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Abstract
Multi-label classification tasks such as OCR and
multi-object recognition are a major focus of the
growing machine learning as a service industry.
While many multi-label APIs are available, it is
challenging for users to decide which API to use
for their own data and budget, due to the het-
erogeneity in their prices and performance. Re-
cent work has shown how to efficiently select
and combine single-label APIs to optimize per-
formance and cost. However, its computation
cost is exponential in the number of labels, and
is not suitable for settings like OCR. In this work,
we propose FrugalMCT, a principled framework
that adaptively selects the APIs to use for differ-
ent data in an online fashion while respecting the
user’s budget. It allows combining ML APIs’ pre-
dictions for any single data point, and selects the
best combination based on an accuracy estimator.
We run systematic experiments using ML APIs
from Google, Microsoft, Amazon, IBM, Tencent,
and other providers for tasks including multi-
label image classification, scene text recognition
and named entity recognition. Across these tasks,
FrugalMCT can achieve over 90% cost reduction
while matching the accuracy of the best single
API, or up to 8% better accuracy while matching
the best API’s cost.

1. Introduction
Many machine learning users are starting to adopt machine
learning as a service (MLaaS) APIs to obtain high-quality
predictions. One of the most common tasks these APIs
target is multi-label classification. For example, one can
use Google’s computer vision API (Goo) to tag an image
with a wide range of possible labels for $0.0015, or Mi-
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crosoft’s API (Mic) for $0.0010. Another example is to
extract all text strings from an image for $0.005 via iFLY-
TEK’s API (Ifl) or $0.021 via Tencent’s API (Ten). In prac-
tice, these APIs also provide different performance on dif-
ferent types of input data (e.g., English vs Chinese text).
The heterogeneity in APIs’ performance and prices makes
it hard for users to decide which API, or combination of
APIs, to use for their own datasets and budgets.

Recent work (Chen et al., 2020) proposed FrugalML, an
algorithmic framework that adaptively decides which APIs
to call for a data point to optimize accuracy and cost. Their
approach learns a fast decision rule for each possible output
label that can significantly improve cost-performance over
the individual APIs. However, FrugalML requires a large
amount of training data and involves solving a non-convex
optimization problem with complexity exponential in the
number of distinct labels. This prevents it from being used
for tasks with large number of labels, such as multi-label
classification. Furthermore, FrugalML ignores correlation
between different APIs’ predictions, potentially limiting its
accuracy. For example, APIs A and B may output {per-
son, car} and {car, bike} separately for an image whose
true keywords are {person, car, bike}. FrugalML would se-
lect one of the two label sets, but combining them results
in the true label set and thus higher accuracy. Thus, this pa-
per aims to solve these significant limitations and address
the question: how do we design efficient ML API selection
strategies for multi-label classification tasks to maximize
accuracy within a budget?

We propose FrugalMCT, a principled framework that
learns the relative strengths of different combinations of
multi-label classification APIs and efficiently selects the
optimal combinations of APIs to call for different data and
budget constraints. As shown in Fig. 1 (a), FrugalMCT di-
rectly estimates the accuracy of each API combination on
a particular input based on the features and predicted la-
bels of that input. Then it uses a fast service selector based
on the estimated accuracy to balance accuracy and budget.
For example, we might first call API A on an input. If A
returns person and teddy bear and the accuracy predictor
gives relatively high estimated accuracy (Fig. 1 (c)), then
we stop and report {person, teddy bear} as the label set.
If A returns person and tennis racket, and we predict that
combining it with API B’s output gives a much higher ac-
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Figure 1. Demonstration of FrugalMCT. (a): FrugalMCT workflow. (b): Performance of FrugalMCT on COCO, a multi-label image
dataset, using real commercial ML APIs. (c), (d): Examples of FrugalMCT’s behavior on different inputs. In (c), FrugalMCT estimates
that the accuracy of a cheap open source SSD model from GitHub is high, and thus directly returns its predictions. In (d), FrugalMCT
estimates that combining SSD’s results with the Everypixel API has a much higher estimated accuracy, and thus it invokes EveryPixel
and combines its results with SSD’s results.

curacy, then we invoke API B and combine their prediction
to obtain {person, sports ball, tennis racket} (Fig. 1 (d)).

Contributions. FrugalMCT is an end-to-end approach
that integrates the selection of APIs and the combination
of their outputs for individual user queries. It leverages our
key new finding that current commercial APIs have com-
plementary strengths and weaknesses, and that we can re-
liably predict which APIs are likely to work well for a new
query based on easy-to-generate metadata about its input.
Based on this API accuracy predictor, FrugalMCT then
leverages an efficient online algorithm to determine which
combination of APIs to call for different user queries. We
show that the online algorithm enjoys an accuracy provably
close to the offline method as well as a small computational
cost. All components in FrugalMCT are trainable, mak-
ing it easy to customize for different applications. To our
knowledge, FrugalMCT is the first work on how to effec-
tively select and combine multi-label ML APIs.

Empirically, FrugalMCT produces substantially better pre-
diction performance than individual APIs and than Fru-
galML adapted for multi-label tasks (Fig. 1 (b)). Exten-
sive experiments with real commercial APIs on several
tasks, including multi-label image classifications, scene
text recognition, and named entity recognition, show that
FrugalMCT typically provides over 60% (as high as 98%)

cost reduction when aiming to match the best commercial
API’s performance. Also, when targeting the same cost as
the best commercial API, FrugalMCT can improve perfor-
mance up to 8%. As a dataset contribution, we have also re-
leased 1 our dataset of 295,212 samples annotated by com-
mercial multi-label APIs as the largest dataset and resource
for studying multi-label ML prediction APIs.

2. Related Work
MLaaS: With the growing importance and adoption of
MLaaS APIs (Ama; Ten; Goo; IBM; Mic), existing re-
search has largely focused on evaluating individual APIs
for their performance (Yao et al., 2017), robustness (Hos-
seini et al., 2017), biases (Koenecke et al., 2020), perfor-
mance estimation (Chen et al., 2021), pricing (Chen et al.,
2019),and applications (Buolamwini & Gebru, 2018; Hos-
seini et al., 2019; Reis et al., 2018). Recent work on Fru-
galML (Chen et al., 2020) studies API calling strategies for
single label classification. While their approach’s computa-
tional complexity is exponential in the number of labels,
FrugalMCT’s complexity does not depend on the number
of labels, making it suitable for multi-label prediction APIs.
In addition, FrugalML selects only one API per user query,
while FrugalMCT considers the combination of multiple

1https://github.com/lchen001/FrugalMCT

https://github.com/lchen001/FrugalMCT
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APIs’ output for each input data. This improves the over-
all accuracy (as shown in Sec 5), but also creates unique
optimization challenges that we solve.

Ensembles for multi-label classification: Ensemble learn-
ing is a natural approach to combine different predictors’
output. Several ensemble methods have been developed,
such as using pruned sets (Read et al., 2008), classifier
chains (Read et al., 2011), and random subsets (Tsoumakas
& Vlahavas, 2007), with applications in image annota-
tions (Xu et al., 2011), document classification (Chen et al.,
2017), and speech categorization (Liu et al., 2019). Moy-
ano et al. (2018) provide a detailed survey of this area. Al-
most all of these ensemble methods require joint training
of the base classifiers, but MLaaS APIs are black box to
the users. Also, while ensemble methods focus only on im-
proving accuracy, FrugalMCT explicitly considers the cost
of each API and enforces a budget constraint.

Model cascades: A series of works (Viola & Jones,
2001a;b; Sun et al., 2013; Cai et al., 2015; Wang et al.,
2011; Xu et al., 2014; Chen et al., 2018; Kumar et al., 2018;
Chen et al., 2018) explores cascades (a sequence of mod-
els) to balance the quality and runtime of inference. Model
cascades use a single predicted quality score to avoid call-
ing computationally expensive models, but FrugalMCT’
strategies utilize both quality scores and predicted label
sets to select an expensive add-on service. While cascades
do not explicitly specify inference speed, FrugalMCT al-
lows users to explicitly incorporate different budget require-
ments. Designing such strategies requires solving a signif-
icantly harder optimization problem, e.g., choosing how to
divide the available budget between classes (§4), but also
improves performance substantially over using the quality
score alone (§5).

AutoML for multi-label classification: AutoML (Thorn-
ton et al., 2013) automates the customization of ML
pipelines, including the selection, combination, and
parametrization of the learning algorithms. There is a rich
literature of AutoML techniques for standard single label
tasks, and fewer methods on multi-label predictions (Wever
et al., 2021) (e.g. genetic algorithms (de Sá et al., 2017)
and a neural network-based search scheme (Pakrashi &
Namee, 2019)). We refer interested readers to a recent sur-
vey (Wever et al., 2021) for more details. Applying Au-
toML to use multiple ML APIs is underexplored, and Fru-
galMCT can be viewed as the first AutoML approch de-
signed for automating the selection of multiple mutlti-label
ML APIs. While most AutoML systems exclusively fo-
cus on prediction performance, FrugalMCT optimizes ac-
curacy and cost jointly, which is desirable for cost-sensitive
API users.

Multiple choice knapsack and integer programming:
Many resource allocation problems can be modeled as mul-

tiple choice knapsack problem (MCKP) (Pamela H. Vance
& Toth), 1993), such as keyword bidding (Zhou & Narodit-
skiy, 2008) and quality of service control (Lee et al., 1999).
While NP-hard (Sinha & Zoltners, 1979), various approx-
imations have been proposed for MCKP, such as branch
and bound (Pamela H. Vance & Toth), 1993), convex hull
relaxation (Akbar et al., 2006) and bi-objective transforma-
tion (Bednarczuk et al., 2018). Inherently an integer lin-
ear programming (ILP) problem, MCKP can also be tack-
led by ILP solvers, motivated by online adwords searching
(Devanur & Hayes, 2009), resource allocation (Devanur &
Hayes, 2019) and general linear programming (Li et al.,
2020). The service selector of FrugalMCT can be viewed
as a MCKP with the same item cost vector per item group,
which we leverage to obtain a customized fast and online
solver. Our goal is to not develop novel MCKP solver, but
to efficiently adapt ILP methods as a subroutine of our end-
to-end FrugalMCT to tackle a practical new application.

3. Preliminaries
Notation. We denote matrices and vectors in bold, and
scalars, sets, and functions in standard script. Given a ma-
trix A ∈ Rn×m, we let Ai,j denote its entry at location
(i, j). 1(·) represents the indicator function.

Multi-label classification Tasks. Throughout this paper,
we focus on multi-label classification tasks: assigning a la-
bel set Y ⊆ Y to any data point x ∈ X . In contrast to
basic supervised learning, in multi-label learning each data
point is associated with a set of labels instead of a single
label. Many MLaaS APIs target such tasks. Consider, for
example, image tagging, where X is a set of images and Y
is the set of all tags. Example label sets could be {person,
car} or {bag, train, sky}.

MLaaS Market. Consider a MLaaS market consisting of
K different ML services for some multi-label tasks. For a
data point x, the kth service returns to the user a set of la-
bels with their quality scores, denoted by Yk(x) ⊆ Y ×
[0, 1]. For example, one API for multi-label image classifi-
cation might produce Yk(x) = {(person, 0.8), (car, 0.7)},
indicating the label person with confidence 0.8 and car
with confidence 0.7. Let the vector ccc ∈ RK denote the
unit cost of all services. E.g., ck = 0.01 means that users
need to pay $0.01 every time they call the kth service.

4. FrugalMCT Framework
In this section, we present FrugalMCT, a framework to
adaptively select ML APIs for multi-label classification
tasks within a budget. All proofs are left to the appendix.
We generalize the scheme in Figure 1 (a) to K ML ser-
vices. As shown in Figure 2, FrugalMCT contains three
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Figure 2. Overview of FrugalMCT. (a) shows how it works: Given a data point, FrugalMCT first invokes a base service. An accuracy
predictor then estimates the performance of different APIs. Next, an add-on service is selected based on the predicted accuracy and
budget. Finally, the add-on and base services’ predictions are combined to return FrugalMCT’s prediction. (b) lists notation.

main components: an accuracy estimator, a service selec-
tor, and a label combiner.

Given a data point x, it first calls some base service, de-
noted by base, which is one of the K APIs, and obtains
Ybase(x). Often, base is a cheap or free service, such
as an inexpensive open source model; we discuss how to
choose base out of multiple options in Section 4.4. Next,
an accuracy predictor produces a vector âaa(x) ∈ [0, 1]K ,
whose kth value estimates the accuracy of the label set pro-
duced by the label combiner using base’s and kth API’s
outputs. The service selector s(·) : X 7→ [K] then de-
cides if and which add-on service needs to be invoked. Fi-
nally, a label combiner generates a label set by combin-
ing the predictions from the base and add-on APIs. Take
Figure 1 (d) as an example. The image is first passed to
the GitHub model, which produces {(person, 0.46),(ten-
nis racket,0.18)}, by which the accuracy predictor predicts
the accuracy of the label set generated by combining each
API’s output with GitHub model’s. The service selec-
tor then decides to further invoke Everypixel, which gives
{(person, 0.46), (sports ball, 0.52)}. Finally, the label com-
biner uses both APIs’ output for the final prediction.

FrugalMCT allows users to customize the accuracy predic-
tor and the label combiner, depending on the applications.
For example, for the image tagging problem, one might use
image features (e.g., brightness and contrast) to build the
accuracy predictor, while word embeddings can be more
useful for named entity recognition. In the following sec-
tions, we explain the key of accuracy predictor, API selec-
tor and the label combiner in more detail.

4.1. Accuracy prediction

The accuracy predictor âaa(·) can be obtained by two steps.
The first step is to generate a feature vector for every data
point in the training dataset XTr ≜ {xTr

1 , xTr
2 , · · · , xTr

NTr}.

Generally the feature vector can be any embedding of
the data point x and base service prediction Ybase(x).
In this paper we adopt a simple approach: if the la-
bel set Y is bounded, a |Y| dimensional vector is gen-
erated using one hot encoding on Ybase(x). For ex-
ample, given Y = {person, car, bike} and Ybase(x) =
{(person, 0.8), (car, 0.7)}, the generated feature vector is
[0.8, 0.7, 0]. For unbounded Y , word embedding is used to
generate a vector for every predicted label, and the sum of
them (weighted by their quality values) becomes the corre-
sponding feature vector.

The next step is to train the accuracy predictor. For each
xTr
n ∈ XTr, as its true label sets and prediction from each

API are available, we can construct its true accuracy vector
aaa(xTr

n ) ∈ [0, 1]K , whose kth element is the accuracy of the
label produced by the label combiner using base and kth
service predictions. Then we can train some regressor (e.g.,
random forest) to map the feature vector to the accuracy
vector. We use standard multi-label accuracy2 (Zhang &
Zhou, 2014) as a concrete metric. FrugalMCT can as easily
use another metric such as F1-score, precision or subset
accuracy.

4.2. The API selection problem

A core subroutine of FrugalMCT is the API selector s:
given a budget b and the estimated accuracy âaa(x), which
service should be invoked? Let X ≜ {x1, x2, · · · , xN}
be the entire unlabeled dataset to be classified, and S ≜
{1, 2, · · · ,K}X be the set of all functions mapping each
data point in X to an API. Let base be the index of the base
service. For any s ∈ S, s(x) = base implies no add-on
API is needed, and s(x) = k 6= base implies kth API is
invoked. Our goal is to find some s ∈ S to maximize the
estimated accuracy while satisfying the budget constraint,

2 ∥Y ∩Y ′∥
∥Y ∪Y ′∥ where Y /Y ′ is the true/predicted label set.
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formally stated as below.

Definition 4.1. LetZZZ∗
n,k be the optimal solution to the bud-

get aware API selection problem

max
ZZZ∈RN×K :

1

N

N∑
n=1

K∑
k=1

ZZZn,kâ̂âak(xn)

s.t.
1

N

N∑
n=1

K∑
k=1,k ̸=base

ZZZn,kccck + cccbase ≤ b;

K∑
k=1

ZZZn,k = 1, ∀n;ZZZn,k ∈ {0, 1}, ∀n, k

(4.1)

Then the optimal FrugalMCT strategy is given by
s∗(xn) ≜ argmaxkZZZ

∗
n,k.

Here, the objective quantifies the average accuracy, the first
constraint models the budget requirement, and the last two
constraints enforces only one add-on API is picked for each
data point. Base service is needed for every data point and
thus its cost cccbase appears for every n in the budget con-
straint. Note that Problem 4.1 is a MCKP (and thus integer
linear program) and NP-hard in general.

4.3. An online algorithm for FrugalMCT

In many time-sensitive applications, the input data xn (as
well as the accuracy vector âaa(xn)) comes sequentially, and
the API needs to be selected before observing the future
data. The selection process also needs to be fast.

To tackle this challenge, we present an efficient online
algorithm, which requires O(K) computations per round
and gives a provably near-optimal solution. The key
idea is to explicitly balance between accuracy and cost
at every iteration. Specifically, for a given data point
xn and p ∈ R, let us define a strategy sp(xn) ≜
argmaxk âaak(xn)− pccck1k ̸=base and break ties by picking
k with smallest cost. Here, p is a parameter to balance be-
tween accuracy âaa(xn) and cost ccc. When p = 0, sp(xn)
selects the API with highest estimated accuracy. When
p is large enough sp(xn) enforces to pick the base API.
In fact, larger value of p implies more weights on cost
and smaller p favors more the accuracy. Let r(s) ≜
1
N

∑N
n=1 âaas(xn)(xn) denote the average accuracy achieved

by a strategy s. We can show, interestingly, an appropriate
choice of p leads to small average accuracy loss.

Theorem 4.2. Assume the probability density of âaa(x) is
a continuous function on [0, 1]K . Then with probability 1,
there exists p∗ such that sp

∗
satisfies budget constraint, and

r(sp
∗
) ≥ r(s∗)− 1

N .

In words, sp
∗
(xn) gives a solution to the API selection

problem with accuracy loss at most 1
N . In practice, âaa(x)

is continuous for standard ML models of accuracy pre-
dictors (e.g., logistic regressors) and thus the assumption
holds. In addition, it is computationally efficient: at itera-
tion n, it only requires computing âaak(xn)− pccck1k ̸=base for
k = 1, 2, · · · ,K, which takes only O(K) computations.

The remaining question is how to obtain p∗. As we cannot
see the future data to compute p∗, a natural idea is to es-
timate it using the training dataset. More precisely, given
the training dataset {xTr

1 , xTr
2 , · · · , xTr

NTr}, let p̂, q̂qq be the
optimal solution to the following problem

min
p,qqq

(1− δ)(b− cccbase)p+

NTr∑
n=1

qqqn,

s.t.
ccck · 1k ̸=base · p

NTr
+ qqqn ≥ âaak(x

Tr
n )

NTr
, ∀n, k

p ≥ 0, qqq ∈ RNTr

, qqq ≥ 0

(4.2)

where δ ∈ (0, 1) is a small buffer to ensure that we don’t
exceed the budget (in practice we set δ ≤ 0.01). Tech-
nically, Problem 4.2 is the dual problem to the linear pro-
gramming by relaxing the integer constraint in Problem 4.1
on the training dataset with budget (1 − δ)b, and p̂ corre-
sponds to the near-optimal strategy for the training dataset.
If the training and testing datasets are from the same dis-
tribution, then a small δ can ensure with high probability,
p̂ is slightly less than p∗ and thus sp̂ satisfies the budget
constraint. Given p̂, one can use sp̂ to select the APIs in an
online fashion. The details are given in Algorithm 1.

Algorithm 1 FrugalMCT Online API Selection Algorithm.
Input :ccc, b, {xTr

1 , xTr
2 , · · · , xTr

NTr}, {x1, x2, · · · , xN}
Output :FrugalMCT online API selector so(·)

1: Compute p̂ by solving Problem 4.2 and set br = N(b−
cccbase).

2: At iteration n = 1, 2, · · · , N :

3: so(xn) =

{
sp̂(xn) if br − cccsp̂(xn) ≥ 0

base o/w

4: br = br − cccsp̂(xn)1sp̂(xn) ̸=base

Here, br is used to ensure the generated solution is always
feasible. The following theorem gives the performance
guarantee of the online solution.

Theorem 4.3. If δ = Θ

(√
logN/ϵ

N +
√

logNTr/ϵ
NTr

)
and

the probability density of âaa(x) is a continuous func-
tion on [0, 1]K , then so satisfies the budget constraint,
and with probability at least 1 − ϵ, r(so) ≥ r(s∗) −

O

(√
logN/ϵ

N +
√

logNTr/ϵ
NTr

)
.

Roughly speaking, so leads to an accuracy loss at most

O

(√
logN
N +

√
logNTr

NTr

)
compared to the optimal offline
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strategy. For large training and testing datasets, such an ac-
curacy loss is often negligible, which is also verified by our
experiments on real world datasets.

4.4. Base service selection and label combination

Now we describe how the base service is selected and how
the label combiner works. The base service can be picked
by an offline searching process. More precisely, for each
possible base service, we train a FrugalMCT strategy and
evaluate its performance on a validation dataset, and pick
the base service corresponding to the highest performance.

The label combiner contains two phases. First, a new label
set associated with its quality function is produced. The
label set is simply the union of that from the base ser-
vice and add-on service. The quality score is a weighted
sum of the score from both APIs, controlled by a hy-
perparameter w. For example, suppose the base pre-
dicts {(person, 0.8), (car, 0.7)} and the add-on predicts
{(car, 0.5), (bike, 0.4)}. Given w = 0.3, new confidence
for person is 0.3× 0.8 = 0.24, for car is 0.3× 0.7+ 0.7×
0.5 = 0.46, and for bike is 0.7 × 0.4 = 0.28. Thus the
combined set is {(person, 0.24), (car, 0.46), (bike, 0.28)}.
Next, a threshold θ is applied to remove labels with low
confidence. For example, given θ = 0.25, the label person
would be removed, and the final predicted label set be-
comes {car, bike}. The parameters w and θ are global hy-
perparameters for each dataset, and can be obtained by an
efficient searching algorithm to maximize the overall per-
formance. The details are left to Appendix A.

5. Experiments
We compare the accuracy and incurred costs of FrugalMCT
to that of real world ML services for various tasks. Our goal
is to (i) understand when and why FrugalMCT can reduce
cost without hurting accuracy, (ii) investigate the trade-offs
between accuracy and cost achieved by FrugalMCT, and
(iii) assess the effect of training data size and accuracy pre-
dictors on FrugalMCT’s performance.

Tasks, ML Services, and Datasets. We focus on three
common ML tasks in different domains: multi-label im-
age classification (MIC), scene text recognition (STR), and
named entity recognition (NER). MIC aims at obtaining all
keywords associated with an image, STR seeks to recognize
all texts in an image, and NER desires to extract all entities
in a text paragraph. The ML services used for each task
and their prices are summarized in Table 1. For each task
we use three datasets, summarized in Table 2. More details
can be found in Appendix C.

Accuracy Predictors. Except when explicitly noted, we
use a random forest regressor as the accuracy predictor for

Table 1. ML services used for each task. Price unit: USD/10,000
queries. A publicly available (and thus free) GitHub model is
also used per task: a single shot detector (SSD) (SSD) pretrained
on Open Images V4 (Kuznetsova et al., 2020) for MIC, a con-
volutional recurrent neural network (PP-OCR) (Pad) pretrained
on an industrial dataset (Du et al., 2020) for STR, and a convo-
lutional neural network (spaCy (Spa)) pretrained on OntoNotes
(Weischedel et al., 2017) for NER.

Task ML Service Price ML Service Price

MIC
SSD (SSD) <0.01 Everypixel (Eve) 6

Microsoft (Mic) 10 Google (Goo) 15

STR
PP-OCR (Pad) <0.01 Google (Goo) 15

iFLYTEK (Ifl) 50 Tencent (Ten) 210

NER
spaCy (Spa) <0.01 Amazon (Ama) 3

Google (GoN) 10 IBM (IBM) 30

Table 2. Dataset Statistics.
Task Dataset Size # Labels Dist Labels

MIC

PASCAL 11540 16682 20

MIR 25000 92909 24

COCO 123287 357662 80

STR

MTWI 9742 867727 4404

ReCTS 20000 555286 4134

LSVT 30000 1878682 4852

NER

CONLL 10898 43968 9910

ZHNER 16915 147164 4375

GMB 47830 116225 14376

all the datasets. For MIC and STR datasets, we map each
possible label to an index, and create a feature vector whose
kth element is base service’s quality score for the label cor-
responding to k. If a label is not predicted, the correspond-
ing value is 0. For NER datasets, we map each predicted
label to a 96-dimensional vector using a word embedding
from spaCy (Spa), and then use the sum weighted by their
corresponding quality scores as the feature vector. The ac-
curacy predictor is then trained on half of the datasets using
the feature vectors generated as above. Interestingly, we
found we are able to accurately predict which commercial
API is best for each instance using relatively simple fea-
tures. This makes the approach more broadly applicable.
We will study the effects of accuracy predictors later in this
section.

Multi-label Image Classification: A Case Study. Let
us start with multi-label image classification on the COCO
dataset (Lin et al., 2014). We set budget b = 6, the price of
Everypixel, the cheapest commercial API (except the open
source model from GitHub). For comparison, we also use
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Figure 3. A FrugalMCT strategy learned on the dataset COCO.
(a) shows that FrugalMCT reduces cost by mostly calling the Ev-
erypixel API (45.4%) or the GitHub API (22.1%) only. (b) and
(c) show how the accuracy and cost vary with weight p. The blue
point corresponds to 0.006, the learned p̂. (d) shows the accuracy
and cost of FrugalMCT, FrugalML, Microsoft API, and majority
vote. (e) gives the runtime performance of our (online) API selec-
tor and three commercial ILP solvers.

the average quality score over all predicted labels as the
confidence score and adapt FrugalML (Chen et al., 2020)
with the same budget (= 6) as another baseline .

Figure 3 demonstrates the learned FrugalMCT strategy. As
shown in Figure 3 (a), the learned FrugalMCT reduces the
cost by mostly using the Everypixel API (45%, 6$) and
occasionally calling Microsoft API (32%, 10$), and rarely
invoking the Google API (0.4%, 15$). Note that its perfor-
mance depends on the threshold value p̂. As shown in Fig-
ure 3 (b) and (c), for small thresholds, FrugalMCT tends
to call the more accurate and expensive APIs. However, it
runs out of budget quickly, and for many data points only
base service can be used, leading to low accuracy. For large
thresholds, FrugalMCT tends to call cheaper but less accu-
rate APIs, failing to fully use the budget and thus causing
low accuracy too. The p̂ value learned by FrugalMCT (blue
point in Figure 3 (b) and (c)) produces the optimal accuracy
given the budget. Figure 3 (d) shows that FrugalMCT’s
accuracy (0.514) is higher than that of the best ML service
(MS, 0.475) and majority vote (Maj 0.501), while its cost is

much lower. This is primarily because FrugalMCT learns
when the cheaper APIs perform better and call them aptly.
FrugalMCT also outperforms FrugalML by exploiting the
label combination. This is due to (i) that FrugalML cannot
utilize the label information due to explosion of complexity,
and (ii) that the label combiner in FrugalMCT gives higher
accuracy than both the base and add-on APIs.

To understand the efficiency of FrugalMCT’s API selec-
tor, we compare it with three ILP solvers, namely, CBC,
MOSEK, and GUROBI. CBC (Forrest & Lougee-Heimer,
2005) is an integer linear programming package developed
based on cutting and branch. MOSEK (Andersen & An-
dersen, 2000) was originally developed for sparse program-
ming and then extended for general mixed integer program-
ming. On the other hand, the focus of GUROBI (Bixby,
2007) is parallelism optimization in integer programming.
As shown in Figure 3 (e), the API selector of FrugalMCT
(Alg. 1) is several orders of magnitude faster than those
commercial ILP solvers. This is beause it leverages the
specific structure of Problem 4.1.

Table 3. End-to-end runtime comparison on COCO.
Runtime FrugalMCT FrugalML Majority Vote

Training 60s 6627s N/A

Inference 1.25s 1.24s 1.92s

The end-to-end runtime comparison of FrugalMCT with
FrugalML and an ensemble approach (majority vote) is
given in Table 3 . Majority vote does not need training, but
its inference time is high due to calling all ML APIs. Fru-
galMCT enjoys a similar inference time with FrugalML
but a 100x smaller training time.

Table 4. Cost savings achieved by FrugalMCT that reaches same
accuracy as the best commercial API. On average the cost saving
across the evaluated datasets is 73%.

Task Dataset Acc (%) Best API $ Our $ Save

MIC

PASCAL 74.8 10 1.4 86%

MIR 41.2 10 4.2 58%

COCO 47.5 10 3 70%

STR

MTWI 67.9 210 30 86%

ReCTS 61.3 210 78 63%

LSVT 53.8 210 67 68%

NER

CONLL 52.6 3 1.5 50%

ZHNER 61.3 30 0.7 98%

GMB 50.1 30 4.1 80%

Analysis of Cost Savings. Next, we evaluate how much
cost can be saved by FrugalMCT to reach the highest accu-
racy produced by a single API on different tasks. As shown
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Figure 4. Accuracy cost trade-offs. The offline FrugalMCT (black) observes the full data and then make decisions. The online Fru-
galMCT (red) matches the offline performance in all the experiments. DAP (grey) is an oblation of FrugalMCT where a dummy
accuracy predictor is used. FrugalML (orange) is the previous state-of-the-art method. The task of row 1, 2, 3 is MIC, STR, and NER.

in Table 4, FrugalMCT can typically save more than 60%
of the cost. Interestingly, the cost saving can be up to 98%
on the dataset ZHNER. This is probably because (i) the ac-
curacy estimator enables the API selector to identify when
the base service’s prediction is reliable and to avoid unnec-
essarily calling add-on services, and (ii) when add-on API
is invoked, the apt combination of the base and add-on ser-
vices leads to a high accuracy improvement.

Accuracy and Cost Trade-offs. Now we dive deeply
into the accuracy and cost trade-offs achieved by Fru-
galMCT, shown in Figure 4. We compare with two ab-
lations: “Offline”, where the full data is observed before
making decision, “DAP”, where a dummy accuracy predic-
tor is used, which, for each API, always returns its mean
accuracy on the training dataset. We also compared with
an adapted version of the previous state-of-the-art for sin-
gle label task, FrugalML. To adapt it to multi-label tasks,
we use the average quality score over all predicted labels as
a single score, and cluster all labels into a “superclass”.

Compared to any single API, FrugalMCT allows users to
pick any point in its trade-off curve and offers substantial
more flexibility. In addition, FrugalMCT often achieves
higher accuracy than any ML services it calls. For example,
on COCO and ZHNER, more than 5% accuracy improve-
ment can be reached with the same cost of the best API.
Note that FrugalMCT also outperforms FrugalML with the
same budget. This is primarily because FrugalMCT (i) uti-
lizes a more principled way to use the features (learning an
accuracy estimator) than FrugalML (directly using the label
info), and (ii) adopts a label combiner designed for multi-
label tasks. Ensemble methods such as majority votes (in
the appendix C) produce accuracy similar to FrugalMCT,
but their cost is much higher. Note that there is little perfor-
mance difference between the online FrugalMCT strategy
and the offline approach, due to the carefully designed on-
line algorithm. This directly supports our theory.

Effects of Accuracy Predictors. The accuracy predic-
tors play an important role in FrugalMCT’s performance.
As Table 5 shows, FrugalMCT provides nontrivial accu-
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Figure 5. Testing accuracy v.s.training data size. The fixed budget is 6, 15, 3, respectively.

Table 5. Performance of FrugalMCT’s accuracy predictor. Root
mean square error (RMSE) quantifies the standard deviation of
the differences between the predicted and the true accuracy.

Data RMSE Data RMSE Data RMSE

PASCAL 0.28 MIR 0.22 COCO 0.24

MTWI 0.17 ReCTS 0.22 LSVT 0.19

CONLL 0.29 ZHNER 0.31 GMB 0.28

racy estimates which enables its success. It’s interesting
to note that the accuracy predictor doesn’t need to be per-
fect for FrugalMCT to do well; for example, the root
mean square error (RMSE) of the accuracy predictor is 0.28
on PASCAL (and 0.29 on CONLL), but FrugalMCT still
produces consistently better accuracy than FrugalML. We
also evaluated FrugalMCT’s performance when the accu-
racy predictors are obtained via two AutoML toolkits, auto-
sklearn (Feurer et al., 2015) and Auto-PyTorch (Mendoza
et al., 2019) instead of random forest, and observe a similar
performance.

Effects of Training Sample Size. Finally we study how
the training dataset size affects FrugalMCT’s performance.
As shown in Figure 5, across different tasks, a few thousand
training samples are typically sufficient to learn the optimal
FrugalMCT strategy. This is usually more efficient than
training a customized ML model from scratch. It also only
takes a few minutes to train those FrugalMCT strategies,
which is much faster than training a model from scratch.
This is useful in latency-critical applications.

Training cost of FrugalMCT. Both dollar cost and com-
putation time of training are often much smaller than ML
APIs inference cost.This is because (i) training is a one-
time cost and (ii) FrugalMCT requires a small number of
label annotations (a few thousands see Figure 5). Consider
the image tagging task as an example: the dollar cost of
calling all APIs is $0.0006+ $0.001+ $0.0015 = $0.0031

per image. Labeling for (say) five thousands images takes
$0.0031 × 5000 = $15.5. Training a FrugalMCT strategy
on half of the COCO dataset takes 59.5s on the experiment
machine. This is much cheaper than calling the selected
APIs after at large scale (e.g., millions of images).

6. Conclusion
In this paper, we presented FrugalMCT, an algorithmic
framework to adaptively select and combine ML APIs for
multi-label classification tasks within a budget constraint.
FrugalMCT integrates forecasts of API’s accuracy with on-
line constrained optimization to create an end-to-end algo-
rithm with strong empirical performance and theoretical
guarantees. How to efficiently use multi-label APIs is an
important problem in practice for the large number of ML
users who have chosen to rely on commercial prediction
APIs, and has not been studied heavily in the ML litera-
ture. This work helps MLaaS users improve the overall
accuracy and cost of their applications. Extensive empiri-
cal evaluation using real commercial APIs shows that Fru-
galMCT significantly improves both cost and accuracy. To
encourage more research on MLaaS, we also release the
dataset used to develop FrugalMCT, consisting of 295,212
samples annotated by commercial multi-label prediction
APIs. The dataset and our code can be accessed from
https://github.com/lchen001/FrugalMCT.
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Outline. The appendix is organized as follows. We present missing technical details in Section A. The proofs are pro-
vided in Section B. Finally, Section C gives detailed experiment setups and additional empirical results.

A. Technical Details
Additional technical details are presented here.

Label combiner parameter search. Recall that the label combiner requires two parameters: the combining weight
w ∈ [0, 1] and the quality score threshold θ ∈ [0, 1]. We adopt a simple grid search approach to select w and θ. More
precisely, we first create a parameter candidate set PCS ≜ {w0, w1, w2, · · · , wM} × {θ0, θ1, θ2, · · · , θM}, where wm =
m
M and θi =

m
M . Next, for each (w, θ) ∈ PCS, we evaluate the performance of combining the base service and the kth

service using (w, θ), and select the parameter that gives the highest accuracy. Note that this involves M2 number of label
combinations for each k ∈ [K]. In practice, we have found that M = 10 is sufficient to obtain a good combiner.

δ selection in Algorithm 1. A naive approach is to set a small constant value, say, δ = 0.01. To obtain a more accurate
strategy, we can adopt a search algorithm to select the best δ value based on the evaluation the performance on a validation
dataset. More precisely, we first create a constant set CS. Then for each α ∈ CS, let δ = α logN

N , and then solve Problem
4.2 to obtain the parameter p̂, evaluate the performance on a validation dataset. Finally, we select the α ∈ CS that achieves
the highest accuracy on the validation dataset. In practice, we have found that CS = {−10,−9,−8, · · · , 0, 1, 2, · · · , 10}
is sufficient to obtain a highly accurate solution.

B. Proofs
For ease of notations, let us introduce b̂ ≜ b − cccbase and ĉcck ≜ ccck · 1k ̸=base first. Then we can rewrite the API selection
problem (Problem 4.1) as

max
ZZZ∈RN×K :

1

N

N∑
n=1

K∑
k=1

ZZZn,kâ̂âak(xn)

s.t.
1

N

N∑
n=1

K∑
k=1

ZZZn,kĉcck ≤ b̂

K∑
k=1

ZZZn,k = 1, ∀n;ZZZn,k ∈ {0, 1}, ∀n, k

(B.1)

Its corresponding linear programming simply becomes

max
ZZZ∈RN×K :

1

N

N∑
n=1

ZZZn,kâ̂âak(xn)

s.t.
1

N

N∑
n=1

K∑
k=1

ZZZn,kĉcck ≤ b̂

K∑
k=1

ZZZn,k = 1, ∀n;ZZZn,k ∈ [0, 1], ∀n, k

(B.2)

We will analyze some useful properties for those two problems first, and then prove the desired results for the original API
selection problem on top of those properties.

B.1. Helpful Lemmas

Before proving the desired results, let us also provide a few generic lemmas.
Lemma B.1. Let AAA ∈ RN1×N2 be a fixed matrix and βββ ∈ RN1 be a random vector. If βββ is supported on [0, 1]N1 with a
continuous density function, then with probability 1,

min
xxx

‖AAAxxx− βββ‖0 ≥ N1 −N2.
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Proof. If N1 ≤ N2 then the above inequality obviously holds. Suppose N1 > N2. We prove this by contradiction. Assume
the inequality does not hold. Then there exists some xxx′, such that with probability larger than 0,

‖AAAxxx′ − βββ‖0 < N1 −N2.

That is to say, at least N1 − (N1 −N2) + 1 = N2 + 1 many equations in AAAxxx′ = βββ can be forced to 0. Let U be the set of
those N2 + 1 indexes. Then formally we have

AAAUxxx
′ = βββU .

That is to say, with probability larger than 0, βββU is in the subspace formed by the columns of AAAU .

On the other hand, we can show that for any set of indexes V with |V | = N2 + 1, βββV lies in the subspace formed by the
columns ofAAAV with probability 0, which gives a contradiction. To see this, let us start by considering a fixed set of indexes
V . Let ΩΩΩV denote the subspace formed by AAAV and pβββV

(·) be the density function of βββV . The density function of βββ is
continuous and thus pβββV

(·) is also continuous. The support of βββ is in [0, 1]N1 , and thus the support of βββV is in [0, 1]N2+1

(since |V | = N2 + 1 by definition). That is to say, pβββV
(·) is a continuous function on a compact set. Therefore, pβββV

(·)
must be bounded, i.e., there exists a constant psup such that pβββV

(·) ≤ psup. Hence we have

Pr[βββV ∈ ΩΩΩV ] =

∫
xxx∈ΩΩΩV

pβββV
(xxx)dxxx ≤

∫
xxxV ∈ΩΩΩV

psupdxxx = psup
∫
xxxV ∈ΩΩΩV

1dxxx

where the first equation is by definition of the random variable βββV , the inequality is by increasing the density function to
its upper bound psup, and the last equation simply moves the constant out of the integral. In addition, ΩΩΩV is a N2 + 1
dimensional space spanned by N2 vectors, which implies that its measure in RN2+1 is 0, i.e,

∫
xxxV ∈ΩΩΩV

1dxxx = 0. Thus, we
have just shown that

Pr[βββV ∈ ΩΩΩV ] ≤ psup
∫
xxxV ∈ΩΩΩV

1dxxx = 0

Probability is non-negative, and thus Pr[βββV ∈ ΩΩΩV ] = 0 (for a fixed V ). Note that the size of V is N2 + 1 and there are in
total N1 possible indexes. Thus, there are

(
N1

N2+1

)
many possible choices of V . Applying union bound, we have for any V ,

Pr[βββV ∈ ΩΩΩV ] = 0. A contradiction. The assumption is incorrect, and thus we must have

min
xxx

‖AAAxxx− βββ‖0 ≥ N1 −N2.

Lemma B.2. Let f be a function defined on Ωzzz . Assume there exists a set Ωzzz,1 ⊆ Ωzzz , such that for any zzz ∈ Ωzzz , there
exists zzz′ ∈ Ωzzz,1, such that ‖f(zzz)− f(zzz′)‖ ≤ ∆. Then we have

‖f(zzz∗)− f(zzz∗1)‖ ≤ ∆,

where zzz∗ = argmaxzzz∈Ωzzz f(zzz), zzz
∗
1 = argmaxzzz∈Ωzzz,1 f(zzz).

Proof. By assumption, there exists a zzz′ ∈ Ωzzz,1, such that

‖f(zzz∗)− f(zzz′)‖ ≤ ∆

which implies
f(zzz′) ≥ f(zzz∗)−∆

Noting that zzz∗1 is the optimal solution on Ωzzz,1 and zzz′ is a feasible solution, we have

f(zzz∗1) ≥ f(zzz′)

Combining the above two inequalities, we have

f(zzz∗1) ≥ f(zzz∗)−∆

On the other hand, since Ωzzz,1 ⊆ Ωzzz , zzz∗1 is a feasible solution on Ωzzz , and thus we have

f(zzz∗1) ≤ f(zzz∗) ≤ f(zzz∗) + ∆

Combing those two inequalities we have
‖f(zzz∗1)− f(zzz∗)‖ ≤ ∆

which completes the proof.
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Lemma B.3. Let X1, X2, · · · , XN1
and X ′

1, X
′
2, · · ·XN2

be two i.i.d. samples from the same distribution which lies in
[xinf , xsup]. Then we have with probability 1− ϵ,

‖ 1

N2

N2∑
n=1

X ′
n − 1

N1

N1∑
n=1

Xn‖ ≤ (xsup − xinf)

[√
log 4− log ϵ

2N2
+

√
log 4− log ϵ

2N1

]
.

Proof. We can apply the Hoeffding’s inequality for both sequences separately, and we can obtain with probability 1− ϵ,

‖ 1

N1

N1∑
n=1

Xn − E[X1]‖ ≤ (xsup − xinf)

√
log 2− log ϵ

2N1

and with probability 1− ϵ

‖ 1

N2

N2∑
n=1

X ′
n − E[X1]‖ ≤ (xsup − xinf)

√
log 2− log ϵ

2N2

Now applying union bound, we have with probability 1− ϵ,

‖ 1

N1

N1∑
n=1

Xn − E[X1]‖ ≤ (xsup − xinf)

√
log 4− log ϵ

2N1

and 1− ϵ

‖ 1

N2

N2∑
n=1

X ′
n − E[X1]‖ ≤ (xsup − xinf)

√
log 4− log ϵ

2N2

Now applying the triangle inequality, we have

‖ 1

N2

N2∑
n=1

X ′
n − 1

N1

N1∑
n=1

Xn‖ ≤ (xsup − xinf)

[√
log 4− log ϵ

2N2
+

√
log 4− log ϵ

2N1

]
which completes the proof.

Lemma B.4. Let f1, f2, g1, g2 be functions defined on Ωzzz , such that maxzzz∈Ωzzz
|(f1zzz)−f2(zzz)| ≤ ∆1 and maxzzz∈Ωzzz

‖g2(zzz)−
g1(zzz)‖ ≤ ∆2. Suppose

zzz∗1 = arg max
zzz∈Ωzzz

f1(zzz)

s.t.g1(zzz) ≤ 0

and

zzz∗2 = arg max
zzz∈Ωzzz

f2(zzz)

s.t.g2(zzz) ≤ ∆2,

then we must have

f1(zzz
∗
2) ≥ f1(z

∗
1)− 2∆1

g1(zzz
∗
2) ≤ 2∆2.

Proof. Note that maxzzz∈Ωzzz
|(f1(zzz)− f2(zzz)| ≤ ∆1 implies f1(zzz) ≥ f2(zzz)−∆1 for any zzz ∈ Ωzzz . Specifically,

f1(zzz
∗
2) ≥ f2(zzz

∗
2)−∆1

Noting maxzzz∈Ωzzz
‖g2(zzz) − g1(zzz)‖ ≤ ∆2, we have g2(zzz

∗
1) ≤ g1(zzz

∗
1) − ∆2 ≤ −∆2, where the last inequality is due to

g1(zzz
∗
1) ≤ 0 by definition. Since, zzz∗1 is a feasible solution to the second optimization problem, and the optimal value must

be no smaller than the value at zzz∗1. That is to say,

f2(zzz
∗
2) ≥ f2(zzz

∗
1)
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Hence we have
f1(zzz

∗
2) ≥ f2(zzz

∗
2)−∆1 ≥ f2(zzz

∗
1)−∆1

In addition, maxzzz∈Ωz |(f1(zzz) − f2(zzz)| ≤ ∆1 implies f2(zzz) ≥ f1(zzz) − ∆1 for any zzz ∈ Ωzzz . Thus, we have f2(zzz
∗
1) ≥

f1(zzz)
∗
1 −∆1 and thus

f1(zzz
∗
2) ≥ f2(zzz

∗
1)−∆1 ≥ f1(zzz

∗
1)− 2∆1

By maxzzz∈Ωzzz
|g1(zzz)− g2(zzz)| ≤ ∆2, we must have g1(zzz∗2) ≤ g2(zzz

∗
2)+∆2 ≤ 2∆2, where the last inequality is by definition

of z′, which completes the proof.

B.2. Proof of Theorem 4.2

Proof. We give a constructive proof via explicitly giving the value of p∗. In fact, let p∗ and qqq∗ be the optimal solution to

min
p,qqq:

b̂p+

N∑
n=1

qqqn

s.t.
1

N
ĉcckp+ qqqn ≥ 1

N
âaak(xn)

p,qqq ≥ 0

(B.3)

Then our goal is to show that for this constructed p∗, sp
∗

is a feasible solution to Problem 4.1 and r(sp
∗
) ≥ r(s∗)− 1

N with
probability 1 (Since probabilistic statement is only introduced in Lemma B.1 whose result holds with probability 1, and
we only apply it finite times, we will omit the probabilistic statement for the rest of the proof for simplicity). To achieve
this, let us construct a N ×K matrix

Z̃ZZp∗

n,k ≜ 1sp∗ (xn)=k

It is not hard to see that sp
∗
(xn) = argmaxk Z̃ZZ

p∗

n,k. By construction of sp
∗
, feasibility of sp

∗
to Problem 4.1 is equivalent

to feasibility of Z̃ZZp∗
to Problem B.1. By construction of s∗ and sp

∗
, r(sp

∗
) ≥ r(s∗)− 1

N is equivalent to

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) ≥
1

N

N∑
n=1

K∑
k=1

ZZZ∗
n,kâ̂âak(xn)−

1

N
.

Therefore, our goal becomes showing the feasibility of Z̃ZZp∗
and the above inequality. By construction of Z̃ZZp∗

, the natural
constraints (Z̃ZZp∗

n,k ∈ {0, 1} and
∑K

k=1 Z̃ZZ
p∗

n,k = 1, ∀n) are obviously satisfied. Thus, we only need to show Z̃ZZp∗
satisfies

the budget constraint and the above inequality. To show those two results, let us introduce another variable ZZZ∗,LP , which
represents a sparse optimal solution to the relaxed version of Problem B.1 (i.e., Problem B.2). The proof idea is then
(roughly) to show (i) that Z̃ZZp∗

is actually close to ZZZ∗,LP , (ii) that ZZZ∗,LP satisfies the budget constraint and gives an
estimated accuracy as high as that of the optimal solutionZZZ∗, and (iii) that the difference between Z̃ZZp∗

andZZZ∗,LP does not
break the budget constraints and only decreases the estimated accuracy by 1/N . Combining the three points finishes the
proof. Now we formalize this idea.

Step 1: We first show that Z̃ZZp∗
and ZZZ∗,LP are close to each other.

Lemma B.5. Let ZZZ∗,LP be an optimal solution to Problem B.2. Then there exists some constant n′, such that Z̃ZZp∗

n,· =

ZZZ∗,LP
n,· , ∀n 6= n′.

Proof. Note that Problem B.3 is the dual problem to Problem B.2. We can write the complementary slackness constraints
as follows

ZZZ∗LP
n,k (

1

N
ĉcckp

∗ + qqq∗n − 1

N
âaak(xn)) = 0, ∀n, k

Now let us construct the matrix

AAA =


1
N ĉcc, 111, 000, · · · , 000
1
N ĉcc, 000, 111, · · · , 000
..., ,

..., · · · ,
. . . ,

...
1
N ĉcc, 000, 000, · · · , 111

 ∈ RNK×(N+1)
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and the vector

βββ =
1

N


âaa(x1)
âaa(x2)

...
âaa(xN )

 ∈ RNK .

Then by Lemma B.1, minxxx ‖AAAxxx−βββ‖0 ≥ NK−N−1. Specifically, if xxx = [p∗, qqq∗T ]T , then we should have ‖AAAxxx−βββ‖0 ≥
NK −N − 1. Note that each row of AAAxxx− βββ corresponds to 1

N ĉcckp
∗ + qqq∗n − 1

N âaak(xn), and thus we effectively have

1

N
ĉcckp

∗ + qqq∗n − 1

N
âaak(xn) 6= 0

for at least NK −N − 1 choices of n, k. In other words, among all possible choices of n, k, at most N + 1 many of them
satisfies

1

N
ĉcckp

∗ + qqq∗n − 1

N
âaak(xn) = 0

Furthermore, note that the constraint
∑K

k=1 zzz
∗LP
k (xn) = 1 ensures that for any n, there must exist at least one k′ such that

ZZZ∗,LP
n,k 6= 0 and thus 1

N ccck′p∗ + qqq∗n − 1
N âaak′(xn) = 0. By the pigeonhole principle, we can conclude that for all n except

one (denoted by n′), exactly one equation in { 1
N ccckp

∗ + qqq∗n − 1
N âaak(xn) = 0}k can be satisfied.

Now let us fix any n 6= n′. Then there exists some k′, such that 1
N ccck′p∗ + qqq∗n − 1

N âaak′(xn) = 0, and for any k 6= k′,
1
N ccckp

∗ + qqq∗n − 1
N âaak(xn) > 0 (due to the natural constraint in Problem B.3). That is to say, for any k 6= k′,

1

N
ccckp

∗ + qqq∗n − 1

N
âaak(xn) > 0 =

1

N
ccck′p∗ + qqq∗n − 1

N
âaak′(xn)

Multiplying N and rearranging the terms gives

âaak′(xn)− ccck′p∗ > âaak(xn)− ccckp
∗

That is to say, k′ is the unique solution to maxk âaak(xn) − ccckp
∗. By definition of Z̃ZZp∗

, we have Z̃ZZp∗

n,k′ = 1 and Z̃ZZp∗

n,k =

0, ∀k 6= k′. Meanwhile, for any k 6= k′, by the slackness constraint, since , 1
N ccckp

∗ + qqq∗n − 1
N âaak(xn) > 0, we must have

ZZZ∗,LP
n,k = 0. The natural constraint in Problem B.2 requires

∑K
k=1ZZZ

∗,LP
n,k = 1. Thus, we have ZZZ∗,LP

n,k′ =
∑K

k=1ZZZ
∗,LP
n,k −∑

k ̸=k′ ZZZ
∗,LP
n,k = 1.

That is to say, for any n 6= n′, we always have Z̃ZZp∗

n,· = ZZZ∗,LP
n,· , which completes the proof.

Step 2: Now we can show 1
N

∑N
n=1

∑K
k=1 Z̃ZZ

p∗

n,kâ̂âak(xn) ≥ 1
N

∑N
n=1

∑K
k=1ZZZ

∗
n,kâ̂âak(xn)− 1

N . To see this, by Lemma B.5,

Z̃ZZp∗

n,· = ZZZ∗,LP
n,· , ∀n 6= n′, we must have

1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k â̂âak(xn)−

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) =
1

N

K∑
k=1

ZZZ∗,LP
n′,k â̂âak(x

′
n)−

1

N

K∑
k=1

Z̃ZZp∗

n′,kâ̂âak(x
′
n)

As âk(x′
n) is bounded in [0, 1], we have

1

N

K∑
k=1

ZZZ∗,LP
n′,k â̂âak(x

′
n)−

1

N

K∑
k=1

Z̃ZZp∗

n′,kâ̂âak(x
′
n) ≤

1

N

K∑
k=1

ZZZ∗,LP
n′,k · 1− 1

N

K∑
k=1

Z̃ZZp∗

n′,k · 0 =
1

N

K∑
k=1

ZZZ∗,LP
n′,k

By natural constraint in Problem B.2,
∑K

k=1ZZZ
∗,LP
n′,k = 1. Thus, we have

1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k â̂âak(xn)−

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) ≤
1

N

K∑
k=1

ZZZ∗,LP
n′,k =

1

N



Efficient Online ML API Selection for Multi-Label Classification Tasks

On the other hand, ZZZ∗,LP is the optimal solution to Problem B.2 and ZZZ∗ is a feasible solution. Thus we have

1

N

N∑
n=1

K∑
k=1

ZZZ∗
n,kâ̂âak(xn) ≤

1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k â̂âak(xn)

Combining the two inequalities leads to

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kâ̂âak(xn) ≥
1

N

N∑
n=1

K∑
k=1

ZZZ∗
n,kâ̂âak(xn)−

1

N

Step 3: Finally, we are ready to show the budget constraint is satisfied. By Lemma B.5, Z̃ZZp∗

n,· = ZZZ∗,LP
n,· , ∀n 6= n′, we have

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kĉcck − 1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k ĉcck =

1

N

K∑
k=1

Z̃ZZp∗

n′,kĉcck − 1

N

K∑
k=1

ZZZ∗,LP
n′,k ĉcck

Denote sp
∗
(xn′) by k1. By construction, we have

K∑
k=1

Z̃ZZp∗

n′,kĉcck −
K∑

k=1

ZZZ∗,LP
n′,k ĉcck = ĉcck1

−
K∑

k=1

ZZZ∗,LP
n′,k ĉcck

Let S be the set of any k such that ZZZ∗,LP
n′,k 6= 0. Then we can further write

K∑
k=1

Z̃ZZp∗

n′,kĉcck −
K∑

k=1

ZZZ∗,LP
n′,k ĉcck = ĉcck1

−
∑
k∈S

ZZZ∗,LP
n′,k ĉcck

Note that k ∈ S implies k ∈ argmax âaak(xn′)−ĉ̂ĉckp
∗ (Suppose not. Then there exists some k′, such that âaak′(xn′)−ĉ̂ĉck′p∗ >

âaak(xn′) − ĉ̂ĉckp
∗. Multiplying both sides by − 1

N and then adding qqq∗n gives − 1
N âaak′(xn′) + 1

N ĉ̂ĉck′p∗ + qqq∗n < − 1
N âaak(xn′) +

1
N ĉ̂ĉckp

∗ + qqq∗n. By complementary slackness of Problem B.2, ZZZ∗,LP
n,k (− 1

N âaak(xn′) + 1
N ĉ̂ĉckp

∗ + qqq∗n) = 0. k ∈ S implies
ZZZ∗,LP

n,k 6= 0 and thus − 1
N âaak(xn′) + 1

N ĉ̂ĉckp
∗ + qqq∗n = 0. Thus, − 1

N âaak′(xn′) + 1
N ĉ̂ĉck′p∗ + qqq∗n < 0, which contradicts with the

feasibility constraint in the dual problem.). Recall that k1 is determined by argmaxk âaak(xn′)− ĉ̂ĉckp
∗ and we break ties by

picking k with smallest cost. Thus, for any k ∈ S, ĉcck ≥ ĉcck1 . Therefore,

K∑
k=1

Z̃ZZp∗

n′,kĉcck −
K∑

k=1

ZZZ∗,LP
n′,k ĉcck ≤ ĉcck1

−
∑
k∈S

ZZZ∗,LP
n′,k ĉcck1

= (1−
∑
k∈S

ZZZ∗,LP
n′,k )ĉcck1

By feasibility constraint in Problem B.2,
∑

k∈S ZZZ
∗,LP
n′,k =

∑K
k=1ZZZ

∗,LP
n′,k = 1. Thus, the above inequality becomes∑K

k=1 Z̃ZZ
p∗

n′,kĉcck −
∑K

k=1ZZZ
∗,LP
n′,k ĉcck ≤ 0. Thus,

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kĉcck − 1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k ĉcck =

1

N

K∑
k=1

Z̃ZZp∗

n′,kĉcck − 1

N

K∑
k=1

ZZZ∗,LP
n′,k ĉcck ≤ 0

ZZZ∗,LP is a feasible solution to Problem B.2, so it must satisfy the budget constraint and thus 1
N

∑N
n=1

∑K
k=1ZZZ

∗,LP
n,k ĉcck ≤ b.

Hence, we must have

1

N

N∑
n=1

K∑
k=1

Z̃ZZp∗

n,kĉcck ≤ 1

N

N∑
n=1

K∑
k=1

ZZZ∗,LP
n,k ĉcck ≤ b ≤ b

i.e., Z̃ZZp∗
satisfies the budget constraint in Problem B.1.

Finally, combining step 2 and step 3 finishes the proof.
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B.3. Proof of Theorem 4.3

Proof. Let us first establish a few lemmas consisting of the main components of the proof.

Lemma B.6. Suppose δ ≥ ∥ccc∥∞
b

[√
log 4−log ϵ

N +
√

log 4−log ϵ
NTr

]
. Then with probability at least 1 − ϵ, sp̂ is a feasible

solution to Problem 4.1.

Proof. We first note that Problem 4.2 is a linear programming, and its dual problem is

max
ZZZ∈RN×K :

1

NTr

NTr∑
n=1

ZZZn,kâ̂âak(x
Tr
n )

s.t.
1

NTr

NTr∑
n=1

K∑
k=1

ZZZn,kĉcck ≤ (1− δ)b̂

K∑
k=1

ZZZn,k = 1,ZZZn,k ∈ [0, 1], ∀n, k

(B.4)

Note that this is in the same form of Problem B.2 except that the data become {xTr
n }NTr

n=1 instead of {xn}Nn=1. Using a
similar argument in the proof for Theorem 4.2, sp̂(xTr

n ) is a feasible solution to

max
1

NTr

NTr∑
n=1

rs
p

(xTr
n )

s.t.
1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc) ≤ (1− δ)b,

and thus we have

1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc) ≤ (1− δ)b

Note that training data xTr
n are i.i.d samples from the true distribution and 0 ≤ η[s](xTr

n , ccc) ≤ ‖ccc‖∞. Thus, by Hoeffding’s
inequality, with probability 1− ϵ, we have

‖ 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− E
[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 2− log ϵ

2NTr

The data stream xn is also from the same distribution, and thus we also have with probability 1− ϵ,

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)− E

[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 2− log ϵ

2N

Applying union bound, we have with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− E
[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 4− log ϵ

2NTr

and

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)− E

[
η[s

p](x,ccc)
]
‖ ≤ ‖ccc‖∞

√
log 4− log ϵ

2N
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Using triangle inequality, we have with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− 1

N

N∑
n=1

η[s
p](xn, ccc)‖ ≤ ‖ccc‖∞

√
log 4− log ϵ

2N
+ ‖ccc‖∞

√
log 4− log ϵ

2NTr
.

Thus we have

1

N

N∑
n=1

η[s
p](xn, ccc) ≤

1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc) + ‖ccc‖∞

√
log 4− log ϵ

2N
+ ‖ccc‖∞

√
log 4− log ϵ

2NTr

≤(1− δ)b+ ‖ccc‖∞

√
log 4− log ϵ

2N
+ ‖ccc‖∞

√
log 4− log ϵ

2NTr
≤ b

where the last inequality is due to the assumption on δ. That is to say, with probability 1 − ϵ, sp̂ is a feasible solution to
Problem 4.1, which completes the proof.

Lemma B.7. Construct the set ΩM ≜ {0, 1
(M−1)minccck ̸=0 ccck

, 2
(M−1)minccck ̸=0 ccck

, · · · , 1
minccck ̸=0 ccck

} and

p̂(ΩM ) ≜ arg max
p∈ΩM

1

NTr

NTr∑
n=1

rs
p

(xTr
n )

s.t.
1

NTr
η[s

p](xn, ccc) ≤ (1− δ)b.

Then with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)‖ ≤ O(

√
logN + log 8− log ϵ

2N
+

√
logNTr + log 8− log ϵ

2NTr
).

Proof. Note that ΩM ⊆ R. Consider an element p ∈ R.

(i) p ≥ 1
minccck ̸=0 ccck

: This effectively means the API with the smallest cost is always selected. In other words, we always
have

bs = argmax âaak(x)− pĉcck

To see this, simply note that for any other k1, we have

âaabs(x)− pĉccbs − (âaak1(x)− pĉcck1) =âaabs(x)− âaak1(x) + p(ĉcck1 − ĉccbs) = âaabs(x)− âaak1(x) + pĉcck1

≥0− 1 + pĉcck1 ≥ −1 + ĉcck1 ·
1

minccck ̸=0 ccck
≥ 0

Thus, for such p, the objective value is the same as that for 1
minccck ̸=0 ccck

∈ ΩM .

(ii): 0 ≤ p ≤ 1
minccck ̸=0 ccck

: By construction of ΩM , there exists some m, such that m
(M−1)minccck ̸=0 ccck

≤ p ≤ m+1
(M−1)minccck ̸=0 ccck

.

Let pj ≜ j
(M−1)minccck ̸=0 ccck

for ease of notations. Clearly, we have pm ∈ ΩM .

Now let us partition the space of âaa(x) into M regions, denoted by A1, A2, · · · , AM . Abusing the notation a little bit, let
ϕ(p, x) ≜ argmax âaak(x)− pĉcck A1 is the set of all âaa(x) such that ϕ(p, x) is a constant. A2 is the set of all âaa(x) such that
ϕ(p, x) is a constant for p larger than p1. Generally, Aj is the set of all âaa(x) such that ϕ(p, x) is a constant for p larger than
pj−1 subtracting Aj−1. Formally,

Aj =

{
{âaa(x) : ϕ(p, x)is a constant}, j = 1

{âaa(x) : ϕ(p, x)is a constant if p ≥ pj−1} −Aj , j > 1
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One can easily verify that {Aj} form a partition of the space of the estimated accuracy, and further more, ‖Aj‖ ≤
∥ccc∥1

M minccck ̸=0 ccck
. By the assumption of the distribution, there exists some constant u, such that Pr(A) ≤ u‖A‖, for any

A in the probability space. Thus, we must have

Pr[âaa(x) ∈ Aj ] ≤ ‖Aj‖u =
u‖ccc‖1

M minccck ̸=0 ccc2k

Now note that, when pm = m
(M−1)minccck ̸=0 ccck

≤ p ≤ m+1
(M−1)minccck ̸=0 ccck

= pm+1, only elements in Am may affect the
reward. More precisely, we have

1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn) =
1

N

∑
xn∈Am

rs
p

(xn)−
1

N

∑
xn∈Am

rs
pm

(xn)

Note that each estimated accuracy is an i.i.d sample from the true distribution, and its value is from [0, 1], by Hoeffding’s
inequality, with probability 1− ϵ, we have

‖ 1

N

N∑
n=1

1xn∈Aj
− Pr[xn ∈ Aj ]‖ ≤

√
log 2− log ϵ

2N

Applying the union bound, we have for any j, with probability 1− ϵ,

‖ 1

N

N∑
n=1

1xn∈Aj − Pr[xn ∈ Aj ]‖ ≤
√

logM + log 2− log ϵ

2N

Therefore, we have with probability 1− ϵ,

1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn) =
1

N

∑
xn∈Am

rs
p

(xn)−
1

N

∑
xn∈Am

rs
pm

(xn)

≥
∑

xn∈Am

0− 1

N

∑
xn∈Am

1 =
1

N

N∑
n=1

1xn∈Am

≥ Pr[xn ∈ Am]−
√

logM + log 2− log ϵ

2N

≥ −
√

logM + log 2− log ϵ

2N

and similarly

1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn) =
1

N

∑
xn∈Am

rs
p

(xn)−
1

N

∑
xn∈Am

rs
pm

(xn)

≤
∑

xn∈Am

1− 1

N

∑
xn∈Am

0 =
1

N

N∑
n=1

1xn∈Am

≤ Pr[xn ∈ Am] +

√
logM + log 2− log ϵ

2N

≤ u‖ccc‖1
M minccck ̸=0 ccck

+

√
logM + log 2− log ϵ

2N

That is to say,

‖ 1

N

N∑
n=1

rs
p

(xn)−
1

N

N∑
n=1

rs
pm

(xn)‖ ≤ u‖ccc‖1
M minccck ̸=0 ccck

+

√
logM + log 2− log ϵ

2N
(B.5)
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Similarly, for the training dataset, we can also get, with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

rs
p

(xTr
n )− 1

NTr

N∑
n=1

rs
pm

(xTr
n )‖ ≤ u‖ccc‖1

M minccck ̸=0 ccck
+

√
logM + log 2− log ϵ

2N

Combining case (i) and case (ii), we have just shown that for any p ∈ R, there exists another p′ ∈ ΩM , such that

‖ 1

NTr

NTr∑
n=1

rs
p

(xTr
n )− 1

NTr

N∑
n=1

rs
p′

(xTr
n )‖ ≤ u‖ccc‖1

M minccck ̸=0 ccck
+

√
logM + log 2− log ϵ

2N
(B.6)

Thus, applying Lemma B.2, we have with probability 1− ϵ,

‖ 1

NTr

NTr∑
n=1

rs
p̂

(xTr
n )− 1

NTr

N∑
n=1

rs
p̂(ΩM )

(xTr
n )‖ ≤ u‖ccc‖1

M minccck ̸=0 ccck
+

√
logM + log 2− log ϵ

2N

Now by Lemma B.3, for each fixed j, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
pj
(xn)−

1

NTr

NTr∑
n=1

rs
pj
(xTr

n )‖ ≤

[√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr

]
Applying union bound, with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
pj
(xn)−

1

NTr

NTr∑
n=1

rs
pj
(xTr

n )‖ ≤

[√
logM + log 4− log ϵ

2N
+

√
logM + log 4− log ϵ

2NTr

]

for all j. Specifically, we have

‖ 1

N

N∑
n=1

rs
p̂(ΩM )

(xn)−
1

NTr

NTr∑
n=1

rs
p̂(ΩM )

(xTr
n )‖ ≤

[√
logM + log 4− log ϵ

2N
+

√
logM + log 4− log ϵ

2NTr

]
(B.7)

and

‖ 1

N

N∑
n=1

rs
p′

(xn)−
1

NTr

NTr∑
n=1

rs
p′

(xTr
n )‖ ≤

[√
logM + log 4− log ϵ

2N
+

√
logM + log 4− log ϵ

2NTr

]
(B.8)

Now combining equations B.5, B.6, B.7, and B.8 with triangle inequality, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)‖

≤ u‖ccc‖1
4M minccck ̸=0 ccck

+ 4

√
logM + log 8− log ϵ

2N
+ 2

√
logM + log 8− log ϵ

2NTr

Setting M = min{NTr, N}, we have

‖ 1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)‖ ≤ O(

√
logN + log 8− log ϵ

2N
+

√
logNTr + log 8− log ϵ

2NTr
)

which completes the proof.
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Lemma B.8. Let

p(ΩM ) ≜ arg max
p∈ΩM

1

N

N∑
n=1

rs
p

(xn)

s.t.
1

N
η[s

p](xn, ccc) ≤ (1− δ)b− ‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
Then with probability 1− ϵ,

1

N

N∑
n=1

rs
p̂(ΩM )

(xn) ≥
1

N

N∑
n=1

rs
p(ΩM )

−
√

log 8− log ϵ

2N
−
√

log 8− log ϵ

2NTr

and
1

N

N∑
n=1

η[s
p̂(ΩM )](xn, ccc) ≤ (1− δ)b+ 2‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
.

Proof. By Lemma B.3, with probability 1− ϵ, we have

‖ 1

N

N∑
n=1

rs
p

(xn)−
1

NTr

NTr∑
n=1

rs
p

(xTr
n )‖ ≤

√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr
.

and similarly, with probability 1− ϵ,

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)−

1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)‖ ≤ ‖ccc‖∞

[√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr

]
.

which is the same as

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)− (1− δ)b−

 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− (1− δ)b

 ‖ ≤ ‖ccc‖∞

[√
log 4− log ϵ

2N
+

√
log 4− log ϵ

2NTr

]
.

Now applying union bound, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p

(xn)−
1

NTr

NTr∑
n=1

rs
p

(xTr
n )‖ ≤

√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr
.

and

‖ 1

N

N∑
n=1

η[s
p](xn, ccc)− (1− δ)b−

 1

NTr

NTr∑
n=1

η[s
p](xTr

n , ccc)− (1− δ)b

 ‖ ≤ ‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
.

both hold. By Lemma B.4, we can conclude that

1

N

N∑
n=1

rs
p̂(ΩM )

(xn) ≥
1

N

N∑
n=1

rs
p(ΩM )

−
√

log 8− log ϵ

2N
−
√

log 8− log ϵ

2NTr
.

and
1

N

N∑
n=1

η[s
p̂(ΩM )](xn, ccc)− (1− δ)b ≤ 2‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
.

with probability 1− ϵ, which completes the proof.
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Lemma B.9. For δ = Ω(
√

log 4−log ϵ
N +

√
log 4−log ϵ

NTr ), we have with probability 1− ϵ,

1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn) ≥ −O(

√
logN − log ϵ

2N
+

√
logN − log ϵ

2NTr
).

Proof. Let p̃(∆) be the optimal solution to the following problem

max
p∈R

1

N

N∑
n=1

rs
p

(xn)s.t.
1

N
η[s

p](xn, ccc) ≤ b−∆

On one hand, p∗ apparently is a feasible solution to the above problem with ∆ = 0, so we must have

1

N

N∑
n=1

rs
p∗

(xn) ≤
1

N

N∑
n=1

rs
p̃(0)

(xn) (B.9)

Let ∆′ = δ + ‖ccc‖∞
[√

log 8−log ϵ
2N +

√
log 8−log ϵ

2NTr

]
. Then p̃(∆′) corresponds to the following problem

max
p∈R

1

N

N∑
n=1

rs
p

(xn)

s.t.
1

N
η[s

p](xn, ccc) ≤ (1− δ)b− ‖ccc‖∞

[√
log 8− log ϵ

2N
+

√
log 8− log ϵ

2NTr

]
Then using the same argument in the proof of Lemma B.7, we have with probability 1− ϵ,

‖ 1

N

N∑
n=1

rs
p̃(∆′)

(xn)−
1

N

N∑
n=1

rs
p(ΩM )(xn)‖ ≤

√
logN + log 8 + log ϵ

2N
+

√
logN + log 8− log ϵ

2NTr
. (B.10)

Furthermore, it is clear that p̃(∆) is decreasingly-monotone with respect to ∆. In fact, removing the budget by ∆1, at most
∆1

minccck>cj
ck−cj

data’s APIs need be changed, and thus incurs at most ∆1

minccck>cj
ck−cj

accuracy decrease. That is to say, we
must have

‖ 1

N

N∑
n=1

rs
p̃(∆′)

(xn)−
1

N

N∑
n=1

rs
p̃(0)

(xn)‖ ≤ ∆1

minccck>cccj ccck − cccj
(B.11)

Now combining equations B.9, B.10, B.11, we can obtain

1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

=
1

N

N∑
n=1

rs
p(ΩM )(xn) − 1

N

N∑
n=1

rs
p̃(∆′)

(xn)

+
1

N

N∑
n=1

rs
p̃(∆′)

(xn)−
1

N

N∑
n=1

rs
p̃(0)

(xn) +
1

N

N∑
n=1

rs
p̃(0)

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

≥−
√

logN + log 8 + log ϵ

2N
−
√

logNTr + log 8− log ϵ

2NTr
− ∆1

minccck>cccj ccck − cccj
− 0

When δ = Ω(

[√
log 4−log ϵ

N +
√

log 4−log ϵ
NTr

]
), we have

1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

≥−O(

√
logN − log ϵ

2N
+

√
logNTr − log ϵ

2NTr
)
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which completes the proof.

Now we are ready to prove the main theorem. We start by showing the bound on the reward. Suppose δ =

Θ

(√
logN−log ϵ

N +
√

logNTr−log ϵ
NTr

)
. By union bound, with probability 1 − ϵ, Lemma B.7, Lemma B.8, and Lemma

B.9 all hold, and we have

1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

=
1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
p̂(ΩM )

(xn) +
1

N

N∑
n=1

rs
p̂(ΩM )

(xn)

+
1

N

N∑
n=1

rs
p(ΩM )

(xn)−
1

N

N∑
n=1

rs
p∗

(xn)

≥−O

(√
logN − log ϵ

N
+

√
logNTr − log ϵ

NTr

)

Now note that by Theorem 4.2, we have with probability 1,

1

N

N∑
n=1

rs
p∗

(xn) ≥
1

N

N∑
n=1

rs
∗
(xn)−

1

N

Combing the above two inequalities, we have

1

N

N∑
n=1

rs
p̂

(xn)−
1

N

N∑
n=1

rs
∗
(xn) ≥ −O

(√
logN − log ϵ

N
+

√
logNTr − log ϵ

NTr

)

Next we consider the feasibility requirement. By Lemma B.6, with probability 1 − ϵ, sp̂ is a feasible solution to Problem
4.1. That is to say, sp̂ with probability 1− ϵ is a feasible solution. Applying union bound completes the proof.
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C. Experimental Details
We provide missing experimental details in this part.

Experimental setup All experiments were run on a machine with 8 Intel Xeon Platinum 2.5 GHz cores, 32 GB RAM,
and 500GB disk with Ubuntu 16.04 LTS as the OS. Our code is implemented in Python 3.7. Each experiments, except the
case study, were run for five times to mitigate the randomness introduced by training-testing splitting.

ML tasks and services Recall that We focus on three multi-label classification tasks, multi-label image classification
(MIC), scene text recognition (STR), and named entity recognition (NER).

MIC is a computer vision task, where the goal is to assign a set of labels to a given image. For MIC, we use 3 different
commercial ML cloud services, Google Vision (Goo), Microsoft Vision (Mic), and Everypixel(Eve). We also use a single
shot detector model (SSD) pretrained on OpenImageV4 (Kuznetsova et al., 2020), which is freely available from GitHub
(SSD). All of those APIs produce labels from a large (and unknown) set, but the datasets we consider have bounded number
of labels. For example, there are only 80 distinct labels in COCO dataset. Thus, we remove the predicted labels which are
not in the full label set. For example, if Google API gives label {person, car, man} for an image in COCO, but man is not
in the full label set of COCO, then we will use {person, car} as the label set produced from Google.

STR is a computer vision task, where the goal is to predict all texts in a natural scene image. In the context of multi-label
classification, we view each predicted word as a label, and all possible words as the label set. For STR, the ML services
used in the experiments are Google Vision (Goo), iFLYTEK API (Ifl), and Tencent API (Ten). We also use PP-OCR (Pad),
an open source model from GitHub.

NER is a natural language processing task where the goal is to extract all possible entities from a given text. For example, for
the sentence ICML was held in Long Beach in 2019, ICML should be extracted as an organization, and Long Beach should
be identified as a location. In this paper, we consider three common types of entities, person, location, and organization.
For any given text, each possible entity is viewed as a label, and the label set is the number of unique entities in the
entire dataset. For NER, we use three common APIs: Amazon Comprehend (Ama), Google NLP (GoN), and IBM natural
language API (IBM). a multi-task convolutional neural network model(Spa) from GitHub is also used.

Datasets. The experiments were conducted on 9 datasets. For MIC, we use three popular datasets including PASCAL (Ev-
eringham et al., 2015), MIR (Huiskes & Lew, 2008) and COCO (Lin et al., 2014). PASCAL is a standard object recognition
dataset with 20 distinct labels, and COCO is another one with 80 unique labels. PASCAL’s label set contains 20 common
objects: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining
table, potted plant, sofa, tv/monitor. The 80 objects in COCO include: person, bicycle, car, motorcycle, airplane, bus, train,
truck, boat, traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant, bear, ze-
bra, giraffe, backpack, umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball
glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana, apple, sandwich,
orange, broccoli, carrot, hot dog, pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet, tv, laptop, mouse,
remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear, hair drier,
toothbrush. For those two datasets, we use their original associated labels as the label set. MIR is a dataset designed for
image retrieval. There are originally 25 labels: animals, baby, bird, car, clouds, dog, female, flower, food, indoor, lake,
male, night, people, plant_life, portrait, river, sea, sky, structures, sunset, transport, tree, water. We remove the label night
since it is not in the label set of any of the APIs or the GitHub model. On average, there are 1.44 labels per image for
PASCAL, 3.71 labels per image for MIR, and 2.91 labels per image for COCO. The dataset statistic is summarized in Table
2. Most of the datasets are open and under Creative Commons license (e.g., the dataset COCO (Lin et al., 2014)). The
details can be found in their corresponding paper and repository. As those datasets are actually open, they do not require
an in-person consent from the authors/developers. The datasets themselves may contain personal information (e.g., there
are personal images in COCO). Though, they have been render anonymous. For the purpose of deciding which API to call,
we also do not use personally identifiable information.

For STR, we use three large scale Chinese text recognition datasets, MTWI (He et al., 2018), ReCTS (Zhang et al., 2019)
and LSVT (Sun et al., 2019). The label set contains all possible Chinese characters as well as digits (0-9). MTWI contains
images from the internet mainly targeting at advertisements. Thus, most of its images have dense texts. ReCTS includes
photos taken on sign boards and thus has relatively fewer words. The images from LSVT are typically street view images
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Figure 6. Label Distribution on COCO.

and hence have medium number of words. All images in MTWI and ReCTS are fully annotated and used in our experiments.
LSVT contains both fully and partially annotated images, and we only use the subset with full annotations.

The other datasets, CONLL (Sang & Meulder, 2003), ZHNER (ZHN) and GMB (Bos, 2013), are used for NER task.
CONLL contains English sentences from newspapers, and texts from GMB are also English and from a wider range of
sources. On the other hand, ZHNER is a Chinese text dataset. We consider four common types of entities: organization,
person, and location. In this paper, we focus on three common types of entities that all datasets contain: persons,locations,
and organizations. Each sentence from those datasets is extracted as a data point, and the associated label set is simply all
entities in this sentence. An entity is considered correctly extracted if and only if it is labeled as an entity and its entity type
is correct.

GitHub model cost We evaluate the inference time of all GitHub models on an Amazon EC2 p2.x instance, which is
$0.90 per hour. For multi-label image classification, the GitHub model (SSD) takes 6s to classify each image, resulting
in an equivalent cost of $0.0015 per image. For the named entity task, the GitHub model (Spa) can extract the entities
from a sentence in 0.015s, leading to $ 0.00000375 per sentence. The GitHub model (Pad) with the mobile version 3.0
text detector and recognizer requires 1.5 on average to extract text from an image, causing a cost of $ 0.000375 per image.
Compared to the commercial APIs, this cost is much cheaper.

Case study on COCO Now we provide more details about the case study on the multi-label image classification dataset,
COCO. There are in total 123,287 images containing labels from 80 different categories in COCO. Figure 6 gives the label
distribution. First note that the label distribution is quite skewed. overall, the label person is the most frequent: more than
50% of the images contain the person label. Among others, car, chair, and dining tables are also quite common labels in
this dataset with more than 10% occurrence. On the other hand, there are also quite some rare labels. For example, half
driver and toaster appear in less than 1% of the images. Such imbalance between different labels imposes a high data and
computational complexity to directly apply previous approach that learns a decision rule per label, and thus verifies the
necessity of the proposed framework, FrugalMCT.

To further understand when and why FrugalMCT gives a better performance than single API, we present the precision and
recall per class for each API, majority vote, and FrugalMCT in Figure 7 and Figure 8. We first note that there is no API
universally better than other APIs for each label. For example, GitHub and Microsoft APIs can hardly correctly predict
the label “toaster”, but Everypixel and Google APIs have a relatively high accuracy on label “toaster”. On the other hand,
Everypixel has a low accuracy on label “kite” and “knite”, while Microsoft, Google, GitHub APIs can usually predict those
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Table 6. Comparison of ensemble methods as well as cost-aware approaches. For FrugalMCT and FrugalML, we pick their correspond-
ing strategies that minimize the cost while ensures that the accuracy reaches the highest possible.

best single API FrugalML FrugalMCT majority vote weighted maj vote

acc cost acc cost acc cost acc cost acc cost

PASCAL 74.8 10 76.9 11 78.5 8 77.8 31.01 77.8 31.01

MIR 41.2 10 43.8 8 49.2 14 41.4 31.01 48.7 31.01

COCO 47.5 10 49.3 8 54 12 50.1 31.01 52.8 31.01

MTWI 67.9 210 68.1 213 71.1 208 75.4 275.01 75.4 275.01

ReCTS 61.3 210 63.4 213 64.7 208 70.2 275.01 70.2 275.01

LSVT 53.8 210 56.2 213 57.2 208 62.8 275.01 62.8 275.01

CONLL 52.6 3 55.7 32 56.8 36.8 58.5 43.01 58.5 43.01

ZHNER 61.3 30 67.4 31.2 71.8 36.8 66 43.01 66 43.01

GMB 50.1 30 52.6 30.1 53.1 20.5 51.3 43.01 51.5 43.01

labels with higher accuracy. This implies that combining different APIs may produce an accuracy better than any single
one of them. There are also some easy labels on which all APIs give a high accuracy. For example, on the label “zebra”,
all APIs give a 90% precision and recall. This actually suggests that it is not always necessary to use all API. For example,
if GitHub predicts an image has the label “zebra”, and we know there is no other labels in this image, then probably there
is no need to call any other APIs.

Another interesting observation is that FrugalMCT improves the precision and recall for almost every label compared to
any single API. This is primarily because FrugalMCT appropriately utilizes the predicted label information from GitHub
model to infer which API is better on certain input, and combine its performance with the base API aptly. Yet, the precision
and recall difference can be quite different for different APIs. For example, as shown in Figure 8(c), the recall for “airplane”
is much higher than its precision, but banana’s precision is much higher than its recall. For applications that have specific
precision and recall requirements, we may adopt different accuracy metrics in FrugalMCT. Another interesting observation
is that the precision and recall for some labels is extremely. For example, “hair drier” cannot be predicted by FrugalMCT,
which is due to that no API actually predicts this label correctly. How to extend FrugalMCT to recognize unseen labels
remains an open question.

Table 7. Accuracy predictor performance. RMSE and PCC stand for root mean square error and Pearsons correlation coefficient.

Data
RMSE PCC

FrugalMCT DAP FrugalMCT DAP

PASCAL 0.28 0.35 0.55 0.012

MIR 0.22 0.31 0.55 -0.013

COCO 0.24 0.31 0.63 0.001

MTWI 0.17 0.21 0.57 0.004

ReCTS 0.22 0.27 0.57 0.001

LSVT 0.19 0.24 0.61 -0.003

CONLL 0.29 0.41 0.72 -0.003

ZHNER 0.31 0.36 0.48 -0.005

GMB 0.28 0.40 0.69 -0.006



Efficient Online ML API Selection for Multi-Label Classification Tasks

Ensemble method comparison For comparison, we compare FrugalMCT against FrugalML as well as two ensemble
methods, majority vote and weighted majority vote. In majority vote, for each label, we accept it if at least half of the APIs
predict it. In weighted majority vote, we assign each API’s accuracy as its weight. Next, for each label, we compute a label
score, which is equal to the sum of each API’s confidence score on this label weighted by its corresponding weight. If an
API does not predict a label, then its confidence score is viewed as 0. Finally, we only accept the label if its label score is
larger than a threshold. We pick a threshold that maximizes the overall accuracy by grid search.

The results are summarized in Table 6. Overall, we observe that FrugalMCT and ensemble methods have similar perfor-
mance across different tasks and datasets, but with a much lower cost. In fact, for datasets including COCO and ZHNER,
FrugalMCT can achieve an accuracy enven higher than ensemble methods.

Accuracy predictor performance Note that FrugalMCT’s performance highly depends on its accuracy predictors’ per-
formance. Tn obtain a quantitative sense of the accuracy predictors, we evaluate the accuracy predictors’ performance in
Table 7. RMSE measures the standard deviation of the difference between accuracy predictor’s output and the correspond-
ing true accuracy. PCC stands for Pearson correlation coefficient, which roughly measures the linear correlation between
the true accuracy and the predicted value from the accuracy predictors. Overall, FrugalMCT’ random forest predictors
enjoy a much smaller RMSE and higher PCC than DAP (the dummy accuracy predictors), which matches the fact that
FrugalMCT gives a higher end to end performance than using the DAP.
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(b) Everypixel

ai
rp
la
ne

ap
pl
e

ba
ck

pa
ck

ba
na

na
ba

se
ba

ll 
ba

t
ba

se
ba

ll 
gl
ov

e
be

ar
be

d
be

nc
h

bi
cy

cl
e

bi
rd

bo
at

bo
ok

bo
ttl
e

bo
w
l

br
oc

co
li

bu
s

ca
ke ca
r

ca
rr
ot ca
t

ce
ll 
ph

on
e

ch
ai
r

cl
oc

k
co

uc
h

co
w

cu
p

di
ni
ng

 ta
bl
e

do
g

do
nu

t
el
ep

ha
nt

fir
e 
hy

dr
an

t
fo
rk

fr
is
be

e
gi
ra
ffe

ha
ir 
dr
ie
r

ha
nd

ba
g

ho
rs
e

ho
t d

og
ke

yb
oa

rd
ki
te

kn
ife

la
pt
op

m
ic
ro
w
av

e
m
ot
or
cy

cl
e

m
ou

se
or
an

ge
ov

en
pa

rk
in
g 
m
et
er

pe
rs
on

pi
zz
a

po
tte

d 
pl
an

t
re
fr
ig
er
at
or

re
m
ot
e

sa
nd

w
ic
h

sc
is
so

rs
sh

ee
p

si
nk

sk
at
eb

oa
rd

sk
is

sn
ow

bo
ar
d

sp
oo

n
sp

or
ts
 b
al
l

st
op

 s
ig
n

su
itc

as
e

su
rf
bo

ar
d

te
dd

y 
be

ar
te
nn

is
 ra

ck
et tie

to
as

te
r

to
ile

t
to
ot
hb

ru
sh

tr
af
fic

 li
gh

t
tr
ai
n

tr
uc

k tv
um

br
el
la

va
se

w
in
e 
gl
as

s
ze
br
a0.0

0.2

0.4

0.6

0.8

1.0

(c) Microsoft

Figure 7. The per class precision and recall of different APIs .
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(a) Google
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(b) Majority Vote
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(c) FrugalMCT

Figure 8. The per class precision and recall of different APIs .


