one

of the benefits stemmed from the entropy regularization
method. Now we are ready to present the gradient of the
designer’s objective function as follows

∇θF =
∂F

∂θ
+ ϵEρπ∗

ϵ

[
ρ−1 · ∂F

∂π
· ∇θAϵ

]
, (24)

where ρ : S → ∆(S) is a reference distribution for sam-
pling across the state space. Now we are ready to present

Adaptive Model Design for Markov Decision Process

the following general framework for solving the RMD (14)
with Ω(x) = x lnx.

Algorithm 1 General framework for solving the RMD (14)
with Ω(x) = x lnx

Input: outer iterations T , inner iterations K, learning rate
η, the gradient of pre-learned transition model ∇θ lnP
and the gradient of the reward function∇θr with respect
to θ.
Initialize parameter θ0, value function Q0

ϵ and its corre-
sponding gradient∇θ0Q

0
ϵ

for t = 0 to T − 1 do
for k = 0 to K − 1 do
πk
ϵ (·|s) ∝ exp (ϵQk

ϵ (s, ·))
V k
ϵ (s) = ϵ−1 ln (

∑
a exp (ϵQ

k
ϵ (s, a)))

∇θtVϵ
k(s) = EπK

ϵ

[
∇θtQ

K
ϵ (s, a)

]
Qk+1

ϵ = T θ
r,γ(Vϵ

k)

∇θtQ
k+1
ϵ = T θ

∇θtr,γ
(∇θtV

k
ϵ + V k

ϵ ∇θt lnP)

end for
∇θtA

K
ϵ (s, a) = ∇θtQ

K
ϵ (s, a)−∇θtVϵ

K(s)

∇θtF = ∂F
∂θt

+ ϵE
ρπK

ϵ

[
ρ−1 · ∂F

∂πK
ϵ
· ∇θtA

K
ϵ

]
θt+1 = θt + η∇θtF
Reintialize Q0

ϵ = QK
ϵ and ∇θt+1

Q0
ϵ = ∇θtQ

K
ϵ

end for
Output: Optimized parameter θT and its corresponding
upper-level objective F (θT , π

K
ϵ)

Algorithm Details. Algorithm 1 is a two-timescale,
model-based algorithm. Roughly, it consists of three steps.

1. Pre-learn how the designing parameters sculpt the
MDP environment. Specifically, we take the gradi-
ent of the transition model ∇θ lnP and the gradient
of the reward function ∇θr as the input. We remark
that learning the environment is actually quite a dif-
ficult task. Here, we only give some hints on learn-
ing the environmental model. It is possible to learn
the transition kernel P or the reward r in advance us-
ing an off-line training set (Lim & Autef, 2019). We
also remark that the exact derivatives ∇θt lnP and
∇θtr can be substituted by the stochastic gradients
learned via zeroth-order gradient estimators (Nesterov
& Spokoiny, 2017).

2. In the inner loop, we simultaneously update the regu-
larized policy πϵ and the state-action function Qϵ. Be-
sides, to calculate the gradient, we also update∇θQϵ.
If the inner loop is done in a sampling style, we re-
mark that the gradient ∇θtQϵ can be updated using
the same samples collected for learning the Q function
Qϵ. This is because the operator T for updating∇θQϵ

shares the same transition kernel with Qϵ. See §C for
a detailed sample-based algorithm.

3. In the outer loop, the gradient of upper-level objective
F can be obtained by (24). Here, we propose using
a reference distribution ρ ∈ ∆(S) for sampling over
the state space. Afterward, we update the parameter
θt while maintaining Qϵ and ∇θQϵ for the next inner
loop.

4.2. A Special Case: Total Reward As Design Objective

We study the case where the designer’s objective corre-
sponds to maximizing the discounted total reward

F (θ, π) = E

[∞∑
i=0

γi
uru(si, ai; θ) | s0 ∼ D0, P

π(θ)

]
,

(25)

where (si+1, ai+1) ∼ Pπ(·, · | si, ai; θ). Plugging (25) into
(14), we can see that the designer’s objective enjoys the
same transition kernel P and policy π as the MDP agent but
with a different reward function ru and discounted factor
γu. We remark that such a setting is common in many appli-
cations where the designer tempts to optimize a long-term
objective for the MDP environment design, e.g., long-term
economical performance in the taxation design example.
We first test whether Theorem 3.1 applies in such a case.
By the performance difference lemma (Kakade & Langford,
2002), it holds that

|F (θ, π1)− F (θ, π2)|

= (1− γu)
−1
∣∣∣Es∼Eπ1

D0

⟨π1 − π2, Qu⟩A
∣∣∣

≤ (1− γu)
−1 ∥π1 − π2∥a∼1,s∼∞ ∥Qu∥∞ , (26)

which suggests that F is Lipschitz continuous with respect
to π as long as ru is globally bounded. Thus, Theorem
3.1 holds consequently which shows the sub-optimality of
such an RMD. Next, we study the gradient of the designer’s
objective function. For the objective defined in (25), we
have the gradient given by the following lemma.

Lemma 4.1. With the policy regularized by Ω(x) = x lnx,
the gradient of objective (25) with respect to θ in a regular-
ized MDP is given by

∇θF (θ, π∗
ϵ (θ)) = (1− γu)

−1EẼπ∗
ϵ

D0

[
∇θru + ϵAu · ∇θAϵ

+ γuEP (θ) [∇θ lnP · Vu] ,

]
, (27)

where

Vu(s) = Eπ∗
ϵ
[Qu(s, a)] , (28)

Qu = T θ
ru,γu

(Vu) , (29)

Au(s, a) = Qu(s, a)− Vu(s). (30)

Proof. See §A.3 for detailed proof.

Adaptive Model Design for Markov Decision Process

By (27), it follows that the gradient of F can also be viewed
as a total reward following transition kernel P and policy
πϵ

∗, where the reward function is given by ∇θru + ϵAu ·
∇θAϵ + γuEP (θ)[∇θ lnP · Vu]. Hence, to calculate the
gradient of F , we can update Ṽ and Q̃ defined as follows,

Ṽ (s) = Eπ∗
ϵ

[
Q̃(s, ·)

]
, (31)

Q̃ = T θ
∇θru+ϵAu∇θAϵ,γu

(
Ṽ + Vu∇θ lnP

)
(32)

We summarize the algorithm for solving the RMD
with total reward (25) as the design objective as fol-
lows. Here in the inner loop, the calculation of

Algorithm 2 Framework for the RMD with the total reward
design objective

Input: outer iterations T , inner iterations K, learning rate
η, the gradient of pre-learned transition model ∇θ lnP
and the gradient of the reward function∇θr with respect
to θ, The initial state distribution D0.
Initialize θ0, Q0

ϵ ,∇θ0Q
0
ϵ , and Q̃0.

for t = 0 to T − 1 do
for k = 0 to K − 1 do
πk
ϵ (·|s) ∝ exp (ϵQk

ϵ (s, ·))
Calculate Vϵ

k,∇θtVϵ
k, V k

u ,∇θtA
k
ϵ , A

k
u, Ṽ

k

Qk+1
ϵ = Tr,γ(Vϵ

k)
∇θtQ

k+1
ϵ = T∇θtr,γ

(∇θtV
k
ϵ + V k

ϵ ∇θt lnP)

Qk+1
u = Tru,γu(V

k
u)

Q̃k+1 = T∇θtru+ϵAu∇θtAϵ,γu
(Ṽ k + V k

u∇θt lnP)
end for
∇θtF = ED0

[Ṽ K]
θt+1 = θt + η∇θtF
Reintialize Q0

ϵ = QK
ϵ , ∇θt+1

Q0
ϵ = ∇θtQ

K
ϵ , and

∇θt+1
Q0

ϵ = ∇θtQ
K
ϵ .

end for
Output: Optimized parameter θT and its corresponding
upper-level objective F (θT , π

K
ϵ)

Vϵ
k,∇θtVϵ

k, V k
u ,∇θtA

k
ϵ , A

k
u, Ṽ

k follows (11), (21), (28),
(23), (30), and (31) respectively, where we just need to sub-
stitute the optimal state value function and policy in the
equations with the corresponding variables calculated in the
kth inner loop. Note that the calculation of the gradient of
F is already inherent in the update of ∇θQϵ and Q̃ in the
inner loop, which is different from Algorithm 1. Combining
the discussions in this section, we give some discussions on
the regularization hyper-parameter ϵ.

How to determine ϵ? Note that ϵ decides how much reg-
ularization is involved in the policy of the lower-level agent.
Specifically, by setting a larger ϵ, less regularization is intro-
duced in the policy according to (11). On the one hand, a
larger ϵ produces a smaller gap in the designer’s objective
function according to Theorem 3.1. On the other hand, a
larger ϵ might result in a larger gradient by (24), indicating

that the policy becomes more sensitive to the change in the
environment, which might cause the algorithm to become
less stable. Besides, with less regularization, a larger ϵ can
make the landscape of F more complicated, which might
cause the adaptive design to fall into some local optimum.
Hence, we see that ϵ introduces a trade-off between the ac-
curacy of the objective function value and the convergence
performance of the algorithm. To utilize such a trade-off for
improved accuracy, stability, and convergence rate, we pro-
pose an ϵ adaptive strategy in §6. Experiments comparing
the performance of different ϵ and the ϵ-adaptive strategy
can be found in §7.

5. Convergence Analysis
In this section, we show that with suitable choices of the
learning rate η and maximal inner iteration number K, the
general framework (Algorithm 1) is guaranteed to converge
to the optimality. Here, we only study the convergence
results for Algorithm 1 which is more representative. We
remark that a similar result is obtainable for Algorithm 2
with some more careful analysis.

5.1. Convergence of the Inner Loop

We have the following Lemma showing the convergence
result of the inner loop under maximal iteration number K
for Algorithm 1.
Lemma 5.1 (Convergence of the gradient of Q∗

ϵ). For every
policy iteration step, it holds that∥∥Qk+1

ϵ −Q∗
ϵ

∥∥
∞ ≤ γ

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞ . (33)

After K inner iterations, it holds that∥∥∇θQ
K
ϵ −∇θQ

∗
ϵ

∥∥
θ∼2,(s,a)∼∞

≤ γKK
∥∥Q0

ϵ −Q∗
ϵ

∥∥
∞

·
(
4ϵ ∥∇θQ

∗
ϵ∥θ∼2,(s,a)∼∞ + ∥∇θP∥θ∼2,s′∼1,(s,a)∼∞

)
+ γK

∥∥∇θQ
0
ϵ −∇θQ

∗
ϵ

∥∥
θ∼2,(s,a)∼∞

(34)

Proof. See §A.4 for detailed proof.

From the above lemma, we see that ||Qϵ
k+1 − Q∗

ϵ ||∞ ∼
O(γK) and that

∥∥∇θQ
K
ϵ −∇θQ

∗
ϵ

∥∥
θ∼2,(s,a)∼∞ ∼

O(ϵγKK). Such a result holds by noting that the error
in Vϵ

k is coupled in the update of ∇θQϵ
k. With such a

convergence result for the inner loop, we are now ready to
establish the convergence result for the outer loop.

5.2. Convergence of the Outer Loop

To show the convergence result of Algorithm 1, we pro-
pose the following assumptions on the continuity and the
convexity of the objective function F .

Adaptive Model Design for Markov Decision Process

Assumption 5.2 (Continuity). We assume that F is LF,θ,0-
continuous, LF,θ,1-smooth with respect to θ, and is LF,π,0-
continuous, LF,π,1-smooth with respect to π. We also
assume that the transition kernel P is LP,θ,0-continuous,
LP,θ,1-smooth with respect to θ. The reward function r
is Br-bounded, Lr,θ,0-continuous, and Lr,θ,1-smooth with
respect to θ.

A formal statement of Assumption 5.2 is stated in §A.1 in-
cluding the norm we consider and the definition of Lipschitz
continuity/smooth.

Assumption 5.3 (Convexity). For given ϵ and lϵ(θ) =
−F (θ, π∗

ϵ (r(θ))), we assume lϵ(θ) to be convex and θ∗

to be the minimizer of lϵ(θ). Moreover, for any L > lϵ(θ
∗),

by letting CL = {θ | lϵ(θ)− lϵ(θ
∗) < L} be the sublevel

set with respect to L, we assume that CL is compact and
bounded such that ∥θ − θ∗∥2 < DL for any θ ∈ CL.

Here, Assumption 5.2 ensures that (1) the environment
including the reward and the transition kernel evolves
smoothly with the design parameter θ; (2) the objective
function F (θ, π) is partially Lipschitz-smooth with respect
to θ and π. In the OMD (13), note that π∗ can still be sen-
sitive to the change in the MDP environment. That’s why
we introduce entropy regularization for the adaptive design.
Now, we are ready to present the following theorem on the
convergence rate of the algorithm.

Theorem 5.4 (Convergence of Algorithm 1). Let η be the
learning rate and ϵ be the regularization parameter. Sup-
pose that Assumptions 5.2 and 5.3 hold. Suppose it holds
for the maximal inner iteration number K and the learning
rate η that

β⊤AK

(
β̂ + 4ηα

)
≤
(
1− 4

3
ηLl,θ,1

)
, (35)

where

AK = γK

[
1 0

C0K 1

]
, (36)

β, α, β̂ are positive two-element vectors, and C0, Ll,θ,1 are
positive coefficients. Moreover, C0, Ll,θ,1, α, β, β̂ only de-
pends polynomially on ϵ. It then holds for algorithm 1 that

lϵ(θT)− lϵ(θ
∗) ≤ O(T−1/2) (37)

Proof. See §A.6 for detailed proof.

Here, by condition (35), for an admitted learning rate η,
we allow

(
KγK

)−1 ≥ poly(ϵ), which means that K has
a logarithmic growth rate with respect to ϵ. Therefore, we
are able to do just a few inner updates before updating the
parameter θ, even with a large ϵ where the agent’s policy
becomes sensitive to the changes in the environment. So,
there is another trade-off, i.e., a large ϵ improves accuracy

but requires more inner iterations to guarantee convergence.
Moreover, by (37) we show that the algorithm has a sublin-
ear convergence rate. Specifically, as T →∞, the objective
function will converge to a sub-optimal solution at a rate of
O(T−1/2).

6. Extensions
6.1. ϵ-Adaptive Strategy

Note that ϵ introduces trade-offs between stability, landscape
complexity, required inner iteration number, and accuracy.
Specifically, a smaller ϵ introduces more regularization and
smoothens the optimization landscape to improve stability
while requiring fewer inner iterations. On the other hand, a
larger ϵ improves accuracy in the design objective function.
To make better use of entropy regularization, we propose
an ϵ-adaptive strategy that controls the amount of regular-
ization by tuning ϵ during the algorithm. Specifically, at
the beginning of the algorithm, we suggest using a smaller
ϵ that simplifies the optimization landscape, avoids some
local optimum, and helps push the design parameter θ in
the target direction. Then during the update, we adjust ϵ to
a larger value step by step. Eventually, the algorithm ends
with a large ϵ and results in a smaller gap in the objective
function. The strategy is further tested in our experiments
to verify our idea. For §7 for detailed examples.

6.2. Sample-based Version

Note that the updates in Algorithm 1 take the form of Bell-
man update. Hence, we can conduct the algorithm in a
sample-based style if we only have access to the changes
in the environment, i.e., ∇θ lnP and ∇θr, without direct
knowledge of P and r. Moreover, to deal with a continuous
state space, we use a function approximator for estimating
Qϵ and∇θQϵ. The sample-based algorithm is given in the
Appendix. See C for more details.

7. Experiments
7.1. Tax Design for Macroeconomic Model

We test our method on a bi-level macroeconomic model
based on (Hill et al., 2021) which seeks to explain the im-
pact of tax rates on the social welfare and market behaviours
including hours worked and consumption of goods. We as-
sume there is a representative household employed agent in
the lower level. At each time step t, the household agent
chooses an action with nt hours’ work and ci,t consumption,
where i ∈ {1, · · · ,M} denotes the category of goods, each
with a price before tax pi. Let x denote the income tax rate
and yi denote the consumption tax rate for good i, respec-
tively. The utility for the household agent at times step t is
given by ut = σ(st)− θn2

t +
∏M

i=1 (ci,t/ (pi(1 + yi)))
αi ,

where the product-of-consumption term corresponds to the

Adaptive Model Design for Markov Decision Process

Cobb-Douglas function (Roth et al., 2016) and σ(st) is the
reward for accumulative asset st updated at each time step
by st+1 = st+(1−x)wnt−

∑M
i=1 ci,t. The social welfare

at time step t is given by vt = ξ(st)+
∑M

i=1 ci,t/(1+ yi)+

ϕ ln
(∑M

i=1 ci,tyi/(1 + yi) + wxnt

)
, where ξ(·) is the re-

ward for the accumulative asset, ϕ is a positive constant.
While the household agent follows a policy that maximizes
its discounted accumulative reward U =

∑∞
t=0 γ

t
1ut, the

social planner aims to maximize the discounted total social
welfare V =

∑∞
t=0 γ

t
2vt by tuning the tax rates.

0 100 200 300
epochs

6

8

10

12

14

16

so
ci

al
 w

el
fa

re

(a)

1
5
30
50

0 100 200 300
epochs

6

8

10

12

14

16

so
ci

al
 w

el
fa

re

(c)

0 100 200 300
epochs

6

8

10

12

14

16

so
ci

al
 w

el
fa

re

(d)

method
Bayesian
Adaptive

0 20 40
epochs

-150
-50

0

5
10
20

so
ci

al
 w

el
fa

re

(b)

K
1
3
5
10

Figure 1. The design objective (discounted total social welfare)
with respect to epochs. (a) are tested with ϵ set to 1, 5, 30 and 50.
(b) are tested with K set to 1, 3, 5 and 10. (c) adopts the ϵ-adaptive
strategy, i.e., ϵ is set to 1, 5, 10, 20, 35, 50 at epoch 0, 30, 60, 90,
150, 200, respectively. (d) compares the adaptive strategy with
the lower-level RL and upper-level Bayesian Optimization method
used in (Mguni et al., 2019). The adaptation of ϵ follows (c) and
we only update the consumption tax rate yi while income tax rate
x remains unchanged.

7.2. Workbench Position Design for Two-Ankle Robotic
Arm

We also test our method on a 2D robotic arm environ-
ment. We assume that there is a workbench to process
several components where the position of each compo-
nent is fixed. There is a robotic arm with two ankles to
fetch these components and put them on the workbench
for processing. The designer aims to find the optimal
workbench position p = (x, y) that takes the least en-
ergy consumption for the robotic arm to finish the com-
ponent transportation task. We adopt discretized angles θ
and angular velocities ω of these two ankles as the joint
state space. The action space corresponds to the represen-
tative angular acceleration a ∈ {−1, 0, 1}2 at each time
step for these two ankles. The transition kernel is given by
(θt+1, ωt+1) = (θt + ωt, ωt + at). The agent or the robotic
arm is programmed to take the squared distance from its end

to the workbench and squared angular velocities of its two
ankles as the reward. The designer’s objective corresponds
to minimizing the discounted total energy consumption. For
simplicity, we assume the energy consumption for each
movement to be ct = |at · ωt|.

0 50 100 150
epochs

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

to
ta

l e
ne

rg
y

(a)

= 1
= 5
= 20

0 50 100 150
epochs

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

to
ta

l e
ne

rg
y

(b)

Adaptive

Figure 2. The total energy consumption with respect to epochs. (a)
corresponds to setting different ϵ and (b) corresponds to using the
ϵ-adaptive strategy, i.e., ϵ is set to 1, 5, 10, 15, 20 at epoch 0, 30,
60, 90, 120, respectively.

7.3. Result Analysis

Selection of ϵ. We see from both (a) in Figure 1 and (a) in
Figure 2 that a median ϵ is generally better than an extreme
ϵ, in the sense of both convergence rate and accuracy in
the design objective function. For example, in the first
experiment on taxation design, we observe that a small ϵ
yields a large gap in the optimal design objective (ϵ = 1 in
(a), Figure 1). On the other hand, Setting a large ϵ might
cause the algorithm to be trapped by some local optimum
(ϵ = 50 in (a), Figure 1; ϵ = 20 in (a), Figure 2). Even as
the algorithm eventually reaches the optimum (ϵ = 30 in
(a), Figure 1), it produces large variation during the update
and has a slower convergence rate.

ϵ-adaptive strategy. From both (c) in Figure 1 and (b)
in Figure 2, we can observe that the ϵ-adaptive strategy
converges fast to the optimal in both experiments. Hence,
if the ϵ-adaptive strategy is properly designed, hopefully,
we can escape some local optimums and reach the global
optimum with a small gap in the design objective.

The influence of inner iterations K (35) in Theorem 5.4
indicates that the convergence of Algorithm 1 is guaranteed
with enough inner iterations. Intuitively, without enough
inner iterations, especially when the initial value function is
far from the optimal one, we may encounter a misleading
in the optimization phase. To further explore the influence
of inner iterations K, we conduct experiments with K set
to 1, 3, 5, and 10, respectively. (b) in Figure 1 shows that a
small K can mislead the designing parameter at the starting
point and yield an unstable learning curve. Such an effect
is illustrated by the fact that we do not accurately estimate
the agent’s optimal policy under a small number of internal
iterations.

Adaptive Model Design for Markov Decision Process

Comparison with Bayesian Optimization We conduct
an experiment comparing the algorithm in Mguni et al.
(2019) and ours. Mguni et al. (2019) uses the Bayesian
Optimization to determine the optimal modifications of the
agents’ rewards that result in optimal system performance.
To make the comparison fair, in (d) of Figure 1, we only tune
the consumption tax rates for both Bayesian Optimization
and the adaptive strategy. Results show that our method per-
forms competitively with the Bayesian Optimization method
when designing the reward only.

Acknowledgements
Zhaoran Wang acknowledges National Science Foundation
(Awards 2048075, 2008827, 2015568, 1934931), Simons
Institute (Theory of Reinforcement Learning), Amazon, J.P.
Morgan, and Two Sigma for their supports.

References
Ahmed, Z., Le Roux, N., Norouzi, M., and Schuurmans, D.

Understanding the impact of entropy on policy optimiza-
tion. In International conference on machine learning,
pp. 151–160. PMLR, 2019.

Asadi, K. and Littman, M. L. An alternative softmax opera-
tor for reinforcement learning. In International Confer-
ence on Machine Learning, pp. 243–252. PMLR, 2017.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide val-
leys. Journal of Statistical Mechanics: Theory and Ex-
periment, 2019(12):124018, 2019.

Colson, B., Marcotte, P., and Savard, G. An overview of
bilevel optimization. Annals of operations research, 153
(1):235–256, 2007.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen,
J., and Song, L. Sbeed: Convergent reinforcement learn-
ing with nonlinear function approximation. In Interna-
tional Conference on Machine Learning, pp. 1125–1134.
PMLR, 2018.

Derman, C., Lieberman, G. J., and Ross, S. M. A stochastic
sequential allocation model. Operations Research, 23(6):
1120–1130, 1975.

Dütting, P., Feng, Z., Narasimhan, H., Parkes, D., and Ravin-
dranath, S. S. Optimal auctions through deep learning.
In International Conference on Machine Learning, pp.
1706–1715. PMLR, 2019.

Ehtamo, H., Kitti, M., and Hämäläinen, R. P. Recent studies
on incentive design problems in game theory and man-
agement science. In Optimal Control and Differential
Games, pp. 121–134. Springer, 2002.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135.
PMLR, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Geist, M., Scherrer, B., and Pietquin, O. A theory of regu-
larized markov decision processes. In International Con-
ference on Machine Learning, pp. 2160–2169. PMLR,
2019.

Golabi, K., Kulkarni, R. B., and Way, G. B. A statewide
pavement management system. Interfaces, 12(6):5–21,
1982.

Hill, E., Bardoscia, M., and Turrell, A. Solving heteroge-
neous general equilibrium economic models with deep
reinforcement learning. arXiv preprint arXiv:2103.16977,
2021.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale framework for bilevel optimization: Complex-
ity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In In Proc. 19th In-
ternational Conference on Machine Learning. Citeseer,
2002.

Koenig, S., Simmons, R., et al. Xavier: A robot navigation
architecture based on partially observable markov deci-
sion process models. Artificial Intelligence Based Mobile
Robotics: Case Studies of Successful Robot Systems,
(partially):91–122, 1998.

Lawphongpanich, S. and Hearn, D. W. An mpec approach
to second-best toll pricing. Mathematical programming,
101(1):33–55, 2004.

Li, J., Yu, J., Nie, Y., and Wang, Z. End-to-end learning and
intervention in games. Advances in Neural Information
Processing Systems, 33:16653–16665, 2020.

Li, S. H., Yu, Y., Calderone, D., Ratliff, L., and Açrkmeşe,
B. Tolling for constraint satisfaction in markov decision
process congestion games. In 2019 American Control
Conference (ACC), pp. 1238–1243. IEEE, 2019.

Lim, S. H. and Autef, A. Kernel-based reinforcement learn-
ing in robust markov decision processes. In Interna-
tional Conference on Machine Learning, pp. 3973–3981.
PMLR, 2019.

Little, J. D. The use of storage water in a hydroelectric
system. Journal of the Operations Research Society of
America, 3(2):187–197, 1955.

Adaptive Model Design for Markov Decision Process

Liu, B., Li, J., Yang, Z., Wai, H.-T., Hong, M., Nie, Y. M.,
and Wang, Z. Inducing equilibria via incentives: Si-
multaneous design-and-play finds global optima. arXiv
preprint arXiv:2110.01212, 2021a.

Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. Investigat-
ing bi-level optimization for learning and vision from a
unified perspective: A survey and beyond. arXiv preprint
arXiv:2101.11517, 2021b.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International conference on machine learn-
ing, pp. 2113–2122. PMLR, 2015.

Maskin, E. S. The invisible hand and externalities. The
American Economic Review, 84(2):333–337, 1994.

Metelli, A. M., Mutti, M., and Restelli, M. Configurable
markov decision processes. In International Conference
on Machine Learning, pp. 3491–3500. PMLR, 2018.

Mguni, D., Jennings, J., Macua, S. V., Sison, E., Ceppi, S.,
and De Cote, E. M. Coordinating the crowd: Inducing
desirable equilibria in non-cooperative systems. arXiv
preprint arXiv:1901.10923, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning, 2013.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17(2):527–566, 2017.

Onstad, D. W. and Rabbinge, R. Dynamic programming
and the computation of economic injury levels for crop
disease control. Agricultural Systems, 18(4):207–226,
1985.

Ouyang, Y. Pavement resurfacing planning for highway
networks: parametric policy iteration approach. Journal
of infrastructure systems, 13(1):65–71, 2007.

Rajeswaran, A., Finn, C., Kakade, S., and Levine, S. Meta-
learning with implicit gradients. 2019.

Requate, T. Pollution control in a cournot duopoly via taxes
or permits. Journal of Economics, 58(3):255–291, 1993.

Roth, A., Ullman, J., and Wu, Z. S. Watch and learn: Op-
timizing from revealed preferences feedback. In Pro-
ceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 949–962, 2016.

Russell, C. B. An optimal policy for operating a multipur-
pose reservoir. Operations Research, 20(6):1181–1189,
1972.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Stackelberg, H. v. Theory of the market economy. 1952.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Symonds, G. H. Solution method for a class of stochastic
scheduling problems for the production of a single com-
modity. Operations Research, 19(6):1459–1466, 1971.

Adaptive Model Design for Markov Decision Process

A. Proofs of Main Results
A.1. Proof of Theorem 3.1

Proof. Let ϵ = (∆r)
−1 · (γUΩ + (1 + γ) · log(2|A|/∆π)), there exists a optimal parameter θ and a unique optimal policy

πϵ
∗(rθ) that maximize the objective function F . Let R̂ = {r′ : S ×A× X → R | ∥r′ − rθ∥∞ < ∆r}. According to

Lemma B.1, there exists r̂ ∈ R̂ and π∗(r̂) satisfying the optimal Bellman equation and ∥π∗(r̂)− πϵ
∗(rθ)∥a∼1,s∼∞ < ∆π .

Thus, for any θ, it follows that

F (θ, π∗
ϵ (rθ)) ≤ F (θ, π∗(r̂)) + ∆πLF,π,0

≤ sup
π∈Π∗(P (θ),r̂(θ)),r̂(θ)∈R̂

F (θ, π) + ∆πLF,π,0. (38)

Here, the first inequality holds since ∥F (θ, π∗(rθ))− F (θ, π∗(r̂))∥ ≤ ∆πLF,π,0. Similarly, we have

F (θ, π∗
ϵ (rθ)) ≥ F (θ, π∗(r̂))−∆πLF,π,0

≥ inf
π∈Π∗(P (θ),r̂(θ)),r̂(θ)∈R̂

F (θ, π)−∆πLF,π,0. (39)

Taking an supreme over the parameter θ gives the result. Thus we complete our proof.

A.2. The formulation of gradients with respect to the design parameter θ

Plugging (12) into
∑

a π
∗
ϵ (a|s) = 1, it holds that∑

a

φ(ϵ(Q∗
ϵ (s, a) + v)) = 1. (40)

Take the derivative on both sides of the above equation, we have∑
a

φ̇(ϵ(Q∗
ϵ (s, a) + v))(∇θQ

∗
ϵ (s, a) +∇θv) = 0. (41)

Following the above equilibrium, it holds that

∇θv = −
∑

a φ̇(ϵ(Q
∗
ϵ (s, a) + v))∇θQ

∗
ϵ (s, a)∑

a φ̇(ϵ(Q
∗
ϵ (s, a) + v))

. (42)

Thus, the gradient of the regularized policy π∗
ϵ with respect to the design parameter θ is given by

∇θπ
∗
ϵ (a|s) = ϵφ̇(ϵ(Q∗

ϵ (s, a) + v))

(
∇θQ

∗
ϵ (s, a) +∇θv

)

=

ϵφ̇(ϵ(Q∗
ϵ (s, a) + v))

∑
a′

(
φ̇(ϵ(Q∗

ϵ (s, a
′) + v))(∇θQ

∗
ϵ (s, a)−∇θQ

∗
ϵ (s, a

′))

)
∑

a′′ φ̇(ϵ(Q∗
ϵ (s, a

′′) + v))
, (43)

where the second equality holds by plugging in (42).

Consider a special case where Ω(x) = x lnx. It is observed that φ(x) = ˙Ω−1(x) = exp (x− 1). The above expression can
be simplified as follows

∇θπ
∗
ϵ (a|s) = ϵ · π∗

ϵ (s, a)
∑
a′

π∗
ϵ (s, a

′)(∇θQ
∗
ϵ (s, a)−∇θQ

∗
ϵ (s, a

′))

= ϵ · π∗
ϵ (s, a)(∇θQ

∗
ϵ (s, a)−∇θV

∗
ϵ (s, a

′))

= ϵ · π∗
ϵ (s, a)∇θA

∗
ϵ (s, a). (44)

Here, the second equality holds by the fact that ∇θV
∗
ϵ (s) = Eπϵ

∗(· | s) [∇θQ
∗
ϵ (s, ·)], which is derived from the property of

Legendre transformation∇Q∗
ϵ (s,a)

V ∗
ϵ (s, a) = π∗

ϵ (a | s). The last equality follows from that∇θA
∗
ϵ (s, a) = ∇θQ

∗
ϵ (s, a)−

∇θV
∗
ϵ (s).

Taking the derivative on both sides of (10), we obtain

∇θQ
∗
ϵ (s, a) = ∇θr(s, a) + γEP (· | s,a;θ) [∇θV

∗
ϵ (·)] + γEP (· | s,a;θ) [V

∗
ϵ (·)∇θ lnP (· | s, a)]

= T θ
∇θr,γ

(∇θV
∗
ϵ + V ∗

ϵ ∇θ lnP) . (45)

Adaptive Model Design for Markov Decision Process

A.3. Proof of Lemma 4.1

Proof. If we fix ru and P , by the performance difference lemma, it holds that

dF |ru,P= (1− γu)
−1E

s∼Eπ∗
ϵ +dπ∗

ϵ
D0

[⟨dπ∗
ϵ (· | s), Q∗

u(s, ·)⟩A] . (46)

If we fix πϵ
∗, it holds that

dF | πϵ
∗ = (1− γu)

−1E
s∼Eπϵ∗

D0

[⟨πϵ
∗,dru + γu⟨dP, V ∗

u ⟩S′⟩A] . (47)

Note that

dπ∗
ϵ = ϵπ∗

ϵdAϵ. (48)

Therefore, we have

∇θF = (1− γu)
−1E

(s,a)∼Ẽπ∗
ϵ

D0

[ϵ∇θAϵ ·Q∗
u + dru + γu⟨dP, V ∗

u ⟩S′]

= (1− γu)
−1E

(s,a)∼Ẽπ∗
ϵ

D0

[ϵ∇θAϵ ·A∗
u + dru + γu⟨dP, V ∗

u ⟩S′] (49)

A.4. Proof of Lemma 5.1

Proof. The contraction of Qϵ in (33) for each policy iteration step was shown in various forms, e.g.(Asadi & Littman, 2017;
Dai et al., 2018; Geist et al., 2019). Following their results, we have∥∥Qk+1

ϵ −Q∗
ϵ

∥∥
∞ ≤ γ

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞ . (50)

Since πϵ = softmax(ϵQϵ), it holds that

∥∥πk
ϵ − π∗

ϵ

∥∥
a∼1,s∼∞ =

∥∥∥∥∥∥
∑

a∈A

∣∣∣eϵQk
ϵ (·,a)

∑
a∈A eϵQ

∗
ϵ (·,a) − eϵQ

∗
ϵ (·,a)

∑
a∈A eϵQϵ

k(·,a)
∣∣∣∑

a∈A eϵQ
k
ϵ (·,a)

∑
a∈A eϵQ

∗
ϵ (·,a)

∥∥∥∥∥∥
s∼∞

≤

∥∥∥∥∥∥
∑

a∈A

∣∣∣eϵQk
ϵ − eϵQ

∗
ϵ

∣∣∣∑a∈A eϵQ
∗
ϵ +

∑
a∈A eϵQ

∗
ϵ

∣∣∣∑a∈A eϵQ
k
ϵ −

∑
a∈A eϵQ

∗
ϵ

∣∣∣∑
a∈A eϵQ

k
ϵ

∑
a∈A eϵQ

∗
ϵ

∥∥∥∥∥∥
s∼∞

=

∥∥∥∥∥∥
∑

a∈A

∣∣∣eϵQk
ϵ − eϵQ

∗
ϵ

∣∣∣+ ∣∣∣∑a∈A eϵQ
k
ϵ −

∑
a∈A eϵQ

∗
ϵ

∣∣∣∑
a∈A eϵQ

k
ϵ

∥∥∥∥∥∥
s∼∞

. (51)

Here, the second inequality can be derived from the Cauchy–Schwartz inequality. Similarly, it also holds that

∥∥πk
ϵ − πϵ

∗∥∥
a∼1,s∼∞ ≤

∥∥∥∥∥∥
∑

a∈A

∣∣∣eϵQk
ϵ − eϵQ

∗
ϵ

∣∣∣+ ∣∣∣∑a∈A eϵQ
k
ϵ −

∑
a∈A eϵQ

∗
ϵ

∣∣∣∑
a∈A eϵQ

∗
ϵ

∥∥∥∥∥∥
s∼∞

(52)

Combining two inequality above, (51) is further bounded by

∥∥πk
ϵ − π∗

ϵ

∥∥
a∼1,s∼∞ ≤ 2

∥∥∥∥∥∥
∑

a∈A

∣∣∣eϵQk
ϵ − eϵQ

∗
ϵ

∣∣∣+ ∣∣∣∑a∈A eϵQ
k
ϵ −

∑
a∈A eϵQ

∗
ϵ

∣∣∣∑
a∈A eϵQ

k
ϵ +

∑
a∈A eϵQ

∗
ϵ

∥∥∥∥∥∥
s∼∞

≤ 4

∥∥∥∥∥
∑

a∈A eϵmax{Qk
ϵ ,Q

∗
ϵ}(1− e−ϵ|Qk

ϵ−Q∗
ϵ |)∑

a∈A eϵmax{Qk
ϵ ,Q

∗
ϵ}

∥∥∥∥∥
s∼∞

= 4
∥∥∥1− e−ϵ|Qk

ϵ−Qϵ
∗|
∥∥∥
∞

≤ 4ϵ
∥∥Qk

ϵ −Q∗
ϵ

∥∥
∞ . (53)

Adaptive Model Design for Markov Decision Process

For simplicity, we denote ∥·∥θ∼2,(s,a)∼∞ by ∥·∥2,∞. Now for the iteration of the gradient of the state-action value function,
it holds that∥∥∇θQ

k+1
ϵ −∇θQ

∗
ϵ

∥∥
2,∞ ≤ γ ·

(∥∥∥⟨Pπk
ϵ ,∇θQ

k
ϵ ⟩S×A − ⟨Pπ∗

ϵ ,∇θQ
∗
ϵ ⟩S×A

∥∥∥
2,∞

+
∥∥⟨∇θP, V

k
ϵ − V ∗

ϵ ⟩S
∥∥
2,∞

)
≤ γ ·

(∥∥∥⟨Pπk
ϵ − Pπ∗

ϵ ,∇θQ
∗
ϵ ⟩S×A

∥∥∥
2,∞

+
∥∥∥⟨Pπk

ϵ ,∇θQϵ
k −∇θQ

∗
ϵ ⟩S×A

∥∥∥
2,∞

)
+ γ ∥∇θP∥θ∼2,s′∼1,s,a∼∞

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞

≤ γ ·
(∥∥∥⟨Pπk

ϵ − Pπ∗
ϵ ,1⟩S×A

∥∥∥
∞
· ∥∇θQ

∗
ϵ∥2,∞ +

∥∥∇θQ
k
ϵ −∇θQ

∗
ϵ

∥∥
2,∞

)
+ γ ∥∇θP∥θ∼2,s′∼1,s,a∼∞

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞ . (54)

Here, the first inequality can be derived from the Bellman Equation and the second inequality follows the triangle
inequality. The last inequality can be derived from the Cauchy–Schwartz inequality and the fact that

∥∥V k
ϵ − V ∗

ϵ

∥∥
∞ ≤

∥⟨πk
ϵ , Q

k
ϵ (s, ·)−Q∗

ϵ (s, ·)⟩A∥∞ ≤ ∥Qk
ϵ −Q∗

ϵ∥∞.

Considering
∥∥∥⟨Pπk

ϵ − Pπ∗
ϵ ,1⟩S×A

∥∥∥
∞

=
∥∥∥∑s′,a′ P (s′|·, ·)πk

ϵ (a
′ | s′)− P (s′|·, ·)π∗

ϵ (a
′ | s′)

∥∥∥
∞

, which is bounded by∥∥∑
s′ P (s′|·, ·)

∥∥πk
ϵ (· | s′)− π∗

ϵ (· | s′)
∥∥
1

∥∥
∞, we obtain

∥∥∇θQ
k+1
ϵ −∇θQ

∗
ϵ

∥∥
2,∞ ≤ γ ·

(∥∥∥∥∥∑
s′

P (s′|·, ·)
∥∥πk

ϵ (· | s′)− π∗
ϵ (· | s′)

∥∥
1

∥∥∥∥∥
∞

∥∇θQ
∗
ϵ∥2,∞ +

∥∥∇θQ
k
ϵ −∇θQ

∗
ϵ

∥∥
2,∞

)
+ γ ∥∇θP∥θ∼2,s′∼1,s,a∼∞

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞

≤ γ ·
(∥∥πk

ϵ − π∗
ϵ

∥∥
a∼1,s∼∞ · ∥∇θQ

∗
ϵ∥2,∞ +

∥∥∇θQ
k
ϵ −∇θQ

∗
ϵ

∥∥
2,∞

)
+ γ ∥∇θP∥θ∼2,s′∼1,s,a∼∞

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞ . (55)

Plugging (53) into (55), we obtain∥∥∇θQ
k+1
ϵ −∇θQ

∗
ϵ

∥∥
2,∞ ≤ γ ·

(
∥∇θQ

∗
ϵ∥2,∞ ·

(
4ϵ
∥∥Qk

ϵ −Q∗
ϵ

∥∥
∞

)
+
∥∥∇θQ

k
ϵ −∇θQ

∗
ϵ

∥∥
2,∞

)
+ γ ∥∇θP∥θ∼2,s′∼1,s,a∼∞

∥∥Qk
ϵ −Q∗

ϵ

∥∥
∞

≤ γ ·
(
∥∇θQ

∗
ϵ∥2,∞ ·

(
4ϵγk

∥∥Q0
ϵ −Q∗

ϵ

∥∥
∞

)
+
∥∥∇θQ

k
ϵ −∇θQ

∗
ϵ

∥∥
2,∞

)
+ γk+1 ∥∇θP∥θ2,s′∼1,s,a∼∞

∥∥Q0
ϵ −Q∗

ϵ

∥∥
∞

= γk+1 · C1 · C2 + γ
∥∥∇θQ

k
ϵ −∇θQ

∗
ϵ

∥∥
2,∞ , (56)

where C1 = 4ϵ · ∥∇θQ
∗
ϵ∥2,∞ + ∥∇θP∥θ∼2,s′∼1,s,a∼∞ and C2 =

∥∥Q0
ϵ −Q∗

ϵ

∥∥
∞. Taking this inequality for k =

0, 1, · · · ,K − 1 and summing them up give∥∥∇θQϵ
K −∇θQ

∗
ϵ

∥∥
2,∞ ≤ γK

(
KC1C2 +

∥∥∇θQ
0
ϵ −∇θQ

∗
ϵ

∥∥
2,∞

)
= γK

(
4ϵK ∥∇θQ

∗
ϵ∥2,∞ +K ∥∇θP∥θ∼2,s′∼1,s,a∼∞

)
·
∥∥Q0

ϵ −Q∗
ϵ

∥∥
∞

+ γK
∥∥∇θQ

0
ϵ −∇θQ

∗
ϵ

∥∥
2,∞ (57)

A.5. Restatement of Assumption 5.2

Assumption A.1 (Continuity, restatement of Assumption 5.2). We assume F (θ, π) is twice differentiable and that

|F (θ1, ·)− F (θ2, ·)|
∥θ1 − θ2∥2

≤ LF,θ,0,
∥∇θF (θ1, ·)−∇θF (θ2, ·)∥2

∥θ1 − θ2∥2
≤ LF,θ,1, (58)

|F (·, π1)− F (·, π2)|
∥π1 − π2∥a∼1,s∼∞

≤ LF,π,0,
∥∇πF (·, π1)−∇πF (·, π2)∥a∼∞,s∼1

∥π1 − π2∥a∼1,s∼∞
≤ LF,π,1. (59)

Adaptive Model Design for Markov Decision Process

We also assume that r(·, ·; θ) and P (· | ·, ·; θ) are twice differentiable and that

∥r(s, a; θ1)− r(s, a; θ2)∥θ∼2,(s,a)∼∞

∥θ1 − θ2∥2
≤ Lr,θ,0,

∥∇θr(s, a; θ1)−∇θr(s, a; θ2)∥θ∼2,(s,a)∼∞

∥θ1 − θ2∥2
< Lr,θ,1, (60)

∥∇θP (s′ | s, a; θ1)−∇θP (s′ | s, a; θ2)∥θ∼2,s′∼1,(s,a)∼∞

∥θ1 − θ2∥2
≤ LP,θ,1, (61)

∥P (s′ | s, a; θ1)− P (s′ | s, a; θ2)∥s′∼1,(s,a)∼∞

∥θ1 − θ2∥2
≤ LP,θ,0. (62)

Moreover, |r(s, a; θ)| < Br for ∀s ∈ S, a ∈ A, θ ∈ X .

A.6. Proof of Theorem 5.4

Assumption A.2. Any α-sublevel set is compact and bounded, i.e., ∥Sα − θ∗∥ ≤ Dα.

Conditions. We require the following two conditions.

Condition 1: σK ≜ β⊤AK

(
β̂ + (1 + λ−1)ηα

)
≤ (1− ηLl,θ,1(1 + λ)) . (63)

Condition 2: w ≜
1− 2λ

1− λ
− ηLl,θ,1

2
> 0. (64)

We remark that by taking λ = 1/3, Condition 2 can be guaranteed by Condition 1 and these two conditions are summarized
by (35).

Proof. Suppose we have Q∗
ϵ
1, Q∗

ϵ
2,∇θQ

∗
ϵ
1,∇θQ

∗
ϵ
2. Let π∗

ϵ (· | s) ∝ exp {ϵQ(· | s)}. Following the result in A.4, it then
holds that

∥π∗
ϵ
1 − π∗

ϵ
2∥a∼1,s∼∞ ≤ 4ϵ∥Q∗

ϵ
1 −Q∗

ϵ
2∥(s,a)∼∞. (65)

Suppose V ∗
ϵ (s) = ⟨π,Q∗

ϵ (s, ·)⟩A − ϵ−1
∑

a∈A Ω(π(a | s)), it then holds that

∥V ∗
ϵ
1 − V ∗

ϵ
2∥s∼∞ ≤ ∥⟨π∗

ϵ
1, Q∗

ϵ
1(s, ·)−Q∗

ϵ
2(s, ·)⟩A∥s∼∞ ≤ ∥Q∗

ϵ
1 −Q∗

ϵ
2∥(s,a)∼∞. (66)

For simplicity, we denote both ∥·∥θ∼2,(s,a)∼∞ and ∥·∥θ∼2,s∼∞ by ∥·∥2,∞. Suppose∇θV
∗
ϵ (s) = ⟨π∗

ϵ (· | s),∇θQ
∗
ϵ (s, ·)⟩A,

it then holds that

∥∇θV
∗
ϵ
1 −∇θV

∗
ϵ
2∥2,∞ ≤ ∥⟨π∗

ϵ
1 − π∗

ϵ
2,∇θQ

∗
ϵ
1⟩A∥2,∞ + ∥⟨π∗

ϵ
2,∇θQ

∗
ϵ
1 −∇θQ

∗
ϵ
2⟩A∥2,∞

≤ 4ϵ∥∇θQ
∗
ϵ
1∥2,∞∥Q∗

ϵ
1 −Q∗

ϵ
2∥∞ + ∥∇θQ

∗
ϵ
1 −∇θQ

∗
ϵ
2∥2,∞. (67)

Suppose ∇θAϵ(·, s) = ∇θQ
∗
ϵ (·, s)−∇θV

∗
ϵ (s), it then holds that

∥∇θAϵ
1 −∇θAϵ

2∥2,∞ ≤ ∥∇θQ
∗
ϵ
1 −∇θQ

∗
ϵ
2∥2,∞ + ∥∇θV

∗
ϵ
1 −∇θV

∗
ϵ
2∥2,∞

≤ 4ϵ∥∇θQ
∗
ϵ
1∥2,∞∥Q∗

ϵ
1 −Q∗

ϵ
2∥∞ + 2∥∇θQ

∗
ϵ
1 −∇θQ

∗
ϵ
2∥2,∞. (68)

Suppose −∇θlϵ = ∂F/∂θ + ϵ⟨∂F/∂π∗
ϵ , π

∗
ϵ∇θAϵ⟩S×A, it then holds that

∥∇θl
1
ϵ −∇θl

2
ϵ∥2 ≤

∥∥∥∂F 1

∂θ
− ∂F 2

∂θ

∥∥∥
2
+ ϵ
∥∥∥〈 ∂F 1

∂π∗
ϵ
1 −

∂F 2

∂π∗
ϵ
2 , π

∗
ϵ
1∇θAϵ

1
〉
S×A

∥∥∥
2

+ ϵ
∥∥∥〈 ∂F2

∂π∗
ϵ
2 , π

∗
ϵ
1∇θAϵ

1 − π∗
ϵ
2 ∇θAϵ

2
〉
S×A

∥∥∥
2

≤ LF,θ,1∥θ1 − θ2∥2 + ϵ
∥∥∥ ∂F 1

∂π∗
ϵ
1 −

∂F 2

∂π∗
ϵ
2

∥∥∥
a∼∞,s∼1

∥∇θAϵ
1∥∞

+ ϵ∥ ∂F
2

∂π∗
ϵ
2 ∥a∼∞,s∼1

(
∥
(
π∗
ϵ
1 − π∗

ϵ
2
)
∇θAϵ

1∥a∼1,s∼∞ + ∥π∗
ϵ
2 (∇θAϵ

1 −∇θAϵ
2
)
∥a∼1,s∼∞

)
.

(69)

Adaptive Model Design for Markov Decision Process

Plugging (65) and assumption (A.1) into (69), it then holds that

∥∇θl
1
ϵ −∇θl

2
ϵ∥2 ≤ LF,θ,1∥θ1 − θ2∥+ 4ϵ2LF,π,1∥∇θAϵ

1∥2,∞∥Q∗
ϵ
1 −Q∗

ϵ
2∥∞

+ ϵLF,π,0

(
4ϵ∥∇θAϵ

1∥2,∞∥Q∗
ϵ
1 −Q∗

ϵ
2∥∞ + ∥∇θAϵ

1 −∇θAϵ
2∥2,∞

)
≤ LF,θ,1∥θ1 − θ2∥+ 4ϵ2(LF,π,1 + LF,π,0)∥∇θAϵ

1∥2,∞∥Q∗
ϵ
1 −Q∗

ϵ
2∥∞

+ ϵLF,π,0

(
4ϵ∥∇θQ

∗
ϵ
1∥2,∞∥Q∗

ϵ
1 −Q∗

ϵ
2∥∞ + 2∥∇θQ

∗
ϵ
1 −∇θQ

∗
ϵ
2∥2,∞

)
≤ LF,θ,1∥θ1 − θ2∥2 + 4ϵ2(2LF,π,1 + 3LF,π,0)∥∇θQ

∗
ϵ
1∥2,∞∥Q∗

ϵ
1 −Q∗

ϵ
2∥∞

+ 2ϵLF,π,0∥∇θQ
∗
ϵ
1 −∇θQ

∗
ϵ
2∥2,∞. (70)

Here, the second inequality holds by plugging (68), and the third inequality follows from the fact that ∥∇θAϵ
1∥2,∞ ≤

2∥∇θQ
∗
ϵ
1∥2,∞.

For θ during the update, we have the following inequality

∥V ∗
ϵ ∥∞ =

∥∥∥∥∥⟨π∗
ϵ (· | s), Q∗

ϵ (s, ·)⟩A − ϵ−1
∑
a∈A

Ω(π∗
ϵ (a | s))

∥∥∥∥∥
s∼∞

≤ ∥Q∗
ϵ∥∞ + ϵ−1UΩ. (71)

Using the above results, we have

∥Q∗
ϵ (s, a)∥∞ = ∥r(s, a) + γ⟨P (· | s, a), V ∗

ϵ (·)⟩S∥∞
≤ ∥r∥∞ + γ ∥V ∗

ϵ ∥∞
≤ ∥r∥∞ + γ ·

(
∥Q∗

ϵ∥∞ + ϵ−1UΩ

)
. (72)

We can further derive that

∥Q∗
ϵ∥∞ ≤ (1− γ)−1

(
Br + γϵ−1UΩ

)
, (73)

∥V ∗
ϵ ∥∞ ≤ (1− γ)−1

(
Br + ϵ−1UΩ

)
, (74)

∥∇θQ
∗
ϵ∥2,∞ ≤ (1− γ)−1 ∥∇θr(s, a) + γ⟨∇θP (· | s, a), V ∗

ϵ (·)⟩S∥2,∞
≤ (1− γ)−1

(
Lr,θ,0 + γLP,θ,0(1− γ)−1

(
Br + ϵ−1UΩ

))
, (75)

∥∇θV
∗
ϵ ∥2,∞ ≤ ∥∇θQ

∗
ϵ∥2,∞ . (76)

For θ1, θ2 during the update, it holds that

∥Q∗
ϵ (θ1)−Q∗

ϵ (θ2)∥∞ ≤ (1− γ)−1 ∥r(θ1)− r(θ2)∥∞ ≤ (1− γ)−1Lr,θ,0 ∥θ1 − θ2∥2 = α1 ∥θ1 − θ2∥2 , (77)

and that

∥∇θQ
∗
ϵ (θ1)−∇θQ

∗
ϵ (θ2)∥2,∞ ≤ ∥∇θr(θ1)−∇θr(θ2)∥2,∞ + γ∥∇θP (θ1)−∇θP (θ2)∥θ∼2,s′∼1,(s,a)∼∞∥V ∗

ϵ (θ1)∥∞
+ γ ∥∇θP (θ2)∥θ∼2,s′∼1,(s,a)∼∞ ∥Q

∗
ϵ (θ1)−Q∗

ϵ (θ2)∥∞
+ γ ∥P (θ1)− P (θ2)∥s′∼1,(s,a)∼∞ ∥∇θV

∗
ϵ (θ1)∥2,∞

+ γ
(
4ϵ∥∇θQ

∗
ϵ (θ1)∥∞∥Q∗

ϵ (θ1)−Q∗
ϵ (θ2)∥∞ + ∥∇θQ

∗
ϵ (θ1)−∇θQ

∗
ϵ (θ2)∥2,∞

)
≤ (1− γ)α2 ∥θ1 − θ2∥2 + γ ∥∇θQ

∗
ϵ (θ1)−∇θQ

∗
ϵ (θ2)∥2,∞ , (78)

which implies that

∥∇θQ
∗
ϵ (θ1)−∇θQ

∗
ϵ (θ2)∥2,∞ ≤ α2 ∥θ1 − θ2∥2 . (79)

Here, we remark that α1 ∼ O(1) and that α2 ∼ O(ϵ). As θ updates from θt to θt+1, it holds that∥∥Q∗
ϵ (θt+1)−Q0

ϵ(θt+1)
∥∥
∞ ≤

∥∥Q∗
ϵ (θt)−QK

ϵ (θt)
∥∥
∞ + ∥Q∗

ϵ (θt)−Q∗
ϵ (θt+1)∥∞

≤
∥∥Q∗

ϵ (θt)−QK
ϵ (θt)

∥∥
∞ + α1 ∥θt+1 − θt∥2 , (80)

Adaptive Model Design for Markov Decision Process

and that ∥∥∇θQ
∗
ϵ (θt+1)−∇θQ

0
ϵ(θt+1)

∥∥
2,∞ ≤

∥∥∇θQ
∗
ϵ (θt)−∇θQ

K
ϵ (θt)

∥∥
2,∞ + ∥∇θQ

∗
ϵ (θt)−∇θQ

∗
ϵ (θt+1)∥2,∞

≤
∥∥∇θQ

∗
ϵ (θt)−∇θQ

K
ϵ (θt)

∥∥
2,∞ + α2 ∥θt+1 − θt∥2 . (81)

Here, we note that

η−1 ∥θt+1 − θt∥2 =
∥∥∇θl

K
ϵ (θt)

∥∥
2
≤
∥∥∇θl

K
ϵ (θt)−∇θlϵ(θt)

∥∥
2
+ ∥∇θlϵ(θt)∥2 . (82)

By (70), we have∥∥∇θlϵ(θt)−∇θl
K
ϵ (θt)

∥∥
2
≤ 4ϵ2(2LF,π,1 + 3LF,π,0)∥∇θQ

∗
ϵ (θt)∥θ∼2,(s,a)∼∞

∥∥Q∗
ϵ (θt)−QK

ϵ (θt)
∥∥
∞

+ 2ϵLF,π,0

∥∥∇θQ
∗
ϵ (θt)−∇θQ

K
ϵ (θt)

∥∥
2,∞

= β1

∥∥Q∗
ϵ (θt)−QK

ϵ (θt)
∥∥
∞ + β2

∥∥∇θQ
∗
ϵ (θt)−∇θQ

K
ϵ (θt)

∥∥
2,∞ , (83)

where β1 ∼ O(ϵ2) and β2 ∼ O(ϵ). We also have

∥∇θlϵ(θ1)−∇θlϵ(θ2)∥2 ≤ (LF,θ,1 + β1α1 + β2α2) ∥θ1 − θ2∥2 = Ll,θ,1 ∥θ1 − θ2∥2 , (84)

where Ll,θ,1 ∼ O(ϵ2). We define

dk,t =

[∥∥Q∗
ϵ (θt)−Qk

ϵ (θt)
∥∥
∞∥∥∇θQ

∗
ϵ (θt)−∇θQ

k
ϵ (θt)

∥∥
2,∞

]
, AK = γK

[
1 0

C0K 1

]
, (85)

α =

[
α1

α2

]
, β =

[
β1

β2

]
, β̂ =

[
β−1
1

β−1
2

]
. (86)

where C0 ∼ O(ϵ). Combining (80), (81), (82), and (83), we have

d0,t+1 ≤ dK,t + ηα
(
β⊤dK,t + ∥∇θlϵ(θt)∥2

)
=
(
I + ηαβ⊤) dK,t + ηα ∥∇θlϵ(θt)∥2 . (87)

Moreover, we have

dK,t ≤ AKd0,t. (88)

Let 0 < λ < 1. Let’s consider the following two cases.

Case 1. β⊤dK,t > λ ∥∇θlϵ(θt)∥2. We have the following inequality∥∥∇θl
K
ϵ (θt)

∥∥
2
≤ ∥∇θlϵ(θt)∥2 + β⊤dK,t ≤ (1 + λ−1)β⊤dK,t. (89)

Moreover, it holds that

β⊤dK,t+1 ≤ β⊤AK

((
I + ηαβ⊤) dK,t + ηα ∥∇θlϵ(θt)∥2

)
≤ β⊤AK

((
I + ηαβ⊤)+ ηαλ−1β⊤) dK,t

≤ β⊤AK

(
β̂ + (1 + λ−1)ηα

)
β⊤dK,t

= σKβ⊤dK,t. (90)

Suppose that case 1 holds for t = T1, · · · , T2 − 1. By (90), we have

∥∇θlϵ(θT2)∥2 ≤ λ−1β⊤dK,T2 ≤ σT2−T1

K β⊤dK,T1 . (91)

Moreover, it follows that∥∥∥∥∥
T2−1∑
t=T1

η∇θl
K
ϵ (θt)

∥∥∥∥∥
2

≤ η

T2−1∑
t=T1

∥∥∇θl
K
ϵ (θt)

∥∥
2
≤ η(1 + λ−1)β⊤

T2−1∑
t=T1

dK,t

≤ η(1 + λ−1)β⊤dK,T1

1− σT2−T1

K

1− σK

≤ η(1 + λ−1)β⊤AKd0,T1
· 1

1− σK
, (92)

Adaptive Model Design for Markov Decision Process

which indicates that

∥θT2
− θ∗∥2 ≤ ∥θT1

− θ∗∥2 +
η(1 + λ−1)

1− σK
β⊤AKd0,T1

= ΘT2
. (93)

Combining (91) and (93), we have

lϵ(θT2)− lϵ(θ
∗) ≤ ∥∇θlϵ(θT2)∥2 ∥θT2 − θ∗∥2 ≤ σT2−T1

K β⊤AKd0,T1ΘT2 . (94)

Such a result shows that the function value error descends exponentially in case 1.

Case 2. β⊤dK,t ≤ λ ∥∇θlϵ(θt)∥2. We have the following inequalities∥∥∇θl
K
ϵ (θt)

∥∥
2
≤ ∥∇θlϵ(θt)∥2 + β⊤dK,t ≤ (1 + λ) ∥∇θlϵ(θt)∥2 , (95)∥∥∇θl

K
ϵ (θt)

∥∥
2
≥ ∥∇θlϵ(θt)∥2 − β⊤dK,t ≥ (1− λ) ∥∇θlϵ(θt)∥2 . (96)

Moreover, it holds that

β⊤dK,t+1 ≤ β⊤AK

((
I + ηαβ⊤) dK,t + ηα ∥∇θlϵ(θt)∥2

)
≤ β⊤AK

((
β̂ + ηα

)
β⊤dK,t + ηα ∥∇θlϵ(θt)∥2

)
≤ λβ⊤AK

(
β̂ + (1 + λ−1)ηα

)
∥∇θlϵ(θt)∥2

= λσK ∥∇θlϵ(θt)∥2 (97)

Note that

∥∇θlϵ(θt)∥2 =
∥∥∇θlϵ(θt+1 + η∇θl

K
ϵ (θt))

∥∥
2

≤ ∥∇θlϵ(θt+1)∥2 + ηLl,θ,1

∥∥∇θl
K
ϵ (θt)

∥∥
2

≤ ∥∇θlϵ(θt+1)∥2 + ηLl,θ,1(1 + λ) ∥∇θlϵ(θt)∥2 . (98)

Hence, it follows that

λ ∥∇θlϵ(θt+1)∥2 ≥ λ (1− ηLl,θ,1(1 + λ)) ∥∇θlϵ(θt)∥2
≥ (1− ηLl,θ,1(1 + λ))σ−1

K β⊤dK,t+1

≥ β⊤dK,t+1, (99)

where the last inequality holds by condition 1 (see (63)). Here (99) indicates that case 1 will automatically hold for
t+ 1, t+ 2, · · · . Moreover, we have

lϵ(θt+1) ≤ lϵ(θt)− η⟨∇θlϵ(θt),∇θl
K
ϵ (θt)⟩+

η2Ll,θ,1

2

∥∥∇θl
K
ϵ (θt)

∥∥2
2

≤ lϵ(θt)− η

(
1− ηLl,θ,1

2

)∥∥∇θl
K
ϵ (θt)

∥∥2
2
+ η⟨∇θl

K
ϵ (θt)−∇θlϵ(θt),∇θl

K
ϵ (θt)⟩

≤ lϵ(θt)− η

(
1− 2λ

1− λ
− ηLl,θ,1

2

)∥∥∇θl
K
ϵ (θt)

∥∥2
2

= lϵ(θt)− ηw
∥∥∇θl

K
ϵ (θt)

∥∥2
2
, (100)

where the last second inequality holds by noting that

∥∥∇θl
K
ϵ (θt)−∇θlϵ(θt)

∥∥
2
≤ β⊤dK,t ≤ λ ∥∇θlϵ(θt)∥2 ≤

λ

1− λ

∥∥∇θl
K
ϵ (θt)

∥∥
2
. (101)

By Condition 2, lϵ(θt) will decent thereafter for t+ 1, t+ 2, · · · .

Adaptive Model Design for Markov Decision Process

Convergence Result. By the above discussion, it is easy to show that if case 1 happens, it only holds for t = 0, 1, · · · , τ−1,
where τ is a positive integer. After case 1 is ended, case 2 will follow thereafter for t = τ, τ + 1, · · · . Hence, we can split
the updates into two stage, i.e., the gradient convergence stage which holds for t = 0, 1, · · · , τ − 1 where case 1 holds and
the value convergence stage which holds for t = τ, τ + 1, · · · where case 2 holds.

Gradient Convergence Stage. Following (94), we have for t = τ that

lϵ(θτ)− lϵ(θ
∗) ≤ στ

Kβ⊤AKd0,0Θ = Lτ , (102)

where

Θ =

(
∥θ0 − θ∗∥2 +

η(1 + λ−1)

1− σK
β⊤AKd0,0

)
, (103)

and it also holds that

∥θτ − θ∗∥2 ≤ Θ. (104)

Value Convergence Stage. By (100), we can verify that lϵ(θτ) ≥ lϵ(θτ+1) ≥ · · · . Hence, by Assumption A.2, it holds
that ∥θt − θ∗∥2 ≤ DLτ

for t = τ, τ + 1, · · · . For t = τ, τ + 1, · · · , note that

lϵ(θt+1)− (1− 2w)lϵ(θt)

≤ 2wlϵ(θt)− ηw
∥∥∇θl

K
ϵ (θt)

∥∥2
2

≤ 2w (lϵ(θ
∗) + ⟨∇θlϵ(θt), θt − θ∗⟩)− ηw

∥∥∇θl
K
ϵ (θt)

∥∥2
2

= 2wlϵ(θ
∗)− wη−1

(
η2
∥∥∇θl

K
ϵ (θt)

∥∥2
2
− 2η⟨∇θl

K
ϵ (θt), θt − θ∗⟩+ ∥θt − θ∗∥22

)
+ wη−1 ∥θt − θ∗∥22 + 2w

〈
∇θlϵ(θt)−∇θl

K
ϵ (θt), θt − θ∗

〉
≤ 2wlϵ(θ

∗) + wη−1 ∥θt − θ∗∥22 − wη−1 ∥θt+1 − θ∗∥22 +
2wλDLτ

1− λ

∥∥∇θl
K
ϵ (θt)

∥∥
2
. (105)

Taking the inequality for t = τ, τ + 1, · · · , T − 1 and summing them up give

2w

T∑
t=τ+1

lϵ(θt) + (1− 2w) (lϵ(θT)− lϵ(θτ))

≤ 2w(T − τ)lϵ(θ
∗)− wη−1

(
∥θT − θ∗∥22 − ∥θτ − θ∗∥22

)
+

2wλDLτ

1− λ

T−1∑
t=τ

∥∥∇θl
K
ϵ (θt)

∥∥
2

≤ 2w(T − τ)lϵ(θ
∗) + wη−1 ∥θτ − θ∗∥22 +

2wλDLτ

1− λ

√√√√(T − τ)

T∑
t=τ

∥∇θlKϵ (θt)∥22

≤ 2w(T − τ)lϵ(θ
∗) + wη−1 ∥θτ − θ∗∥22 +

2wλDLτ

1− λ

√
(T − τ) · lϵ(θτ)− lϵ(θ∗)

ηw
. (106)

Rearranging the inequality gives

1

T − τ

T∑
t=τ+1

(lϵ(θt)− lϵ(θ
∗)) ≤ 1

T − τ
·
(
η−1

2
∥θτ − θ∗∥22 +

1− 2ω

2ω
(lϵ(θτ)− lϵ(θ

∗))

)

+
λDLτ

1− λ
·

√
lϵ(θτ)− lϵ(θ∗)

ηω(T − τ)
. (107)

Adaptive Model Design for Markov Decision Process

Since lϵ(θt) decreases at this stage, it follows that

lϵ(θT)− lϵ(θ
∗)

≤ min

{
1

T − τ

(
η−1

2
Θ2 +

1− 2ω

2ω
Lτ

)
+

λDLτ

1− λ

√
Lτ

ηω(T − τ)
,Lτ

}

≤ max
0≤τ≤T

min

{
1

T − τ

(
η−1

2
Θ2 +

1− 2ω

2ω
Lτ

)
+

λDLτ

1− λ

√
Lτ

ηω(T − τ)
,Lτ

}
. (108)

For a given τ , the first term in the right hand side of (108) diminishes at a rate of O(T−1/2). However, Lτ diminishes at a
rate of O(στ

K) where σK < 1 by our condition. Hence, for sufficiently large T , the maximum is reached when τ << T ,
which means that the first term is dominant as T →∞. Therefore, we have that the convergence rate of the design objective
function is at least of O(T−1/2), which completes the proof of Theorem 5.4.

B. Technical Results
Lemma B.1 (Projection). For any ∆r > 0,∆π > 0, if it holds that

ε > ∆−1
r

(
(1 + γ)

(
Ω̇(1)− Ω̇

(
∆π

2|A|

))
+ γUΩ

)
, (109)

then for any rε : S ×A× X → R, there exists r : S ×A× X → R and π∗ ∈ Π∗(S,A, γ, P, r) satisfying

∥r − rε∥(s,a,θ)∼∞ < ∆r. (110)

and

∥π∗(a | s)− π∗
ε (a | s) ∥a∼1,s∼∞ < ∆π. (111)

Proof. Lemma B.1 states that with sufficiently large ϵ, for any reward and regularized optimal policy pair (rε, π∗
ϵ), there

exists another reward r and corresponding exact optimal policy π∗ ∈ Π∗(S,A, γ, P, r) that are close enough to (rε, π
∗
ϵ).

Such a property can be viewed as the projection of regularized reward-policy pair onto the exact reward-policy pair. We give
a proof by construction. Let ∆Q = (1 + γ)

−1 (
∆r − γε−1UΩ

)
and δ = ∆π/ (2|A|), it holds that ∆Q > ε−1(Ω̇(1)−Ω̇(δ)).

For simplicity, let Qε = Q∗
ε (·; rε) , πε = π∗

ε (·; rε). We give a proof by construction. For a given state s, we simplify our
denotion by Q(i) = Q (s, ai) and πϵ(i) = πϵ(ai | s).

Let k = argmin
i,πε(i)≥δ

πε(i) and B = {i;πε(i) < δ}, we first construct Q∗ and π∗ by

Q∗(i) =

{
Qε(k), πε(i) ≥ δ,

Qε(i), πε(i) < δ.

π∗(i) =

πε(i) +
1
|B|
∑
j∈B

πε(j), πε(i) ≥ δ,

0, πε(i) < δ.

Following the π∗ defined above, it holds that

∥π∗ − πε∥a∼1,s∼∞ = sup
s

 |A| − |B|
|B|

∑
j∈B

πε(j) +
∑
i∈B

πε(i)


= sup

s

 |A|
|B|

∑
j∈B

πε(j)

 ≤ |A|δ < ∆π.

For any i such that πε(i) ≥ δ, we have

|Qε(i)−Qε(k)| = ε−1
(
Ω̇ (πε(i))− Ω̇ (πε(k))

)
≤ ε−1(Ω̇(1)− Ω̇(δ))

≤ ∆Q.

Adaptive Model Design for Markov Decision Process

The first equality holds by the property of Legendre transformation Qϵ(i) = Ω̇(πϵ(i)). Hence, we conclude that
∥Qε −Q∗∥(s,a)∼∞ ≤ ∆Q. By now, it remains to see whether ∥rε − r∗∥(s,a)∼∞ < ∆r. Here, by the Bellman equa-
tion, we have

∥r(s, a)− rε(s, a)∥(s,a)∼∞ ≤∥Q
∗(s, a; r)−Qε (s, a; rε)∥(s,a)∼∞

+ γ · ∥ ⟨P (· | s, a), |V ∗(·; r)− Vε (·; rε)|⟩S′ ∥(s,a)∼∞

≤∥Q∗(s, a; r)−Qε (s, a; rε)∥(s,a)∼∞ + γ · ∥V ∗(s; r)− Vε(s; r)∥s∼∞

≤(1 + γ) ∥Q∗(s, a; r)−Qε (s, a; rε)∥(s,a)∼∞ + γε−1UΩ

<∆r.

Here, the first inequality can be derived from the Cauchy–Schwartz inequality. The second inequality holds since
⟨P (· | s, a), |V ∗(·; r)− Vε (·; rε)|⟩S′ is bounded by ∥V ∗(s; r)− Vε(s; r)∥s∼∞. The third inequality follows from the
fact that

∥V ∗(s; r)− Vε(s; r)∥s∼∞ =

∥∥∥∥∥max
π
⟨π,Q∗⟩A −max

π

(
⟨π,Qϵ⟩A − ϵ−1

∑
a∈A

Ω
(
π(a | s)

))∥∥∥∥∥
s∼∞

≤

∥∥∥∥∥⟨π′, Q∗ −Qϵ⟩+ ϵ−1
∑
a∈A

Ω(π(a | s))

∥∥∥∥∥
s∼∞

≤ ∥Q∗(s, a; r)−Qε (s, a; rε)∥(s,a)∼∞ + ε−1UΩ, (112)

where π′(· | s) is the optimizer for the smaller one between V ∗(s) and Vϵ(s) for any s ∈ S and UΩ = maxπ
∑

a Ω(π(a)).
Since we have proved that ∥Qε −Q∗∥∞ < ∆Q, by the definition of ∆Q, it follows that ∥rε − r∗∥∞ < ∆r. Thus we
complete the proof of Lemma B.1.

Adaptive Model Design for Markov Decision Process

C. Sample-based algorithm

Algorithm 3 Sample-based Algorithm for the RMD (14) with Ω(x) = x lnx

Input: outer iterations T , inner iterations K, learning rate η, the gradient of pre-learned transition model∇θ lnP and the
gradient of the reward function∇θr with respect to θ.
Initialize θ0, Q0

ϵ , and ∇θ0Q
0
ϵ

for t = 0 to T − 1 do
Initialize replay memory D to capacity N
Independently sample (ŝ1, · · · , ŝL) ∼ ρ over S.
for episode k = 0 to K − 1 do

Initialize s1 = {xi|xi ∈ ρ, i = 1, · · · ,M}
for time step i = 0 to ⌊N/M⌋ do
πk
ϵ (a|s) ∝ exp (ϵQk

ϵ (s, a))
Select ai ∼ πk

ϵ (· | si), obtain ri and ∇θtri, and observe the next state si+1

Store transition (si, ai, ri,∇θtri, si+1) in D
Sample random minibatch of transitions (sj , aj , rj ,∇θtrj , sj+1) from D
V k
ϵ (sj+1)← ϵ−1 ln (

∑
a exp (ϵQ

k
ϵ (sj+1, a)))

∇θtVϵ
k(sj+1)← ⟨πϵ

k,∇θtQ
k
ϵ ⟩A

yj = rj + γVϵ
k(sj+1)

zj = ∇θtri + γ(∇θtV
k
ϵ (sj+1) + V k

ϵ (sj+1)∇θt lnP (sj+1|sj , aj))
Perform a gradient descent step on (yj − Qk

ϵ (sj , aj ; θ1))
2 and (zj − ∇θtQ

k
ϵ (sj , aj ; θ2))

2, and obtain updated
Qk+1

ϵ and∇θtQ
k+1
ϵ

end for
end for
∇θtA

K
ϵ (s, a) = ∇θtQ

K
ϵ (s, a)−∇θtVϵ

K(s)

∇θtF = ∂F
∂θt

+ ϵ/L ·
∑L

i=1

∑
a

(
ρ−1(ŝi) · ∂F/∂πK

ϵ (ŝi, a) · πK
ϵ (ŝi, a) · ∇θtA

K
ϵ (ŝi, a)

)
θt+1 = θt + η∇θtF
Reinitialize Q0

ϵ = QK
ϵ and∇θt+1

Q0
ϵ = ∇θt+1

QK
ϵ

end for
Output: Optimized parameter θT and its corresponding upper-level objective F (θT , π

K
ϵ)

Following the idea of (Mnih et al., 2013), we use the function approximation method to approximate Qϵ and ∇Qϵ. We
utilize the experience replay buffer to store the experience we collect and at each step, we sample a mini-batch from the
buffer to train Qϵ and∇θtQϵ. We only use one replay buffer for the reason that the Bellman Operator for updating Qϵ and
∇Qϵ shares the same transition kernel and policy.

D. Additional Details of Experiments
D.1. Taxation Design for Macroeconomic Model

State Space & Action Space. The state is the accumulative asset st, which is a scalar ranging from [−100, 100]. The
accumulative asset must be in the range, so there is a truncation operation in the transition kernel. In this experiment,
we define 3 categories of goods, so the action space A is a 4-dimensional discrete space, the shape of which is 10 ×
5 × 5 × 5. A point (i, j, k, l) in this discrete space represents the working hours n = 8i/9 − 8/9 and the consumption
c = (1.225j − 1.125, 1.225k − 1.125, 1.225l − 1.125) for each kinds of goods respectively.

Other Configurations. The learning rate η is 0.001. The initial asset for the agent follows a Gaussian distribution with
mean 0 and variance 2. The initial taxation is set to (0.4, 0.4, 0.4, 0.4). The discounted factor γ1 and γ2 are both set to 0.8.

Adaptive Model Design for Markov Decision Process

Table 1. Design parameters (income tax rate and tax rates for good 1 ∼ 3) at convergence with different settings of ϵ for the taxation
design experiment.

ϵ INCOME GOOD 1 GOOD 2 GOOD 3

1 1.2 % 9.17 % 9.08 % 8.92 %
5 2.23 % 8.55 % 8.39 % 8.1 %
30 2.27 % 8.2 % 8.08 % 7.85 %
50 37.51 % 38.64 % 39.11 % 41.2 %
ADAPTIVE 2.43 % 8.12 % 7.99 % 7.75 %

D.2. Workbench Position Design for A Two-ankle Robot Arm

State Space & Action Space. The state space S is a 4-dimensional discrete space, the shape of which is 100×100×9×9. A
point (i, j, k, l) in this discrete space represents the first ankle’s angle θ1 = 2πi/100, the second ankle’s angle θ2 = 2πj/100,
the first ankle’s angular velocity ω1 = k − 1 and the second ankle’s angular velocity ω2 = l − 1 respectively. The angular
velocity must be in the discrete space, so there is a quantification operation in the transition kernel. The action space A is a
2-dimensional discrete space, the shape of which is 3× 3. A point (i, j) in this discrete space represents the first ankle’s
angular acceleration a1 = i− 1 and the second ankle’s angular acceleration a2 = j − 1 respectively.

Reward. At every time step t, the position of the end of the robot arm, whose angles of ankles are θt = (θ1,t, θ2,t), is
defined as follows

xend = cos θ1,t + cos θ2,t

yend = sin θ1,t + sin θ2,t. (113)

The reward rt for the control of the robotic arm is defined as follows

rt = −10 ·
(
(xend − x)2 + (yend − y)2

)
− 0.5 ∥ωt∥2 . (114)

Here, the reward rt is coupled with angular velocity l2-norm, since it effectively reduces the robotic arm’s oscillation when
it reaches the optimal state. It’s obvious that rt is parameterized by workbench position p = (x, y)

The reward rut for the designer is defined as

rut = −ct − 0.1 ∥ωt∥2 , (115)

which represents the energy consumption of robotic arm movement for each time step. Thus the upper-level objective for
the designer is defined as follows

F = Eπ

[∑
t

γu
trut

]
− 0.25 ∥p− p0∥22 , (116)

Where the initial workbench’s position p0 = (1,−1). The first term on the right of the above equation is the discounted
cumulative energy consumption given the robotic arm’s control policy π, and the second term is an extra cost for setting up
a workbench at the position p.

Other Configurations. The learning rate η is 0.01 . The inner iterations K is 100. γ = 0.8 is the discount factor for
robotic arm’s control, and γu = 0.8 is the discount factor for calculating the discounted cumulative energy consumption.
The initial workbench’s position p0 is at (1,−1). There are two goods, and their respective positions are set to (0, 0) and
(1.872, 0.681) respectively.

Table 2. Design parameters (workbench position) at convergence for different settings of ϵ for the workbench position design experiment.

ϵ x y

1 2.70 0.76
5 1.88 -0.46
20 1.38 -1.31
ADAPTIVE 1.91 -0.26

